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Abstract

Elementary thermal operations are thermal operations that act non-
trivially on at most two energy levels of a system at the same time. They
were recently introduced in order to bring thermal operations closer to ex-
perimental feasibility. A key question to address is whether any thermal
operation could be realized via elementary ones, that is, whether elemen-
tary thermal operations are universal. This was shown to be false in
general, although the extent to which elementary thermal operations are
universal remained unknown. Here, we characterize their universality in
both the sense described above and a weaker one, where we do not require
them to decompose any thermal operation, but to be able to reproduce
any input-output pair connected via thermal operations. Moreover, we
do so for the two variants of elementary thermal operations that have
been proposed, one where only deterministic protocols are allowed and
one where protocols can be conditioned via the realization of a random
variable, and provide algorithms to emulate thermal operations whenever
their elementary counterparts are (weakly or not) universal. Lastly, we
show that non-deterministic protocols reproduce thermal operations bet-
ter than deterministic ones in most scenarios, even when they are not
universal. Along the way, we relate elementary thermal operations to
random walks on graphs.

1 Introduction

The fundamental tools we are interested in here are the thermal operations
[1–4]. Thermal operations are quantum channels that, given a system in state
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ρ with Hamiltonian HS that is in contact with a heat bath with Hamiltonian
HB , take the form

Epρq “ TrB

„

U

ˆ

ρ b
e´βHB

Tr pe´βHB q

˙

U :

ȷ

, (1)

where U is an energy-preserving unitary (rU,HS `HBs “ 0), TrB is the partial
trace over the heat bath and β is the inverse temperature.1

The study of thermal operations has been pursued in a field known as
resource theory. The fundamental ideas in resource theory appeared in
the chemical physics literature and are originally due to Ruch and collabo-
rators [7–10], Alberti and Uhlmann [11, 12] and Zylka [13]. Despite this, some
of the basic tools were introduced outside the realm of physics and are still used
in areas ranging from information theory to economics [14, 15], with standard
mathematical references in the field being the books by Marshall et al. [16] and
Bhatia [17]. Regarding physics, an overview of key results and areas of ap-
plication can be found in the recent review by Lostaglio [4] and the book by
Sagawa [18]. The fundamental contributions to resource theory include [1,19,20],
with some of the recent advances on the topic being [21–26]. Regarding appli-
cations, algorithmic cooling should be highlighted [2, 27,28].

The conditions under which some ρ1 can via achieved from ρ via some ther-
mal operation E , ρ1 “ Epρq, constitute a long-standing challenge in general.
However, whenever ρ or ρ1 are energy incoherent, the challenge simplifies and
the transitions between ρ and ρ1 are fully characterized in terms of their asso-
ciated population vectors p and p1. In particular, we can translate the question
regarding transitions to the thermo-majorization relation on probability dis-
tributions. More specifically, ρ1 can be achieved from ρ provided p1 is thermo-
majorized by p [1,29]. Moreover, the latter condition is known to be equivalent
to the existence of some stochastic matrix G such that p1 “ Gp and Gg “ g,
where

g “
1

Z

`

e´βE1 , . . . , e´βE|Ω|
˘

is the Gibbs distribution associated to HS and Z “
ř|Ω|

i“1 e
´βEi its partition

function [23]. That is, G is a g-stochastic matrix that maps p to p1.2 Lastly,
thermo-majorization relations provide fundamental constraints for general ther-
modynamic transitions since they characterize the population dynamics induced
by arbitrary thermal operations [1, 2, 30].

1The restriction to an energy-preserving unitary is justified via the notion of passivity
[2, 5, 6].

2In general, for d P PΩ, we denote M P M|Ω|,|Ω|pRq as d-stochastic provided it is stochastic,
i.e.,

|Ω|
ÿ

i“1

Mi,j “ 1 for 1 ď j ď |Ω|,

and has d as equilibrium distribution Md “ d [16]. Here, PΩ stands for the set of probability
distributions over some finite set Ω (also known as standard simplex and often denoted by
∆|Ω|´1) and M|Ω|,|Ω|pRq for the set of |Ω| ˆ |Ω| matrices with real entries.
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In this context, a natural subset of the g-stochastic matrices considered
in resource theory is the one where we only allow G to act non-trivially on
at most two elements of the state space, the so-called elementary thermal
operations [2]. Theoretically, this subset of stochastic matrices has already
been considered in the study of the fundamental notion of uncertainty known
as majorization for its simplicity [16,17,31]. However, from a resource-theoretic
point of view, the recent interest in elementary thermal operations comes from
experimental considerations. To draw an analogy, the situation is quite similar
to the decomposition of unitary matrices in terms of circuits involving at most
two-level gates [32], which was pursued given that experimental implementations
of such gates via optical devices are well-known [33].3 In our resource-theoretic
context, the main issue is that universal sets of thermal operations, like the so-
called crude operations [34], often require control over the global system and
heat bath. The fact that this issue is considerably improved upon when using
elementary thermal operations, which can be well reproduced via the collision
or the Jaynes-Cummings model [2, 35, 36], motivated their recent introduction
in resource theory [2].

Following the analogy with [32], a fundamental question regarding elemen-
tary thermal operations is to what extent they can be used to implement thermal
operations, that is, whether they are universal or not. A question analogous to
that in [32] would be whether every g-stochastic matrix can be decomposed as a
product of elementary thermal operations. A more general question [2] would be
whether the same holds if we take several sets of products of elementary thermal
operations and condition which one we use on the realization of some random
variable (for instance, a coin toss). This is equivalent to asking whether every
g-stochastic matrix can be decomposed as a convex combination of products
of elementary thermal operations. (It should be noted that, while the incorpo-
ration of such a random variable has the clear drawback that post-processing
will be required, its advantages will become clear later on. For the moment, it
suffices to say that its incorporation does not seem to add further restrictions
regarding experimental applicability.)

The fundamental questions above have not yet been fully answered, although
some results are known. In this regard, [2] showed that elementary thermal op-
erations (in the stronger form and, hence, in the weaker one without convex
combinations), are not universal in general, that is, for any Gibbs distribution.
However, whenever the Gibbs distribution is uniform, it is well-known that they
are universal [31,37,38]. Despite these results, no characterization of the univer-
sality of elementary thermal operations in terms of g P PΩ is known. Moreover,
there is no characterization of universality in the weaker sense, where we do not
necessarily require elementary thermal operations to decompose any thermal
operation, but we ask whether we can find some elementary thermal opera-
tions connecting each pair p, p1 P PΩ that is connected by thermal operations.

3Regarding the formal relation between both questions, it is easy to see that the only
stochastic matrices that are unitary are the permutation matrices. (M P M|Ω|,|Ω|pRq is a
permutation matrix if it has a single one in each row and column with the remaining entries
being zero [16].)
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“
?

λ

1 ´ λ

Figure 1: Schematic representation of (Q2): When can thermal operations be
decomposed as convex combinations of sequences of two-level thermal opera-
tions? In this representation, we ask whether a thermal operation acting on
four energy levels (left of the equality) can be decomposed as a convex combi-
nation (consisting of two elements with weights λ and 1´λ in the figure) of two
sequences of thermal operations that act only on two energy levels simultane-
ously.

We will refer to this as weak universality. Lastly, there is no characteriza-
tion of the extent to which the incorporation of random variables (and, hence,
post-processing) to elementary thermal operations offers an advantage regarding
universality. These constitute our main questions. In summary, we ask:

(Q1) When are elementary thermal operations weakly universal?

(Q2) When are elementary thermal operations universal?

(Q3) When does the incorporation of random variables to the elementary ther-
mal operations offer an advantage regarding weak or non-weak universal-
ity?

A schematic representation of (Q2) can be found in Figure 1. In particular, we
represent the stronger framework where convex combinations are allowed.

1.1 Outline

As our main results, we answer (Q1) and (Q2) fully and make substantial
progress on (Q3). We give an overview of our main results in Section 3.

Regarding structure, we first introduce the resource theories and polytopes
we consider here in Section 2. We then gather some known results regarding
their relationship when the Gibbs distribution is uniform and some basic re-
marks for the following (Sections 4 and 5). As a first step towards our main
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questions, we characterize a restricted version of (Q2) in Section 6. Question
(Q1) is resolved in Section 7, and (Q2) in Section 8. Our progress regarding
(Q3) can be found in Section 9. Lastly, we address the convexity of elementary
thermal operations as a consequence of our work regarding (Q3) in Section 10,
and relate resource theories to random walks on graphs in Appendix B.

2 Thermal and elementary thermal operations

In this section, we introduce the thermal operations we are concerned with here.
Note that, throughout this work, we consider 0 ă d P PΩ, the only physically
relevant situation since, for 1 ď i ď |Ω|, di “ 0 implies Ei is infinite. (The
reader interested in the case 0 ď d may find [39] useful.) Moreover, some of
the definitions in this section are usually written for the Gibbs distribution
and, hence, do not include the partition function [2, 4]. We simply take some
0 ă d P PΩ and note this results in no meaningful difference.

2.1 Thermal operations

We begin by introducing the well-known polytope and resource theory of thermal
operations [2, 4].

Definition 1 (Resource theory and polytope of thermal operations (TO)). If
0 ă d P PΩ and PTOpdq is the set of d-stochastic matrices M P M|Ω|,|Ω|pRq,
then the resource theory of thermal operations RTOpdq is the set

RTOpdq :“ tpp,Mpq : p P PΩ,M P PTOpdqu,

that is, RTOpdq is the set of all possible state transfers p Ñ q :“ Mp allowed
by d-stochastic matrices. We refer to PTOpdq as the polytope of thermal
operations.

Note that our definition of thermal operations is somewhat restrictive: It
corresponds to the action of thermal operations on populations [4, Section
2.1].

In what follows, we will use the term polytope to refer to a set of allowed
operations and the term resource theory to the set of input-output pairs that
these operations map.4

We say that q P PΩ can be achieved from p P PΩ via thermal operations
(and analogously for the resource theories we will introduce later on) provided
pp, qq P RTOpdq.

An easy way to determine whether a transition from p to q is possible is to
use the d-majorization curve [4]:

4Strictly speaking, a convex polytope or polytope for simplicity is the convex hull of a
nonempty finite set [40]. Although the polytope of thermal operations is indeed a polytope
(see Section 8 or [39, 41]), we will sometimes use the term polytope loosely. We will return
to this point later on.
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Definition 2 (d-majorization curve). If p, d P PΩ and 0 ă d, then the d-
majorization curve associated to p can be constructed as follows:

(a) We consider a permutation Πd
p P S|Ω| such that, for 1 ď i ă |Ω|,

ppΠd
pq´1piq

dpΠd
pq´1piq

ě
ppΠd

pq´1pi`1q

dpΠd
pq´1pi`1q

. (2)

We call Πd
p the d-permutation of p.5 Moreover, we refer to pΠd

pq´1 as the
d-order of p and define

pd :“
´

ppΠd
pq´1piq

¯|Ω|

i“1
.

Furthermore, for 1 ď i ď |Ω|, we say pi is associated to α if di “ α and
extend this definition naturally to pdi .

(b) Plot the pairs of points

˜

k
ÿ

i“1

dpΠd
pq´1piq,

k
ÿ

i“1

ppΠd
pq´1piq

¸|Ω|

k“1

together with p0, 0q and connect them piecewise linearly to form a concave
curve. We call this curve the d-majorization curve and denote it by
cdp. It should be noted that the curve is also known as Lorenz d-curve or
thermo-majorization curve.

We say that p d-majorizes or thermo-majorizes q, which we denote by
q ĺd p, if cdp is never below cdq . The reason we include these definitions is that it
is well-known [2,4,10,42] that, for any pair p, q P PΩ, there exists a d-stochastic
matrix M such that q “ Mp if and only if p d-majorizes q, q ĺd p. This will
prove to be useful later on.

2.2 Elementary thermal operations

To introduce the resource theories and polytopes of elementary thermal opera-
tions, we need some more definitions. We will denote by dÓ the distribution that
results from permuting the components of some d P PΩ until they are arranged
in non-increasing order.

It is not hard to see that, if Q P M|Ω|,|Ω|pRq is a permutation matrix such

that dÓ “ Qd and M P M|Ω|,|Ω|pRq is a d-stochastic matrix acting non-trivially
on at most two levels, then

MÓ :“ QMQT

5This constitutes an abuse of language, since we should call it a d-permutation whenever
there is some equality in (2). However, we assume that Πd

p is unique in general and deal with

the problematic scenario when needed, referring to it as uncertainty in Πd
p. Lastly, note that

the most pathological case is p “ d, since any permutation can be the d-permutation of d.
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is a dÓ-stochastic matrix acting non-trivially on at most two levels. (In the
following, we assume some fixed Q for each d in order for MÓ to be well-defined.)
Moreover, by definition, there exist i, j with 1 ď i ď j ď |Ω| and x, y, z, t P r0, 1s

such that

MÓ “

ˆ

x y
z t

˙

à

Izpi,jq “

ˆ

1 ´ γi,jy y
γi,jy 1 ´ y

˙

à

Izpi,jq “ p1 ´ yqI ` yP dÓ

pi, jq,

(3)

where γi,j :“ dÓ

j{dÓ

i and

P dÓ

pi, jq :“

ˆ

1 ´ γi,j 1
γi,j 0

˙

à

Izpi,jq.

(Note that in (3) we mean that MÓ is identity except for MÓ

k,ℓ with k, ℓ P ti, ju,
where it takes the values we specify on the left of

À

.)
As a result, we have the following decomposition of M :

M “ p1 ´ yqI ` yQTP dÓ

pi, jqQ. (4)

The decomposition in (4) motivates the following definition, which will be
key in order to introduce the elementary resource theories we consider here.

Definition 3 (d-swap and T d-transform). If 0 ă d P PΩ, Q P M|Ω|,|Ω|pRq is

a permutation matrix such that dÓ “ Qd and 1 ď i ď j ď |Ω|, then we call
P dpi, jq P M|Ω|,|Ω|pRq a d-swap provided

P dpi, jq “ QTP dÓ

pi, jqQ. (5)

In the same scenario, we call T d
λ pi, jq P M|Ω|,|Ω|pRq a T d-transform provided

there exists some 0 ď λ ď 1 such that

T d
λ pi, jq “ p1 ´ λqI ` λP dpi, jq. (6)

As shown in (4), T d-transforms constitute all d-stochastic matrices that act
non-trivially on at most two levels. Moreover, (4) also shows that any such
matrix can be decomposed as a convex combination of d-swaps. Moreover, since
it uses the Gibbs distribution notation for some inverse temperature β, d-swaps
are called β-swaps in [2]. (In fact, in [2], β-swaps were only introduced for d “

dÓ.) T d transforms are sometimes referred to as simple d-stochastic matrices
[16] or as elementary thermal operations [2]. We follow the notation in
[16, 31] when dealing with the uniform case d “ u :“ p1{|Ω|, . . . , 1{|Ω|q and
refer to Tu-transforms as T -transforms. Another name for Tu transforms is
elementary doubly stochastic matrices [43].

Definition 3 allows us to introduce two pairs of elementary thermal resource
theories and polytopes, which we call strong and weak.

Definition 4 (Resource theory and polytope of weak elementary thermal op-
erations (WETO)). If 0 ă d P PΩ and PWETOpdq is the set of finite sequences
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of T d-transforms, then the resource theory of weak elementary thermal
operations RWETOpdq is the set

RWETOpdq :“ tpp,Mpq : p P PΩ,M P PWETOpdqu.

We refer to PWETOpdq as the polytope of weak elementary thermal oper-
ations.6

Sometimes the literature refers to the fact that some q P PΩ can be achieved
from some p P PΩ via the resource theory of weak elementary thermal operations
by saying that q is simply d-majorized by p [16, Definition 14.B.2.a].

Definition 5 (Resource theory and polytope of strong elementary thermal op-
erations (ETO) [2, Definition 1]). If 0 ă d P PΩ and PETOpdq is the set of
convex combinations of finite sequences of d-swaps, then the resource theory
of strong elementary thermal operations RETOpdq is the set

RETOpdq :“ tpp,Mpq : p P PΩ,M P PETOpdqu.

We refer to PETOpdq as the polytope of weak elementary thermal opera-
tions.

The ETO resource theory and polytope are the convex hull of the WETO
resource theory and polytope, respectively. Hence, we can think of them as the
incorporation of random variables to WETO protocols.

Definition 5 and [2, Definition 1] are equivalent. In [2], what we call the
resource theory of strong elementary thermal operations is referred to
as the resource theory of elementary thermal operations and, moreover,
d-swaps are substituted by T d transforms (which they call ETOs). In any case,
it is easy to see that they are equivalent [2].7

If we only consider the sequences of d-swaps with a single d-swap, then we
refer to Definition 5 as the length one resource theory (and polytope) of strong
elementary thermal operations. We analyze this simplified scenario in Section
6 and connect it with random walks on graphs in Appendix B.

The following section provides an overview of the main results in this work.

3 Main results

Our first main result is the following:

Theorem. If 0 ă d P PΩ, then the following statements are equivalent:

(a) RTOpdq “ RETOpdq.

6This constitutes an abuse of language since the WETO polytope is not convex in general.
We give an example after the proof of Theorem 9 and characterize its convexity in Corollary
3.

7The fact that our definition is included in theirs holds directly and, for the converse,
one simply ought to develop the products of T d-transforms for each sequence in the convex
combination and note that the result is indeed a convex combination of products of d-swaps.
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(b) RTOpdq “ RWETOpdq.

(c) PTOpdq “ PETOpdq.

(d) dÓ “ pd0, . . . , d0, d1q.

The equivalence between (a) and (d) is proven in Theorem 5. This equiv-
alence characterizes the weak universality of strong elementary thermal opera-
tions, and is part of our answer to (Q1). The equivalence between (b) and (d)
is shown in Theorem 6. This equivalence characterizes the weak universality of
weak elementary thermal operations, and is part of our answer to (Q1). The
equivalence between (c) and (d) is proven in Theorem 8. This equivalence char-
acterizes the universality of strong elementary thermal operations, and is part
of our answer to (Q2).

Our second main result is the following:

Theorem. If 0 ă d P PΩ, then the following statements are equivalent:

(a) PTOpdq “ PWETOpdq.

(b) PETOpdq “ PWETOpdq.

(c) |Ω| “ 2.

The equivalence between (a) and (c) is proven in Theorem 9. This equiva-
lence characterizes the universality of weak elementary thermal operations, and
is part of our answer to (Q2). We show the equivalence between (b) and (c) in
Theorem 11. This equivalence characterizes the advantage regarding universal-
ity that one can achieve by incorporating random variables to the elementary
thermal operations, and is part of our answer to (Q3).

Before we state the last main result, we need to introduce quasi-uniform
distributions.

Definition 6 (Quasi-uniform distribution). 0 ă d P PΩ is a quasi-uniform
distribution provided it has, at most, two different entries di P tx, yu for all
i P Ω.8

Using the definition above, we can now state our last main theorem.

Theorem. If 0 ă d P PΩ, then RETOpdq “ RWETOpdq only if d is quasi-
uniform.

The implication is proven in Theorem 10. This result shows that, in most
situations, one can achieve an advantage regarding weak universality by incor-
porating random variables to the elementary thermal operations, and is part of
our answer to (Q3). Provided we are restricted to |Ω| “ 3, the converse also
holds, as proven in Proposition 4.

8For instance, for |Ω| “ 4, the only (non-increasingly ordered) quasi-uniform distributions
are the uniform distribution u and, taking d0 ą d1, p1 “ pd0, d1, d1, d1q, p2 “ pd0, d0, d1, d1q

and p3 “ pd0, d0, d0, d1q.
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Since the main aim of this work is to study the relation between the different
resource theories and polytopes we have introduced, we begin by considering the
known results for the case where d “ u is uniform in the following section. (See
also [2, Section 2.3].)

4 Universality and weak universality for uniform
equilibrium distributions

The first thing we ought to remark is that all resource theories coincide provided
d “ u. This follows directly from the following theorem, which was originnally
developed by Muirhead [37] and was generalized by Hardy et al. [31] to encom-
pass probability distributions.

Theorem 1 (Equivalence TO and WETO resource theories for uniform d
[31, 37]). If d P PΩ is the uniform distribution u, then the thermal operations
resource theory is equal to the weak elementary thermal operations resource the-
ory

RTOpuq “ RWETOpuq.

Moreover, since

RWETOpdq Ď RETOpdq Ď RTOpdq

for all d P PΩ by definition, all thermal resource theories considered here are
equivalent provided the equilibrium distribution is uniform.

When dealing with thermal operations and (strong) elementary thermal op-
erations, the equivalence can be generalized to polytopes as a direct consequence
of Birkhoff’s theorem [38] (also sometimes attributed to von Neumann [44]) to-
gether with the fact that permutation matrices can be decomposed as products
of transpositions.

Theorem 2 (Equivalence TO and ETO polytopes for uniform d [38, 44]). If
d P PΩ is the uniform distribution u, then the polytope of thermal operations is
equivalent to the polytope of elementary thermal operations

PTOpuq “ PETOpuq.

The equivalence at the polytope level, however, does not include weak ele-
mentary thermal operations, as shown by Marcus et al. [43]. (See also [16].)

Theorem 3 (Equivalence TO and WETO polytopes for uniform d [43, Theorem
1]). If d P PΩ is the uniform distribution u, then the following statements are
equivalent:

(a) The weak elementary thermal operations polytope is equivalent to the ther-
mal operations polytope

PTOpuq “ PWETOpuq.
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(b) |Ω| “ 2.

In the following, we address the generalization of Theorems 1, 2 and 3 to
arbitrary equilibrium distributions 0 ă d P PΩ. Before we start showing our
main results, we make some basic remarks that will be useful in the future.

5 Basic observations for the general case

Recall that we only deal with the case where 0 ă d P PΩ. As a first remark, we
note that, given an arbitrary 0 ă d P PΩ, it is equivalent to show the relation
between the different resource theories and polytopes for dÓ than to do so for d.
In order to show this, we use the following terminology

Pppq :“ tPTOppq,PETOppq,PWETOppqu,

Rppq :“ tRTOppq,RETOppq,RWETOppqu

for all p P PΩ.

Lemma 1 (Equivalence under permutation of d). Consider 0 ă d P PΩ. If we
take a pair of polytopes Apdq, Bpdq P Ppdq or resource theories Apdq, Bpdq P Rpdq

of d and the corresponding polytopes ApdÓq, BpdÓq P PpdÓq or resource theories
ApdÓq, BpdÓq P RpdÓq of dÓ, then the following statements are equivalent:

(a) Apdq Ď Bpdq.

(b) ApdÓq Ď BpdÓq.

Note that Lemma 1 works more in general for any permutation of d, but we
focus on dÓ since it is the one we will use later on.

As a second remark, it is straightforward to relate the different resource
theories and polytopes for the smallest dimension, i.e. for |Ω| “ 2. In particular,
as a consequence of (4), we have the following lemma.

Lemma 2 (Equivalence TO, ETO and WETO polytopes for |Ω| “ 2). If 0 ă d P

PΩ and |Ω| “ 2, then the polytopes of thermal and (weak and strong) elementary
thermal operations are equivalent

PTOpdq “ PETOpdq “ PWETOpdq.

As a direct consequence of Lemma 2, all resource theories considered here
coincide RTOpdq “ RETOpdq “ RWETOpdq provided |Ω| “ 2.

As a last remark, the following straightforward property of elementary ther-
mal operations will prove to be useful in the following, specially when justifying
no-go results.

Lemma 3 (Monotonicity of support under ETO [2, Lemma 4]). If 0 ă d P

PΩ and p, q P PΩ such that q P CETO
d ppq, then |suppppq| ď |supppqq|, where

CETO
d ppq :“ tq P PΩ|q “ Mp,M P PETOpdqu and suppppq :“ ti P Ω|pi ą 0u for

all p P PΩ.
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Before addressing our main questions, in the next section, we characterize the
simplest scenario where ETO protocols incorporating random variables appear:
the length one ETO polytope.

6 Characterizing the length one ETO polytope

As a first result, in the following theorem, we characterize the d-stochastic
matrices M that belong to the length one ETO polytope. This result is closely
related random walks on graphs, as we show in Appendix B. Note that we say
a d-stochastic matrix M P M|Ω|,|Ω|pRq satisfies detailed balance provided
Mi,jdj “ Mj,idi for 1 ď i, j ď |Ω| [45].

Theorem 4 (Characterization of the length one ETO polytope). If 0 ă d P PΩ

and M P M|Ω|,|Ω|pRq, then the following statements are equivalent:

(a) M can be decomposed as a convex combination of d-swaps.

(b) MÓ is stochastic, it satisfies detailed balance and there exists some λ P

r0, 1s such that

MÓ

i,i “ λ `
ÿ

iăjď|Ω|

˜

1 ´
dÓ

j

dÓ

i

¸

MÓ

i,j `
ÿ

1ďkăjď|Ω|

k,j‰i

MÓ

k,j (7)

for 1 ď i ď |Ω|.

Remark 1 (Algorithm). Theorem 4 provides a simple algorithm to determine
whether some matrix belongs to the length one ETO polytope and, in case it does,
it also returns the weights to decompose such a matrix in terms of d-swaps. Up
to permutations in d, the algorithm can be summarized as follows:

(a) Input 0 ă d P PΩ and M P M|Ω|,|Ω|pRq.

(b) Check M is stochastic and satisfies detailed balance.

(c) Calculate λi for 1 ď i ď |Ω| following (7) and check λi “ λ for 1 ď i ď |Ω|

and 0 ď λ ď 1.

(d) Output the decomposition of M in terms of d-swaps: λ times the identity
plus Mi,j times the d-swap acting non-trivially on the components i and j
for all i ă j.

We prove Theorem 4 in Appendix A. If |Ω| “ 2, note that any d-stochastic
matrix M satisfies detailed balance and (7) always holds with λ “ 1 ´ M1,2.
Moreover, in case d P PΩ is the uniform distribution and for arbitrary Ω, then
detailed balance reduces to M being symmetric and (7) to

Mi,i “ λ `
ÿ

1ďkăjď|Ω|

k,j‰i

Mk,j (8)

for 1 ď i ď |Ω| and λ P r0, 1s.
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7 Weak universality of elementary thermal op-
erations

In this section, we answer (Q1) by considering first non-determinisitic protocols
in Section 7.1 and then determinisitc ones in Section 7.2.

7.1 Weak universality of strong elementary thermal oper-
ations

The first question we address is the relation between the thermal and elementary
thermal resource theories. We begin by extending [2, Corollary 5], where it was
shown that they do not always coincide.9

Proposition 1 (Difference TO and ETO resource theories). If 0 ă d P PΩ,
then the thermal operations resource theory is equal to the elementary thermal
operations resource theory

RTOpdq “ RETOpdq

only if dÓ “ pd0, . . . , d0, d1q.

As a result of Proposition 1, even if we condition our experimental protocols
using random variables, elementary thermal operations are not weakly universal
(hence not universal) provided dÓ ‰ pd0, . . . , d0, d1q. We prove Proposition 1 in
Appendix D. Given that CETO

d ppq is a closed set for all p, d P PΩ with 0 ă d [2,
Theorem 6], Proposition 1 actually shows that there exists some q P PΩ such
that there is no sequence of distributions pqεqε Ď PΩ which are ε-close to q and
achievable from p via elementary thermal operations qε P CETO

d ppq.
Since it seems we cannot extend Proposition 1 further, let us establish the

equivalence between both resource theories for a low dimensional Ω, where we
can calculate everything explicitly. In fact, we can directly show the equivalence
at the polytope level, as we do in the following proposition.

Proposition 2 (Equivalence TO and ETO polytopes for |Ω| “ 3). If 0 ă d P PΩ

and |Ω| “ 3, then the following statements are equivalent:

(a) The thermal operations polytope is equal to the elementary thermal oper-
ations polytope

PTOpdq “ PETOpdq.

(b) dÓ “ pd0, d0, d1q.

As a result of Proposition 2, if |Ω| “ 3, elementary thermal operations with
conditional protocols are universal (and, as one can easily see, also weakly uni-
versal) if and only if dÓ “ pd0, . . . , d0, d1q. We prove Proposition 2 in Appendix

9The impossibility of extending Theorem 2 in general was already mentioned by Veinott
in [46, p. 2], which points to a manuscript called On d-majorization and d-Schur convexity
by the same author. The latter was not published according to [16].
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E. The proof is straightforward since we can explicitly calculate the extreme
points in the TO polytope. As we will show in Theorem 8, we can use the
tools in [39,41] and follow a similar strategy for arbitrary dimensions. However,
we can use a simpler approach provided we are only interested in the relation
between resource theories. To do so, we rely on the following lemma, where S|Ω|

denotes the set of permutations over Ω.

Lemma 4 (Extreme points thermal cone [2, Lemma 12]). If 0 ă d P PΩ and
p, q P PΩ with q ĺd p, then q can be written as a convex combination of elements
in the set tpΠuΠPS|Ω|

, where, recalling the notation in Definition 2,

(a) xΠ
i :“

ři
j“1 dΠ´1pjq, and yΠi :“ cdppxΠ

i q, and

(b) pΠi :“ yΠΠpiq ´ yΠΠpiq´1, with y0 :“ 0,

for Π P S|Ω| and 1 ď i ď |Ω|.

We are now in position to characterize the equivalence between TO and
ETO resource theories in general. To show this, in the spirit of the definition
of CETO

d ppq in Lemma 3, we use the notation

Cdppq :“ tq P PΩ|q ĺd pu (9)

for any p, d P PΩ, 0 ă d. (Later on, we will use the notation CWETO
d ppq for the

natural extensions of these definitions to WETO.)

Theorem 5 (Relation TO and ETO resource theories). If 0 ă d P PΩ, then the
following statements are equivalent:

(a) The thermal operations resource theory is equal to the elementary thermal
operations resource theory

RTOpdq “ RETOpdq.

(b) dÓ “ pd0, . . . , d0, d1q.

As a result of Theorem 5, experimental protocols conditioned by a random
variable are weakly universal if and only if dÓ “ pd0, . . . , d0, d1q. We prove
Theorem 5 in Appendix F. At a high level, in order to prove that (b) implies
(a), we use the characterization of the extreme points of the thermal resource
theory in Lemma 4 to construct an explicit sequence of elementary thermal
operations for each extreme point. In order to do so, we exploit the simple
structure of the equilibrium distributions d considered in the statement and
divide the argument in terms of the d-permutation each extreme point may
have.

Remark 2 (Algorithm). Theorem 5 together with linear programming (which
allows us to find the weights decomposing a point that belongs to the convex hull
of some finite set [47]) gives us an algorithm to achieve q via (strong) elementary
thermal operations on p provided dÓ “ pd0, . . . , d0, d1q. Up to permutations in
d, the algorithm can be summarized as follows:
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(a) Input 0 ă d “ pd0, . . . , d0, d1q P PΩ and p, q P PΩ such that q ĺd p.

(b) Calculate the decomposition of q in terms of the extreme points of Cdppq

using linear programming.

(c) Calculate m and s as in the proof of Theorem 5 for each extreme point
obtained in (b) and use them, following again Theorem 5, to obtain a
sequence of d-swaps that (up to permutations) yield the extreme point when
applied to p.

(d) Find the sequence of swaps that are lacking in (c) in order to achieve each
extreme point via d-swaps.

(e) Output a convex combination of products of d-swaps that yield q when
applied to p.

Theorem 5 exemplifies the impact that degeneracy can have on a thermo-
dynamic system: Different realizations of effective two-dimensional Hamil-
tonians, that is, those that have (up to degeneracy) two energy levels, behave
differently in terms of weak universality. For instance, d “ pd0, . . . , d0, d1q is
universal and d1 “ pd0, d1 . . . , d1q is not universal provided d0 ą d1. Intuitively,
this follows from the asymmetry in the d-swaps whenever the two non-trivially
involved energy levels differ.

Theorem 5 illustrates that the general bounds on the number of d-swaps
required to reach the extreme distributions in the ETO resource theory can be
substantially improved whenever dÓ “ pd0, . . . , d0, d1q. In particular, we have
shown that any extreme point of Cdppq can be obtained using |Ω| d-swaps. This
contrasts with the known general bounds, which escalate like |Ω|! [2, Theorem
6].

7.2 Weak universality of weak elementary thermal opera-
tions

In order to study the relation between the the thermal and weak elementary
thermal resource theories, we start again by characterizing the low-dimensional
case, where we can calculate everything explicitly.

Proposition 3 (Equivalence TO and WETO resource theories for |Ω| “ 3). If
0 ă d P PΩ and |Ω| “ 3, then the following statements are equivalent:

(a) The thermal operations resource theory is equal to the weak elementary
thermal operations resource theory

RTOpdq “ RWETOpdq.

(b) dÓ “ pd0, d0, d1q.
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As a result of Proposition 3, if |Ω| “ 3, elementary thermal operations with
deterministic protocols are weakly universal if and only if dÓ “ pd0, d0, d1q. We
prove Proposition 3 in Appendix G. Note that we deal with resource theories in
Proposition 3 instead of polytopes as in Proposition 2. The reason for this will
become clear later on.

The characterization in Proposition 3 holds in general. In order to show this,
we require a couple more definitions that will help us quantify the difference
between two probability distributions.

Definition 7 (Difference maps h0 and h1). Given p, q, d P PΩ with 0 ă d, the
h0 difference map (with respect to d) is defined as follows:

h0 : PΩˆPΩ Ñ t0, 1, . . . , |Ω| ´ 1u

pp,qq ÞÑ |Πd
pp|Ω|q ´ Πd

qp|Ω|q|,

where, whenever there is uncertainty in either Πd
pp|Ω|q or Πd

qp|Ω|q, we assume
for simplicity that they take the values that minimize h0pp, qq. Analogously, the
h1 difference map [31] is defined as follows:

h1 : PΩˆPΩ Ñ t0, 1, . . . , |Ω|u

pp,qq ÞÑ |t1 ď i ď n|pi ‰ qiu|.

In the particular case where d “ pd0, . . . , d0, d1q, h0pp, qq establishes whether
the components of p and q associated to the non-degenerate energy level d1 are
mapped to the same number by their respective d-permutations and, as such, it
is a first quantification of the difference between p and q. h1pp, qq is an actual
quantification of their difference, since it outputs the number of positions in
which they differ.

We generalize Proposition 3 in the following theorem, which we prove in
Appendix H. At a high level, we show that (b) implies (a) by induction on h0.
Moreover, we show the base case h0 “ 0 by induction on h1.

Theorem 6 (Equivalence TO and WETO resource theories). If 0 ă d P PΩ,
then the following statements are equivalent:

(a) The thermal operations resource theory is equal to the weak elementary
thermal operations resource theory

RTOpdq “ RWETOpdq.

(b) dÓ “ pd0, . . . , d0, d1q.

As a result of Theorem 6, elementary thermal operations with deterministic
protocols are weakly universal if and only if dÓ “ pd0, . . . , d0, d1q. Hence, given
the result in Theorem 5, Theorem 6 shows that conditioning our experimental
protocols via random variables does not augment the cases where elementary
thermal operations are weakly universal.
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Remark 3 (Algorithm). If p, q P PΩ and q ĺd p, then Theorem 6 provides
an algorithm to achieve q via weak elementary thermal operations on p provided
dÓ “ pd0, . . . , d0, d1q. Up to permutations in d, the algorithm can be summarized
as follows:

(a) Input 0 ă d “ pd0, . . . , d0, d1q P PΩ and p, q P PΩ such that q ĺd p.

(b) While h0pp, qq ą 0 and following Theorem 6, calculate a recursive sequence
of T d-transforms that sequentially reduce h0 and update p by applying the
sequence to it.

(c) While h1pp, qq ą 0 and following Theorem 6, calculate a recursive sequence
of T d-transforms that sequentially reduce h1 and update p by applying the
sequence to it.

(d) Output (in order) the sequence of T d-transforms generated in (b) and (c).
This sequence yields q when applied to p.

Theorem 5 follows as a direct corollary of Theorem 6. As we will see in
Section 8, the tight relation between TO and WETO resource theories for dÓ “

pd0, . . . , d0, d1q breaks down at the polytope level. In fact, Theorem 6 cannot
be extended to polytopes even for uniform d by Theorem 3. This contrasts with
the extension of Theorem 5, which we will prove in Section 8.

8 Universality of elementary thermal operations

As a follow up to the previous section, we turn our attention to thermal poly-
topes, that is, to the universality of elementary thermal operations. Hence, in
this section, we answer (Q2) by considering first non-determinisitic protocols in
Section 8.1 and then determinisitc ones in Section 8.2.

8.1 Universality of strong elementary thermal operations

The first question we wish to answer is whether Theorem 5 can be extended to
polytopes, that is, we would like to know how does Proposition 2 look when we
consider |Ω| ą 3. In order to do so, we use the work by Jurkat and Ryser [41]
and Hartfiel [39]. We begin recalling an algorithm provided in [41].

Definition 8 (Jurkat-Ryser d-algorithm and d-matrix [41]). If d P PΩ, the
Jurkat-Ryser d-algorithm is a procedure to construct a matrix of dimension |Ω|ˆ

|Ω| that begins with an empty |Ω| ˆ |Ω| matrix A1 and a couple of vectors r1 “

s1 “ d and, for each step m ě 2, does the following:

(a) Select a position pim, jmq in Am´1 that has not been assigned a value yet.
If such a position does not exist, return Am´1.

(b) Define Am as the matrix equivalent to Am´1 with the addition of the
pim, jmq entry, which equals minprmi , smj q, and fill the rest of row i (column
j) with zeros provided rmi “ minprmi , smj q (smj “ minprmi , smj q).
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(c) Define

rm`1 “ prm1 , . . . , rmi´1, r
m
i ´ minprmi , smj q, rmi`1, . . . , r

m
|Ω|q,

sm`1 “ psm1 , . . . , smj´1, s
m
j ´ minprmi , smj q, smj`1, . . . , r

m
|Ω|q.

(d) Return to step (a).

We say a matrix A is a Jurkat-Ryser d-matrix if it can be constructed following
the Jurkat-Ryser algorithm with r1 “ s1 “ d. Moreover, for any m ě 1, we call
rm and sm the m-th Jurkat-Ryser row and column d-vectors, respectively.

In the resource-theoretic context, the Jurkat-Ryser d-algorithm is used to
construct the extreme points of the transportation polytope [22]. The rele-
vance of Definition 8 for our work here is encapsulated in the following theorem,
where we denote by diagpx1, . . . , xnq a diagonal matrix with entries x1, . . . , xn.

Theorem 7 (Extreme points TO polytope [41, Theorem 4.1], [39, Lemma 1.1]).
If d P PΩ, then the extreme points of the polytope of thermal operations take the
form AD´1, where A is a Jurkat-Ryser d-matrix and D “ diagpd1, d2, . . . , d|Ω|q.

We prove Theorem 7 in Appendix I. Note that Theorem 7 proves that the
TO polytope is in fact a polytope in the sense of [40], since it is clearly convex.
In the resource-theoretic context, in analogy to Theorem 7, the Jurkat-Ryser
d-algorithm is used to define β-permutations [27].

If A is a Jurkat-Ryser d-matrix such that M “ AD´1 for some extreme point
of the TO polytope, then we say A is associated to M . In order to determine
the relation between the TO and ETO polytopes, a couple more definitions will
prove to be useful. The aim of these definitions is to keep track of the previous
choices in the Jurkat-Ryser d-algorithm, which will allow us to determine the
future entries of a Jurkat-Ryser d-matrix. Hence, we begin by defining the
history of a Jurkat-Ryser d-matrix.

Definition 9 (History). If d P PΩ and A is a Jurkat-Ryser d-matrix, we call
a sequence of ordered pairs ppiAkl

, jAkl
qq

l0
l“1 through which A was constructed the

history of A and denote it by HpAq. Lastly, if 1 ď m ď l0, we call the
subsequence ppiAkl

, jAkl
qqml“1 Ď HpAq the history of A until step m and denote it

by HpA,mq.

Although there are several histories for some Jurkat-Ryser d-matrix A, we
fix here one instance of the Jurkat-Ryser d-algorithm generating A and, hence,
one history associated to A. We can do so w.l.o.g. since we only introduce the
concept of history in order to determine what the structure of the Jurkat-Ryser
d-matrices is, and such a structure is independent of the specific history one
may associate to these matrices.

By Proposition 1, the equilibrium distributions in which we are interested
have a simple structure, d “ pd0, . . . , d0, d1q. Hence, the most important prop-
erty to determine the entries in a Jurkat-Ryser d-matrix is which components in
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the Jurkat-Ryser d-vectors have been affected by d1. That is, for which compo-
nents in these vectors there exists a sequence of comparisons in the Jurkat-Ryser
d-algorithm such that all of them involve a value different from d0. We call this
a connection to d1, as we formalize in the following definition.

Definition 10 (Row and column connection to d1). If d “ pd0, . . . , d0, d1q P PΩ

and A and rm are the Jurkat-Ryser d-matrix and m-th row d-vector, respectively,
then we say rma is row-connected to d1 if either m “ 0 and a “ |Ω| or m ą 0,
rma ą 0 and there exists a subsequence of the history of A until step m ´ 1,
ppiAkℓ

, jAkℓ
qq

ℓ0
ℓ“1 Ď HpA,m ´ 1q, such that

iAkℓ0
“ a and iAk1

“ |Ω|,

jAk2ℓ
“ jAk2ℓ´1

and iAk2ℓ`1
“ iAk2ℓ

for 1 ď ℓ, and

a ‰ iAt for kℓ0 ă t ď m ´ 1.

We call ℓ0 the row-connection length to d1 and we define the row-connection
between sma and d1, the column-connection to d1 of both rma and sma , and their
respective lengths in the same vein. Furthermore, we say rma or sma is connected
to d1 if it is either row-connected or column-connected and refer to its connection
length to d1 in an analogous way. Lastly, we say a component Ai,j is connected
to d1 if it was generated, for some m ě 1, using rmi and smj with at least one of

them connected to d1, and we naturally extend this definition to M “ AD´1.

Note that, as one can easily check by contradiction, we do not need to add
to Definition 10 constraints like

jt ‰ jk2ℓ´1
for k2ℓ´1 ă t ă k2ℓ, or

it ‰ ik2ℓ
for k2ℓ ă t ă k2ℓ`1.

We are now ready to characterize the equivalence between the TO and ETO
polytopes, which we address in the following theorem.

Theorem 8 (Equivalence TO and ETO polytopes). If 0 ă d P PΩ, then the
following statements are equivalent:

(a) The thermal operations polytope is equal to the elementary thermal oper-
ations polytope

PTOpdq “ PETOpdq.

(b) dÓ “ pd0, . . . , d0, d1q.

As a result of Theorem 8, elementary thermal operations with protocols
that can be conditioned using random variables are universal if and only if
dÓ “ pd0, . . . , d0, d1q. We prove Theorem 8 in Appendix J.10 At a high level, we
show that (b) implies (a) by characterizing, for the specific sort of d we consider,

10Note that Theorem 8 can be used to obtain Theorem 5 directly, although it requires using
the tools developed in [39,41].
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the extreme points of PTOpdq (relaying on the history and the connection to d1,
we first characterize their entries, then the rows and columns they may have
and, lastly, the families of rows and columns that may conform them), and by
constructing a decomposition of each of these in terms of d-swaps.

Remark 4 (Algorithm). Given some thermal operation M P M|Ω|,|Ω|pRq, then
Theorem 8 together with linear programming (see the comment below Theorem
5) gives us an algorithm to realize M via strong elementary thermal operation
provided dÓ “ pd0, . . . , d0, d1q. Up to permutations in d, the algorithm can be
summarized as follows:

(a) Input 0 ă d “ pd0, . . . , d0, d1q P PΩ and M P PETOpdq.

(b) Calculate the decomposition of M in terms of the extreme points of PETOpdq

using linear programming.

(c) Calculate Q as in the proof of Theorem 8 for each extreme point obtained
in (b) and use it, following again Theorem 8, to obtain a sequence of
d-swaps that (up to permutations) yield the extreme point.

(d) Find the sequence of swaps that are lacking in (c) in order to achieve each
extreme point via d-swaps.

(e) Output a convex combination of products of d-swaps that yield M .

8.2 Universality of weak elementary thermal operations

Although, as we have shown, the relation between the ETO and TO polytopes
is analogous to that of their polytopes, the situation is quite different when
WETO enters the picture. This was already noticed for the uniform case in
Theorem 3, which we generalize in the following theorem.

Theorem 9 (Equivalence TO and WETO polytopes). If 0 ă d P PΩ, then the
following statements are equivalent:

(a) The thermal operations polytope is equal to the weak elementary thermal
operations polytope

PTOpdq “ PWETOpdq.

(b) |Ω| “ 2.

As a result of Theorem 8, elementary thermal operations with deterministic
protocols are universal if and only if |Ω| “ 2. Hence, by Theorem 8, conditioning
the protocols via random variables augments the instances where elementary
thermal operations are universal. We prove Theorem 9 in Appendix K.

9 Advantage of strong elementary thermal op-
erations over their weak counterpart

In this section, we make substantial progress regarding (Q3) and weak univer-
sality in Section 9.1 and fully answer it for the non-weak case in Section 9.2.
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9.1 Weak universality advantage

As a result of Theorems 5 and 6, we have the following relation between strong
and weak elementary resource theories.

Corollary 1. If 0 ă d P PΩ and dÓ “ pd0, . . . , d0, d1q, then the resource theories
of strong and weak elementary thermal operations are equal

RETOpdq “ RWETOpdq.

To deal with the relation between these two theories more in general, and
noting that it includes the hypothesis in Corollary 1, we recall the definition of
quasi-uniform distribution (see Definition 6). The relevance of Definition 6 lies
in the fact that, as we show in the following theorem, ETO and WETO resource
theories do not coincide whenever d is not quasi-uniform.

Theorem 10 (Difference ETO and WETO resource theories). If 0 ă d P PΩ,
then the elementary thermal operations resource theory is equal to the weak
elementary thermal operations resource theory

RETOpdq “ RWETOpdq

only if d is quasi-uniform.

As a result of Theorem 10, conditioning our experimental protocols on the
realization of some random variable results in the elementary thermal operations
being closer to weak universality provided the system has at least three different
energy levels. We prove Theorem 10 in Appendix L. At a high level, we first
assume |Ω| “ 3 and we construct, for any 0 ă d P PΩ with non-repeating
components, a pair of distributions p, q P PΩ such that q can be achieved from p
via strong elementary thermal operations but not via weak elementary thermal
operations. We conclude by showing that we can extend this construction to an
arbitrary Ω by appending zeros to both p and q.

Since it seems we cannot extend the discrepancy between WETO and ETO
resource theories in Theorem 10 beyond quasi-uniform distributions, we consider
the low-dimensional case |Ω| “ 3 in the following proposition. As it turns
out, these distributions characterize the equivalence between WETO and ETO
resource theories whenever |Ω| “ 3.

Proposition 4 (Equivalence ETO and WETO resource theories for |Ω| “ 3).
If 0 ă d P PΩ and |Ω| “ 3, then the following statements are equivalent:

(a) The strong elementary thermal operations resource theory is equal to the
weak elementary thermal operations resource theory

RETOpdq “ RWETOpdq.

(b) d is quasi-uniform.
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(a) dÓ
“ pd0, d0, d1q with

d0 ě d1.
(b) dÓ

“ pd0, d1, d1q with
d0 ą d1.

(c) d is not a quasi-
uniform distribution.

Figure 2: Venn diagram representation of the relation among the thermal opera-
tions resource theories we have considered in this work depending on 0 ă d P PΩ

provided |Ω| “ 3. In particular, the thermal polytope is filled in light blue
and the strong (weak) elementary thermal operations has horizontal (verti-
cal) blue (red) lines. If |Ω| ą 3, and we substitute the condition in (a) for
dÓ “ pd0, . . . , d0, d1q with d0 ě d1, we replace the one in (b) for d is quasi-
uniform and dÓ ‰ pd0, . . . , d0, d1q with d0 ě d1, and we leave condition (c) un-
altered, then the diagram looks the same except we do not know whether weak
elementary thermal operations are equivalent to strong elementary thermal op-
erations in (b). This figure summarizes Propositions 10 and 4, and Theorems 5
and 6.

As a result of Proposition 4, when |Ω| “ 3, conditioning our experimental
protocols on the realization of some random variable results in the elementary
thermal operations being closer to weak universality provided the system has
exactly three different energy levels. We prove Proposition 4 in Appendix M.
As a consequence of the results in this section, we pose the following conjecture
regarding the general equivalence between ETO and WETO resource theories.

Conjecture 1 (Equivalence ETO and WETO resource theories). If 0 ă d P PΩ,
then the following statements are equivalent:

(a) The strong elementary thermal operations resource theory is equal to the
weak elementary thermal operations resource theory

RETOpdq “ RWETOpdq.

(b) d is quasi-uniform.

9.2 Universality advantage

To conclude this section, we would like to determine the relation between the
ETO and WETO polytopes. As we state in the following corollary, we know
partly how they are related as a consequence of Theorems 8 and 9.
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Corollary 2. If 0 ă d P PΩ with dÓ “ pd0, . . . , d0, d1q, then the following
statements are equivalent:

(a) The (strong) elementary thermal operations polytope is equal to the weak
elementary thermal operations polytope

PETOpdq “ PWETOpdq.

(b) |Ω| “ 2.

In the following theorem, we characterize the equivalence between the ETO
and WETO polytopes, improving thus on Corollary 2.

Theorem 11 (Equivalence ETO and WETO polytopes). If 0 ă d P PΩ, then
the following statements are equivalent:

(a) The (strong) elementary thermal operations polytope is equal to the weak
elementary thermal operations polytope

PETOpdq “ PWETOpdq.

(b) |Ω| “ 2.

As a result of Theorem 11, conditioning our experimental protocols on the
realization of some random variable results in the elementary thermal operations
being closer to weak universality provided |Ω| ě 3. We prove Theorem 11 in
Appendix N.11

10 Convexity of weak elementary thermal oper-
ations

To conclude, we use the results in the previous section, in particular Propositions
10 and 4 and Theorem 11, to address the convexity of weak elementary thermal
operations in the following corollary.

Corollary 3 (WETO resource theory and polytope convexity). If 0 ă d P PΩ,
then the following statements hold:

(a) CWETO
d ppq is convex for all p P PΩ only if d is quasi-uniform.

(b) If |Ω| “ 3, then CWETO
d ppq is convex for all p P PΩ if and only if d is

quasi-uniform.

(c) The polytope of weak elementary thermal operations is convex if and only
if |Ω| “ 2.

We prove Corollary 3 in Appendix O.

11Although some instances of the proof of Theorem 11 could be simplified via Theorem 10,
we take a simpler approach similar to the one we used when proving Theorem 9.
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(a) |Ω| “ 2. (b) dÓ
“ pd0, . . . , d0, d1q. (c) dÓ

‰ pd0, . . . , d0, d1q.

Figure 3: Venn diagram representation of the relation among the thermal poly-
topes we have considered in this work depending on 0 ă d P PΩ. In particular,
the thermal polytope is filled in light blue and the strong (weak) elementary
thermal polytope has horizontal (vertical) blue (red) lines. This figure summa-
rizes Theorems 8, 9 and 11.

11 Conclusion

The answers to our main questions are the following:

(Q1) When are elementary thermal operations weakly universal?

Both strong and weak elementary thermal operations are weakly universal
if and only if dÓ “ pd0, . . . , d0, d1q. Interestingly, the addition of random
variables to our experimental protocols does not offer any advantage re-
garding the instances where elementary thermal operations are weakly
universal.

(Q2) When are elementary thermal operations universal?

Strong elementary thermal operations are universal if and only if dÓ “

pd0, . . . , d0, d1q. However, weak elementary thermal operations are univer-
sal if and only if |Ω| “ 2. This illustrates the advantage of adding random
variables to our experimental protocols, in contrast with the situation
when dealing with weak universality.

(Q3) When do the incorporation of random variables to the elementary thermal
operations offer an advantage regarding weak or non-weak universality?

Our answers to (Q1) and (Q2) show that the incorporation of random
variables is not advantageous regarding the instances where elementary
thermal operations are weakly universal, although it does augment the in-
stances where they are universal. Moreover, even if they are not universal,
protocols with random variables can realize more thermal operations than
those without them in most cases. In particular, they cover more thermal
operations if and only if |Ω| ě 3. Lastly, even if they are not weakly uni-
versal, protocols with random variables can reproduce more input-output
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pairs that are connected via thermal operations provided there are at least
three different energy levels. In fact, these are the only situations where
they offer such advantage provided |Ω| ď 3. However, it is still unknown
whether there are instances where the advantage still holds with |Ω| ą 3
and only two different energy levels.

To conclude, let us point out a few directions for future research. The
most immediate question is whether Conjecture 1 holds. This would conclude
the classification of the thermal resource theories we have considered here and,
from the technical side, potentially provide an easier proof of the classical result
by Hardy et al. in Theorem 1.

The study of thermal operations (1) for general ρ (i.e. not only quasi-classical
states) continues to constitute a major challenge in the field, with only a few
known results [20]. Closer to our approach, the study of the evolution of coher-
ence under elementary thermal operations also constitutes an area where little
is known [2]. Moreover, the extreme points of the ETO polytope and resource
theory are still not well-understood, with only some (potentially bad) upper
bounds being known [2, 48]. Algorithmic cooling [2, 27] may benefit from our
work since the decomposition of TOs into ETOs is key for its experimental re-
alizations. An instance of this is the TOs-relying algorithm in [27, Theorem 1]
and its subsequent decomposition into ETOs [27, Section 2.5].

We have characterized the main case of interest where we only allow two lev-
els to act non-trivially. An obvious open question is how this changes whenever
we progressively increase the number of levels where we are allowed to simul-
taneously act non-trivially. A first result showing that one cannot achieve all
thermal operations on a system with |Ω| levels using only operations that act
non-trivially on |Ω| ´ 1 of them was reported in [49, Section III], where a setup
analogous to that in Proposition 1 (a) (which we inherit from [2, Corollary 5])
was used. The experimental relevance of doing so is, however, still unclear, since
the experimental realization of such models becomes harder as the number of
levels where non-trivial action is permitted increases.

An application of our work here could be the establishment of the function
characterization of ĺd for dÓ “ pd0, . . . , d0, d1q, that is, the characterization of
all the functions that are allowed to be involved in a second law for ĺd. The
key technical tool we have developed that could contribute in doing so is the
so-called path result in Theorem 6 (see [16, p. 586 and p. 81] and also [17, p.
45]). This becomes more interesting when put together with the question in the
previous paragraph, since the establishment of results analogous to the path
one but involving larger proper subsets of Ω may lead us to the characterization
of any function involved in a second law for arbitrary d. Lastly, the approach
in [50, p. 7] may also be useful to study the second law for ĺd in general.
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A Proof of Theorem 4

We assume for simplicity that d “ dÓ and, hence, M “ MÓ throughout the
proof.

We begin by showing that paq implies pbq. In order to do so, we start by
simply fixing a decomposition of M P M|Ω|,|Ω|pRq is terms of d-swaps

M “ λI `

s0
ÿ

s“1

λsP
dpis, jsq,

where λ`
řs0

s“1 λs “ 1, and, for 1 ď s ď s0, λ, λs ě 0 and 1 ď is ă js ď |Ω|. In
this scenario, we immediately have that M is stochastic and, moreover, it fulfills
detailed balance since P dpis, jsq does and it is the only d-swap that contributes
to Mis,js for all 1 ď s ď s0. Furthermore, it is easy to see that, for 1 ď s ď s0
and 1 ď i ď |Ω|, we have that

P dpis, jsqi,i “
ÿ

iăjď|Ω|

ˆ

1 ´
dj
di

˙

P dpis, jsqi,j `
ÿ

1ďkăjď|Ω|

k,j‰i

P dpis, jsqk,j . (10)

To conclude, it is easy to show that (7) holds using (10). We have

pMqi,i “ λ `

s0
ÿ

s“1

λs

¨

˚

˚

˝

ÿ

iăjď|Ω|

ˆ

1 ´
dj
di

˙

P dpis, jsqi,j `
ÿ

1ďkăjď|Ω|

k,j‰i

P dpis, jsqk,j

˛

‹

‹

‚

“ λ `
ÿ

iăjď|Ω|

ˆ

1 ´
dj
di

˙ s0
ÿ

s“1

λsP
dpis, jsqi,j `

ÿ

1ďkăjď|Ω|

k,j‰i

s0
ÿ

s“1

λsP
dpis, jsqk,j

“ λ `
ÿ

iăjď|Ω|

ˆ

1 ´
dj
di

˙

Mi,j `
ÿ

1ďkăjď|Ω|

k,j‰i

Mk,j ,

for 1 ď i ď |Ω|.
We conclude by showing that pbq implies paq. In order to do so, it suffices

to notice that any stochastic matrix M P M|Ω|,|Ω|pRq fulfilling detailed balance
and (7) can be decomposed in the following way:

M “ λI `
ÿ

1ďkăjď|Ω|

Mk,jP
dpk, jq. (11)
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This constitutes a convex combination of d-swaps since

λ `
ÿ

1ďkăjď|Ω|

Mk,j “ λ `
ÿ

2ďkăjď|Ω|

Mk,j `
ÿ

1ăjď|Ω|

M1,j

“ M1,1 ´
ÿ

1ăjď|Ω|

ˆ

1 ´
dj
d1

˙

M1,j `
ÿ

1ăjď|Ω|

M1,j

“ M1,1 `
ÿ

1ăjď|Ω|

dj
d1

M1,j

“ M1,1 `
ÿ

1ăjď|Ω|

Mj,1

“ 1,

where we applied (7) in the second equality, detailed balance in the fourth, and
the fact M is stochastic in the last.

To conclude, we verify that (11) holds. This is the case since the following
relations hold for 1 ď k ă j ď |Ω|: pAq pMk,jP

dpk, jqqk,j “ Mk,j by definition,
pBq pMk,jP

dpk, jqqj,k “ Mj,k by detailed balance, and pCq

pMk,jP
dpk, jqqℓ,ℓ “

$

’

’

&

’

’

%

Mk,j if ℓ ‰ k, j,
´

1 ´
dj

dk

¯

Mk,j if ℓ “ k,

0 if ℓ “ j,

by definition. Hence, applying (7), we have that (11) holds.

B Random walks on complete graphs and the
length one ETO polytope

In the simpler scenario where we only allow sequences of d-swaps with length
one, the resource theory of strong elementary thermal operations can be in-
terpreted in terms of random walks on complete graphs. In this section, we
introduce a new definition of random walk on a complete graph in Section B.1,
and use Theorem 4 to relate our definition to the one usually used in the liter-
ature in Section B.2.

B.1 ETO random walks on complete graphs

Random walks on graphs have been extensively studied [45, 51–53] and have
become of increasing interest given their close connection to quantum walks
[54,55]. Instead of focusing on the general case, we will only consider complete
graphs. Take, hence, a complete undirected graph G “ pVG, EGq without loops,
where VG are the vertices and EG the edges.12 Furthermore, assume we have

12A graph is complete provided there is an edge between any pair of distinct vertices.
Moreover, a loop is an edge from a vertex to itself. Lastly, a graph is undirected provided
its edges have no direction. These definition are taken from [45].
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Figure 4: Gas in a toric box (left) and its associated complete graph (right).

d0 d0

d1 d1

d1 d1

Figure 5: Complete d-graph G with |VG| “ 6 and dÓ “ pd0, d0, d1, . . . , d1q P PV

with d1 ă d0. The black and red edges represent symmetric channels, and the
blue edges asymmetric ones.

some substance that is distributed among the vertices VG and think of the edges
EG as channels through which the substance can be redistributed among the
vertices. As an example, when |VG| “ 3, we can consider a gas in a toric
box (see Figure 4). Lastly, we assume that the substance may prefer being
in certain vertices over others and model this by incorporating some reference
distribution over the vertices d P PVG

that may give preference to some subsets
of VG over others. We can think of these preferences among vertices as signaling
the existence of some marked vertices, as one usually encounters in the study
of decision trees [56]. The existence of preferences introduces asymmetries in
some channels, as one can see in Figure 5. In the context of the gas in a box,
we can think of the introduction of preferences as surrounding it with a heat
bath, with the preferences following a Gibbs distribution.

Our aim, and the reason why walks on graphs were introduced [45], is to
associate to G a transition matrix M such that, if we assume time to be discrete
and consider some initial distribution of the substance over the edges p0 P PVG

,
then p1 “ Mp0 P PVG

is a distribution that could have been obtained by allowing
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Figure 6: Graph associated with the classical thermodynamic example of a gas
in a box.

the substance to redistribute itself along the edges of G after one time step. With
this in mind, we define the following random walk on complete graphs.

Definition 11 (ETO random walk on a complete graph). If G “ pVG, EGq is a
complete graph with some preferences among its vertices given by a distribution
d P PVG

, then an ETO random walk on G is a matrix M P M|Ω|,|Ω|pRq that
can be decomposed as a convex combination of d-swaps.

Note that Definition 11 coincides with the length one ETO polytope and,
moreover, instead of assuming that the redistribution of substance takes place
among all edges, it allows any distribution over the different edges in EG (in-
cluding those in which some of them are not used). Furthermore, the identity
can also be given a non-zero weight.

Before we continue, let us make a remark regarding the classical example of
a gas in a box. In particular, we consider d to be the uniform distribution and
|VG| ě 3, as illustrated in Figure 6 via its associated graph. Although this is
not covered by ETO random walks (since the associated graph is not complete),
one could treat this (or any non-complete graph) in an analogous way by taking
into account the topology of the specific problem. (The only drawback being
the potential lack of symmetry compared to the case of complete graphs.) It
should be noted that one cannot take M to be any d-stochastic matrix. In
fact, in this scenario, permuting the gas concentration between non-adjacent
compartments while leaving the rest unchanged would be allowed by doubly
stochastic matrices. Such considerations led to the introduction of the molecu-
lar diffusion ordering in [57], which corresponds to the transitions associated
to non-homogeneous Markov chains whose constituent parts are precisely ETO
random walks.

B.2 Random walks on complete graphs

Although weighted random walks have also been considered in the literature
[45, Chapter 9], we relate here Definition 11 with the usual definition on random
walk only in the case when the reference distribution d P PVG

is uniform. In this
scenario, M0 is the simple random walk on (a complete graph) G provided
we have, for all 1 ď i, j ď |VG|, that

pM0qi,j “

#

1
|VG|´1 , if i ‰ j,

0, if i “ j.
(12)

Moreover, M1 is the lazy random walk on G provided

M1 “
1

2
pI ` M0q (13)
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for some simple random walk M0.
Hence, the simple random walk assumes that the substance coming from one

vertex is redistributed equally among all the vertices it is connected to (in our
case, all of them) and the lazy random walk that half of it stays in the original
vertex and the rest is redistributed equally among all the vertices it is connected
to.

We can use Theorem 4 to directly establish the relation between simple, lazy
and ETO random walks on graphs, as we state in the following corollary.

Corollary 4 (Relation between random walks on complete graphs). If G “

pVG, EGq is a complete undirected graph without loops, d P PVG
is the uniform

distribution and M P M|VG|,|VG|pRq, then the following statements hold:

(a) If M is the simple random walk on G, then M is an ETO random walk
on G if and only if |VG| “ 2.

(b) If M is the lazy random walk on G, then M is an ETO random walk on
G if and only if |VG| ď 4.

Proof. Both statements follow directly from (8). The first follows since we have

Mi,i “ 0 ă
1

2
|VG| ´ 1 “

ÿ

1ďkăjď|VG|

k,j‰i

Mk,j ðñ 2 ă |VG|

for 1 ď i ď |Ω|. The second follows since we have

Mi,i “
1

2
ă

1

2

ˆ

1

2
|VG| ´ 1

˙

“
ÿ

1ďkăjď|VG|

k,j‰i

Mk,j ðñ 4 ă |VG|

for 1 ď i ď |Ω|.

As a last remark, note that weighted random walks consider asymmetries
between the different edges in the graph (with the motivation coming from
electric networks), while ETO random walks make distinctions at the vertex
level.

C Proof of Lemma 1

Take Q P M|Ω|,|Ω|pRq the permutation matrix such that dÓ “ Qd and note that
it suffices to show that pbq implies paq since the converse follows analogously.
Moreover, for simplicity, we only consider two cases:

(A) ApdÓq “ PTOpdÓq, BpdÓq “ PETOpdÓq and we take the corresponding Apdq

and Bpdq. If M P M|Ω|,|Ω|pRq is a d-stochastic matrix, then MÓ is a
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dÓ-stochastic matrix. Hence, by assumption,

MÓ “ QMQT “

k0
ÿ

k“0

λk

ℓ0
ź

ℓ“0

P dÓ

pik,ℓ, jk,ℓq, and

M “

k0
ÿ

k“0

λk

ℓ0
ź

ℓ“0

QTP dÓ

pik,ℓ, jk,ℓqQ,

where
řk0

k“0 λk “ 1, and λk ą 0 and 1 ď ik,ℓ ă jj,ℓ ď |Ω| for 0 ď k ď k0
and 0 ď ℓ ď ℓ0.

(B) ApdÓq “ RTOpdÓq, BpdÓq “ RETOpdÓq and we take the corresponding Apdq

and Bpdq. Given a pair p, q P PΩ such that q “ Mp for some d-stochastic
matrix M P M|Ω|,|Ω|pRq, we have that Qq “ QMQTQp. By assumption,

since QMQT is a dÓ-stochastic matrix, we have

Qq “

˜

k0
ÿ

k“0

λk

ℓ0
ź

ℓ“0

P dÓ

pik,ℓ, jk,ℓq

¸

Qp, and

q “

˜

k0
ÿ

k“0

λk

ℓ0
ź

ℓ“0

QTP dÓ

pik,ℓ, jk,ℓqQ

¸

p,

where
řk0

k“0 λk “ 1, and λk ą 0 and 1 ď ik,ℓ ă jj,ℓ ď |Ω| for 0 ď k ď k0
and 0 ď ℓ ď ℓ0.

Since the other cases follow analogously, this concludes the proof.

D Proof of Proposition 1

By Lemma 1, it suffices to assume that d “ dÓ throughout the proof.
We show the result by contrapositive, that is, we assume that there is no pair

d0, d1 P R with 0 ă d1 ď d0 such that d “ pd0, . . . , d0, d1q. We split the proof in
two cases where, for each of them, we construct a pair of distributions p, q P PΩ

such that q can be attained from p by means of thermal operations but not
by elementary thermal operations. We consider dα the largest component in d
and notice that, by assumption, there exist two entries of d, which we name for
simplicity dβ and dγ , such that dγ ď dβ ă dα.13 Consider, hence, the following
two cases:

(A) dα ě dβ ` dγ . In this case, we can follow the idea in [2, Corollary 5].
In particular, we can take q “ p1, 0, . . . , 0q and p “ p0, a, b, 0, . . . , 0q with
dγ{dα ď b ď pdα ´ dβq{dα (this can be done since dα ě dβ ` dγ by
assumption) and a “ 1 ´ b. By Lemma 3, q cannot be achieved from p via

13For simplicity, and w.l.o.g., we will assume that dβ and dγ correspond, respectively, to the
second and third entries of d. If that were not the case, we could follow the same argument,
taking the appropriate components of both p and q.
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elementary thermal operations since it has a smaller support. However, it
is easy to check that q ĺd p.

(B) dα ă dβ ` dγ . In this case, we can take q “ p0, a, b, 0, . . . , 0q with pdα ´

dβq{dα ď b ď dγ{dα (this can be done since dα ă dβ ` dγ by assumption)
and a “ 1 ´ b, and p “ p1, 0, . . . , 0q. q cannot be achieved from p via
elementary thermal operations since, given that dα ą di for any i ‰ α
by assumption, the action of any elementary thermal operation on p will
result in a non-zero first component. (In case we had multiple entries in d
equal to dα, the action of any elementary thermal operation on p will leave
, at least, one non-zero component in the entries associated with those for
which d takes the value dα.) However, it is easy to check that q ĺd p.

This concludes the proof.

E Proof of Proposition 2

By Lemma 1, it suffices to assume that d “ dÓ throughout the proof.
Sufficiency follows from Proposition 1 by contradiction. Assume both poly-

topes are equivalent for some d ‰ pd0, d0, d1q. By Proposition 1, there exists a
pair p, q P PΩ such that q ĺd p and q is not achievable from p via elementary
thermal operations. Since q ĺd p, there exists some d-stochastic matrix M such
that q “ Mp and, since the polytopes are equivalent,

q “

˜

k0
ÿ

k“0

λk

ℓ0
ź

ℓ“0

P dpik,ℓ, jk,ℓq

¸

p,

with
řk0

k“0 λk “ 1, and λk ą 0 and 1 ď ik,ℓ ă jj,ℓ ď |Ω| for 0 ď k ď k0 and
0 ď ℓ ď ℓ0. This contradicts Proposition 1.

To prove necessity, since the polytope of elementary thermal operations is
always contained inside that of thermal operations by definition, it suffices to
note that all the extreme points of the polytope of thermal operations can be
obtained as a product of elementary thermal operations. In particular, taking
γ “ d1{d0, the set of extreme points of the polytope of thermal operations is
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tI, A1, . . . , A9u, where

A1 “

¨

˝

1 ´ γ 0 1
γ 1 ´ γ 0
0 γ 0

˛

‚, A2 “

¨

˝

1 ´ γ 0 1
0 1 0
γ 0 0

˛

‚, A3 “

¨

˝

0 1 0
1 ´ γ 0 1
γ 0 0

˛

‚,

A4 “

¨

˝

1 ´ γ γ 0
0 1 ´ γ 1
γ 0 0

˛

‚, A5 “

¨

˝

1 0 0
0 1 ´ γ 1
0 γ 0

˛

‚, A6 “

¨

˝

0 1 0
1 0 0
0 0 1

˛

‚,

A7 “

¨

˝

γ 1 ´ γ 0
1 ´ γ 0 1

0 γ 0

˛

‚, A8 “

¨

˝

0 1 ´ γ 1
1 0 0
0 γ 0

˛

‚, A9 “

¨

˝

0 1 ´ γ 1
1 ´ γ γ 0
γ 0 0

˛

‚.

(14)
(This can be calculated using [41] and [39]. The reader interested in how this
is done can check Section 8.)

To conclude, we simply notice that, aside from the identity and the elemen-
tary thermal operations acting on two levels, we have

A1 “ P dp2, 3qP dp1, 3q,

A3 “ P dp2, 3qP dp1, 2q,

A4 “ P dp1, 3qP dp2, 3q,

A7 “ P dp1, 3qP dp1, 2qP dp1, 3q,

A8 “ P dp1, 2qP dp2, 3q,

A9 “ P dp2, 3qP dp1, 2qP dp2, 3q.

This concludes the proof.

F Proof of Theorem 5

By Lemma 1, it suffices to assume that d “ dÓ throughout the proof. For
simplicity, we fix n “ |Ω| and γ “ d1{d0 throughout the proof.

Since sufficiency follows from Proposition 1, we only ought to prove neces-
sity. In order to do so, we will show that, for any pair p, q P PΩ, q can be
obtained from p by elementary thermal operations provided the same holds for
thermal operations. Instead of showing it directly, we can profit from Lemma
4, which provides a finite set of distributions tpΠ|Π P Snu such that, if q can be
obtained from p by thermal operations, then q can be decomposed as a convex
combination of distributions in that set (which we denote by conv),

Cdppq “ convtpΠ|Π P Snu. (15)

Thus, it suffices to show that each distribution in the set is attainable by per-
forming a sequence of elementary thermal operations on p to conclude the proof.
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Before we start the argument, note that we can assume w.l.o.g. that pi ě

pi`1 for i “ 1, . . . , n ´ 2. To conclude the proof, recalling the notation in
Definition 2, we take m “ Πd

ppnq (in case of ambiguity, take the highest value

possible) and we show that, for any permutation Π P Sn, pΠ is attainable from
p by elementary thermal operations. Fix, hence, such a permutation Π0 P Sn,
define s “ Π0pnq, and note that the relation between s and m determines the
entries of pΠ0 . We distinguish, in particular, three cases:

(A) m “ s. In this case, we have that

yΠ0
i “

#

ři
j“1 pj if 1 ď i ă m,

pn `
ři´1

j“1 pj if m ď i ď n.

By definition of s, we have that pΠ0
n “ yΠ0

s ´ yΠ0
s´1 “ pn. The rest of

the components of pΠ0 are pi for some 1 ď i ă n by definition. The
order in which these components are presented is not important, since
we can attain any arrangement from another one by elementary thermal
operations. Hence, we can assume w.l.o.g. that pΠ0 “ p and, thus, pΠ0 is
attainable from p via elementary thermal operations.

(B) m ă s. In this case, we have that

yΠ0
i “

$

’

&

’

%

ři
j“1 pj if 1 ď i ă m,

pn ` p1 ´ γqpi `
ři´1

j“1 pj if m ď i ă s,

pn `
ři´1

j“1 pj if s ď i ď n.

By definition of s, we have that pΠ0
n “ yΠ0

s ´ yΠ0
s´1 “ γps´1. Following the

argument for the case m “ s, we can assume w.l.o.g. that

pΠ0 “ pp1, . . . , pm´1, p1 ´ γqpm ` pn, p1 ´ γqpm`1 ` γpm, . . . ,

p1 ´ γqps´1 ` γps´2, ps, . . . , pn´1, γps´1q.

We conclude the proof of this case noticing that

pΠ0 “

˜

s´1
ź

k“m

P dpk, nq

¸

p.

(C) s ă m. In this case, we have that

yΠ0
i “

$

’

&

’

%

ři
j“1 pj if 1 ď i ă s,

γpi `
ři´1

j“1 pj if s ď i ă m,

pn `
ři´1

j“1 pj if m ď i ď n.

By definition of s, we have that pΠ0
n “ yΠ0

s ´ yΠ0
s´1 “ γps. Following the

argument for the case m “ s, we can assume w.l.o.g. that

pΠ0 “ pp1, . . . , ps´1, p1 ´ γqps ` γps`1, . . . , p1 ´ γqpm´2 ` γpm´1,

pn ` p1 ´ γqpm´1, pm, . . . , pn´1, γpsq.
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We conclude the proof of this case noticing that

pΠ0 “

˜

m´s
ź

k“1

P dpm ´ k, nq

¸

p.

This concludes the proof.

Remark 5. The decompositions in Theorem 5 coincide with those in Propo-
sition 2 when |Ω| “ 3. This is the case since we have that P dp1, 3qP dp1, 2q “

P dp1, 2qP dp2, 3q and, hence, we can locate the sequence of swaps at the start.

G Proof of Proposition 3

By Lemma 1, it suffices to assume that d “ dÓ throughout the proof.
The fact that paq implies pbq holds as a direct consequence of Proposition 1

for any finite Ω. We show this by contrapositive: If the implication was false,
then we could reach any distribution achievable by TO using finite sequences
of T d-transforms for some d ‰ pd0, . . . , d0, d1q. However, this would imply that
any process achievable by TO is also achievable by ETO for such d, which
contradicts Proposition 1.

We show now that pbq implies paq. We take γ “ d1{d0 and p “ pa, b, cq,
noting that we can assume a ě b w.l.o.g. (otherwise, we simply apply P dp1, 2q

to p first and then follow the argument below), and q P PΩ such that q ĺd p.
Since q ĺd p and d “ pd0, d0, d1q with 0 ă d1 ď d0, we know from Proposition
2 that q is contained in the convex hull of tA0p, . . . , A9pu,

q P Cdppq “ convtA0p, . . . , A9pu,

where A0 “ I and the others are defined as in Proposition 2. To conclude the
proof, we will give a sequence of T d-transforms that, when applied to p, yield q.
We consider three cases (the cases where some equality holds follow easily from
these):

(A) γa ą γb ą c. In this case, Cdppq is (roughly) given by Figure 7, with q
being achievable by a sequence T dp1, 2qT dp2, 3q if it lies below the dashed
line and by T dp1, 2qT dp1, 3qP dp2, 3q if it lies above.

(B) γa ą c ą γb. In this case, Cdppq is (roughly) given by Figure 8, with q
being achievable by a sequence T dp1, 2qT dp1, 3q if it lies above the dashed
line and by T dp1, 2qT dp2, 3q if it lies below.

(C) c ą γa ą γb. In this case, Cdppq is (roughly) given by Figure 9, with q
being achievable by a sequence T dp1, 2qT dp1, 3q if it lies above the dashed
line and by T dp1, 2qT dp2, 3qP dp1, 3q if it lies below.

This concludes the proof.
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I p1, 2q

p2, 3q p1, 2qp2, 3q

p1, 3qp2, 3q p1, 2qp1, 3qp2, 3q

Figure 7: Rough representation of the set Cdppq for d “ pd0, d0, d1q with 0 ă

d1 ď d0 and p “ pa, b, cq with γa ě γb ě c. Note that we label the vertices by
the (ordered) sequence of elementary thermal operations that we apply to p to
achieve them and that we substitute P dpi, jq by pi, jq.

H Proof of Theorem 6

By Lemma 1, it suffices to assume that d “ dÓ throughout the proof.
The fact that paq implies pbq holds analogously to its counterpart in Propo-

sition 3, i.e., as a direct consequence of Proposition 1.
To show that pbq implies paq, we begin taking p, q P PΩ such that q ĺd p.

We also take n “ |Ω| and γ “ d1{d0 for simplicity and note that we can assume
w.l.o.g.14 that

p1 ě p2 ě ¨ ¨ ¨ ě pn´1 and q1 ě q2 ě ¨ ¨ ¨ ě qn´1. (16)

Assuming, hence, the desired order for the components of p and q (and
recalling the notation Πd

p from Definition 2), we will prove that q can be achieved

from p via T d-transforms by induction on h0 (see Definition 7). We begin by
dealing with the base case h0pp, qq “ 0 in the following lemma. 15

Lemma 5. If d P PΩ with dÓ “ pd0, . . . , d0, d1q, p, q P PΩ with q ĺd p and
h0pp, qq “ 0, then there exists a finite sequence of T d-transforms pT d

λk
pik, jkqq

k0

k“1

such that

q “

˜

k0
ź

k“1

T d
λk

pik, jkq

¸

p,

where 0 ď λk ď 1 and 1 ď ik ă jk ď |Ω| for 1 ď k ď k0.

14If that were not the case, we can first apply a sequence of P dpi, jq with 1 ď i, j ă n to
reach the desired order for p, follow the argument below to reach q with the desired order,
and finally apply another sequence of P dpi, jq with 1 ď i, j ă n until we reach q.

15It should be noted that a more general version of Lemma 5 was obtained in [34, Theorem
12] for partial level thermalizations, a subset of the weak elementary thermal operations.
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p2, 3q p1, 2qp2, 3q

I p1, 2q

p1, 3q p1, 2qp1, 3q

Figure 8: Rough representation of the set Cdppq for d “ pd0, d0, d1q with 0 ă

d1 ď d0 and p “ pa, b, cq with γa ě c ě γb. Note that we use the notation in
Figure 7.

Proof. The result follows by extending the argument in Lemma 2 of [31, p. 47].
More specifically, it follows by induction on h1 (see Definition 7):

If h1pp, qq “ 0, then p “ q and we have finished.
If h1pp, qq “ s ` 1 for some s ě 0, then, since

řn
i“1ppdi ´ qdi q “ 0 and

řℓ
i q

d
i ď

řℓ
i p

d
i for 1 ď ℓ ď n (see Definition 2), there exist some indexes

1 ď k ă l ď n such that

pdk ą qdk, pdk`1 “ qdk`1, . . . , pdl´1 “ qdl´1, pdl ă qdl .

We distinguish three cases:

(A.1) pdk, q
d
k, p

d
l and qdl are associated with d0. In this case, we can follow the

proof of Lemma 2 in [31, p. 47] and obtain by T d-transforms on p some
p1 such that h1pp1, qq ď s and q ĺd p1.

(A.2) pdk and qdk are associated with d0 and pdl and qdl are associated with d1. In
this case, we have that γpdk ą γqdk ě qdl ą pdl . Hence, there exists some
0 ď λ0 ď 1 such that λ0γp

d
k ` p1 ´λ0qpdl “ qdl . If p1 ´λ0γqpdk `λ0p

d
l ě qdk,

then we take p1 “ T d
λ0

pk, lqp. Otherwise, we consider some 0 ď λ1 ă λ0

such that p1 ´ λ1γqpdk ` λ1p
d
l “ qdk and we take p1 “ T d

λ1
pk, lqp. In any

case, p1 is obtained by applying T d-transforms on p and h1pp1, qq ď s.
Moreover, we have

ℓ
ÿ

i“1

pp1qdi “

ℓ
ÿ

i“1

pdi ě

ℓ
ÿ

i“1

qdi for ℓ “ 1, . . . , k ´ 1,

pp1qdk ě qdk, pp1qdℓ “ pdℓ “ qdℓ for ℓ “ k ` 1, . . . , l ´ 1,

ℓ
ÿ

i“1

pp1qdi “

ℓ
ÿ

i“1

pdi ě

ℓ
ÿ

i“1

qdi for ℓ “ l, . . . , n.
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p2, 3qp1, 3q p1, 2qp2, 3qp1, 3q

p1, 3q p1, 2qp1, 3q

I p1, 2q

Figure 9: Rough representation of the set Cdppq for d “ pd0, d0, d1q with 0 ă

d1 ď d0 and p “ pa, b, cq with c ě γa ě γb. Note that we use the notation in
Figure 7.

Hence, since p1 and q have the same d-order by construction, q ĺd p1.

(A.3) pdl and qdl are associated with d0 and pdk and qdk are associated with d1.
In this case, we have that pdk ą qdk ě γqdl ą γpdl and we can follow an
argument analogous to that in pA.2q.

This concludes the proof.

As a result of Lemma 5, to conclude, we only ought to show that, if h0pp, qq ą

0, then, applying some T d-transforms to p, we can obtain some p1 such that
q ĺd p1 and h0pp1, qq ă h0pp, qq. We take, hence, h0pp, qq “ m ` 1 for some
m ě 0 and consider two cases:

(B.1) Πd
ppnq ą Πd

qpnq. In this scenario, we take i0 the component for which

i0`1 “ Πd
ppi0q`1 “ Πd

ppnq, note that γpi0 ą pn, and define p1 “ T d
λ pi0, nqp

for some 0 ď λ ď 1. We distinguish two cases:

(B.1.1) h0pp, qq ą 1. In this case, we ought to see that there exists such a λ
fulfilling

p1
n ě γp1

i0 and

p1
n ` ∆ ě γqi0´1, (17)

where we take ∆ “
ři0´1

j“1 pj ´ pqn ` p1 ´ γqqi0´1 `
ři0´2

j“1 qjq and
the first equation assures that hpp1, qq “ m while the second one
assures that q ĺd p1. (This is the case since the Lorenz d-curve of
p1 coincides with that of p except for the components that we are
modifying, given that γpi0 ą p1

n and γp1
i0

ą pn. Moreover, the
conditions in (17) suffice to assure that, in the region where it differs
from that of p, the Lorenz d-curve of p1 is not below that q.)
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Isolating λ, the equations in (17) are equivalent to

λ ě
γpi0 ´ pn

γp1 ` γqpi0 ´ p1 ` γqpn
and

λ ě
γqi0´1 ´ p∆ ` pnq

γpi0 ´ pn
, (18)

respectively. It is not difficult to see that the right hand side of both
inequalities is bounded by 1: For the first one we use that γpi0 ą pn
by assumption and for the second that γqi0´1 ď γpi0 `∆ since q ĺd p.
Hence, we can find some 0 ď λ ď 1 fulfilling (17).

(B.1.2) h0pp, qq “ 1. This case is analogous to pB.1.1q, substituting (17) by

p1
n ě γp1

i0 and

p1
n ` ∆ ě qn, (19)

with ∆ “
ři0´1

j“1 ppj ´ qjq, and (18) by

λ ě
γpi0 ´ pn

γp1 ` γqpi0 ´ p1 ` γqpn
and

λ ě
qn ´ p∆ ` pnq

γpi0 ´ pn
.

It is not difficult to see that the right hand side of both inequalities is
bounded by 1: The first follows like (18) and the second since q ĺd p
and, hence, qn ď γpi0 ` ∆. Thus, there exists some 0 ď λ ď 1
fulfilling (19).

(B.2) Πd
ppnq ă Πd

qpnq. In this scenario, we take i0 the component for which

Πd
ppi0q ´ 1 “ Πd

ppnq, note that pn ą γpi0 , and define p1 “ T d
λ pi0, nqp for

some 0 ď λ ď 1. We can conclude, analogously to pB.1.1q, by finding such
a λ fulfilling

γp1
i0 ě p1

n and

p1
i0 ` ∆ ě qi0 , (20)

where we take ∆ “
ři0´1

j“1 ppj ´ qjq and the first equation assures that
hpp1, qq “ m while the second one assures that q ĺd p1. These equations
are equivalent to

λ ě
pn ´ γpi0

p1 ` γqpn ´ γp1 ` γqpi0
and

λ ě
qi0 ´ p∆ ` pi0q

pn ´ γpi0
, (21)

respectively. It is not difficult to see that the right hand side of both
inequalities is bounded by 1: For the first one we use that γpi0 ă pn by
assumption and for the second that qi0 ď ∆ `pn ` p1 ´γqpi0 since q ĺd p.

By induction, this concludes the proof.
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I Proof of Theorem 7

Most of the theorem is due to Jurkat and Ryser [41, Theorem 4.1] and its final
form due to Hartfiel [39, Lemma 1.1]. The only thing we ought to notice is
that we have to take the transpose of the result in [39] (since it uses a different
convention for stochastic matrices) and that, if a matrix A can be constructed
via the Jurkat-Ryser algorithm, then its transpose AT can as well. (We simply
follow the steps in the construction of A transposing the indexes we use in each
of them.)

J Proof of Theorem 8

By Lemma 1, it suffices to assume that d “ dÓ throughout the proof.
Sufficiency follows as in Proposition 2, i.e., as a direct consequence of Propo-

sition 1.
To prove necessity, we will construct a decomposition as a product of d-swaps

of an arbitrary extreme point of the thermal operations polytope M (whose form
we know from Theorem 7). We take γ “ d1{d0 and n “ |Ω| for simplicity, and
assume throughout that d1 ă d0. (The case with equality is well known by
Theorem 2.)

As a first step, we determine the possible entries of M . In particular, we
note that, for 1 ď i, j ď n, Mi,j P t1, γ, 1 ´ γ, 0u. We show this in the following
lemma, where we start proving and analogous result for Jurkat-Ryser d-matrices.

Lemma 6. If d “ pd0, . . . , d0, d1q P PΩ and γ “ d1{d0, then the following
statements hold:

(a) If A is a Jurkat-Ryser d-matrix, then

Ai,j P td0, d1, d0 ´ d1, 0u (22)

for 1 ď i, j ď |Ω|.

(b) If M is an extreme point of the thermal operations polytope, then

Mi,j P t1, γ, 1 ´ γ, 0u (23)

for 1 ď i, j ď |Ω|.

Proof. (a) By definition, the only non-zero components of A consist of the
minimum of rmi and smj for some m ě 1 and 1 ď i, j ď |Ω| (see Definition
8). Moreover, aside from the zeros which are generated by the Jurkat-
Ryser algorithm (which are not used again for any comparison later on)
we have that rmi “ smj “ d0 unless rmi or smj is connected to d1. In
particular, one can see that rmi “ d1 if it is row-connected to d1 and
rmi “ d0 ´ d1 if it is column-connected to d1. Similarly, smj “ d1 if it is
column-connected to d1 and smj “ d0 ´ d1 if it is row-connected to d1.
To conclude, note that, if rmi (smj ) is row-connected to d1, then smj (rmi )
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is either column-connected to d1 or not connected to d1 at all, and vice
versa. Hence, in case rmi and smj are both connected to d1, there are only
two possible scenarios:

(a.1) rmi is row-connected to d1 and smj is column-connected to d1. In this
case, we have rmi “ smj “ d1.

(a.2) rmi is column-connected to d1 and smj is row-connected to d1. In this
case, we have rmi “ smj “ d0 ´ d1.

As a result, we have that

prmi , smj q “

#

pa, bq, or

pb, aq,

where

pa, bq P tpd0, d0q, pd0, d1q, pd0, d0 ´ d1q, pd1, d1q, pd0 ´ d1, d0 ´ d1qu.

Hence, (22) holds.

(b) This follows as a direct consequence of paq since, by Theorem 7, M “

AD´1, where A is a Jurkat-Ryser d-matrix and D “ diagpd0, . . . , d0, d1q.
To conclude, it suffices to notice that Ai,|Ω| P t0, d1u for all 1 ď i ď |Ω|,
since, provided it is not zero, we have for all m ě 1 that sm

|Ω|
“ d1 and

hence, as we argued in paq, rmi P td0, d1u for 1 ď i ď |Ω|.
This concludes the proof.

Now that we know what entries M may have, we show, in the following
lemma, how they may be distributed along its lines.16

Lemma 7. If d “ pd0, . . . , d0, d1q P PΩ, d1 ă d0, γ “ d1{d0 and M is an
extreme point of the thermal operations polytope, then the lines of M fulfill the
following properties:

(a) The last row has either a 1 in the last column or a γ in another column
and the rest are zeros.

(b) If a row which is not the last one has a 1 in the last column, then it also
has a 1 ´ γ and the rest are zeros.

(c) If a row which is not the last one has a γ, then it also has a 1 ´ γ (both
not in the last column) and the rest are zeros.

(d) The last column has a single one and the rest are zeros.

(e) If a column has a 1 ´ γ, then it also has a γ and the rest are zeros.

Proof. (a) This follows from Lemma 6 and the fact that Md “ d.

16If M P M|Ω|,|Ω|pRq, then a line of M is either a row or a column [41].
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(b) Take Ri the i-th row for 1 ď i ă |Ω| and assume it has a one in the last
column. Since Md “ d, there must be another entry in Ri that is neither
0 nor 1. Moreover, there can be no γ in Ri. To show this, we consider
two cases:

(b.1) There is one γ in Ri that was generated before the 1 at step m. Then,
arguing as in Lemma 6, γ must come from the comparison of rmi “ d0
and smj “ d1 to avoid filling the row with zeros. As a result, we have

rm`1
i “ d0 ´d1 and, by the argument in Lemma 6, the next non-zero

entry in Ri will be 1 ´ γ. However, this scenario is impossible since
the existence of the 1 contradicts the fact that Md “ d.

(b.2) There is one γ in Ri that was generated after the 1. If we assume
the 1 was generated at step m, then, arguing as in Lemma 6, it must
come from the comparison of rmi “ d0 and smj “ d1 to avoid filling
the row with zeros and, furthermore, the next non-zero entry in the
row will be 1 ´ γ. However, this scenario is impossible since the
existence of the γ contradicts the fact that Md “ d.

In summary, by Lemma 6 pbq, a row with the 1 in the last column has a
1 ´ γ somewhere and the rest are zeros.

(c) Take Ri the i-th row for 1 ď i ă |Ω| and assume it has a γ, which cannot
be in the last column by Lemma 6 pbq. Since Ri is not the last row and
Md “ d, then there must be another non-zero entry in Ri. Moreover,
Ri cannot have another γ. If there were another γ, consider the γ that
appeared first at step m. Arguing as in Lemma 6, it must come from the
comparison of rmi “ d0 and smj “ d1 to avoid filling the row with zeros.
Thus, the next non-zero entry in the row will be a 1 ´ γ and the existence
of a second γ contradicts the fact that Md “ d. Lastly, Ri cannot have a
1. This is the case since, if the one was not on the last column, then this
would contradict the fact that Md “ d. Furthermore, if it were on the
last column, we can follow the proof of pbq. In summary, since Md “ d,
a row which is not the last one and has γ will also have another a 1 ´ γ
and the rest zeros.

(d) This follows from Lemma 6 pbq plus the fact that M is a stochastic matrix.

(e) Take Ci the i-th column for 1 ď i ă |Ω| a column with a 1 ´ γ. (It cannot
be the last column by pbq.) Since M is stochastic, there must be another
non-zero entry which cannot be a 1. Moreover, there can be no other 1´γ
in Ci. To show this, let us consider the 1 ´ γ that appeared first at step
m. Arguing as in Lemma 6, such 1 ´γ must come from the comparison of
rmi “ d0 ´ d1 and smj “ d0 to avoid filling the column with zeros. Thus,
the next non-zero entry in the row will be a γ. However, the existence of a
second 1 ´ γ in Ci contradicts the fact that M is stochastic. In summary,
by Lemma 6 pbq, a column with a 1 ´γ entry will have another entry with
a γ and the rest zeros.
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This concludes the proof.

Now that we have identified the possible lines M may have, we will establish
how they are positioned in M relative to each other in the following lemma.

Lemma 8. If d “ pd0, . . . , d0, d1q P PΩ, d1 ă d0, γ “ d1{d0 and M is an
extreme point of the thermal operations polytope, then one of the following holds:

(a) M is a permutation matrix with M|Ω|,|Ω| “ 1.

(b) There exists a sequence of pairs Q “ ppik, jkqq
t0
k“0 such that

j0 “ |Ω|, Mi0,j0 “ 1,

Mik´1,jk “ 1 ´ γ, Mik,jk “ γ, if 1 ď k ă t0,

Mit0´1,jt0
“ 1 ´ γ, Mit0 ,jt0

“ γ,

(24)

where it0 “ |Ω|, 1 ď jt0 ă |Ω|, and 0 ă t0 ă 8. Moreover, the subma-
trix17 M0 “ MzM ri0, . . . , it0 ; j0, . . . , jt0s is a permutation matrix.

Proof. By Lemma 7 pdq, M must have a 1 and the rest zeros in the last column.
In case the 1 is in the last row, then, following Lemma 6, it was introduced at
some step m0 comparing rm0

n “ d1 with sm0
n “ d1 and, for all m ‰ m0, both

rmi and smj are not connected to d1. Hence, M is a permutation matrix with
Mn,n “ 1, as stated in paq.

Assume now that the 1 in the last column of M is in some row Ri0 with
1 ď i0 ă n. We will show that pbq holds. In particular, in this scenario, we define
the sequence of pairs Q “ ppik, jkqq

t0
k“0, where we take i0 as in the previous line

and j0 “ n. Moreover, we define, for all k ě 1, jk such that the column Cjk has
a 1 ´ γ in row ik´1, and ik such that the row Rik has a γ in column Cjk . We
follow this procedure until we reach some t0 ą 0 for which jt0`1 it is no longer
defined. To conclude that (24) holds, we check the following properties:

(b.1) There exists some t0 ą 0 for which Q is well-defined. To show this, we
rely on Lemma 7. In particular, there exists a single 1 ´ γ in row Ri0 by
Lemma 7 pbq. Moreover, for all k ě 1, there exists a single γ in column
Cjk by Lemma 7 peq. Furthermore, while ik ă n, there exists a single 1´γ
in row Rik by Lemma 7 pcq.

(b.2) t0 ă 8. To show this, we first note that we never repeat a pair pik0
, jk0

q “

pik1
, jk1

q for 0 ď k0 ă k1. If that were the case, then we would have
pik0´v, jk0´vq “ pik1´v, jk1´vq for all 0 ď v ď k0 by the uniqueness prop-
erties in Lemma 7. However, i0 ‰ ik for all k ą 0, since there is no γ in
the i0 row by Lemma 7 pbq. Hence, since there are no repeated pairs in

17If M P M|Ω|,|Ω|pRq, then M0 is a submatrix of M , denoted

M0 “ MzMra1, . . . , an; b1, . . . , bms,

if it is equal to M after eliminating rows ta1, . . . , anu and columns tb1, . . . , bmu with 1 ď

ai, bj ď |Ω| for 1 ď i ď n and 1 ď j ď m [41].
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Figure 10: Extreme point of the thermal polytope that fulfills Lemma 8 pbq for
|Ω| “ 4. We highlight in red the components that correspond to the Q associated
to M and connect them with arrows that join one step in the recursion (24) with
the following one. Several examples with |Ω| “ 3 can be found in (14).

Q and the number of γ in M is finite, there exists some t0 ą 0 such that
it0 “ n. (This is the case since we are not in scenario paq and Lemma 7
paq holds.) Thus, since there is no 1 ´ γ in row Rn by Lemma 7 paq, jt0`1

is not defined.

To conclude the proof, we only ought to show that the submatrix M0 is a
permutation matrix. To show this, we first notice that Mi,j is connected to
d1 if and only if pi, jq P Q. Hence, pM0qi,j P t0, 1u. Moreover, whenever we
have i “ ik and j ‰ jk (or vice versa) for some 0 ď k ď t0, then Mi,j “ 0.
Hence, given that M is a stochastic matrix, we have that M0 is a permutation
matrix.

(We include an extreme point of the thermal polytope that fulfills Lemma 8
pbq in Figure 10.)

Now that we know the structure of M , we conclude the proof defining a
product of ETOs N2 such that M “ N2. We consider two cases:

(a) If we are in the scenario of Lemma 8 paq, then M is a permutation matrix
that acts as the identity on the last column. Hence, by Theorem 2, there
exists a sequence of pairs ppxk, ykqq

t2
k“0 with xk, yk ă n for 0 ď k ď t2,

such that

M “ N2 :“
t2
ź

k“0

P dpxk, ykq.

(b) If we are in the scenario of Lemma 8 pbq, then we start by defining

N0 :“
t0
ź

k“0

P dpjk, nq,
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where pjkq
t0
k“0 are the second components of the pairs in Q from Lemma

8.

It is not difficult to see by induction that any product

q0
ź

q“1

P dpuq, nq,

where uq ă n for 1 ď q ď q0 and uq ‰ uq1 whenever q ‰ q1, fulfills the
following relation between rows: Row Ru1

has a 1 in column Cn and a
1 ´ γ in column Cu1

. Moreover, row Ruk
has a γ in column Cuk´1

and a
1 ´ γ in column Cuk

for 1 ă k ď q0. Finally, row Rn has a γ in column
uq0 . (Furthermore, the entries that are not mentioned for each row are
zero.)

Hence, although potentially in different rows, N0 possesses one horizontal
line equivalent to each Rik for 1 ď k ď t0, where pikq

t0
k“0 are the first

components of the pairs in Q from Lemma 8. Thus, there exists a sequence
pokq

t0´1
k“0 with ok ă n for 0 ď k ď t0 ´ 1 such that

N1 :“

˜

t0´1
ź

k“0

P dpjk, okq

¸

N0

coincides with M inside ri0, . . . , it0 ; j0, . . . , jt0s.

To conclude, note that, since N1zN1ri0, . . . , it0 ; j0, . . . , jt0s and M0 are
permutation matrices, there exists a sequence of pairs ppak, bkqq

t1
k“0 with

ak, bk ă n for 0 ď k ď t1, such that

M “ N2 :“

˜

t1
ź

k“0

P dpak, bkq

¸

N1.

This concludes the proof.

K Proof of Theorem 9

By Lemma 1, it suffices to assume that d “ dÓ throughout the proof.
(b) implies (a) by Lemma 2. We prove the converse by contrapositive. In

particular, if d ‰ pd0, . . . , d0, d1q up to permutations, then the result holds
already at the resource theory level by Proposition 1. We take, hence, d “

pd0, . . . , d0, d1q with d1 ă d0. (The case where d1 “ d0 is known by Theorem
3.) To deal with this situation, we distinguish two cases and provide, for each
of them, a d-stochastic matrix M P M|Ω|,|Ω|pRq that cannot be decomposed as

a product of T d-transforms:

(A) |Ω| ě 4. In this scenario, the result follows as a consequence of the proof
of Theorem 3 (see [43]). In particular, we can take

M :“ M0

à

Izp1,...,|Ω|´1|q,
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with M0 P M|Ω|´1,|Ω|´1pRq a doubly stochastic matrix such that pM0qi,j ą

0 if i ‰ j and pM0qi,j “ 0 if i “ j. (For instance, we could define M0 as
in (12).) It is clear that M is a d-stochastic matrix. To conclude, assume
that M can be decomposed as a sequence of T d-transforms

M “

N
ź

k“1

T d
λk

pik, jkq (25)

and consider N0 the first index such that λN0 ą 0 and jN0 “ |Ω|. In this
scenario, we have that

˜

N0
ź

k“1

T d
λk

pik, jkq

¸

|Ω|,|Ω|

ă 1.

It is then easy to see that this implies p
śN1

k“1 T
d
λk

pik, jkqq|Ω|,|Ω| ă 1 for
N0 ď N1 ď N , which contradicts the definition of M . Hence, for 1 ď k ď

N , jk “ |Ω| implies λk “ 0, thus, T d
λk

pik, jkq “ I. As a result, M can

be decomposed as a product of T d transforms if and only if M0 can be
decomposed as a product of T -transforms. The latter is, however, false
due to the proof of Theorem 3.

(B) |Ω| “ 3. In this scenario, the argument above does not hold since Theorem
3 requires M0 to be at least a 3 ˆ 3 matrix. In the spirit of the proof of
Theorem 3, however, we take

M :“

¨

˚

˝

1 ´ ϕ ϕ 0

ϕ 0 1´ϕ
γ

0 1 ´ ϕ 1 ´
1´ϕ
γ

˛

‹

‚

(26)

with 1 ´ γ ă ϕ ă 1. Note that M is clearly a d-stochastic matrix.

Since there exists some 0 ď λ1 ď 1 such that

k0
ź

k“1

T d
λk

pi, jq “ T d
λ1 pi, jq, (27)

where 1 ď i, j ď 3 and 0 ď λk ď 1 for 1 ď k ď k0, and, moreover,

T d
λ p1, 3q “ P dp1, 2qT d

λ p2, 3qP dp1, 2q (28)

for any 0 ď λ ď 1, then M can be decomposed as product of T d-transforms
if and only if there exist some ℓ,m P t0, 1u and N ě 0 such that

M “
`

T d
λA

p2, 3q
˘ℓ

˜

N
ź

k“1

T d
λk

p1, 2qT d
βk

p2, 3q

¸

`

T d
λB

p1, 2q
˘m

, (29)

where 0 ď λA, λB , λk, βk ď 1 for 1 ď k ď N . To conclude the argument,
it is straightforward to check that this is not the case. (For instance, one
can argue by direct calculation using the zeros in M .)
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As a last remark, note that, in case ϕ “ 1, then M equals P dp1, 2q

and, hence, it belongs to the WETO polytope. Moreover, if ϕ “ 1 ´

γ, then M also belongs to the WETO polytope. In particular, M “

P dp1, 2qP dp2, 3qP dp1, 3q.

This concludes the proof.

Remark 6. Note that, for each 1 ´ γ ă ϕ ă 1, M in (26) exemplifies that the
WETO polytope is not convex in general since, aside from its extreme points,
the segment joining P dp1, 2q and P dp1, 2qP dp2, 3qP dp1, 3q does not belong to it
by Theorem 9.

L Proof of Theorem 10

By Lemma 1, it suffices to assume that d “ dÓ throughout the proof.
We argue by contrapositive, that is, we assume we have some d P PΩ with

three different entries and will show that, in this scenario, there exists some
pair p, q P PΩ such that q is achievable from q via (strong) elementary thermal
operations but not by its weaker counterpart.

We first note that we can restrict ourselves to the case where |Ω| “ 3, as we
show in the following lemma.

Lemma 9. Take 0 ă d P PΩ and 0 ă d1 P PΩ1 such that Ω Ď Ω1 and d1
i “ di for

all i P Ω. If p, q P PΩ, then the following statements hold:

(a) If q P CETO
d ppq, then pq, 0q P CETO

d1 ppp, 0qq, where pr, 0q P PΩ1 and

pr, 0qi :“

#

ri, if i P Ω

0, if i P Ω1zΩ.

(b) If suppppq “ supppqq and q R CWETO
d ppq, then pq, 0q R CWETO

d1 ppp, 0qq.

Proof. (a) Straightforward.

(b) For simplicity, we assume throughout the proof that suppppq “ supppqq “

Ω. The same method can be followed whenever suppppq “ supppqq ă Ω.
Moreover, by Lemma 1, we assume d1 “ pd1qÓ and d “ dÓ .

We begin assuming pq, 0q P CWETO
d1 ppp, 0qq and argue by contradiction.

By assumption, we have that

pq, 0q “

˜

ℓ
ź

k“1

T d
λk

pik, jkq

¸

pp, 0q (30)

for some ℓ ě 0 and 1 ď ik ă jk ď |Ω1| for 1 ď k ď ℓ. Note that, in the
remainder of the proof, we use the notation

tm :“

#

pp, 0q, if m “ 0
`
śm

k“1 T
d
λk

pik, jkq
˘

pp, 0q, if 1 ď m ď ℓ.
(31)

51



Since q R CWETO
d ppq, there must be some 1 ď k0 ď ℓ such that ik0 R Ω (or

jk0 R Ω). We fix k0 the first index with this property such that d1
ik0

‰ dm
(d1

jk0
‰ dm) for all m P Ω. (We deal with the remaining cases later on.)

Note we can assume w.l.o.g. that

tk0
s ą 0 for s “ ik0

ps “ jk0
q. (32)

In particular, since k0 is minimal by construction, we can assume that
d1
jk0

“ dm (d1
ik0

“ dm) for some m P Ω.

The existence of such a k0 leads to contradiction. To show this, we consider
the following two cases:

(A) jk0 R Ω. By assumption, we have that d1
ik0

ą d1
jk0

. In particular, by

(32), we obtain that

|suppptk0q| ą |suppppp, 0qq| “ |suppppq, 0qq|.

This, together with (30), contradicts Lemma 3.

(B) ik0
R Ω. In this case, we have that T d

λk
pik, jkq is a d-swap to avoid

contradicting Lemma 3. Moreover, to avoid contradicting (30), there
must be some k0 ă m0 ď ℓ such that

tmik0
“ 0 for all m ě m0. (33)

Hence, there must be some ik0
ą w0 P Ω and two sequences pnpqNp“1,

with k0 ă np ă np`1 ď ℓ for all p, and pvpqNp“1 Ď Ω1 such that

t
np`1
vp`1 ą 0 and t

np`1
vp “ 0, where v0 “ k0, d1

vp`1
ě d1

vp by (A)
and vN “ w0. However, to avoid contradicting (33), we must have
t
nN´1
vN “ 0. Despite this, t0vN ą 0 since suppppq “ Ω. Thus, we can

argue analogously that there must be some w0 ą w1 P Ω with sim-
ilar properties to those of w0 and dw1 ą dw0 . (Note that we could
have dw1

“ dw0
. However, we could argue in a similar fashion that

this would imply the existence of some w1 ą w1
1 P Ω with equiv-

alent properties and such that dw1
1

ą dw1
“ dw0

.) Following the
argument recursively, we obtain an unbounded strictly decreasing
sequence pwnqně0 Ď Ω. This contradicts the finiteness of Ω.

By (A) and (B), if (30) holds, then, for all 1 ď k ď ℓ,

d1
ik
, d1

jk
P tdi|i P Ωu.

We conclude noting two properties. First, whenever dik “ djk with tk´1
ik

ą

0 and tk´1
jk

“ 0 or vice versa, then, for all 1 ď k ď ℓ, T d
λk

pik, jkq in
(30) must be a swap to avoid contradicting Lemma 3. Second, whenever
dik ą djk , we must have tk´1

ik
, tk´1

jk
ą 0 by the same reason. (If tk´1

jk
“ 0

we can argue as in (A) and, if tk´1
ik

“ 0, as in (B).) Using these properties,
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it is easy to see that (30) implies q P CWETO
d ppq. (In particular, for all

0 ď m ď ℓ, there exists some rm P PΩ such that tm “ prm, 0q up to
permutations and rm P CWETO

d ppq.) This yields the desired contradiction
and concludes the proof of (b).

This concludes the proof.

(Note that one may not need the assumption on the support in Lemma 9.
However, this is not important for our purposes here.)

As a result of Lemma 9, it suffices to fix |Ω| “ 3 and find a pair p, q P PΩ

with suppppq “ supppqq “ Ω such that q P CETO
d ppqzCWETO

d ppq. We conclude
the proof showing such a pair exists.

In the following, we fix |Ω| “ 3 and take d “ pd0, d1, d2q with d0 ą d1 ą d2
(we can do so by assumption). Moreover, we fix α “ d1{d0, β “ d2{d0 and
γ “ d2{d1, and take some p “ pa, b, cq P PΩ such that

γb ă c ă βa, and

βpp1 ´ αqa ` p1 ´ γqb ` cq ă c. (34)

(Note that both conditions in (34) can be simultaneously satisfied. This is easy
to see by assuming b “ 0 and noticing that, in this scenario, the conditions are
fulfilled provided 1{p1 ` βq ă a ă 1{p1 ` τβq, where τ “ p1 ´ αq{p1 ´ βq. It is
then easy to get some p fulfilling (34) with 0 ă b, that is, with suppppq “ Ω.)

To conclude, we argue by contradiction that there exists some q P CETO
d ppq

that cannot be achieved via weak elementary thermal operations. In order to
do so, we first note that CETO

d ppq is given by Figure 11. (Note that this can
be achieved via direct calculation using [2, Theorem 6], or [48, Theorem 5] for
simplicity, and eliminating the non-extreme points later on.)

p2, 3q p1, 2qp2, 3q

I p1, 2q

p1, 3q p1, 2qp1, 3q

p2, 3qp1, 2qp1, 3q

Lppq

Figure 11: Rough representation of the set CETO
d ppq for d “ pd0, d1, d2q with

d1 ą d1 ą d2 and p “ pa, b, cq fulfilling (34). We include in red Lppq as defined
in (35). Note that we use the notation in Figure 7.

We will show there exists some

q P Lppq :“
“

P dp2, 3qP dp1, 2qP dp1, 3qp, P dp1, 2qp
‰

Ď CETO
d ppq (35)
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such that q cannot be achieved from p via weak elementary thermal operations,
where rA,Bs stands for the segment joining points A and B. (Note that, for
any q P Lppq, we have supppqq “ Ω “ suppppq. Moreover, LppqzextpLppqq ‰ H,
where extp¨q denotes the set of extreme points.)

We begin fixing some q P Lppq such that

q ‰

˜

m
ź

k“1

P dpik, jkq

¸

p (36)

for all m ě 1 and 1 ď ik ă jk ď 3 for 1 ď k ď m. (This can be done since
there is a continuum number of points points in Lppq.) Hence, if we assume
that q P CWETO

d ppq, then there exists at least one T d-transform that is not a
d-swap in the sequence of T d-transforms that yield q when applied to p. That
is, we have

q “

˜

ℓ
ź

k“m`2

P dpik, jkq

¸

`

p1 ´ λqI ` λP dpim`1, jm`1q
˘

p0, with

p0 :“

˜

m
ź

k“1

T d
λk

pik, jkq

¸

p, (37)

for some ℓ ě m ` 1, m ě 0, 0 ă λ ă 1 and 1 ď ik ă jk ď 3 for 1 ď k ď ℓ.
We will show (37) leads to a contradiction, implying q R CWETO

d ppq. In
order to do so, we prove a stronger result in the following lemma.

Lemma 10. If we define, for all r, s P PΩ and M P M|Ω|,|Ω|pRq, M rr, ss :“

rMr,Mss, and, for any segment segment L Ď R3, EpLq :“ L1
Ş

CETO
d ppq with

L1 Ď R3 the line such that L Ď L1, then

Lppq R
ď

ℓě0

Bℓ, (38)

where

Bℓ :“

#

E

˜˜

ℓ
ź

k“1

P dpik, jkq

¸

“

p0, P
dpi0, j0qp0

‰

¸

: 1 ď ik ă jk ď 3

for 1 ď k ď ℓ and p0 is given by (37)

+

.

Proof. We will prove that Lppq R Bℓ for all ℓ ě 0 by induction.
If ℓ “ 0, then each element in Bℓ has one constant component by definition.

However, it is not difficult to see that the extreme points of Lppq differ in all
their components. Hence, Lppq R B0.

Assume now that Lppq R Bℓ for some ℓ ě 0. To show this implies Lppq R

Bℓ`1, we note that

Bℓ`1 “
␣

E
`

P dpiℓ`1, jℓ`1qL
˘

: L P Bℓ and 1 ď iℓ`1 ă jℓ`1 ď 3
(

, (39)

and prove separately the following three claims:
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(A) Lppq ‰ EpP dp1, 2qLq for all L P Bℓ. Since P dp1, 2q leaves the third com-
ponent of every probability distribution unchanged, it is clear that we
only need to consider the cases where L belongs to the area with hor-
izontal blue lines in Figure 12. Given that Lppq ‰ L for all L P Bℓ

by assumption, it is then easy to show that Lppq ‰ EpP dp1, 2qLq using
that P dp1, 2qP dp1, 3qp, p R Lppq and that P dp1, 2qP dp1, 2q “ αI ` p1 ´

αqP dp1, 2q.

(B) Lppq ‰ EpP dp1, 3qLq for all L P Bℓ. Since P dp1, 3q leaves the second
component of every probability distribution unchanged, it is clear that we
only need to consider the cases where L belongs to the shaded blue area
in Figure 12. Given that Lppq ‰ L for all L P Bℓ by assumption, it is then
easy to show that Lppq ‰ EpP dp1, 2qLq using that

P dp1, 3qp, P dp1, 3qP dp2, 3qp, P dp1, 3qP dp1, 2qP dp2, 3qp,

P dp1, 3qP dp1, 2qp R Lppq

and that P dp1, 3qP dp1, 3q “ βI ` p1 ´ βqP dp1, 2q.

(C) Lppq ‰ EpP dp2, 3qLq for all L P Bℓ. Since P dp2, 3q leaves the first com-
ponent of every probability distribution unchanged, it is clear that we
only need to consider the cases where L belongs to the area with ver-
tical red lines in Figure 12. Given that Lppq ‰ L for all L P Bℓ by
assumption, it is then easy to show that Lppq ‰ EpP dp2, 3qLq using that
P dp2, 3qP dp1, 2qp, P dp1, 2qP dp1, 3qp R Lppq and that P dp2, 3qP dp2, 3q “

γI ` p1 ´ γqP dp2, 3q.

p2, 3qp1, 2qp1, 3qp2, 3q

p1, 3qp1, 2q

p1, 3qp1, 2qp2, 3q

Figure 12: Rough representation of the set CETO
d ppq for d “ pd0, d1, d2q with

d1 ą d1 ą d2 and p “ pa, b, cq fulfilling (34). We include labels for the black
points which, although not plotted in Figure 11 since they are not extremal,
are useful when proving Lemma 10. Moreover, we include the areas which are
mentioned in (A)-(C) in that lemma. Note that we use the notation in Figure
7.

By the recursive relation in (39), we can conclude from (A)-(C) that Lppq R

Bℓ`1. By induction, (38) holds. This concludes the proof.
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By Lemma 10, we have that, if q P EpLq for some EpLq P Bℓ and ℓ ě 0, then
q P extpEpLqq, where extp¨q denotes the set of extreme points. This contradicts
the fact that 0 ă λ ă 1 in (37). In particular, (37) implies that q P L0zextpL0q,
where L0 P Bℓ for some ℓ ě 0. This yields the desired contradiction and
concludes the proof.

M Proof of Proposition 4

By Lemma 1, it suffices to assume that d “ dÓ throughout the proof.
We only prove necessity since sufficiency follows from Theorem 10. Since

d is quasi-uniform, then we either have d “ pd0, d0, d1q with d0 ě d1 or d “

pd0, d1, d1q with d0 ą d1. Since the statement is true for the first instance (by
putting together Propositions 2 and 3), we fix d “ pd0, d1, d1q with d0 ą d1 and
γ “ d1{d0 in the following. We will show that, for any p “ pa, b, cq P PΩ (which
we can assume fulfills b ě c w.l.o.g.), we have CETO

d ppq Ď CWETO
d ppq. In order

to do so, we distinguish the following cases (the instances where some equality
holds follow easily from these):

(A) γa ą b ą c. In this case, CETO
d ppq is (roughly) given by Figure 13, with

q P CETO
d ppq being achievable by a sequence T dp2, 3qT dp1, 2q if it lies to

the left of the dashed line and by T dp2, 3qT dp1, 3qP dp1, 2q if it lies to the
right.

I p1, 2q

p2, 3q p1, 3qp1, 2q

p2, 3qp1, 2q p2, 3qp1, 3qp1, 2q

Figure 13: Rough representation of CETO
d ppq for d “ pd0, d1, d1q with 0 ă d1 ă

d0 and p “ pa, b, cq with γa ě b ě c. Note that we use the notation in Figure 7.

(B) b ą γa ą c. In this case, CETO
d ppq is (roughly) given by Figure 14, with

q P CETO
d ppq being achievable by a sequence T dp2, 3qT dp1, 3q if it lies to

the right of the dashed line and by T dp2, 3qT dp1, 2q if it lies to the left.
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p1, 2q I

p2, 3qp1, 2q p1, 3q

p2, 3q p2, 3qp1, 3q

Figure 14: Rough representation of CETO
d ppq for d “ pd0, d1, d1q with 0 ă d1 ă

d0 and p “ pa, b, cq with b ě γa ě c. Note that we use the notation in Figure 7.

(C) b ą c ą γa. In this case, CETO
d ppq is (roughly) given by Figure 15, with

q P CETO
d ppq being achievable by a sequence T dp2, 3qT dp1, 3q if it lies to

the right of the dashed line and by T dp2, 3qT dp1, 2qP dp1, 3q if it lies to the
left.

p1, 2qp1, 3q p1, 3q

p2, 3qp1, 2qp1, 3q I

p2, 3qp1, 3q p2, 3q

Figure 15: Rough representation of CETO
d ppq for d “ pd0, d1, d1q with 0 ă d1 ă

d0 and p “ pa, b, cq with b ě c ě γa. Note that we use the notation in Figure 7.

This concludes the proof.

N Proof of Theorem 11

By Lemma 1, it suffices to assume that d “ dÓ throughout the proof. Further-
more, we take d0 :“ 1 and d|Ω|`1 :“ 0.

Necessity is straightforward by Lemma 2. To prove sufficiency, we argue by
contrapositive. Hence, we take |Ω| ě 3 and argue on the number of jumps in d.
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In particular, we consider the following cases:

(A) There exist some 1 ď α ă |Ω| and 2 ď k ď |Ω| ´α such that dα´1 ą dα “

dα`1 “ ¨ ¨ ¨ “ dα`k ą dα`pk`1q. In this scenario, following the proof of
Theorem 9 for |Ω| ě 4, we have that

M :“ M0

à

Izpα,...,α`kq,

with M0 P Mk`1,k`1pRq a doubly stochastic matrix such that pM0qi,j ą 0
if i ‰ j and pM0qi,j “ 0 if i “ j, does not belong to the WETO polytope.
(To show this, aside from Theorem 9, one can consider the number of
ones along the main diagonal to conclude that, whenever we have some
M P M|Ω|,|Ω|pRq acting as the identity on some subset Ω1 Ď Ω and the
entries of d in Ω1 differ from those in ΩzΩ1, then we can restrict ourselves
to the weak elementary thermal operations on ΩzΩ1 to prove this result.
This is also useful for proving the other cases.) However, by Theorem 2,
M does belong to the ETO polytope.

(B) There exist some 1 ď α ď |Ω| ´ 2 such that dα´1 ą dα “ dα`1 ą dα`2 ą

dα`3 or dα´1 ą dα ą dα`1 “ dα`2 ą dα`3. In this scenario, the first
instance follows by Theorems 9 (in the case |Ω| “ 3) and 1. For the
second instance, we take 0 ă ϕ0 ă 1 (sometimes a more restrictive choice
of ϕ0 can make the argument easier) and consider

M :“ p1 ´ ϕ0qP dpα, α`1q
à

Izpα,α`1q`ϕ0P
dpα, α`2q

à

Izpα,α`2q. (40)

It is clear, by definition, that M belongs to the ETO polytope. To conclude
this case, we can profit from (27) and, analogously to (28), from the fact
that, whenever dα`1 “ dα`2 and 0 ď λ ď 1, then

T d
λ pα, α ` 2q “ P dpα ` 1, α ` 2qT d

λ pα, α ` 1qP dpα ` 1, α ` 2q.

This allows us to conclude that M is part of the WETO polytope if and
only if there exist some ℓ,m P t0, 1u and N ě 0 such that

M “
`

T d
λA

pα ` 1, α ` 2q
˘ℓ

˜

N
ź

k“1

T d
λk

pα, α ` 1qT d
βk

pα ` 1, α ` 2q

¸

ˆ
`

T d
λB

pα, α ` 1q
˘m

,

where 0 ď λA, λB , λk, βk ď 1 for 1 ď k ď N . It is then straightforward
to check that the last equation is never satisfied. (For instance, one can
argue by direct calculation using the zeros in M .)

(C) There exist some 1 ď α ď |Ω| ´ 2 such that dα´1 ą dα ą dα`1 ą dα`2 ą

dα`3. In this case, we can also consider M as in (40) and argue similarly
as in pbq for most of the instances. (This is the case since in pbq we usually
argue on the number of zeros and, if certain components of some product
of T d-transforms are non-zero when dα`1 “ dα`2, then they will also be
non-zero whenever we consider the analogous product dα`1 ą dα`2.) For
the rest of the instances, one can directly check that the result holds.
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(D) |Ω| “ 2m for some m ě 2 and d2p´2 ą d2p´1 “ d2p ą d2p`1 for 1 ď p ď m.
This case can be reduced to case pbq since it only differs in the introduction
of copies of a permutation matrix to (29). In particular, we take 1 ď α ă m
and

M :“ M0

à

Izp2α´1,2α,2α`1q,

with M0 P M3,3pRq defined as in (26). Note that M belongs to the ETO
polytope by Theorem 8. To conclude, assume it belongs to the WETO
polytope. In this case, it is easy to see that M must have a decomposition
like (29) with the possible inclusion of permutations P :“ P dp2α`1, 2α`2q

along the sequence. We conclude showing that any such sequence reduces
to (29) and, hence, M is not in the WETO polytope by Theorem 9.
Consider, thus, the first P appearing in the sequence. Since P commutes
with T d

λ p2α ´ 1, 2αq, then it is followed either by some T d
λ p2α, 2α ` 1q

or it is the leftmost matrix in the product. In any case, we can consider
separately the case where the matrices to the right of P acted trivially and
non-trivially on the 2α ` 1 component and, using that M2α`2,2α`2 “ 1,
conclude that either the sequence does not yield M or it is equivalent to
a sequence with a fewer number of P matrices. Following this argument
recursively we reach a sequence like (29) and obtain the desired conclusion.

This concludes the proof.

O Proof of Corollary 3

(a) We can argue by contrapositive, assuming we have a non quasi-uniform
distribution d such that d1 ą d2 ą d3 w.l.o.g. and noting that, if we take
pp, 0q, pq, 0q P PΩ as in Theorem 10, then

pq, 0q P pLppq, 0q :“
“`

P dp2, 3qP dp1, 2qP dp1, 3qp, 0
˘

,
`

P dp1, 2qp, 0
˘‰

with extppLppq, 0qq Ď CWETO
d ppp, 0qq and pq, 0q R CWETO

d ppp, 0qq.

(b) Necessity follows by (b), while sufficiency follows by Proposition 4 since
CWETO
d ppq “ CETO

d ppq and the latter is convex by definition.

(c) By Lemma 1, it suffices to assume that d “ dÓ. Necessity follows from
Lemma 2 since the TO polytope is convex and, in this instance, equal to
the WETO polytope. To prove sufficiency, note that, provided |Ω| ą 2,
there exists some M P M|Ω|,|Ω|pRq that belongs to the ETO polytope and
not to the WETO polytope by Theorem 11. Moreover, by definition,

M “

k0
ÿ

k“1

λk

ℓ0
ź

ℓ“1

P dpik,ℓ, jk,ℓq,

where
řk0

k“1 λk “ 1 and λk ě 0 and 1 ď ik,ℓ ă jk,ℓ ď |Ω| for 1 ď k ď k0
and 1 ď ℓ ď ℓ0. Lastly, since

śℓ0
ℓ“1 P

dpik,ℓ, jk,ℓq belongs to it for 1 ď k ď
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k0, the WETO polytope does not contain a convex combination of points
in it. Hence, it is not convex.

Alternatively, provided d is not quasi-uniform, we can show this using
(a). This is the case since, for any such d, we can use (a) to find some
p P PΩ such that CWETO

d ppq is not convex, which is impossible provided
PETOpdq is convex. (If r, q P CWETO

d ppq and PETOpdq is convex, then
p1 ´λqq `λr “ p1 ´λqM0p`λM1p “ M2p P CWETO

d ppq for all 0 ď λ ď 1,
where M0,M1,M2 P PETOpdq.)
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