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3D imaging of porous materials in polymer electrolyte membrane (PEM)-based devices, coupled with in situ diagnostics and
advanced multi-scale modelling approaches, is pivotal to deciphering the interplay of mass transport phenomena, performance, and
durability. The characterization of porous electrode media in PEM-based cells encompassing gas diffusion layers and catalyst
layers often relies on traditional analytical techniques such as 2D scanning electron microscopy, followed by image processing
such as Otsu thresholding and manual annotation. These methods lack the 3D context needed to capture the complex physical
properties of porous electrode media, while also struggling to accurately and effectively discriminate porous and solid domains. To
achieve an enhanced, automated segmentation of porous structures, we present a 3D deep learning-based approach trained on
calibrated 3D micro-CT, focused ion beam-scanning electron microscopy datasets, and data from physical porosity measurements.
Our approach includes binary segmentation for porous layers and a multiclass segmentation method to distinguish the microporous
layers from the gas diffusion layers. The presented analysis framework integrates functions for pore size distribution, porosity,
permeability, and tortuosity simulation analyses from the resulting binary masks and enables quantitative correlation assessments.
Segmentations achieved can be interactively visualized on-site in a 3D environment.
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article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI:
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Electrochemical energy technologies that utilize polymer elec-
trolyte membranes (PEMs), e.g., polymer electrolyte fuel cells
(PEFCs) and water electrolyzers (PEWEs), offer high current
densities, minimal reactant crossover, and volumetrically compact
designs, making them a promising option for hydrogen generation
and conversion as compared to conventional alkaline systems, which
typically operate at lower current densities and suffer from higher
gas crossover rates.'™ Nonetheless, the high costs associated with
precious metal catalysts and the need for enhanced mass transport
remain significant barriers to broader commercialization. These
issues are especially prevalent in both the catalyst layer (CL) and
the gas diffusion layer (GDL), two main components in PEFC and
PEWE electrodes. For this reason, understanding how their function
and structures are related is critical for describing transport proper-
ties such as thermal and electrical conductivity, as well as improving
cell performance and degradation.*”

The electrode layers in these cells are highly porous and exhibit a
multi-scale characteristic length progression from a few nanometers
within the CL to tens of microns within the GDL substrate, which
supports a hierarchy of functions to minimize voltage losses of these
cells. For instance, GDL porosity plays a critical role in governing
reactant transport towards the CL while maintaining humidity,
directly affecting the mass transport and proton conductivity,
respectively.®® On the other hand, within the CL, the porosity spans
lengths from several to tens of nanometers to maximize the
accessible electrochemical surface area, while maintaining high
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proton conductivity and reactant gas diffusivity.'® To address
challenges in product water management, a microporous layer
(MPL) is often added between CL and GDL on the cathode side
of PEFCs to improve the maximum attainable current density by
shifting the onset of severe mass transport losses to higher current
densities.''™"3 Pore sizes in MPL span the range from hundreds of
nanometers to a few micrometers, being an order of magnitude
smaller than pores in the GDL. However, wide range of feature sizes
represents a challenge when attempting to resolve the three-dimen-
sional (3D) geometries with traditional imaging segmentation
techniques.

Common techniques for resolving the 3D structure of these
porous layers include micro-computed tomography (micro-CT),
synchrotron tomography, and focused ion beam scanning electron
microscopy (FIB-SEM).'*~'® However, translating volumetric data
into quantitative properties requires accurately classifying each
voxel as pore or material, which is an especially difficult task given
the complex nature of pore networks.

Figure 1 displays three popular strategies for segmenting pore
structures from tomographic data. Manual annotation is often used
for simpler examples. In this case, 3D visual clues are employed to
distinguish the different classes. Al can be employed to train a model
based on manual annotations. The disadvantage of this method is the
difficulty in asserting by eye a correct classification of the pores,
resulting in a highly biased and time-consuming result.'”'® On the
other hand, Otsu thresholding is the most popular method for the
segmentation of this type of tomographic volume. Often, a median
filter is applied to the volume to smooth the images and reduce
possible noise, and then the Otsu algorithm is applied to differentiate
between the pores and the materials. The Otsu algorithm is a
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Figure 1. A schematic comparison of available methodologies for pore segmentation is presented on the example of catalyst layers. Standard methods offer
distinct advantages: manual annotation benefits from 3D spatial awareness, Otsu thresholding is a fast and fully automated technique, and thresholding based on
porosity measurements delivers precise segmentation. In contrast, 3D deep learning-based segmentation combines these advantages into a single method.

binarization algorithm that automatically finds the optimal threshold
value by minimizing the intra-class variance between the black and
white pixels. The disadvantage of this method is the lack of control
over the output, which is solely based on the mathematical
separation of the grayscale histogram, rather than corresponding to
the real material structure.'®?® Finally, porosity-calibrated thresh-
olding is also widely used by experimentalists, and it introduces the
employment of a physical characteristic of the sample of interest to
tailor the thresholding toward a plausible output. For this calibration,
the porosity of the sample must be measured externally, and then the
threshold is adjusted to match the measured properties. The main
issue of this technique is the need for an extra step with suitable
equipment to measure the physical porosity, with an extra com-
plexity layer of different methods yielding different results.?'>
Furthermore, all three methods are limited to binary segmentation
(i.e., solid vs pore), preventing the distinction of additional layers
such as the microporous layer (MPL) from the GDL.

Deep learning (DL)-based image analysis has gained increasing
attention in research on PEM-based devices in recent years. Several
studies demonstrated the utilization of DL to automate the char-
acterization, ranging from the automation of particle size distribution
analysis of catalyst nanoparticles from TEM images, to oxygen
bubble dynamics elucidation from optical videos of flow fields, or
direct germeability calculation from 3D tomographs of gas diffusion
layers. 3-26

Algorithms such as DL and computer vision (CV) also emerge as
an effective alternative for automating annotation, segmentation, and
analysis tasks in binary and multiclass settings for accelerating
imaging analysis on energy materials.”’ > As depicted in Fig. 1, the
employment of 3D DL models combines the best characteristics of
each method; it enables the automatic segmentation of volumes, it is
aware of the 3D nature of the structures, and it has the precision
learned from porosity-calibrated datasets. DL is especially efficient
in cases of large volumes of imaging data where the time-consuming
nature of manual analyses represents significant bottlenecks.>*>!
Although DL and CV techniques can automate feature extraction
across various domains, the diversity of research fields and the
distinct characteristics of their imaging data such as differences in
resolution, contrast, noise levels or employed equipment often
necessitate the development of tailored Al models that incorporate
specialized network architectures alongside domain-specific prepro-
cessing and post-processing steps to effectively address each field’s
unique tasks.>>?*

For the specific task of segmenting GDLs, CLs, and MPLs,
multiple studies have explored both conventional and machine
learning-based approaches. Pfrang et al. approached the task con-
ventionally by applying diffusion filtering and grayscale thresh-
olding to separate GDL and MPL and analyze MPL thickness at the
microscale.” Nevertheless, conventional image processing methods
and grayscale-based algorithms struggle when pixel intensities lack a
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Figure 2. Methodological pipeline for the porous media analysis of CLs, GDLs, and MPLs from 3D micro-CT and electron microscopy-based tomographies.

clear bimodal distribution or exhibit gradual intensity gradients. By
employing DL, Mohidivara et al. compared two- and three-dimen-
sional U-Net architectures against manual and semi-automatic
annotation procedures for multiclass segmentation in wet GDL
tomographies.'®

Shum et al. investigated multiclass machine learning-based
segmentation and basic image processing algorithms for water
segmentation in GDLs. Their results highlighted that a limited
dataset size can hinder the full potential of Al-based methods,
emphasizing the need for large, well-annotated training sets.**
However, while supervised machine learning approaches are ad-
vantageous in integrating pixel intensity with structural features,
they often encounter the challenge of annotating complex porous
structures, which can be both time-consuming and prone to user
subjectivity. Moreover, synthetic datasets have been employed to
train deep learning models for separating GDL fibers from binder,
streamlining data acquisition, but potentially compromising realism
by introducing uncertainty when the models are applied to real
images.*

Recent advances in the field of 3D electron- and X-ray
tomography for porous carbon supports in fuel cell electrodes have
yielded fruitful methodologies for the analysis of porous materials in
similar use cases. Yang et al. developed a sparse-section, U-Net-
based pipeline for electron-tomography reconstructions of porous
carbon supports in catalyst layers of PEFCs, achieving sub-10 nm
segmentation accuracy and cutting manual tuning by over 80%.%¢ In
another work, Yang et al. applied a DL morphological-distribution
framework to combine electron- and X-ray-tomography stacks of
metal-alloy catalysts, enabling rapid extraction of multi-scale pore
metrics in under a minute per volume.>’ In the same field, Hong
et al. applied automated segmentation to FIB-SEM/ET stacks of
aged carbon supports, quantitatively map}glng nanoscale pore net-
work degradation during PEMFC cycling.

Building on these advances in learned, multi-scale pore segmen-
tation, we now introduce UTILE-Pore, a 3D deep learning frame-
work that leverages porosity-calibrated masks to deliver rapid,

accurate binary and multiclass segmentation of FIB-SEM and
micro-CT volumes across CL, MPL, and GDL layers. The resulting
pipeline reduces the time required for analyzing 3D volumes of
porous media and performing porosity measurements to mere
seconds, while enabling the segmentation of additional classes.
Moreover, users can easily replace the pre-trained models with their
own custom models, broadening the framework’s applicability.

Experimental

Figure 2 illustrates the workflow developed in this work for
autonomously analyzing porous structures in CLs and GDLs with
and without MPL. The process begins with data acquisition to
generate a robust dataset for training DL models. In total, 33 samples
comprising various CLs and GDL samples from commercially
available PEFC and PEWE components were collected. The dataset
for model training was compiled through the acquisition of volu-
metric data from FIB-SEM of CLs and micro-CT measurements of
GDLs with and without an MPL. Our primary goal is to characterize
the porous architecture of CL and GDL, by distinguishing between
pore and material phases. For the GDL, a further distinction between
fibers and PTFE binder from the collected datasets is not feasible
due to nearly identical X-ray attenuation, and sub-micron PTFE
coatings fall below our voxel size and cannot be reliably resolved.
Furthermore, although the MPL is itself a porous medium, its pore
sizes lie below the ~3 pm voxel resolution limit of micro-CT scans.
Consequently, resolving both GDL and MPL pores simultaneously
with micro-CT is not feasible. To maintain accuracy, we therefore
treat the MPL as a homogeneous solid and instead focus on
macroscale MPL descriptors: crack density, layer thickness, and
intrusion depth into the GDL, using the same imaging data. Due to
the similarities between MPL and CL the same algorithms could be
used on FIB-SEM data for the MPL in future work.

FIB-SEM measurements on CLs were recorded following a
consistent FIB-SEM protocol. For the FIB-SEM procedure, a Zeiss
Crossbeam 350 with Atlas Engine for 3D Tomography was used.
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The single-sided catalyst-coated membrane was glued with the
cathode facing up using conductive carbon pads, while the catalyst
layer was connected with silver glue to the SEM stub. FIB
tomography was carried out at 54° sample tilt (—36° image
correction applied) and at a working distance of 5.1 mm (coin-
cidence point of electron and gallium beam). All FIB operation was
performed at a voltage of 30 kV. Before starting the tomography, the
gas injection system (Platinum and Carbon) was used to deposit a
platinum protective layer with the FIB beam at 700 pA, followed by
milling of tracking marks at 100 pA with the FIB beam. Finally,
these tracking marks were filled with carbon, and an additional
carbon layer was deposited on top to protect these structures. These
preparation steps were followed by milling the coarse trench with a
7 nA FIB beam and milling the fine trench with a 1.5 nA FIB beam.
Secondary electron (E-T) and material contrast (ESB) detectors were
used for grabbing the slice images with a thickness of 10 nm per
slice and 10 nm pixel size, resulting in 10 nm® voxels. The milling
beam was chosen to be 700 pA at 30 kV. Drift compensation, auto
contrast, and auto stigmatism correction were activated during the
run. A total of 1508 slices were taken and interpolated to exactly
10 nm per slice with Zeiss Atlas software.

Meanwhile, micro-CT measurements for both plain and micro-
porous-layer-containing GDLs were acquired employing a ProCon X-
ray CT-MINI (ProCon X-ray GmbH, Sarstedt, Germany) using an X-
ray source voltage and current of 30 keV and 200 pA, respectively, at
a working distance of 38.11 mm, resulting in a voxel resolution of
5 pm. A total of 2000 radiographic projections were acquired over a
360° stage rotation, and later reconstructed using VGSTUDIO MAX
(Volume Graphics GmbH, Heidelberg, Germany).

Each dataset was a reconstructed multipage TIFF file, only
containing relevant slices with an average height and width of
1000 pixels. The depth of the datasets was highly dependent on the
sample, having an average of 40 to 60 slices for the GDL examples
and an average of 700 slices for the CL examples.

To generate the training masks for binary segmentation, first, the
physical porosity was measured for each sample. Mercury injection
porosimetry was employed for the porosity measurement of CL
datasets, while a pycnometer was used for the GDL micro-CT
datasets. For GDLs containing MPL, additional steps were required:
First, a pixel classifier (Labkit-Tool in ImageJ)**** semi-automati-
cally segmented the MPL; second, the MPL voxels were isolated and
removed from the volume, leaving only fibers and pores to be
calibrated against the measured porosity. Finally, the removed MPL
voxels were reintroduced into the volume, resulting in three distinct
categories: MPL, fibers, and pores. The physical porosity used to
calibrate each segmentation threshold has an absolute repeatability
of +2 percentage points for Mercury intrusion porosimetry (CL
samples) and +0.5 percentage points for gas-pycnometry (GDL
samples). Because the threshold shifts by only the instrument’s error
band, only voxels very close to the pore—solids interface can flip
labels, a fraction too small (<2%) to affect overall training or
performance ranking. Consequently, we train all models on the
nominal masks without additional threshold jitter.

The next step is the preprocessing of the volumetric data to
prepare it for the model training. Since the tomographic datasets
varied in size and 3D models are computationally expensive, each
volume was divided into 96 x 96 x 96 voxel cubes. Any cube at the
periphery that could not fulfill the standard size was expanded via
mirroring to fill the missing regions. A total of 3666 cubes were
generated for the binary case and 847 for the ternary case.

To handle the binary and the multiclass tasks, we developed two
distinct models. The first binary model is utilized for segmenting
GDLs and CLs, whereas a multiclass model is used to distinguish
GDL fibers, pores, and MPL. For both cases, we benchmarked a
selection of three well-established 3D architectures from the
literature to identify the most effective one for each case: 3D
UNet with a ResNeXt101 backbone, 3D VNet, and 3D Swin UNet,
with the calibrated masks serving as ground truth.

—3D U-Net with a ResNeXt101 backbone combines the fully
convolutional 3D UNet encoder—decoder structure with the
ResNeXt101 backbone for feature extraction. The standard 3D
UNet employs skip connections to merge low- and high-resolu-
tion features, improving boundary delineation. ResNeXt101
integrates a split-transform-merge strategy, referred to as “car-
dinality,” which provides multiple parallel paths within each
block without increasing network depth or width. Incorporating
ResNeXt101 into the 3D UNet thus enables more efficient
capture of complex spatial patterns.*!"*

—3D VNet architecture retains the UNet encoder—decoder frame-
work with skip connections but replaces standard convolutional
layers with residual blocks. These residual connections aim to
expedite convergence and enhance segmentation accuracy, parti-
cularly for volumetric data where continuity along the depth
dimension is crucial. In addition, this design may require fewer
training samples than non-residual counterparts.*’

—3D Swin UNet combines the UNet encoder—decoder layout with
Swin transformers, which employ window-based self-attention to
effectively capture both local and global dependencies. Unlike
convolution-based networks, which rely on fixed receptive fields,
Swin transformers dynamically adjust receptive fields based on
dataset requirements. This flexibility enables more robust mod-
eling of long-range spatial relationships in 3D volumes.**

During the training phase, the primary objective was to minimize
the loss function, which quantifies the discrepancy between the
predictions and the porosity-calibrated ground truth. The 3666 binary
samples and the 874 ternary samples were split into an 80:20 ratio for
training and validation. Each complete pass through the training
dataset, called an epoch, refines the model’s parameters based on the
computed loss. Each model was trained over 100 epochs with a batch
size of 4, using the Adam optimizer and binary or categorical cross-
entropy as the loss function. Convergence occurs once the loss reaches
a minimum, guided by an appropriately tuned learning rate. The
learning rate was dynamically reduced from 10™* to 10~ once the
loss reached a plateau, but constrained to avoid dropping to negligible
values. After each epoch, the model’s performance was assessed on
the unseen validation set to evaluate its robustness and generalization
ability. To improve the positional robustness of the models, we
augmented the employed data with on-the-fly random flips in the X, y,
and z directions. Furthermore, the memory-demanding 3D model
training with a batch size of 4 was parallelized on 4 Nvidia GPUs
V100 with mixed precision protocols. Additional scripts and the
employed datasets are available at the GitHub and Zenodo repositories
cited in the data availability statement.

After the training phase, we systematically evaluated the perfor-
mance of each model using standard metrics. We compared the
predicted classification of each voxel against the ground truth,
assigning it to one of four categories: true positive (TP) for voxels
correctly identified as positive, false positive (FP) for voxels
incorrectly classified as positive, true negative (TN) for voxels
correctly recognized as negative, and false negative (FN) for voxels
misclassified as negative when they were actually positive. By
combining these counts, we calculated precision (Eq. 1), recall
(Eq. 2), and Fl-score (Eq. 3) to achieve a comprehensive view of
model performance. Precision measures how accurate the positive
predictions are, while recall quantifies the proportion of actual
positives that were successfully identified. The F1-score, defined as
the harmonic mean of precision and recall, balances these two
metrics to provide an overall measure of model accuracy.

Precision = 7TP ; [1]
TP + FP
Recall = _r ; [2]
TP + FN
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Fl = 2 x Precision x —Xecall (3]
Precision + Recall

Once the model was trained, to predict new examples, the input
volumes also need to be cropped into cubes of 96 x 96 x 96 voxels.
the cubes are then predicted by the model, and subsequently the
cubes need to be repatched back to the original shape. To ensure a
smooth transition between the patches, the cubes are cropped with a
certain overlap, and by repatching, we employ a Gaussian weight to
blend the predictions.

After generating the segmentation volumes from the input data, we
developed specialized computer vision and mathematical functions to
perform additional analyses and extract quantitative information.
These analyses are grouped into two categories: (1) functions for
binary segmentations (i.e., GDL and CL), and (2) functions for
multiclass segmentations (i.e., the interplay between MPL and GDL).

For the binary segmentations, we introduced methods to measure
porosity and surface roughness, and we integrated PoreSpy*® for
pore size distribution analysis and tortuosity simulation, which can
be computationally intensive but benefits from GPU acceleration.
Estimating permeability is more complex and typically requires
manual parameter adjustments; thus, our tool employs the
Kozeny—Carman equation (Eq. 4) as an approximation.*® This
equation describes the pressure drop of fluid flow through a packed
bed of solids and is expressed as:

£3

g Cr2(1 - &)%(S,)%’ 1
Where ¢ denotes the porosity, 7 the tortuosity, S, the specific
surface area, and C the Kozeny constant. The Kozeny—Carman
equation allows for a permeability estimate by incorporating
porosity and tortuosity values extracted from our predictive models.
The Kozeny constant C, typically ranging from 4 to 5, encapsulates
geometric factors, including pore packing and particle shape. The
specific surface area is derived by converting the segmented
structure into a mesh and measuring the polygonal surface areas.

Because the Kozeny—Carman equation provides only an approx-
imation, and our goal is to support more advanced simulations, we
included the functionality to export the segmented volumes directly
into PoreSpy and OpenPNM*’ formats for further analyses.

The surface roughness is calculated by cropping the upper layers
of the binary volume, converting them into a mesh, and measuring
depth variations at each vertex to quantify roughness across the
entire structure.

For the MPL-GDL configurations, we created functions to
analyze MPL cracks, map variations in MPL thickness, quantify
the extent of MPL intrusion into the GDL, and calculate the surface
areas of both the MPL and GDL.

Specifically, for the MPL intrusion quantification, we employed
the advantages of having a precise segmentation of the bulk MPL
and the power of CV to measure the variations of thickness through
the layer. For this reason, we first measured the total roughness of
the MPL facing the GDL. Subsequently, we divided the MPL into
smaller regions and calculated the local roughness of each patch.
The standard deviation of the local roughness gave an insight into

the depth variation of the MPL through the layer. Additionally, we
calculated the dimensionless coefficient of variation cg, (Eq. 5) for
comparability purposes, given by
OR
Cr = —=, 5
Re= (51

a

With cg, representing the relative variability of the roughness, og,
being the standard deviation of the surface roughness, and R, the
total roughness.

All derived measurements are automatically visualized in 3D
using the Visualization Toolkit (VTK)*® library, enabling interactive
exploration of the predicted volumes. The software also supports
generating short GIFs of the rotating 3D volumes, enhancing the
ease of communication and presentation of the results.

Results and Discussion

Table I compares performance metrics for all binary models, with
results indicating that the models performed similarly over the other
architectures based on Fl-scores. To further evaluate real-world
applicability, an unseen GDL volume with a physically measured
porosity of 73.7% was segmented by each model. For a better
comparability of the models based on the computed parameters, we
added columns to depict the porosity difference A,, the tortuosity

difference A,, and the specific surface area difference Agga,
(Egs. 6a—6c¢) which are defined as,

AP = |preal - ppred |’ [6a]
Ar = |Treas — Tpredl’ [6b]
Agsp = |SSAreal - SSApredl [6¢]

With A, being the positive deviation of the predicted parameter X,y
and the parameter derived from the physically calibrated volume
Xreal-

Table I compares three 3D convolutional neural network (CNN)
architectures on a binary pore-solid segmentation task. All models
achieve similar F1-scores, but the 3D V-Net shows the closest match
to physical porosity measurements. Although the 3D U-Net records
the highest F1-score, the V-Net yields the smallest absolute porosity
error (A, = 1.7%), roughly half the U-Net’s 3.9%. Here, A, denotes
the absolute difference between measured and predicted porosity,
and values below the pycnometer’s +0.5% repeatability lie within
calibration noise. The V-Net’s superior performance stems from its
volumetric residual blocks and symmetric encoder—decoder struc-
ture, which preserve fine boundary details and sharpen the fiber—void
interface. Its larger effective receptive field and dense skip connec-
tions reduce over-segmentation of narrow throats without compro-
mising tortuosity deviation (0.44%) or specific surface area devia-
tion (0.78 pm™"-1072).

This improved porosity fidelity leads to visibly sharper segmen-
tations in Fig. 3. In the catalyst-layer (CL) scenario, all networks
reconstruct the overall pore network, but the V-Net maintains the
finest solid—void boundaries and preserves thin material regions near

Table I. Comparison of different 3D deep learning architectures trained on a unique binary dataset of CLs and GDLs. The performance of the
models is assessed by employing the standard metrics of precision, recall, and F1-score, and additionally by the porosity difference A, the tortuosity

difference A, and the specific surface area difference Agg,.

Model Precision [%] Recall [%] F1-Score [%] A, [%] A, Agsa [pm™'1077]
3D VNet 91 89 90 1.7 0.44 0.78
3D UNet 89 91 91 3.9 0.03 0.52
3D SwinUNet 83 88 85 2.4 0.53 0.46
Otsu thresholding — — — 5 1.14 0.44
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Figure 3. Comparative visualization of the original images with the corresponding annotated mask for the three types of datasets in consideration in this work:
CLs, GDLs, and GDLs with MPLs. Gray pixels indicate true positives for correctly detected material, blue pixels represent false negatives where material pixels
are missed, and red pixels signify false positives for erroneously detected non-material pixels.

the edges. The U-Net delivers comparable bulk segmentation,
whereas the Swin U-Net’s windowed attention sometimes fractures
the smallest CL pores. In the gas diffusion layer (GDL) case, each
model captures the high-porosity texture so uniformly that visual
assessment alone is insufficient; instead, quantitative metrics drive
the evaluation. Overall, the 3D V-Net provides the best combination
of segmentation accuracy and transport-property fidelity for binary
pore—solid applications.

04-mini-high.—To benchmark the method against standard
laboratory practices, we also compared predicted porosity to the
physical measurement and the porosity derived from Otsu thresh-
olding. The Otsu-based approach yielded a A, of 5%, deviating the
most from the physical value compared to the evaluated models, and

a tortuosity deviation over twice that of the CNNs (A, = 1.14%),
even though the SSA error may appear low. Thus, demonstrating
that the model-based prediction was more accurate in the delineation
of the fibers in a 3D fashion.

Table II presents the multiclass segmentation results on GDLs
containing MPL. The models were trained using 847 cubes of size
96 x 96 x 96 voxels extracted from 10 tomographs of commercially
available GDLs with MPL, employing the same training parameters
as before. The metrics indicate a high similarity in the performance
of the diverse models. To validate the highest performing architec-
ture, we compared the predicted porosity of the GDL (excluding the
MPL) with the physically measured porosity for a sample without
MPL. The 3D SwinUNet achieves the smallest porosity error of A,
of 3.3%, despite having a lower overall F1. We hypothesize that its
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Table II. Comparison of different 3D deep learning architectures
trained on a unique ternary multiclass dataset of CLs, GDLs, and
MPLs. The performance of the models is assessed by employing the
standard metrics of precision, recall, and F1-score, and additionally
by A,, which is the positive difference between the predicted porosity
and the physically measured porosity.

F1-Score
Model Precision [%]  Recall [%] [%] A, [%]
3D VNet 83 92 88 9.8
3D UNet 88 90 89 8.4
3D SwinUNet 85 90 88 33

windowed self-attention mechanism excels at distinguishing the thin
MPL cracks and the subtle grey-level differences at the MPL/GDL
interface, features that can be easily lumped together as “solid” by
pure convolutional models. By capturing long-range correlations
across the volume, SwinUNet more accurately segments these
multiclass boundaries, giving it the edge in porosity fidelity for
three-phase samples. This is confirmed in Fig. 3, where SwinUNet
most faithfully segments the fine MPL cracks and cleanly separates
the two layers; by contrast, VNet tends to smooth narrow fissures at
the interface, and UNet mislabels small MPL regions as GDL
material, slightly blurring the layer boundary.

The implementation of an automatic tomographic volume seg-
mentation approach based on porosity-calibrated volumes combines
the precision of the thresholding approach based on real physical
information from the sample with the advanced 3D pattern recogni-
tion capabilities of 3D deep learning architectures. The model is
trained to analyze the three-dimensional context of the materials and
precisely delineate the contours of the pores based on the physical
properties of the sample. This approach not only removes the need to
calculate the physical porosity of each analyzed volume but also
enhances the segmentation on complex cases where thresholding
may fail.

Furthermore, we developed a unified software that enables
experimentalists to quantify structural properties in all scenarios
using computer vision algorithms. In Fig. 4, we showcase the
implemented functions for binary segmentation, such as an algo-
rithm to count pore and material voxels slice by slice and thereby
estimate the sample’s porosity from the model’s predictions,
enabling the porosity profile plots. We further integrated functions
from the PoreSpy library to characterize pore sizes and generate pore
size distribution plots, offering insights into the pore structure of
each tomograph. These findings improve material-specific under-
standing and aim to help experimentalists correlate the structures
with other present phenomena, such as wettability or water retention.

The CL presents a clear bias in the porosity profile towards the
membrane with a more homogenous porosity towards the bulk of the
structure, where we see a sharp increase in porosity from 50%—65%
within the first 100 slices of the CL, followed by a consistent 65%
porosity thereafter. Again, this porosity inhomogeneity is confirmed
by the pore size distribution plot, which shows one main peak, but
over a wider range of voxel radii with a minor modal bias. The left-
skewed bias indicates the presence of an appreciable number of
smaller pores at 4.84 voxels with a standard deviation of 3.20 voxels.
The main peak is broad, indicating a wide range of pore sizes with a
significant number of smaller pores, particularly concentrated near
the low-porosity membrane side. Similarly, our predicted porosity
analyses show strong resemblance to CLs reported in the literature.
Berejnov et al. leveraged Scanning Transmission X-ray Microscopy
(STXM) on PEFC CLs and demonstrated strong porosity gradients
between the membrane and the surface of the CL, revealing a low
porosity at the membrane interface caused by an abundance of
jonomer.** The bimodal pore size distributions further confirm the
validity of our technique, and have been both exsperimentally
observed and used for stochastic generation of CLs.*>!

In the case of GDLs, we observe in the porosity profile a certain
homogeneity in the porosity through the slices, around 62%—-76%,
while the pore size distribution analysis confirms the regular pore
distribution by showcasing a predominantly single normal bell at
pore sizes of 5-6 voxels with a standard distribution of 2.01 voxels.
Our predicted porosity profiles and pore size distributions align well
with what has been previously reported in the literature. Ince et al.
utilized X-ray tomography and revealed GDL porosity profiles
above 70% and further revealed local porosity valleys, often towards
the centre of the substrate, revealing binder and PTFE
agglomerations.”” Furthermore, our predicted pore scale distribution,
mostly encompassing pore sizes between 25-30 um, are typical of
commercial carbon paper-based GDL.>

In the combined GDL/MPL volume, the slice-by-slice porosity
profile reveals three distinct regimes. In the first ~10 slices (pure
MPL), porosity remains very low (20%—25%), reflecting the dense
crack-limited architecture of the MPL. Between slices 10-20, the
MPL/GDL interface porosity rises sharply from 25% up to 90% as
MPL cracks penetrate into the substrate. Beyond slice 20 (bulk
GDL) the porosity then settles into a plateau around 80%-85%,
matching the values seen in the GDL-only case. The pore size
distribution reveals a broader, bimodal-like pattern with a mean
radius of 8.96 voxels (SD: 3.59 voxels). The right-skewed distribu-
tion reflects the superposition of two characteristic length scales:
larger pores associated with MPL cracks and finer channels from the
underlying GDL fiber matrix. Together, these features reproduce the
multi-scale pore network expected in an MPL-coated GDL, where
fine cracks in the MPL facilitate through-plane transport and the
underlying GDL provides the coarser diffusion pathways. Such a
heterogeneous, bimodal pore architecture has been correlated with
enhanced gas-diffusion performance in MPL-modified GDLs in
prior experimental studies.>*>>

For the multiclass segmentation model that includes the MPL, we
concentrated on characterizing the added layer and its interdepen-
dency within the GDL substrate. Additionally, we isolated the MPL
region from the segmented volume and performed a direct crack
analysis of its surface. We began by extracting the first layer on the
MPL side, then employed computer vision algorithms to identify and
measure the isolated cracks. This process yielded the total crack
area, the distribution of individual crack areas, and a visual
representation of these cracks, as illustrated in Fig. 5. In the
presented example, the distribution is plotted on a logarithmic scale
to showcase the distribution of the crack size in a visually more
comprehensive fashion. From the diagram, we can confirm the visual
assessment of a small number of large, interconnected cracks and a
higher number of smaller cracks through the MPL. The total crack
count can be computed at 483, and the cracks represent 25% of the
total surface of the MPL. Understanding such cracking behavior can
inform strategies for optimizing layer design and improving overall
cell performance. For instance, MPLs with cracks have been shown
to influence liquid water transport under high humidity conditions,
helping to direct excessive water away from the CL.’**” However,
despite the minor mass transport improvements, MPL cracks have
more recently been linked with platinum migration and raise
concerns relating to long-term durability.>®

We also quantified the extent to which the MPL intrudes into the
GDL substrate. First, we measured the average thickness of both
layers to contextualize their dimensional scales. To visualize MPL
thickness variation across the volume, we generated density maps of
the MPL layer (Fig. 5c), along with a 3D rendering, revealing how
the MPL distribution changes spatially. For further understanding of
the local high-intrusion zones, a function to represent the cross-
sectional view of the MPL/GDL interface was included. To go
beyond visualization, we then developed a method to quantify the
degree of MPL intrusion into the GDL by focusing on the surface
roughness of the MPL side in contact with the GDL. Specifically, we
calculated the global roughness of this interface, characterized by the
standard deviation of height measurements, and expressed it as a
coefficient of variation, defined as the ratio of the standard deviation
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Figure 4. Showcase of the property extraction capabilities of the presented tool on CL, GDL, and GDL with MPL segmented volumes. For the segmented
tomographies, the tool allows the users to extract pore size distribution analysis, porosity, permeability, and tortuosity simulations.

to the mean roughness value. This provides a quantitative measure of
how deeply the MPL intrudes into the GDL.

In this example, we observe in the density map two highly
intruded regions toward the middle of the MPL. In the 3D
reconstruction, it is possible to observe both intrusions and a certain
homogeneity in the rest of the MPL with slight increases in the
intrusion towards the top and bottom parts. The maximum MPL
thickness of 30 voxels and the average thickness of 6 voxels indicate
that the intrusions achieved a high intrusion on the red-hued areas.
Since the areas are relatively small in comparison to the rest of the
MPL, we observe a small intrusion coefficient of 10%. Accurate
quantification of MPL intrusion is critical when optimizing for the
next generation of GDL materials. Specifically, the MPL intrusion
dictates the degree of diffusion scale overlap and can be tailored to
result in a more continuous in-plane pore-scale distribution. These
features are both key parameters for developing PEFC and PEWE

sub-component models and achieving desirable in-plane porosity
gradients, respectively.>*®

By applying deep learning to MPL-coated GDLs, we derive
advanced metrics that were previously inaccessible. Beyond the
functions described above, we further calculated the interface area
between the MPL and the GDL. Specifically, we examined the
neighbors of each MPL voxel and counted those that were adjacent
to a GDL voxel. This surface area metric provides an additional
quantitative measure of MPL intrusion into the GDL.

Conclusions

UTILE-Pore is an integrated 3D deep-learning pipeline that
combines porosity-calibrated ground-truth masks with cutting-edge
volumetric convolutional neural networks and transformer models to
automate the segmentation of FIB-SEM and micro-CT tomograms.
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Figure 5. (a) Visual comparison of the original GDL with MPL volume and the obtained multiclass segmentation. (b) Example of crack analysis and
visualization capabilities of the software, showcasing the segmented MPL. (c) Visualizations of the intrusion analysis of the MPL into the GDL substrate. To
support the intrusion analysis, the software presents a 2-dimensional visualization of the intruded MPL as a density map and as a cross-sectional view. It
computes a 3D interactive visualization for further inspection of the regions of interest. The intrusion is quantified based on local roughness analysis and its
deviation from the normal distribution. Additionally, our software computes the maximum and average thickness of the MPL.

It focuses on CL, GDL, and MPL, replacing the time-consuming
manual annotation and ad hoc thresholding by incorporating
physical porosity measurements during model training. This ap-
proach enables both reliable binary (CL/GDL) and multiclass (MPL,
GDL, and pores) segmentation within a single platform.

In seconds, UTILE-Pore generates binary and multiclass seg-
mentations and immediately extracts vital structural and transporta-
tion properties, such as pore-size distributions, porosity, tortuosity,
specific surface area, and permeability estimates via the
Kozeny—Carman equation. For MPL-coated GDLs, it also assesses
interlayer characteristics, such as crack density, crack size distribu-
tions, MPL thickness, and intrusion depth, using connected-compo-
nent and roughness analyses. Interactive 3D visualizations and
quantitative plots enable rapid correlation between microstructure
and performance metrics, while automated export to PoreSpy/
OpenPNM formats facilitates subsequent theoretical modeling.

To achieve a comprehensive multiscale characterization, we
intend to integrate higher-resolution and phase-contrast imaging
modalities (e.g., nano-CT, hierarchical CT, advanced FIB-SEM, and
synchrotron tomography) in the future to allow for direct 3D
segmentation of sub-micron MPL pores and PTFE binder distribu-
tions. We plan to release UTILE-Pore as a modular design publicly,
encouraging the community to integrate extra computer-vision tools,
larger neural network architectures, and enhanced visualization
capabilities, which will promote widespread usage and ongoing
improvements in polymer-electrolyte-membrane devices.®!
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