
Technische Universität München
TUM School of Computation, Information and Technology

Beyond Unique Decoding in the Sum-Rank Metric
for Quantum-Resistant Cryptography

Thomas Jerkovits

Vollständiger Abdruck der von der TUM School of Computation, Information and
Technology der Technischen Universität München zur Erlangung des akademischen
Grades eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz: Prof. Dr.-Ing. Georg Sigl
Prüfende der Dissertation: 1. Prof. Dr.-Ing. Antonia Wachter-Zeh

2. Assoc. Prof. Umberto Martínez-Peñas, Ph.D.

Die Dissertation wurde am 7.11.2024 bei der Technischen Universität München einge-
reicht und durch die TUM School of Computation, Information and Technology am
25.03.2025 angenommen.

To 姝姝

Acknowledgements

Completing this doctoral thesis has been a remarkable journey, filled with challenges,
learning experiences, and moments of growth, both academically and personally. As
I look back at the work that led to this point, I am immensely grateful to those who
have helped me navigate through it all.

This journey took place at the German Aerospace Center (DLR), Institute of Com-
munication and Navigation, in collaboration with the Technical University of Munich
(TUM). I would like to take this opportunity to express my deepest gratitude to all the
people from these institutions and beyond who played a crucial role in this experience.

First and foremost, I would like to sincerely thank my supervisor, Antonia Wachter-
Zeh, and my mentor, Hannes Bartz, for offering me this opportunity and for their
invaluable guidance and fruitful discussions. I am especially grateful to Hannes for
always being available to answer my questions and for allowing me to openly discuss
anything on my mind, whether it was related to academic topics or beyond.

A special thanks goes to Gianluigi Liva and Balázs Matuz for welcoming me to DLR
and offering immense help during my early years. It was through them that I first came
to DLR for my Master’s thesis, and they were the ones who inspired me to embark on
this doctoral path. Their expertise and vast knowledge in coding theory left a lasting
impression on me, motivating me to continually strive for deeper understanding and
to remain curious about new ideas.

I had the great fortune to collaborate with many talented researchers whose in-
sights and expertise were invaluable to me and my work. I am especially grate-
ful to my co-authors and collaborators, including Hannes Bartz, Antonia Wachter-
Zeh, Felicitas Hörmann, Hugo Sauerbier Couvée, Jessica Bariffi, Julian Renner, Sven
Puchinger, Vladimir Sidorenko, Gianluigi Liva, Balázs Matuz, Gerhard Kramer, Johan
Rosenkilde, Pierre Loidreau, Mustafa Cemil Coşkun, Onur Günlü, Alexandre Graell i
Amat, Giacomo Ricciutelli, Tudor Ninacs, Lorenzo Gaudio, and Hedongliang Liu.

My sincere appreciation goes to Umberto Martínez-Peñas for his interest in my work
and for agreeing to be a reviewer of this dissertation.

To my colleagues in the Quantum-Resistant Cryptography (QRC) group at DLR—
Felicitas, Svenja, Conny, Jessica, and Anna. Thank you for the fun team events, from
escape rooms to dinners and bowling nights. Your team spirit and shared enthusiasm
made this experience much more enjoyable and memorable. Special thanks to Svenja
and Conny for proofreading parts of this thesis.

iii

I would also like to acknowledge the seasoned veterans, Francisco Lázaro and Fed-
erico Clazzer from KN-SAN for the insightful discussions along the way, both on and
off topic. Special thanks to Sandro Scalise for making it possible for me to work on
this thesis.

I am also grateful to the fellow researchers and doctoral candidates at TUM for the
many engaging workshops and events that greatly enriched my academic experience.

Lastly, I would like to thank everyone at DLR who brightened my days during
the final months of this work, providing both support and a positive environment.
Whether it was through shared lunches, extended coffee breaks, or simply their regular
presence. They contributed more than they might realize. Special thanks to Davide,
Riccardo, Manuel, Marcel, Alexander S., Alexander F., Benni, Stefan, Roshith, Umut,
Pedro, Purva, my office mates Estefania and Stefano, and everyone else who made the
everyday moments so enjoyable.

Finally, I owe my deepest gratitude to my family: my mother Gudrun, my father
Willi, my sister Susi, my brother-in-law Roger, and especially my wife Shu. Shu’s
constant encouragement, endless patience, and unwavering support throughout my
doctoral studies were pivotal in helping me persevere and reach the finish line. Her
belief in me has been a source of strength during the most challenging moments of
this journey.

iv

Zusammenfassung

Die Fortschritte im Bereich der Quantencomputer bedrohen klassische kryptografi-
sche Systeme und unterstreichen die Notwendigkeit quantenresistenter Alternativen.
Die codierungsbasierte Kryptografie mit ihrer robusten Sicherheitsgrundlage gilt hier-
bei als vielversprechender Ansatz. Insbesondere die Summenrangmetrik, welche so-
wohl die Hamming- als auch die Rangmetrik verallgemeinert, eröffnet ein interessantes
Forschungsfeld.

In dieser Arbeit wird das Potenzial von Codes in der Summenrangmetrik für kryp-
tografische Anwendungen untersucht. Dabei liegt ein besonderer Fokus auf der Wei-
terentwicklung von Dekodieralgorithmen und dem Dekodieren jenseits des eindeutigen
Dekodierbereichs.

Zunächst wird ein Augenmerk auf die linearisierten Reed–Solomon (LRS)-Codes
in der Summenrangmetrik gelegt, welche sowohl die Reed–Solomon-Codes bezüglich
der Hamming-Metrik als auch die Gabidulin-Codes bezüglich der Rangmetrik ver-
allgemeinern. Ein schneller Kötter–Nielsen–Høholdt-Interpolationsalgorithmus über
Schiefpolynomringe für interleaved LRS-Codes wird vorgestellt. Dieser Algorithmus
erreicht die beste bekannte asymptotische Komplexität und kommt dabei ohne Vor-
verarbeitung und spezielle Anforderungen an die Interpolationspunkte aus.

Des Weiteren werden Gabidulin-Codes untersucht, die durch schwach selbstortho-
gonale Basen definiert sind. Dabei werden raumsymmetrische Fehler analysiert, bei
denen die Zeilen- und Spaltenräume der Fehlermatrix übereinstimmen. Es zeigt sich,
dass das Dekodieren solcher Fehler mit hoher Wahrscheinlichkeit auch über den ein-
deutigen Dekodierbereich hinaus möglich ist.

Zusätzlich wird ein generischer Dekodieralgorithmus erforscht, der für die Krypt-
analyse von Verfahren in der Summenrangmetrik nützlich ist. Durch eine Verall-
gemeinerung des Metzner–Kapturowski-Algorithmus von der Rang- und Hamming-
Metrik auf die Summenrangmetrik wird ein Dekodierer mit polynomieller Laufzeit für
hochgradig interleaved Summenrangmetrikcodes vorgestellt. Der vorgeschlagene De-
kodierer ist auf beliebige lineare Komponentencodes anwendbar, einschließlich solcher
ohne bekannte Struktur. Es zeigt sich, dass der Dekodierer bei ausreichend großer
Interleaving-Ordnung stets bis knapp unterhalb der Minimaldistanz des Codes und
mit hoher Wahrscheinlichkeit bis zur Singleton-artigen Schranke dekodieren kann.
Durch diese Dekodiermethode wird jedoch eine Begrenzung der Interleaving-Ordnung
erforderlich, um Sicherheitslücken in codierungsbasierten Kryptosystemen mit hoher
Interleaving-Ordnung zu vermeiden.

v

Zum Schluss wird das Verständnis eines generischen “Support-Guessing”-Dekodier-
verfahrens für nicht-interleaved Summenrangmetrikcodes durch eine Analyse der durch-
schnittlichen Komplexität vertieft. Mithilfe von “Random Coding”-Argumenten wer-
den genauere Schranken für das Dekodieren über den eindeutigen Dekodierbereich
hinaus abgeleitet. Der “Support-Guessing”-Dekodieralgorithmus für Gabidulin-Codes
in der Rangmetrik wird zudem auf LRS-Codes in der Summenrangmetrik verallge-
meinert. Der Algorithmus nutzt dabei einen zugrunde liegenden Dekodierer, der so-
wohl Fehler als auch Auslöschungen dekodieren kann. Diese Anpassung reduziert die
Dekodierkomplexität erheblich im Vergleich zu generischen Dekodierern, welche die
Codestruktur nicht ausnutzen.

Mit diesen Beiträgen wird die Weiterentwicklung von Codes in der Summenrang-
metrik gefördert, um die Praxistauglichkeit und Sicherheit zukünftiger quantenres-
istenter, codierungsbasierter Kryptosysteme zu erhöhen.

vi

Abstract

The advent of quantum computing threatens classical cryptographic systems, high-
lighting the need for quantum-resistant alternatives. Code-based cryptography, with
its strong security foundations, is a promising candidate. In particular, the sum-rank
metric, generalizing both Hamming and rank metric, offers a potential avenue for
exploration.

This work explores the potential of sum-rank metric codes in cryptography by ad-
vancing decoding algorithms with a focus on decoding beyond the unique radius.

We first focus on Linearized Reed–Solomon (LRS) codes in the sum-rank metric,
which generalize Reed–Solomon (Hamming metric) and Gabidulin codes (rank metric).
We present a fast skew Kötter–Nielsen–Høholdt interpolation algorithm for interleaved
LRS codes. This algorithm matches the best-known asymptotic complexity while
eliminating the need for pre-processing and specific interpolation point requirements.

Further, focusing on Gabidulin codes defined by weak self-orthogonal bases, we
investigate space-symmetric errors, where the row and column spaces of the error
matrix coincide. We show that decoding beyond the unique decoding radius for such
errors is possible with high probability.

We also explore generic decoding algorithms useful for cryptanalysis of sum-rank
metric schemes. By generalizing the Metzner–Kapturowski algorithm from rank and
Hamming metric to the sum-rank metric, we introduce a polynomial-time decoder
for high-order interleaved sum-rank metric codes. This decoder applies to any linear
constituent code, including those without a known structure. We show that when
the interleaving order is sufficiently large, our decoder can always decode up to just
below the minimum distance of the code and up to the Singleton-like bound with
high probability. Due to this decoder, it is necessary to limit the interleaving order to
prevent vulnerabilities in code-based cryptosystems with high interleaving orders.

Finally, we improve the understanding of generic support-guessing decoding for non-
interleaved sum-rank metric codes by considering an average-case complexity analysis.
Using random coding arguments, we derive tighter bounds for beyond unique decoding.
Furthermore, we adapt the support-guessing decoding algorithm for Gabidulin codes,
utilizing an underlying error-and-erasure decoder, to LRS codes. This significantly
reduces the decoding complexity compared to generic decoders that do not utilize the
code structure.

These contributions advance sum-rank metric codes, aiming to enhance the practi-
cality and security of future quantum-resistant code-based cryptosystems.

vii

Contents

1 Introduction 1
1.1 The Need for Post-Quantum Cryptography 1
1.2 Code-Based Cryptosystems . 5
1.3 Motivation . 7
1.4 Contributions and Outline . 10

2 Preliminaries 13
2.1 Notation . 13

2.1.1 Sets, Vectors and Matrices . 13
2.1.2 Finite Fields and Bases . 15

2.2 Row and Column Spaces . 16
2.3 Probabilities of Subspace Relationships 17
2.4 Linear Block Codes over Finite Fields 18

2.4.1 Generator Matrix and Parity Check Matrix 19
2.4.2 Distance Properties of Linear Block Codes 19
2.4.3 Interleaved Codes . 23

2.5 Polynomials over Finite Fields . 25
2.5.1 Conjugacy Class . 26
2.5.2 Skew Polynomials . 26
2.5.3 Generalized Operator Evaluation 28
2.5.4 Generalized Moore Matrix . 29

2.6 Codes in the Sum-Rank Metric . 31
2.6.1 The Sum-Rank Metric and its Properties 32
2.6.2 Interleaved Sum-Rank-Metric Codes 35
2.6.3 Channel Models . 36
2.6.4 Row and Column Support in the Sum-Rank Metric 37
2.6.5 Linearized Reed–Solomon Codes 38
2.6.6 Interleaved Linearized–Reed Solomon Codes 39

2.7 Remark on the Notation of Complexity 40

3 Efficient Decoding of Interleaved Linearized Reed–Solomon Codes 43
3.1 Known Decoding Approaches . 44

3.1.1 Syndrome-Based Decoding . 44

ix

Contents

3.1.2 The Loidreau–Overbeck Decoder 45
3.1.3 Interpolation-Based Decoding of Interleaved LRS Codes 47

3.2 Weak Popov and Gröbner Bases . 49
3.3 Skew Kötter–Nielsen–Høhold Interpolation over Skew Polynomial Rings 52
3.4 Fast Skew Kötter–Nielsen–Høhold Interpolation 56

3.4.1 Divide-and-Conquer Skew Kötter Interpolation 56
3.4.2 Precomputing Minimal-Polynomial Vectors 60
3.4.3 Application to Interleaved Linearized Reed–Solomon Codes . . . 61

3.5 Summary and Discussion . 62

4 Decoding of Space-Symmetric Rank Errors 65
4.1 Gabidulin Codes Generated by Weak Self-Orthogonal Bases 66
4.2 Space-Symmetric Channel Model . 68
4.3 Syndrome-Based Decoding Approach 68
4.4 Probability of Decoding Failure . 71
4.5 Numerical Results . 73
4.6 Number of Space-Symmetric Matrices 74
4.7 Application to Code-Based Cryptography 75
4.8 Summary and Discussion . 77

5 Decoding of High-Order Interleaved Sum-Rank-Metric Codes 79
5.1 Problem Description . 81
5.2 Recovering the Error Support . 83
5.3 A Metzner–Kapturowski-like Decoding Algorithm for Sum-Rank-Metric

Codes . 87
5.4 Probabilistic Decoding for Uniform Random Errors 89

5.4.1 Main Theorem . 95
5.4.2 Numerical Results . 96

5.5 Decoding Radius . 98
5.5.1 Numerical Results . 101

5.6 Examples . 105
5.7 Special Cases of the Algorithm for Hamming and Rank Metric 109
5.8 Connection to the Loidreau–Overbeck Decoder 114
5.9 Summary and Discussion . 114

6 Support-Guessing Decoding Algorithms in the Sum-Rank Metric 117
6.1 Overview of Decoding Problems . 120

6.1.1 Sum-Rank Syndrome Decoding Problem 121
6.1.2 Decoding Beyond the Unique Radius 121
6.1.3 Unique Decoding Problem . 123
6.1.4 Channel Model . 123

6.2 Ordered Rank Profiles . 124

x

Contents

6.3 Generic Decoding in the Sum-Rank Metric 125
6.3.1 Improved Simple Bound on the Worst-Case Success Probability 127
6.3.2 Success Probability Analysis for the Average Case 131
6.3.3 Optimizing the Support-Drawing Distribution via Linear Pro-

gramming . 135
6.3.4 Efficient Optimization of the Support-Drawing Distribution . . . 136
6.3.5 Numerical Results . 141

6.4 Generic Decoding for Large Error Weights 145
6.5 Randomized Decoding of Linearized Reed–Solomon Codes 149

6.5.1 Erasures in the Sum-Rank Metric 150
6.5.2 Randomized Decoding Algorithm 151
6.5.3 Worst-Case Complexity . 154
6.5.4 Average Complexity . 159
6.5.5 Optimizing the Support-Drawing Distribution 160
6.5.6 Numerical Results . 161
6.5.7 Weak Keys in the Faure–Loidreau Cryptosystem 163

6.6 Summary and Discussion . 164

7 Concluding Remarks 165

A Proofs 167

B Appendix of Chapter 6 175

C Notations, Variables, and Abbreviations 181

Related Publications by the Author 189

Bibliography 190

xi

1
Introduction

1.1 The Need for Post-Quantum Cryptography
Classical cryptography is broadly divided into two main types: symmetric-key cryp-
tography and public-key cryptography, as illustrated in Figure 1.1.

Symmetric-key cryptography, also known as secret-key cryptography, relies on a single
key for both encryption and decryption processes. This method is favored for tasks
such as database encryption, file encryption, and securing communications within
closed networks due to its efficiency and speed in handling large volumes of data.
Common examples of symmetric-key algorithms are the Advanced Encryption Stan-
dard (AES) and the Data Encryption Standard (DES). However, one of its key chal-
lenges is the need for secure key exchange between the communicating parties, which
must occur before any encrypted communication can take place.

To address this key exchange challenge, public-key cryptography was developed. It
uses a pair of keys: a public key for encryption and a private key for decryption.
This approach is crucial for securely exchanging keys over public channels where a
private or secure key exchange is not feasible. It plays a vital role in internet appli-
cations, enabling secure connections through protocols such as TLS used in HTTPS,
and in ensuring the authenticity of messages or documents through digital signatures.
Public-key cryptography is also employed for email encryption, such as in PGP. No-
table practical examples include Rivest–Shamir–Adleman (RSA), Diffie–Hellman Key
Exchange, and Elliptic Curve Cryptography (ECC).

In many real-world applications, public-key and symmetric-key cryptography are
combined in what is known as a hybrid cryptosystem. Public-key cryptography is cru-
cial for securely exchanging symmetric keys through processes like key-encapsulation
mechanism (KEM), after which the symmetric key is used for efficient encryption and
decryption of bulk data. This approach leverages the strengths of both cryptographic
methods: the security of public-key cryptography for key exchange and the speed of
symmetric-key cryptography for data encryption. Additionally, public-key cryptogra-

1

1 Introduction

phy is crucial for authentication, where mechanisms like digital signatures ensure the
integrity and authenticity of communications. Such systems often rely on a public-key
infrastructure (PKI), with a certificate authority (CA) issuing digital certificates to
bind public keys to verified identities, preventing so-called man-in-the-middle attacks.

The effectiveness of any cryptographic system hinges on its ability to resist attacks,
which is inherently tied to the computational difficulty of breaking it. This leads to the
concept of the security level (SL) of a cryptographic system. The SL of a cryptographic
system is defined as the base-2 logarithm of the computational effort required to break
it using the most efficient known attack [MW18; Fed24]. This computational effort is
also known as the work factor (WF). For example, if the best-known attack requires
a WF of 2128, the system is said to offer 128-bit security. Cryptographic systems are
designed to ensure that breaking them is computationally infeasible, relying on the
difficulty of solving certain mathematical problems and on the assumption that more
efficient attacks do not exist.

Symmetric-Key Cryptography

Plaintext
Document

Encrypted
Document

Plaintext
Document

Secret key

Encryption Decryption

Public-Key Cryptography

Plaintext
Document

Encrypted
Document

Plaintext
Document

Public key Secret key

Encryption Decryption

Figure 1.1: Illustration and comparison of symmetric-key cryptography and public-key
cryptography.

2

1.1 The Need for Post-Quantum Cryptography

However, advancements in computing technology, particularly the development of
quantum computers, pose significant threats to the assumed SLs of current crypto-
graphic systems. Quantum algorithms have the potential to drastically reduce the
computational effort required to break certain cryptographic schemes, especially those
used in public-key cryptography.

For example, Shor’s algorithm can factorize large integers and compute discrete
logarithms in polynomial time, effectively breaking the security of RSA, ECC, and
other public-key schemes [Sho97; PZ03]. The existence of such a polynomial-time
algorithm means that these cryptographic schemes are no longer considered secure in
the presence of quantum computers. In cryptography, a problem that can be solved
in polynomial time is considered tractable, making it unsuitable as a foundation for
secure cryptographic schemes. Since the effort required to break these systems grows
only polynomially with the key size, increasing the key size does not provide adequate
security against quantum attacks.

Although current quantum computers are not yet powerful enough to factorize
the large integers used in modern cryptographic applications, the potential for fu-
ture advancements demonstrates the severity of this threat. For instance, IBM has
successfully factorized the number 21 using a so-called “compiled” version of Shor’s
algorithm [ST21]. This approach leverages precomputed classical information and
algorithmic simplifications to reduce the complexity of the quantum circuit, tailor-
ing it specifically for factoring 21 and circumventing the full generality of Shor’s
algorithm. In 2012, a room-temperature adiabatic quantum computer was used to
factor 143 [XZL+12], demonstrating that quantum annealing techniques like those
implemented by D-Wave systems can also contribute to this progress. Additionally,
Google’s quantum supremacy experiment [AAB+19] demonstrated the ability of quan-
tum computers to solve specific problems significantly faster than classical comput-
ers. Moreover, hybrid quantum-classical algorithms have already managed to factorize
48-bit numbers, indicating considerable progress toward practical quantum factoriza-
tion [YTW+22]. While these results may not match Shor’s algorithm in terms of
scalability, they highlight the variety of quantum techniques being actively explored.

The security of symmetric-key cryptography is also at risk from quantum algorithms.
Grover’s algorithm [Gro96] offers a quadratic speedup for unstructured search prob-
lems, reducing the effective SL of symmetric-key systems such as AES and ChaCha20.
Consequently, the key sizes of symmetric algorithms must be doubled to maintain the
same level of security against quantum attacks. However, while the quadratic speedup
of Grover’s algorithm is theoretically significant, its practical impact is more limited.
The overhead required for quantum error correction often outweighs the advantage
offered by the speedup, making Grover’s algorithm less practical on current or near-
future quantum hardware [BMN+21; HHT23]. Additionally, classical systems can be
highly parallelized, diminishing the relative benefit of Grover’s quadratic speedup for
realistic problem sizes [HHT23].

3

1 Introduction

Nevertheless, the quadratic speedup provided by Grover’s algorithm still poses a
significant theoretical threat and must be accounted for when designing quantum-
resistant cryptographic schemes. As a consequence, Grover’s algorithm also impacts
public-key cryptosystems and must be considered to derive quantum-secure SLs.

While it may take considerable time to develop quantum computers powerful enough
to break modern cryptographic schemes, it is crucial to seek alternative solutions well
in advance. This proactive approach is necessary due to the “store-now, decrypt-later”
paradigm, where encrypted data can be stored today and decrypted once quantum
computers become available. Moreover, the transition from research laboratories to
widespread use of quantum computers in the near future could pose a significant threat
to existing cryptographic systems, necessitating a paradigm shift in cryptographic
design.

Recognizing the urgency of emerging quantum threats, the NIST initiated the post-
quantum cryptography standardization process in 2016 [Moo16]. This effort aims
to develop a diverse set of quantum-secure cryptographic schemes, including lattice-
based, isogeny-based, multivariate-based, hash-based, and code-based cryptography.
After a rigorous six-year evaluation, NIST [Nat22; Nat24a] selected four candidates
for standardization, one KEM and three Digital Signature (DS) schemes, as shown in
bold within Table 1.1.

Table 1.1: Quantum-Resistant Cryptographic Schemes Selected by NIST.
Algorithm Type Based on Status / Standardized as

CRYSTALS-Kyber KEM Lattices ML-KEM [Nat24c]
CRYSTALS-Dilithium DS Lattices ML-DSA [Nat24b]

SPHINCS+ DS Hashes SLH-DSA [Nat24d]
FALCON DS Lattices Pending Standardization

BIKE KEM Codes 4th Round
Classic McEliece KEM Codes 4th Round

HQC KEM Codes 4th Round
SIKE KEM Isogeny Withdrawn

While four algorithms have been selected for standardization, NIST continues its
evaluation into a fourth round. As indicated in Table 1.1, BIKE, Classic McEliece, and
HQC are code-based cryptosystems under consideration in this round. The isogeny-
based candidate SIKE was withdrawn from the process after vulnerabilities were dis-
covered [Nat22].

The extensive evaluation period reflects the importance of ensuring that these new

4

1.2 Code-Based Cryptosystems

cryptographic algorithms are secure against both classical and quantum attacks. Ad-
ditionally, these algorithms require time to gain the “trust” of the research community,
emphasizing the need to proactively develop and adopt quantum-secure solutions be-
fore quantum computers become a viable threat.

1.2 Code-Based Cryptosystems
The core concept of code-based cryptography is to leverage error-correcting codes to
obscure a message’s contents during “transmission”. Traditionally, error-correcting
codes serve to detect and correct bit errors that occur when messages are sent over
unreliable channels. By tailoring the code to meet the channel’s specific requirements,
it’s possible to set the number of bit errors the code can reliably correct. This process
is illustrated in Figure 1.2.

In this example, the original message m is first transformed (encoded) into a code-
word c corresponding to a particular code C. Encoding adds redundancy, making the
codeword longer than the message itself. The codeword c is then transmitted over the
channel, where certain bits may be altered or “flipped” due to channel noise, resulting
in a received, noisy version y of c.

The decoder’s job is to interpret this noisy version y, mapping it back to the original
message m. Generally, the number of errors introduced by the channel is within the
range the code can correct; otherwise, the decoder may fail. This capability to correct
errors is a crucial feature that code-based cryptographic schemes exploit.

m = 0 1 1 0

c = 1 0 1 1 0 0 1 y = 1 0 0 1 1 0 1

m̂ = 0 1 1 0

Encode
Transmit

Decode

Error Error

Figure 1.2: Illustration of error correction over an unreliable communication channel.
The error-correcting code allows the receiver to identify and correct a spe-
cific number of bit errors introduced during transmission.

The McEliece cryptosystem, introduced by McEliece in 1978 [McE78], is one of the
earliest public-key cryptographic schemes and remains unbroken to this day. It has
gained substantial trust in its resilience within the cryptographic community.

In the original McEliece cryptosystem, binary Goppa codes are utilized for their
efficient decoding properties, capable of correcting errors up to a certain weight (Ham-
ming weight). The encryption process works as follows. The plaintext message m is
encoded using a public generator matrix G′, which is a disguised version of the original

5

1 Introduction

generator matrix G of the code C. An error vector e, whose Hamming weight is within
the code’s error-correcting capability, is added to the encoded message to produce the
ciphertext y

y = m ·G′ + e.

This ensures that the legitimate receiver can recover the original message uniquely.
Key Generation: The key generation process involves creating the public and

secret keys as follows. The legitimate user selects a generator matrix G of the code C,
which allows efficient decoding. They also choose a random non-singular scrambling
matrix S and a random permutation matrix P . The public key is then computed as

G′ = S ·G · P .

The secret key consists of the matrices S and P , along with the knowledge of the
code C and its efficient decoding algorithm corresponding to G.

Decryption: The decryption process relies on the secret key to reverse the trans-
formations applied during encryption:

1. Invert the permutation: Multiply the received ciphertext y by P −1

y′ = y · P −1 = m · S ·G + e′,

where e′ = e · P −1. Since P −1 is a permutation matrix, the Hamming weight
of e′ remains unchanged, ensuring it is still within the code’s error-correcting
capability.

2. Decode the codeword: Apply the efficient decoding algorithm of C to y′ to
correct e′ and recover m · S.

3. Invert the scrambling: Multiply by S−1 to obtain the original message

m̂ = m = (m · S) · S−1.

An adversary, lacking knowledge of S and P , cannot perform these steps efficiently.
They are confronted with the problem of decoding a random linear code within its
designed error-correcting capability, which is believed to be computationally hard.
While Berlekamp et al. [BMV78] showed that the general decoding problem is NP-
complete, it remains an open question whether bounded-distance decoding up to the
unique decoding radius is NP-complete for random linear codes. However, no efficient
algorithms are known for this problem, and it is widely assumed to be intractable for
sufficiently large code parameters.

The public key G′ = S ·G ·P conceals the structure of the original code, making it
appear as a random code to an adversary. This obfuscation prevents efficient decoding

6

1.3 Motivation

without the secret key, as the adversary cannot exploit any specific code structure to
facilitate decoding.

Variations of the McEliece cryptosystem exist, such as the Niederreiter variant,
which uses a parity-check matrix for encryption. In this discussion, we focus on the
original representation using the generator matrix.

Figure 1.3 illustrates the encryption and decryption process, including key gen-
eration, where the public key is derived by scrambling and permuting the original
generator matrix.

Bob Encrypts m
y = m ·G′ + e

Public
Channel

Decrypts y
to get m Alice

Key Generation
G′ = S ·G · P

m y y m

Figure 1.3: Illustration of the McEliece cryptosystem with key generation.

1.3 Motivation

Although the McEliece cryptosystem has many merits, it also suffers from certain
drawbacks. One of the most significant challenges is the large key size, particularly
the public key. The size of the public key is determined by the generator matrix,
which, after the scrambling process, loses its structured form. As a result, the public
key must be stored as a large unstructured matrix, making it difficult to represent
efficiently.

Numerous attempts have been made to decrease the key size of the McEliece cryp-
tosystem by modifying specific aspects. The original proposal by McEliece used Goppa
codes [McE78]. Using error-correcting codes with better error-correcting capabilities
than Goppa codes allows for smaller code parameters, resulting in smaller generator
matrices and, consequently, reduced public-key sizes. However, such codes often in-
troduce more structure, making them vulnerable to algebraic attacks. For instance, in
1986, Niederreiter suggested the use of generalized Reed–Solomon (GRS) codes [Nie86],
but this scheme was later broken by Sidelnikov and Shestakov [SS92].

Further modifications to McEliece schemes based on algebraic codes, along with
effective attack strategies, are detailed in [BL05; Wie10; Sid94; MS07; BCGO09;
FOP+16; JM96; CMP15; Wan16; CLT19].

7

1 Introduction

Sum-Rank Metric
An alternative approach to reduce the key size is to use codes with distance properties
defined over metrics other than the Hamming metric. One of the first such schemes
using alternative metrics, in particular the rank metric, was proposed by Gabidulin,
Paramonov, and Trejakov [GPT91b], employing Gabidulin codes.

The rank metric is particularly attractive for cryptographic applications because, for
the same SL, codes in the rank metric can utilize smaller code parameters than those in
the Hamming metric, potentially resulting in smaller key sizes [Loi16]. This advantage
arises from the increased complexity of generic decoding in the rank metric, where the
best-known attacks, such as rank syndrome decoding, generally require significantly
more computational effort than their Hamming-metric counterparts [GRS16]. As high-
lighted in [Loi16], generic decoding in the rank metric is exponentially more difficult
than in the Hamming metric for the same set of parameters. This is due to the fact
that errors are measured by the rank of a matrix, introducing dependencies across
matrix entries and resulting in a more complex algebraic structure. This structural
complexity, combined with the fact that attacks on rank-metric codes often involve
operations over matrices rather than vectors, leads to higher decoding complexity. In
particular, algorithms that rely on techniques such as information-set decoding (ISD)
for Hamming-metric codes [Pra62; Ste89] do not directly apply to rank-metric codes
without substantial increases in computational cost, further contributing to the secu-
rity benefits of rank-metric cryptosystems.

However, systems using the rank metric, such as the Gabidulin-based cryptosys-
tems, have been subject to several structural attacks [Gib95; Gib96; Ove05; Ove06;
Ove08; HMR16; OKN18; HMR18], leading to multiple rounds of repairs and improve-
ments [GO01; GOHA03; Loi10; RGH11; Gab08; GRH09; RGH10].

To address the trade-off between key size and security, the sum-rank metric presents
a promising alternative. In the sum-rank metric, vectors are divided into several blocks.
The sum-rank weight of a vector is computed by calculating the rank weight of each
block separately and then summing these ranks. By adjusting the number of blocks,
the sum-rank weight allows a smooth transition between the rank weight (if the vector
is treated as one single block) and the Hamming weight (if each block has only a
single column). This relationship between the sum-rank, rank, and Hamming metric
is depicted in Figure 1.4, where ℓ is the number of blocks and n the code length.

By utilizing the sum-rank metric, it is possible to construct codes that retain strong
error-correcting properties while offering the potential for smaller key sizes. Moreover,
this metric may help avoid some of the structural vulnerabilities that have affected pre-
vious rank-metric-based systems, providing a promising avenue for further exploration
in code-based cryptography [HBH23].

The sum-rank metric offers a potential solution to the trade-off between key size
and security. Linearized Reed–Solomon (LRS) codes [Mar18], which are the sum-rank-
metric analogue of Gabidulin codes in the rank metric and Reed–Solomon (RS) codes in

8

1.3 Motivation

the Hamming metric, provide a promising class of codes within this framework. While
cryptosystems based on the rank metric, such as Gabidulin codes, have been vulnerable
to structural attacks like those proposed by Overbeck [Ove05; Ove06; Ove08], adapting
these attacks to sum-rank-metric codes has proven more difficult. In [HBH23], it was
demonstrated that generalizing Overbeck’s attacks to the sum-rank metric for LRS
codes requires prior knowledge of specific code parameters, suggesting that sum-rank-
metric codes may provide more resilience against such vulnerabilities. Additionally,
the sum-rank metric retains a higher generic decoding complexity compared to the
Hamming metric, particularly for ℓ < n, as analyzed in Chapter 6.

It is hoped that cryptosystems based on sum-rank-metric codes, such as LRS codes,
will strike a favorable balance between security and efficiency. By positioning them-
selves between the Hamming and rank metrics, these codes may leverage the higher
generic decoding complexity associated with the rank metric, potentially allowing for
smaller key sizes than Hamming-metric systems, while remaining less susceptible to
structural vulnerabilities. Though this balance appears promising, further analysis is
necessary to fully assess the security and practical benefits of sum-rank-metric codes.

Sum-rank metric: 1 ≤ ℓ ≤ n

Rank metric: ℓ = 1 Hamming metric: ℓ = n

Figure 1.4: Illustration of the relation between the rank metric, Hamming metric, and
sum-rank metric.

Interleaved Codes
The process of interleaving combines multiple codewords from the same underlying
code, the so-called constituent code, to form a larger structure, allowing for improved
error correction. Technical details on how interleaved codes are defined are provided
in Section 2.4.3.

This technique has been proposed as an effective approach to mitigate the key
size issue in McEliece cryptosystem variants based on both Hamming and rank met-
rics [EWZ18; HLPW19; RPW19]. Interleaving allows for the reuse of the constituent
code’s structure, which determines the public key size, while enabling the decoding
of higher-weight errors compared to a single instance of the code. This increases the
complexity of attacks, resulting in smaller public keys for the same SL.

The interleaving order is a critical parameter in this context, as it influences both
the decoding process and the overall performance of the cryptosystem. While higher
interleaving orders generally increase the complexity of attacks and thus enhance se-
curity, they can also introduce additional structure that attackers might exploit (see,
e.g., Chapter 5).

9

1 Introduction

Various decoding strategies have been developed for interleaved codes across differ-
ent metrics. For example, list and probabilistic unique decoders exist for interleaved
Reed–Solomon (IRS) codes in the Hamming metric [KL97], interleaved Gabidulin
codes in the rank metric [Loi06], and interleaved linearized Reed–Solomon (ILRS)
codes in the sum-rank metric [BP22]. These decoders are specifically tailored to each
code family, utilizing the structure inherent to the interleaved codes.

Interleaved codes and their associated decoders thus present a promising direction
for reducing key sizes in McEliece-type cryptosystems while maintaining the SL. By
carefully selecting the interleaving order and the corresponding decoding strategy, it
might be possible to optimize the balance between performance and resilience against
attacks.

1.4 Contributions and Outline
This thesis makes several contributions to the field of decoding algorithms for codes in
the sum-rank metric, with a particular focus on advancing the efficiency of decoding
methods and analyzing their complexities. The key contributions are outlined below,
with corresponding chapters that elaborate on each topic.

To establish the necessary mathematical background, Chapter 2 introduces key con-
cepts such as linear block codes, polynomials, and the sum-rank metric. It also covers
LRS codes, interleaved codes, and includes a remark on the complexity notation used
in the thesis. A summary of notation and abbreviations is provided in Appendix C.

Chapter 3 revisits established decoding concepts for ILRS codes. We present a fast
variant of the skew Kötter–Nielsen–Høholdt interpolation algorithm, which matches
the best-known asymptotic complexity for interpolation-based decoding. Notably, our
algorithm eliminates the need for pre-processing of the interpolation points as well as
any specific requirements on them. The contribution of this chapter builds on work
from [BJR24; BJPR19; BJPR21].

Chapter 4 investigates the decoding of space-symmetric rank-metric errors using
Gabidulin codes. By restricting errors to those whose row and column spaces coin-
cide, we demonstrate that Gabidulin codes can successfully decode such errors with
rank up to 2(n−k)

3 with high probability, where n is the code length and k is the code
dimension. This restriction to space-symmetric errors allows for the decoding of errors
with larger weights, which in turn enables the use of smaller code parameters and, con-
sequently, smaller public-key sizes. While we do not propose a specific cryptosystem,
this approach has the potential to enhance the practicality of rank-metric cryptosys-
tems by reducing key sizes. This chapter is based on our prior work in [JSW21].

In Chapter 5, we introduce a novel approach for decoding high-order interleaved
sum-rank metric codes by extending the Metzner–Kapturowski algorithm to the sum-
rank metric. The proposed decoder is able to correct errors with a sum-rank weight
up to dmin − 2, where dmin is the minimum distance of the code. Moreover, with high

10

1.4 Contributions and Outline

probability, it can decode errors with weight up to n − k. This decoder operates in
polynomial time for any linear constituent code, including unstructured ones. An im-
portant takeaway from this chapter is the need for careful selection of the interleaving
order when designing cryptosystems based on interleaved codes. If the interleaving
order is too large, an attacker can exploit the decoding approach described here to
decode without needing knowledge of the code structure, posing a security risk. This
chapter builds on our previous work in [JHB23] and [JHB24].

In Chapter 6, we advance the analysis of decoding problems in the sum-rank metric
by transitioning from worst-case to average-case complexity. We provide a detailed
analysis of support-guessing algorithms, including the adaptation of a randomized de-
coding algorithm originally developed for Gabidulin codes. This chapter also includes
a new heuristic approach for optimizing the support-drawing distribution to minimize
decoding complexity. These generic decoding algorithms are essential for analyzing
the security of future cryptosystems based on sum-rank metric codes. By better un-
derstanding the decoding complexity, one can derive cryptographic parameters that
ensure both security and efficiency. The chapter draws from works including [JB19;
RJB+20; JBW23; JBW24; CJB24].

Complementary Research Contributions

In addition to the contributions directly related to the thesis, further research was
conducted in other areas during this period. For instance, in [JLG18], we introduced
energy shaping techniques to enhance the iterative decoding threshold of tailbiting
spatially coupled low-density parity-check (LDPC) code ensembles over the additive
white Gaussian noise (AWGN) channel. This approach optimizes the transmission
energy to improve decoding performance without sacrificing the code rate.

Moreover, in [JGSK20], we developed a nested convolutional code construction for
key agreement using biometric or physical identifiers. This construction achieves points
on the key-leakage-storage region for long block lengths and offers a flexible alternative
to nested polar codes, balancing performance and complexity.

In [RJB19], which the author of this dissertation co-authored, we proposed and ana-
lyzed an efficient decoding algorithm for horizontally interleaved low-rank parity-check
(LRPC) codes. We derived upper bounds on both the decoding failure rate and the
computational complexity of the algorithm. The results demonstrate that interleaving
reduces the decoding failure rate exponentially with respect to the interleaving order,
while the computational complexity increases only linearly.

Although these publications are not directly included in the thesis, they reflect
complementary areas of study carried out during the course of this work.

11

2
Preliminaries

In this chapter, we establish the mathematical background and introduce the notation
and concepts used throughout this thesis. The chapter provides essential foundations
in several key areas necessary for understanding the decoding algorithms presented
later. A summary of all notations and abbreviations is provided in Appendix C.

We begin with the notation and mathematical conventions in Section 2.1, covering
sets, vectors, matrices, finite fields, and bases. These concepts lay a foundation for
various linear algebraic operations and representations. Section 2.4 introduces linear
block codes over finite fields, discussing their properties and the associated encod-
ing and decoding processes. In Section 2.5, we review the properties of polynomials
over finite fields, which are important for constructing and analyzing different types of
codes and their decoding methods. Section 2.6 examines codes in the sum-rank metric,
which offer flexibility and potential for efficient decoding. This section includes discus-
sions on the sum-rank metric, LRS codes, interleaved codes, and their relationships to
other metrics. Finally, Section 2.7 provides a remark on the notation of complexity,
explaining the conventions used to describe the computational complexity of various
decoding algorithms.

2.1 Notation
We begin with the fundamental concepts and notation related to sets, vectors, and ma-
trices in Section 2.1.1, which are key for many operations throughout this thesis. Next,
we discuss finite fields and bases in Section 2.1.2, which are crucial for understanding
the algebraic structures involved in the decoding strategies analyzed.

2.1.1 Sets, Vectors and Matrices
A set is a collection of unique elements, represented as S = {s1, s2, . . . , sr}. The
cardinality of a set S, denoted as |S|, is the number of elements in S. We use similar

13

2 Preliminaries

calligraphic notation for tuples, which are ordered sequences of (possibly non-unique)
items, written as T = (t1, t2, . . . , tr).

We define the set of nonnegative integers as Z≥0
def= {0, 1, 2, . . .}. Vectors are repre-

sented by bold lowercase letters, and their elements are indexed starting from 1.
For example, a vector of length v is written as a = [a1, a2, . . . , av].
Similarly, for a matrix A of size v × w, the entry in the i-th row and j-th column,

where i ∈ {1, . . . , v} and j ∈ {1, . . . , w}, is denoted as Ai,j.
For given integers c, d, e, and f such that 1 ≤ c ≤ d ≤ v and 1 ≤ e ≤ f ≤ w, we

use the following notation to denote a submatrix of A by

A[c:d],[e:f] :=


Ac,e · · · Ac,f

...
. . .

...
Ad,e · · · Ad,f

 .
This submatrix consists of the elements from rows c to d and columns e to f of the
original matrix A. For a given integer e and f such that 1 ≤ e ≤ f ≤ w, we use
the following notation to denote a submatrix of A ∈ Fv×w

q consisting of the selected
columns

A[e:f] :=


A1,e · · · A1,f

...
. . .

...
Av,e · · · Av,f

 ,
where A[e:f] is a submatrix of A formed by all rows but only columns e to f . The size
of A[e:f] is v × (f − e+ 1).

The transpose of a matrix A of size v × w is denoted as A>, resulting in a matrix
of size w × v. For a square matrix A of size v × v, we denote as A−> the inverse of
the transpose of A, if it exists. This matrix, also known as the inverse transpose or
transposed inverse, satisfies the property

A−> =
(
A>

)−1
=
(
A−1

)>
.

Let a(1) = [a(1)
1 , a

(1)
2 , . . . , a

(1)
ℓ1

] be a vector of length ℓ1 and a(2) = [a(2)
1 , a

(2)
2 , . . . , a

(2)
ℓ2

]
be a vector of length ℓ2. We define and denote the concatenation of a(1) with a(2) as[

a(1) | a(2)
] def=

[
a

(1)
1 , a

(1)
2 , . . . , a

(1)
ℓ1︸ ︷︷ ︸

a(1)

, a
(2)
1 , a

(2)
2 , . . . , a

(2)
ℓ2︸ ︷︷ ︸

a(2)

]
,

which is a vector of length ℓ1 + ℓ2.
Let S be a finite set. We use the notation a $← S to denote an element a ∈ S drawn

uniformly at random.
Consider S as a finite index set, and let f : S → R be a real-valued function defined

14

2.1 Notation

on S. The argmin and argmax operators are defined as follows

arg min
i∈S

f(i) def=
{
i ∈ S : f(i) = min

j∈S
f(j)

}
,

arg max
i∈S

f(i) def=
{
i ∈ S : f(i) = max

j∈S
f(j)

}
.

2.1.2 Finite Fields and Bases
This subsection provides the necessary notations and concepts related to finite fields.
For a detailed study of finite fields, their properties, and applications, see e.g., [LN96].

Let p be a prime, then by Fp we denote a finite field with p elements. Let q be
a power of a prime p, then Fq denotes a finite field of order q, and p is called the
characteristic of Fq. By Fqm we denote an extension field of degree m, meaning that
Fq is a subfield of Fqm , written as Fq ⊆ Fqm . The multiplicative group of a finite field
F excluding the zero element is denoted by F∗ and defined as F∗ def= F \ {0}.

We denote the set of all v×w matrices over any finite field F as Fv×w. The general
linear group GLv(F) consists of all v × v invertible matrices over the finite field F.
Similarly, the set of all row vectors of length v over F is denoted by Fv, and the set of
all column vectors of length v over F is denoted by Fv×1.

Let B = {b1, . . . , bm} ⊂ Fqm be a fixed basis of Fqm over Fq and define the vector
b = [b1, . . . , bm] ∈ Fm

qm as the corresponding ordered basis of Fqm over Fq. We denote by
ext(a) ∈ Fm×1

q the column-wise expansion of an element a ∈ Fqm over Fq with respect
to the basis b, i.e.

ext : Fqm → Fm×1
q , (2.1)

such that a = b · ext(a). For a vector a = [a1, . . . , av] ∈ Fv
qm , this notation is extended

element-wise, resulting in

ext(a) = [ext(a1), . . . , ext(av)] ∈ Fm×v
q , (2.2)

where ext(a) is a matrix with each column being ext(ai) ∈ Fm×1
q for i ∈ {1, . . . , v}.

Similarly, for a matrix M ∈ Fv×w
qm , the notation is extended element-wise as

ext(M) =


ext(M1,1) · · · ext(M1,w)

...
. . .

...
ext(Mv,1) · · · ext(Mv,w)

 ∈ Fmv×w
q ,

where ext(M) is a matrix formed by replacing each element Mi,j of M with its
corresponding column-wise expansion ext(Mi,j) ∈ Fm×1

q , for all i ∈ {1, . . . , v} and
j ∈ {1, . . . , w}.

The Fq-rank of a matrix A ∈ Fv×w
q is denoted as rkq (A), and similarly, the Fqm

15

2 Preliminaries

rank of a matrix over Fqm is denoted by rkqm (·). Thus, we can define the Fq-rank of
a matrix M ∈ Fv×w

qm as
rkq (M) def= rkq (ext (M)).

From this definition, it directly follows that for a vector a ∈ Fv
qm , we have

rkq (a) = rkq (ext (a)). (2.3)

Note that the Fq-rank is independent of the choice of the basis b of Fqm over Fq.
Consequently, it corresponds to the dimension of the Fq-span of the entries of a.

2.2 Row and Column Spaces
The row space of a matrix A ∈ Fv×w

qm over the field Fqm is the Fqm-linear space formed
by all possible linear combinations of its rows with coefficients from Fqm . We denote
this Fqm-linear row space by Rqm(A).

In some contexts, we are interested in the Fq-linear row space of a matrix A ∈ Fv×w
qm ,

where Fqm is viewed as a vector space over Fq. In this case, we first expand each element
of A over the field Fq and then consider the Fq-linear row space of the resulting matrix.
We denote this space by Rq(A), which is formally defined as

Rq(A) def= Rq(ext (A)) ,

where ext (A) denotes the matrix A after expansion of its entries over Fq.
The same notation applies to the column space of a matrix A, using Cq(·) instead of
Rq(·) (or Cqm(·) instead of Rqm(·)). The column space is formed by the columns of A.

Vector spaces are denoted, similarly to sets, by calligraphic letters. For non-negative
integers a and b, the number of b-dimensional subspaces of Fa

q is given by the Gaussian
binomial coefficient

[
a
b

]
q

(see [Ber84]), defined as

[
a

b

]
q

def=
b∏

i=1

qa−b+i − 1
qi − 1

=
b−1∏
i=0

qa−i − 1
qb−i − 1

. (2.4)

The Gaussian binomial coefficient satisfies [KK08]

q(a−b)b ≤
[
a

b

]
q
≤ γqq

(a−b)b,

where γq is defined as

γq
def=

∞∏
i=1

(
1− q−i

)−1
. (2.5)

16

2.3 Probabilities of Subspace Relationships

Note that γq is a monotonically decreasing function of q with a limit of 1 as q
approaches infinity. We can observe this behavior through the following example
values:

γ2 ≈ 3.4627,
γ4 ≈ 3.4524,
γ8 ≈ 1.1636,
γ16 ≈ 1.0711.

Given a matrix A ∈ Fv×w
qm , the right Fq-kernel is denoted and defined as

ker (A)Fq

def= {w ∈ Fw
q : Aw> = 0},

and similarly the right Fqm-kernel is

ker (A)Fqm

def= {w ∈ Fw
qm : Aw> = 0}.

Finally, we denote the set of all k-dimensional subspaces of Fv
q by the Grassmannian

Gk(Fv
q). For a vector space V , we denote its dual space by V⊥. We use dim to represent

the general dimension of a vector space, dimq for the dimension of an Fq-linear vector
space obtained by expanding a vector space over Fqm as an Fq-linear space using ext(·),
and dimqm to indicate the dimension of an Fqm-linear vector space.

2.3 Probabilities of Subspace Relationships
In this section, we present expressions for the probability that two subspaces intersect
in a fixed-dimensional space and the probability that one subspace is contained within
another.

We use [0, 1] ⊂ R to denote the interval of real numbers between 0 and 1, inclusive.
We define the set of all valid probability mass functions (PMFs) over a discrete set A
as

D(A) =
{
αs ∈ [0, 1]|A| ⊂ R|A| :

∑
s∈A

αs = 1
}
. (2.6)

Here, αs ∈ [0, 1]|A| denotes a vector of length |A| with real values in the interval [0, 1].
The condition ∑s∈A αs = 1 ensures that the vector represents a valid PMF.

Since each component αs can take any real value in [0, 1] and the sum of these
components must be 1, the set D(A) forms a probability simplex in R|A|. Therefore,
there are uncountably many PMFs over A.

Let A and B be two subspaces of Fµ
q with dimensions a and b, respectively.

We define the conditional probability P∩
q,µ,a,b(j) as the probability that the inter-

section of A and B has dimension exactly j, given their dimensions a and b. This

17

2 Preliminaries

probability is given by (see [RJB+20])

P∩
q,µ,a,b(j)

def= Pr[dim(A ∩ B) = j | a, b] =

[
µ−a
b−j

]
q

[
a
j

]
q
q(a−j)(b−j)[

µ
b

]
q

. (2.7)

Next, we define the probability that A is a subspace of B, denoted by P⊆
q,µ (a, b),

where a ≤ b. This probability is given by [KK08]

P⊆
q,µ (a, b) def= Pr[A ⊆ B | a, b] =

[
b
a

]
q[

µ
a

]
q

. (2.8)

Remark 2.1. The probabilities P∩
q,µ,a,b(j) and P⊆

q,µ (a, b) hold whether A and B are
both drawn uniformly at random from Gq(Fµ

q), or one of them is fixed and the other is
drawn uniformly at random from Gq(Fµ

q).

Remark 2.2. The probability P⊆
q,µ (a, b) is equal to the intersection probability P∩

q,µ,a,b(b)
(or P∩

q,µ,a,b(a)) when the dimension of the intersection is equal to the dimension of the
smaller subspace A. That is,

P⊆
q,µ (a, b) = P∩

q,µ,a,b(b) =

[
µ−a
b−a

]
q[

µ
b

]
q

=

[
b
a

]
q[

µ
a

]
q

if a ≤ b,

P⊆
q,µ (b, a) = P∩

q,µ,a,b(a) =

[
a
b

]
q[

µ
b

]
q

if b ≤ a.

This relationship holds because A is a subspace of B if and only if the dimension of
their intersection is the same as that of A.

2.4 Linear Block Codes over Finite Fields
Block codes are a fundamental concept in coding theory, essential for error correction in
data transmission and storage. They are used to detect and correct errors, ensuring the
accuracy and reliability of data. Among the most popular block codes in the Hamming
metric are linear block codes such as RS codes, Bose–Chaudhuri–Hocquenghem (BCH)
codes, LDPC codes, turbo codes, and polar codes, each with unique properties and
use cases.

Beyond traditional data transmission and storage, block codes are also crucial in
various electronic communication systems, including mobile communication, wireless
networks, and fiber-optic communications, where they help maintain data integrity

18

2.4 Linear Block Codes over Finite Fields

despite noise and signal degradation. They are also fundamental in code-based cryp-
tography. Other applications include distributed storage systems, satellite communi-
cations, and deep-space communications, where error correction is critical.

For more detailed information on block codes, including their construction and ap-
plications, the reader is referred to [MS77; Moo05; Rot06; PW08; HJ17].

Definition 2.1 (Block Codes [Moo05]). A block code C of length n and cardinality
|C| over a finite field F is a set C ⊆ Fn consisting of |C| vectors, called codewords
and the set C is called the codebook.

The encoder maps a message vector m to its corresponding codeword c ∈ C. For
effective error correction, there must be a one-to-one correspondence between each
message m and its codeword c ∈ C. While a block code can be represented as an
exhaustive list, this becomes impractical for large |C|. To reduce complexity, mathe-
matical structure, particularly linearity, is often imposed on the code.

Definition 2.2 (Linear Block Codes [Moo05]). A block code C over a finite field Fqm

of length n is a qm-ary linear block code if and only if its qmk codewords form a
k-dimensional vector subspace of Fn

qm. The rate of the code is given by R = k/n with

k
def= logqm |C|.

2.4.1 Generator Matrix and Parity Check Matrix
Following Definition 2.2, the codebook of an Fqm-linear code can be entirely charac-
terized by a basis for its k-dimensional subspace, consisting of k basis vectors from
Fn

qm . The code is then defined as the set of all Fqm-linear combinations of these basis
vectors. A matrix G ∈ Fk×n

qm , whose rows form a basis for C, is known as a generator
matrix for C.

Another way to describe a linear code is by its parity-check matrix H . The parity-
check matrix H ∈ F(n−k)×n

qm defines the code C as the null space of H . In other words,
C consists of all vectors c ∈ Fn

qm that satisfy Hc> = 0. The rows of H represent a set
of linear constraints that every codeword must satisfy, providing a convenient way to
check whether a given vector is a valid codeword.

The generator matrix and the parity-check matrix are dual representations of a
linear block code, i.e. they satisfy the condition GH> = 0.

2.4.2 Distance Properties of Linear Block Codes
As discussed in Chapter 1, codes can be defined over various metric spaces. To formally
analyze the distance properties of codes, we first define the concept of a metric, which
is a specific type of distance measure satisfying certain properties.

19

2 Preliminaries

Definition 2.3 (Metric). Given a set A, a mapping d(·, ·) : A×A → Z≥0 is called a
metric on A if it satisfies the following axioms for all a, b, c ∈ A:

• Non-negativity: d(a, b) ≥ 0,

• Identity of indiscernibles: d(a, b) = 0 ⇐⇒ a = b,

• Symmetry: d(a, b) = d(b, a),

• Triangle inequality: d(a, c) ≤ d(a, b) + d(b, c).

In coding theory, the most widely used metric is the Hamming metric, which is a
specific example of the general metric concept.

The Hamming weight wtH (a) of a vector a ∈ Fn
qm is the number of nonzero entries

in the vector. Formally, it is given by

wtH (a) def= |{i ∈ {1, . . . , n} : ai 6= 0}| , (2.9)

where a = [a1, a2, . . . , an].
The Hamming distance between two vectors a, b ∈ Fn

qm is induced by the Hamming
weight and is defined as

dH(a, b) def= wtH (a− b), (2.10)
which represents the number of positions in which a and b differ.

Given a metric d(·, ·) on Fn
qm , the minimum distance of a code C is defined as

dmin(C) def= min
c1,c2∈C
c1 6=c2

d(c1, c2).

This definition of minimum distance applies to both linear and non-linear codes. How-
ever, for a linear code, the minimum distance is equal to the minimum weight of its
nonzero codewords. The weight of a codeword c ∈ Fn

qm is defined as

wt(c) def= d(c,0),

where 0 is the zero vector.
For translation-invariant metrics where the distance d(·, ·) also satisfies the following

property
d(a + c, b + c) = d(a, b),

for all a, b, c ∈ Fn
qm , the minimum distance of a linear code C simplifies to

dmin(C) = min
c∈C
c 6=0

wt (c).

20

2.4 Linear Block Codes over Finite Fields

While this work primarily focuses on the sum-rank metric, which we formally introduce
in Section 2.6, it is worth noting that the Hamming metric is a special case of the sum-
rank metric. All metrics considered in this thesis, namely the sum-rank metric as well
as its special cases of the Hamming and rank metrics, are translation-invariant.

The Singleton bound for the Hamming metric states that for a linear code C with
length n and dimension k, the minimum distance dmin(C) satisfies dmin(C) ≤ n−k+ 1.
When it is clear from the context which code is being discussed, we may simply write
dmin.

In the following, we denote a linear block code C over Fqm with length n, dimension
k, and minimum distance dmin as C[n, k, dmin]. If the minimum distance is not known,
we denote it as C[n, k].

With the notion of minimum distance, we can now explore basic decoding principles.
Consider a linear block code C[n, k, dmin], and suppose we receive a noisy codeword
y ∈ Fn

qm , which has been corrupted during transmission over a channel or through other
means, so generally y /∈ C. Our goal is to map y back to a codeword ĉ ∈ C, estimating
the correct codeword from the input vector y. This process is called decoding, and
in the following, we discuss the most important decoding principles considered in this
thesis.

Maximum Likelihood Decoding

In practice, especially in channel transmission, the objective is often to maximize the
likelihood of the received data given a particular transmitted codeword, taking the
channel distribution into account. This likelihood is derived from the channel’s statis-
tical model and is often referred to as soft information. The decoding principle based
on maximizing this likelihood is called maximum-likelihood (ML) decoding. For certain
channels, such as the binary symmetric channel (BSC), maximizing the likelihood is
equivalent to minimizing the Hamming distance between y and any codeword c ∈ C.
This distance-based approach is known as nearest neighbor decoding, and it applies to
any metric, not just the Hamming metric.

For a given metric d(·, ·), the estimated codeword is given by

ĉ
$← arg min

c∈C
{d(y, c)} .

In cases where there is a tie, and several valid codewords exist, the arg min function
returns a set of solutions {c1, . . . , cz} such that d(y, c1) = d(y, c2) = . . . = d(y, cz) for
some z ∈ Z≥0 with z ≥ 1. The decoder then outputs one of these z solutions uniformly
at random.

This approach ensures the decoder consistently returns a valid solution, thus func-
tioning as a complete decoder. Unlike other decoders that may signal a decoding failure
when the error weight exceeds a certain constraint, a complete decoder always returns
a valid codeword as a solution.

21

2 Preliminaries

The decoder implicitly divides the space Fn
qm into distinct decoding regions, com-

monly referred to as Voronoi regions. An example illustrating this concept is provided
in Figure 2.1a.

While theoretically optimal, this decoding principle often presents significant prac-
tical challenges. For instance, implementing it efficiently is proven to be NP-complete
for a generic code in the Hamming metric [BMV78]. Due to this computational com-
plexity, practical systems often employ suboptimal decoders that utilize channel like-
lihood information, such as LDPC codes, turbo codes, or polar codes. According to
Shannon’s theorem, random codes can achieve channel capacity as their block length
approaches infinity [Sha48]. While these practical codes are not random, they are
designed to approximate this behavior and can perform close to the theoretical limit,
particularly for large code lengths and with limited decoding complexity. Although
they do not achieve optimal performance in all cases, they often operate near ML
performance, providing an effective trade-off between decoding complexity and error
correction capability.

Bounded Minimum Distance Decoding

For coding settings where soft information is unavailable, another common decoding
principle is bounded minimum distance (BMD) decoding. Let w = d(c,y) be the dis-
tance between the originally transmitted codeword c and the received noisy codeword
y. We define the unique decoding radius as

τ
def= dmin − 1

2
.

If w ≤ τ , there exists always and at most one solution, which is the unique codeword
c. In this case BMD decoding concides with optimal decoding. However, if w > τ ,
there might be no solution at all, or there could be a solution ĉ 6= c. This decoding
principle is depicted in Figure 2.1b.

List Decoding and Probabilistic Unique Decoding

List decoding was first proposed by Elias [Eli57] and Wozencraft [Woz58]. For a given
received vector y ∈ Fn

qm , a linear block code C ⊆ Fn
qm , and a specified decoding radius

τL ∈ Z≥0, a list decoder outputs a set L ⊆ C of codewords defined as

L def= {c ∈ C : d(y, c) ≤ τL} .

This set L contains all codewords within a distance of τL from the received vector y.
The complexity of list decoding typically depends on the size of the list |L|. Ideally, the
list size is bounded by a function polynomial in the code length n to ensure feasible
decoding. Larger lists can lead to exponential computational costs, so effective list

22

2.4 Linear Block Codes over Finite Fields

decoders strive to keep |L| manageable. In the extreme case where |L| = |C|, the list
decoder returns the entire code. However, by selecting the most likely codeword from
the list, the process is equivalent to ML decoding. In practical settings, the goal is to
minimize the list size and choose the most likely solution, as large list sizes increase
computational complexity without necessarily improving decoding performance.

List decoders can operate for errors within the unique decoding radius τ as well as
beyond. For error weights w such that w ≤ τ and a list decoding radius of τL = τ , the
list decoder coincides with the BMD decoder, and we always have |L| = 1.

For τL > τ and any error weight w, we might still have |L| = 1 on average over
all possible received noisy codewords. If the probability of the event |L| = 1 is very
high, the list decoder effectively behaves like a unique decoder, even beyond the unique
decoding radius. In such cases, we refer to such a decoder as a probabilistic unique
decoder. That is a list decoder that outputs a valid codeword if and only if |L| = 1,
and declares a decoding failure otherwise.

The concept of list decoding is illustrated in Figure 2.1c. In Chapter 6, specif-
ically Section 6.1, we revisit different decoding problem statements for randomized
and support-guessing decoders, as applied to decoding problems relevant to some code-
based cryptosystems.

2.4.3 Interleaved Codes
A vertically s-interleaved code is a direct sum of s codes, all having the same length n.
The parameter s is referred to as the interleaving order. In general, interleaved codes
can be formed by combining codewords from different codes that are subcodes of a
common supercode (inhomogeneous interleaving). However, in this thesis, we focus on
homogeneous interleaved codes, where codewords from the same constituent code are
interleaved.

Definition 2.4 (Vertically Homogeneous Interleaved Code). Let C[n, k, dmin] ⊆ Fn
qm

be an Fqm-linear code of length n, dimension k, and minimum distance dmin. The
corresponding homogeneous s-interleaved code is defined as

IC[s;n, k, dmin] def=


c1
...

cs

 : cj ∈ C[n, k, dmin], ∀j ∈ {1, . . . , s}

 ⊆ Fs×n
qm ,

where C[n, k, dmin] is called the constituent code of IC[s;n, k, dmin].

Interleaving does not increase the minimum distance of the overall interleaved code,
as it is determined by the minimum distance of the constituent code. However, in-
terleaving can significantly improve the decoding radius, allowing for the correction
of errors beyond the unique decoding radius with efficient decoding algorithms, often

23

2 Preliminaries

c1 c2

c3
dmin−1

2

yV1 V2

V3

(a) Maximum likelihood decoding

c1 c2

c3
dmin−1

2

y τ

(b) BMD decoding

c1 c2

c3
dmin−1

2

y τL

(c) List decoding

Figure 2.1: Illustration of different decoding principles in the 2D plane. The dotted
circles represent the unique decoding radius dmin−1

2 . τ is the decoding radius
for BMD, while τL is for list decoding. V1, V2, and V3 represent the Voronoi
regions for codewords c1, c2, and c3 respectively for ML decoding. In all
cases, y represents the received word.

24

2.5 Polynomials over Finite Fields

with a high probability of returning a unique solution. This improvement is due to
the structure of the error patterns.

In particular for the vertically interleaved case, we consider channels of the form

Y = C + E ∈ Fs×n
qm ,

where Y is the received matrix, C is the transmitted codeword matrix, and E is the
error matrix. For example, in the Hamming metric, errors typically appear as “bursts”,
meaning that errors are distributed column-wise, affecting multiple codewords of the
constituent code within the code matrix C simultaneously. This correlation between
errors across codewords enables interleaving to correct more errors beyond the unique
decoding radius of the constituent code. In the rank metric, improved performance is
achieved for errors that lie within the same Fq-row space.

Decoders for interleaved codes are available for RS codes in the Hamming metric
[KL97; BKY03; CS03; BMS04; SSB07; WZB14; PR17; YL18] and for Gabidulin codes
in the rank metric [Loi06; SB10; SJB11; WZ14; PRLS17; PMM+17; BJPR21]. These
decoders generally fall into two types: list decoders, which have an exponential list
size in the worst case but a small list size on average, or probabilistic unique decoders
that fail with very small probability.

Later in this thesis, we will extend this concept of interleaving and “burst errors”
to the sum-rank metric, demonstrating how interleaving can further improve error
correction capability in that context.

2.5 Polynomials over Finite Fields

Polynomials over finite fields are fundamental in the design and decoding of algebraic
error-correcting block codes. A nonzero polynomial f(x) over a field Fqm is of the form

f(x) =
∑

i∈Z≥0

fix
i, where fi ∈ Fqm . (2.11)

The degree of a polynomial f(x) is given by

deg(f) def=

max{i ∈ Z≥0 : fi 6= 0} if f 6= 0,
−∞ otherwise

. (2.12)

We now introduce a special class of polynomials called skew polynomials, first de-
scribed by Ore in [Ore33b]. Skew polynomials facilitate the definition of LRS codes,
which we discuss in Section 2.6.5.

25

2 Preliminaries

2.5.1 Conjugacy Class
Let σ : Fqm → Fqm be a field automorphism of Fqm , and let δ : Fqm → Fqm be a
σ-derivation satisfying the following properties

δ(a+ b) = δ(a) + δ(b) and δ(a · b) = δ(a) · b+ σ(a) · δ(b).

In the context of a finite field, all σ-derivations take the form described in [LMK14,
Proposition 1] as

δ(a) = b · (σ(a)− a), (2.13)
for some b ∈ Fqm .

From (2.13), it follows that the derivation δ becomes zero (δ = 0) if the automor-
phism σ is the identity map (σ = Id).

Let a ∈ Fqm and c ∈ F∗
qm . We define the operation

ac def= σ(c) · a · c−1 + δ(c) · c−1,

where δ(c) · c−1 is referred to as the logarithmic derivative of c.
Two elements a, b ∈ Fqm are called (σ, δ)-conjugates if there exists an element c ∈ F∗

qm

such that b = ac. If no such c exists, a and b are considered (σ, δ)-distinct.
The concept of (σ, δ)-conjugacy establishes an equivalence relation on Fqm , thereby

partitioning Fqm into conjugacy classes, as discussed in [LL88b]. To formalize this, we
define the conjugacy class of an element a ∈ Fqm .

Definition 2.5 (Conjugacy Class [LL88b]). Let a ∈ Fqm and consider the automor-
phism σ and derivation δ on Fqm. The set

C(a) def=
{
ac : c ∈ F∗

qm

}
,

is called the conjugacy class of a.

2.5.2 Skew Polynomials
Skew polynomials are non-commutative polynomials introduced by Ore [Ore33b].

Definition 2.6 (Skew Polynomial Ring). For a given automorphism σ(·) and a given
derivation δ(·), the set of all polynomials of the form specified in (2.11), combined with
ordinary polynomial addition and the multiplication rule

x · a = σ(a) · x+ δ(a) with a ∈ Fqm ,

forms the non-commutative ring of skew polynomials, denoted by Fqm [x;σ, δ].

26

2.5 Polynomials over Finite Fields

The degree of a skew polynomial f ∈ Fqm [x;σ, δ] is defined in the same way as for
ordinary polynomials (see (2.12)). Further, we denote by Fqm [x;σ, δ]<k the set of skew
polynomials from Fqm [x;σ, δ] with degree less than k, i.e.,

Fqm [x;σ, δ]<k
def= {f ∈ Fqm [x;σ, δ] : deg(f) < k} . (2.14)

For skew polynomial rings with zero derivation, denoted as Fqm [x;σ], there exists a
ring isomorphism to Fqm [x;σ, δ] when δ is an inner derivation (as defined in (2.13)).
This is always the case for finite fields. The isomorphism is described by the mapping
(see [Mar18, Proposition 40] and [Liu16, Proposition 2.1.8]); for a b ∈ Fqm we have

Fqm [x;σ, δ]→ Fqm [x;σ]∑
i

fix
i 7→

∑
i

fi(x− b)i.

The monic least-common left multiple (lclm) of a set {p1, p2, . . . , pn} ⊂ Fqm [x;σ, δ]
of polynomials is denoted as

lclm (pi)1≤i≤n

def= lclm (p1, p2, . . . , pn) .

Fqm [x;σ, δ] is both a left and right Euclidean domain. For any f ∈ Fqm [x;σ, δ] and
any nonzero g ∈ Fqm [x;σ, δ], there exist unique polynomials qL, rL, qR, rR ∈ Fqm [x;σ, δ]
satisfying

f(x) = qR(x)g(x) + rR(x) = g(x)qL(x) + rL(x),

where deg(rR), deg(rL) < deg(g) (see [Ore33b]). This property enables both left and
right division with remainder in Fqm [x;σ, δ].

Efficient algorithms for performing left and right skew polynomial division have
been developed (e.g. [CL17b; CL17a; PW18]). We denote the remainder of the right
division of f by g as f modr g, where f, g ∈ Fqm [x;σ, δ].

Special Cases

There are several notable instances where skew polynomial rings align with other well-
known polynomial rings:

• When the automorphism σ is the identity, the derivation δ becomes the zero
derivation (see (2.13)). This means that the skew polynomial ring Fqm [x;σ, δ] is
equivalent to the ordinary polynomial ring Fqm [x].

• If the derivation δ is zero, the resulting ring Fqm [x;σ] is known as the twisted
polynomial ring (see [Gos96; Ros02]).

• For the Frobenius automorphism σFrob(x) = xq of Fqm and a zero derivation δ,
the ring Fqm [x;σFrob] is isomorphic to the linearized polynomial ring [Ore33a;

27

2 Preliminaries

Ore33b] denoted as Lqm[x]. Note that in Chapter 4 we are going to revisit the
definition of linearized polynomials.

2.5.3 Generalized Operator Evaluation
The concept of generalized operator evaluation, as introduced in [Ler95], facilitates the
Fq-linearization of skew polynomial evaluation. This, in turn, establishes a connection
between the skew polynomial ring and the linearized polynomial ring [Ore33b; Ore33a].

Consider an Fqm-automorphism σ, a derivation δ, and an element a ∈ Fqm . The
(σ, δ) operator Dσ,δ

a (b) : Fqm → Fqm is defined as

Dσ,δ
a (b) def= σ(b)a+ δ(b) ∀b ∈ Fqm .

We denote this operator as Da(b) when σ and δ are understood from the context. For
an integer i ≥ 0, we define Di+1

a (b) = Da(Di
a(b)) and D0

a(b) = b.

Definition 2.7 (Generalized Operator Evaluation [Mar18]). For a skew polynomial
f ∈ Fqm [x;σ, δ], the generalized operator evaluation f(b)a of f at an element b ∈ Fqm

with respect to the evaluation parameter a ∈ Fqm is defined as

f(b)a
def=
∑

i

fiDi
a(b).

The generalized operator evaluation is an Fq-linear map. For any f ∈ Fqm [x;σ, δ],
λ1, λ2 ∈ Fq, and a, b1, b2 ∈ Fqm , it holds that

f(λ1b1 + λ2b2)a = λ1f(b1)a + λ2f(b2)a.

This result is shown in [Mar18, Lemma 23] and also discussed by [LL94].
For a vector b = [b1, b2, . . . , bn] ∈ Fn

qm , the generalized multipoint operator evaluation
of a skew polynomial f ∈ Fqm [x;σ, δ] with respect to an a ∈ Fqm is defined as

f(b)a
def= [f(b1)a, f(b2)a, . . . , f(bn)a] .

As demonstrated by [Car19], the minimal skew polynomial that evaluates to zero
for all elements in b with respect to the evaluation parameters in a is defined as

Mop
b (x)a = lclm

(
x− σ(bi)ai + δ(bi)

bi

)
1≤i≤n

bi 6=0

. (2.15)

The degree of Mop
b (x)a satisfies

deg(Mop
b (x)a) ≤ n.

28

2.5 Polynomials over Finite Fields

Equality holds if and only if the elements bi sharing the same evaluation parameter
ai are Fq-linearly independent, and the ai belong to distinct, non-trivial conjugacy
classes. Additionally, all distinct evaluation parameters ai must each lie in a separate
conjugacy class. This is discussed in detail by [Car19].

Example 2.1. Take the vectors b = [b1, b2, b3, b4] ∈ F4
qm and a = [a1, a2, a3, a4] ∈ F4

qm,
where a1 = a2 and a3 = a4 are representatives from different conjugacy classes. Then,
deg(Mop

b (x)a) = 4 if and only if b1 and b2 are Fq-linearly independent, and b3 and b4
are Fq-linearly independent.

Example 2.2. Consider the vectors b = [b1, b2, b3] ∈ F3
qm and a = [a1, a2, a3] ∈ F3

qm,
where a1, a2, and a3 are representatives from three distinct conjugacy classes. Then,
deg(Mop

b (x)a) = 3 if and only if b1, b2, and b3 are Fq-linearly independent.

The generalized operator evaluation of a polynomial modulo a particular minimal
polynomial exhibits properties analogous to those of ordinary polynomials. We for-
malize this in the following lemma.

Lemma 2.1 ([BJR24]). For any f ∈ Fqm [x;σ, δ], and vectors b = [b1, . . . , bn] and
a = [a1, . . . , an] ∈ Fn

qm, the following equality holds

f(bi)ai
= f modr M

op
b (x)a(bi)ai

, ∀i ∈ {1, . . . , n}.

Proof. The proof leverages the Euclidean domain property of Fqm [x;σ, δ]. We can
express f(x) uniquely as

f(x) = q(x)Mop
b (x)a + r(x),

where q, r ∈ Fqm [x;σ, δ] and deg(r) < deg(Mop
b (x)a). By definition

r(x) = f(x) modr M
op
b (x)a.

Given that Mop
b (x)a vanishes for all (bi, ai) pairs, we have

f(bi)ai
= r(bi)ai

= f modr M
op
b (x)a(bi)ai

, ∀i ∈ {1, . . . , n},

which concludes the proof.

2.5.4 Generalized Moore Matrix
With the notion of the generalized operator evaluation we can define the generalized
Moore matrix.

Definition 2.8 (Generalized Moore Matrix). Let x = [x(1),x(2), . . . ,x(ℓ)] ∈ Fn
qm with

x(i) ∈ Fni
qm according to some length profile n = [n1, n2, . . . , nℓ] ∈ Zℓ

≥0. Further let

29

2 Preliminaries

a = [a1, a2, . . . , aℓ] ∈ Fℓ
qm and an integer z ∈ Z≥0 be given. The generalized Moore

matrix Mz(x)a is defined as

Mz(x)a

def=
[

Mz

(
x(1)

)
a1

Mz

(
x(2)

)
a2

. . . Mz

(
x(ℓ)

)
aℓ

]
∈ Fz×n

qm , (2.16)

where

Mz

(
x(i)

)
ai

def=


x

(i)
1 . . . x(i)

ni

Dai
(x(i)

1) . . . Dai
(x(i)

ni
)

...
. . .

...

Dz−1
ai

(x(i)
1) . . . Dz−1

ai
(x(i)

ni
)

 ∀i ∈ {1, . . . , ℓ}.

Theorem 2.1 (Full Rank of Generalized Moore Matrix [Mar18, Theorem 14], [LL88a,
Theorem 4.5]). Let a include representatives from pairwise distinct nontrivial conju-
gacy classes of Fqm, and let rkq

(
x(i)

)
= ni for all i ∈ {1, . . . , ℓ}. Then, the generalized

Moore matrix is of full rank, i.e.,

rkqm (Mz(x)a) = min{z, n}.

Moore Matrix

The Moore matrix [Moo96] is a special case of the generalized Moore matrix with the
following parameters:

• Automorphism: σ(x) = xq (Frobenius automorphism).

• Derivation: δ = 0,

• Number of blocks: ℓ = 1,

• a = [1,] ∈ F1
qm ,

• Length profile: n = [n,] ∈ Z1
≥0.

Given x ∈ Fn
qm and an integer z ∈ Z≥0, denote the i-th q-power by x[i] where [i] def= qi.

Then the Moore matrix Mz(x) ∈ Fz×n
qm is

Mz(x) = Mz(x)a =


x1 x2 . . . xn

x
[1]
1 x

[1]
2 . . . x[1]

n
...

. . .
...

...

x
[z−1]
1 x

[z−1]
2 . . . x[z−1]

n

 . (2.17)

According to Theorem 2.1, the Moore matrix is of full rank if and only if rkq(x) = n.

30

2.6 Codes in the Sum-Rank Metric

Vandermonde Matrix

The Vandermonde matrix is another special case of the generalized Moore matrix with
the following parameters:

• Automorphism: σ(x) = x (identity automorphism),

• Derivation: δ = 0 (implied by σ = Id),

• Number of blocks: ℓ = n,

• v = [1, 1, . . . , 1] ∈ Fn
qm ,

• Length profile: n = [1, 1, . . . , 1] ∈ Zn
≥0.

Then the Vandermonde matrix Vz(x) ∈ Fz×n
qm is

Vz(x) def= Mz(v)x =



1 1 . . . 1
x(1) x(2) . . . x(n)

(x(1))2 (x(2))2 . . . (x(n))2

...
...

. . .
...

(x(1))z−1 (x(2))z−1 . . . (x(n))z−1

 , (2.18)

where x = [x(1), x(2), . . . , x(n)] ∈ Fn
qm .

According to Theorem 2.1, the Vandermonde matrix is of full rank if and only if the
elements of x are pairwise distinct and nonzero.

2.6 Codes in the Sum-Rank Metric
The sum-rank metric, introduced in [Mar18], is a metric that includes both the Ham-
ming and rank metrics as special cases, effectively blending the properties of these
two metrics. Initially referred to as the extended rank metric in 2010 for multi-shot
network coding [NU10], the sum-rank metric has since gained significant attention for
its applications in distributed storage [MK19b], network coding [MK19a], space-time
coding [SK20], and more recently, in code-based cryptography [PRR22; HBH23].

The sum-rank metric combines aspects of both the Hamming and rank metrics by
dividing a vector into several blocks and computing the rank of each block. The sum of
these ranks gives the sum-rank metric. If each block is a single column, the sum-rank
metric reduces to the Hamming metric, which counts the number of nonzero elements
in the vector. Conversely, if the entire vector is treated as a single block, the sum-rank
metric coincides with the rank metric, which measures the rank of the vector as a
matrix over its base field.

Numerous code constructions and efficient decoding algorithms have been developed
for the sum-rank metric [WSBZ11; WS12; WSS15; NPRV17; Mar18; MK19a; Bou20;

31

2 Preliminaries

Car19; BJPR21]. Furthermore, several key results on the fundamental properties of
sum-rank-metric codes have been established, including bounds on code parameters,
MacWilliams identities, and the Gilbert–Varshamov bound [BGR21]. Further prop-
erties and extended research on sum-rank-metric codes have been explored in other
studies, such as [OLW22; OPB21; CJB24].

In this section, we review fundamental definitions related to the sum-rank metric
and the associated codes. We will also introduce the most prominent class of linear
codes within the sum-rank metric, known as LRS codes.

2.6.1 The Sum-Rank Metric and its Properties
We consider vectors that are divided into blocks, such that

x =
[
x(1) | x(2) | . . . | x(ℓ)

]
∈ Fn

qm ,

where each block x(i) ∈ Fni
qm has length ni ∈ Z≥0 for i ∈ {1, . . . , ℓ}. We use the term

block length to denote the length of an individual block with respect to the sum-rank
metric. Note that in some literature, the term “block length” may refer to the length
of a block code. In this thesis, however, we use the term code length to refer to the
length of a block code and block length to refer to the length of an individual block
with respect to the sum-rank metric. The vector

n
def= [n1, n2, . . . , nℓ] ∈ Zℓ

≥0,

is referred to as the length profile and satisfies

n =
ℓ∑

i=1
ni.

The sum-rank weight of a vector x = [x(1) | x(2) | . . . | x(ℓ)] ∈ Fn
qm with respect to

the length profile n is defined as

wt(n)
ΣR(x) def=

ℓ∑
i=1

rkq
(
x(i)

)
, (2.19)

where rkq(x(i)) = dimq
(
〈x(i)

1 , . . . , x
(i)
ni
〉

q

)
denotes the dimension of the Fq-span of the

entries of x(i) which is equal to the Fq-rank of ext
(
x(i)

)
(see (2.3)).

The sum-rank distance between two vectors x,y ∈ Fn
qm is then induced by the

sum-rank weight and defined as

d
(n)
ΣR(x,y) def= wt(n)

ΣR(x− y). (2.20)

32

2.6 Codes in the Sum-Rank Metric

We denote Fqm-linear codes considered with respect to the sum-rank metric and a
given length profile n as

CΣR[n, k, dmin].

As mentioned before, the sum-rank metric includes well-known metrics as special
cases:

• Hamming metric: When ℓ = n, this implies ni = 1 for all i ∈ {1, . . . , ℓ}, with
n = [1, 1, . . . , 1] ∈ Zn

≥0. In this case, each x(i) ∈ F1
qm , and the sum-rank metric

reduces to the Hamming metric (see (2.9) and (2.10)). Therefore,

wtH (e) = wt(n)
ΣR (e) =

n∑
i=1

rkq
(
x(i)

)
.

Here, rkq(x(i)) is 1 if and only if x(i) is a nonzero element, and 0 if x(i) is zero,
since ext

(
x(i)

)
is a column vector over Fq.

• Rank metric: When ℓ = 1, the sum-rank metric corresponds to the rank
metric, with x = [x(1)] ∈ Fn

qm and n = [n] ∈ Z1
≥0. Thus,

wtR (e) = wt(n)
ΣR (e) = rkq

(
x(1)

)
.

In some parts of this thesis, we restrict ourselves to the case where each block has
a constant length η. This means that the length profile is given by

n = [η, η, . . . , η] ∈ Zℓ
≥0,

and thus n = ℓη. In this context, we omit n in the notation and simply write wtΣR(·)
and dΣR(·, ·), respectively. For notational convenience, we may switch between these
notations and assume a constant length for each block. Whenever we state an algo-
rithm using constant block length notation, we will provide a remark or note indicating
if the algorithm can be easily adapted for variable block lengths. It should be clear
from the context when we assume constant block lengths and when we consider vari-
able lengths.

The maximum rank of each block is defined as

µi
def= max{ni,m} ∀i ∈ {1, . . . , ℓ}, (2.21)

and for the case of constant block length as

µ
def= min{η,m}. (2.22)

For a vector x = [x(1) | . . . | x(ℓ)] ∈ Fn
qm , we may be interested in the sequence of

rank weights of the individual blocks of x.

33

2 Preliminaries

Definition 2.9 (Rank Profile). Let ℓ ∈ Z be the number of blocks, and let the vector
x = [x(1) | . . . | x(ℓ)] ∈ Fn

qm be partitioned into blocks according to a length profile
n ∈ Zℓ. For each block i ∈ {1, . . . , ℓ}, let µi denote its maximum rank weight, as
defined in (2.21). The map

ψ : Fn
qm → {0, . . . , µ1} × {0, . . . , µ2} × · · · × {0, . . . , µℓ},

is defined by
ψ(x) 7→

[
rkq(x(1)), . . . , rkq(x(ℓ))

]
. (2.23)

The image of ψ(x) is called the rank profile of x.

Additionally, we define the set of all possible rank profiles. For convenience, we
assume constant block length for some of the upcoming notations. However, extending
the results to variable block lengths is straightforward.

Definition 2.10 (Set of Rank Profiles). Let w ∈ Z be an integer and ℓ ∈ Z the number
of blocks, and µ ∈ Z the maximum rank weight of each block. Assume w ≤ ℓµ. We
define the set

Tw,ℓ,µ
def=
{

[w1, w2, . . . , wℓ] ∈ {0, . . . , µ}ℓ :
ℓ∑

i=1
wi = w

}
,

which contains all possible sequences of rank weights (rank profiles) of a vector con-
sisting of ℓ blocks and having a sum-rank weight of w 1.

In [PRR22], an upper bound on the cardinality of the set Tw,ℓ,µ has been derived as

|Tw,ℓ,µ| ≤
(
ℓ+ w − 1
ℓ− 1

)
.

The set of all vectors in Fn
qm of sum-rank weight wtΣR(e) = w is denoted by

Eq,η,m,ℓ(w) def= {e ∈ Fn
qm : wtΣR(e) = w}. (2.24)

The cardinality of this set is given by (see [PRR22])

|Eq,η,m,ℓ(w)| =
∑

w∈Tw,ℓ,µ

ℓ∏
i=1

NMq (m, η, wi), (2.25)

1Rank profiles are closely related to the concept known in the literature as weak integer compositions,
where an integer is expressed as the sum of non-negative integers. In contrast to weak integer
compositions, rank profiles have the additional constraint that each part (rank weight) does not
exceed a fixed upper bound, which in our case is µ.

34

2.6 Codes in the Sum-Rank Metric

with a given rank profile w = [w1, . . . , wℓ]. The cardinality expression in (2.25) can be
efficiently computed using a dynamic programming approach, as described in [PRR22].

The term NMq (m, η, wi) represents the number of matrices of size m × η of rank
wi over the finite field Fq. It can be calculated using the following formula [MS77,
Chapter 13][MMO04]

NMq (m, η, wi) =
wi−1∏
j=0

(qm − qj)(qη − qj)
qwi − qj

(2.26)

=
[
η

wi

]
q

wi−1∏
j=0

(qm − qj)

=
[
m

wi

]
q

wi−1∏
j=0

(qη − qj),

where
[

a
b

]
q
, with a ≥ b ≥ 0, is defined in (2.4).

2.6.2 Interleaved Sum-Rank-Metric Codes

The definition of vertically interleaved codes in the sum-rank metric is straightfor-
ward and follows the same principle as in Definition 2.4. We denote such a code as
ICΣR[s; n, k, dmin].

Each codeword C ∈ ICΣR[s; n, k, dmin] can be written as

C =


c

(1)
1 c

(2)
1 . . . c

(ℓ)
1

...
...

. . .
...

c(1)
s c(2)

s . . . c(ℓ)
s

 ∈ Fs×n
qm ,

or equivalently as
C =

[
C(1) | C(2) | . . . | C(ℓ)

]
,

where

C(i) def=


c

(i)
1

c
(i)
2
...

c(i)
s

 ∈ Fs×ni
qm ,

for all i ∈ {1, . . . , ℓ}.

35

2 Preliminaries

2.6.3 Channel Models
Consider a CΣR[n, k] linear sum-rank-metric code. Throughout this thesis, we mostly
(if not specified otherwise) consider additive error channels of the form

y = c + e ∈ Fn
qm ,

where c ∈ CΣR and e ∈ Fn
qm is an error vector with sum-rank weight wt(n)

ΣR(e) = w.
The following theorem establishes the connection between the error vector e and

the row and column spaces of its blocks.

Theorem 2.2 (Error Decomposition in the Sum-Rank Metric [MP74, Theorem 1],
[PRR22, Lemma 10]). Let the error vector e = [e(1) | e(2) | . . . | e(ℓ)] ∈ Fn

qm be
partitioned into blocks with respect to the length profile n = [n1, . . . , nℓ] ∈ Zℓ

≥0. The
error vector e can be decomposed, though not necessarily uniquely, as

e = a ·B, (2.27)

where a = [a(1) | . . . | a(ℓ)] with a(i) ∈ Fwi
qm, and

B = diag(B(1), . . . ,B(ℓ)) ∈ Fw×n
q , (2.28)

with B(i) ∈ Fwi×ni
q satisfying rkq(a(i)) = rkq(B(i)) = wi for all i ∈ {1, . . . , ℓ}, and

w = ∑ℓ
i=1 wi. The rank profile is given by

w = ψ(e) = [w1, w2, . . . , wℓ] .

For each i ∈ {1, . . . , ℓ}, the entries of a(i) form a basis over Fq of the Fq-column space
of e(i), and the rows of B(i) form a basis over Fq of its Fq-row space.

In the interleaved case with interleaving order s, we extend from vectors to matrices
by considering the additive sum-rank channel

Y = C + E ∈ Fs×n
qm , (2.29)

where the error matrix E is structured as

E =
[
E(1) | E(2) | . . . | E(ℓ)

]
∈ Fs×n

qm .

Here, each block E(i) ∈ Fs×ni
qm has rank rkq(E(i)) = wi for all i ∈ {1, . . . , ℓ}. The

overall sum-rank weight of the matrix E is wt(n)
ΣR(E) = w = ∑ℓ

i=1 wi.
This matrix E can be decomposed similarly to the vector case, as follows

E = A ·B, (2.30)

36

2.6 Codes in the Sum-Rank Metric

where A =
[
A(1) | A(2) | . . . | A(ℓ)

]
∈ Fs×w

qm is a matrix with A(i) ∈ Fs×wi
qm satisfying

rkq(A(i)) = wi. The matrix B has the same block-diagonal matrix structure as B
defined in (2.28).

Similarly to (2.21) and (2.22) for the non-interleaved case, we define µ(s) as the
maximum possible Fq-rank of each block of the error matrix. It is given by

µ
(s)
i

def= min{ni, sm} ∀i ∈ {1, . . . , ℓ}, (2.31)

and for constant block lengths, this becomes

µ(s) def= min{η, sm}. (2.32)

2.6.4 Row and Column Support in the Sum-Rank Metric
In this subsection, we define the row and column support in the sum-rank metric.
We provide the definition for the interleaved case, where the error is represented by a
matrix E ∈ Fs×n

qm . The non-interleaved case follows naturally when s = 1.
Before introducing the sum-rank support, we first define the notion of support with

respect to the rank metric for interleaved codes.

Definition 2.11 (Rank Support in the Interleaved Setting). Let E ∈ Fs×n
qm be a matrix,

the row and column rank supports of E are defined as follows:

• Row Rank Support: The row rank support of E is defined as

supp(R)
R (E) def= Rq(E) .

• Column Rank Support: The column rank support of E is defined as

supp(C)
R (E) def= Cq(E) .

Using the rank support defined above, we now define the row and column support
in the sum-rank metric for interleaved codes.

Definition 2.12 (Sum-Rank Support in the Interleaved Setting). Let E ∈ Fs×n
qm be a

matrix and s be the interleaving order. The sum-rank row and column supports are
defined as the Cartesian product of the row and column rank supports of each block:

• Sum-Rank Row Support: The sum-rank row support is given by

supp(R)
ΣR(E) def= supp(R)

R (E1)× supp(R)
R (E2)× · · · × supp(R)

R (Eℓ) (2.33)
= Rq(E1)×Rq(E2)× · · · × Rq(Eℓ) .

37

2 Preliminaries

• Sum-Rank Column Support: The sum-rank column support is given by

supp(C)
ΣR(E) def= supp(C)

R (E1)× supp(C)
R (E2)× · · · × supp(C)

R (Eℓ) (2.34)
= Cq(E1)× Cq(E2)× · · · × Cq(Eℓ) .

The second equality for both the sum-rank row and column supports follows directly
from Theorem 2.2. For s = 1, these definitions reduce to the non-interleaved case for
a vector e ∈ Fn

qm.

Assume E to be either a row or column support. We denote by dimΣ(E) the sum
dimension

dimΣ(E) def=
ℓ∑

i=1
dim(E (i)).

The intersection of two supports E1 and E2 is defined as

E1 ∩ E2
def= E (1)

1 ∩ E
(1)
2 × · · · × E

(ℓ)
1 ∩ E

(ℓ)
2 .

Given two supports E1 and E2, we say that E2 is a super-support of E1, denoted by
E1 ⊆ E2, if E (i)

1 ⊆ E
(i)
2 for all i ∈ {1, . . . , ℓ}. Conversely, E1 is a sub-support of E2.

For a given length profile n = [n1, n2, . . . , nℓ], we define the notation

Fn
q

def= Fn1
q × Fn2

q × · · · × Fnℓ
q . (2.35)

2.6.5 Linearized Reed–Solomon Codes
LRS codes [LK05; Mar18; Car19] represent a special class of linear sum-rank-metric
codes that satisfy the maximum sum-rank distance (MSRD) property. In other words,
they attain the maximum possible minimum distance according to the Singleton-like
bound in the sum-rank metric.

The fundamental properties and concepts of LRS codes are extensively explored in
the literature. For a comprehensive overview, refer to [MSK22].

In the following, we define LRS codes as evaluation codes of degree-restricted skew
polynomials and present their generator matrices.

Definition 2.13 (Linearized Reed–Solomon Code). Let ξ = [ξ1, ξ2, . . . , ξℓ] ∈ Fℓ
qm be

a vector containing representatives from different conjugacy classes of Fqm, and let a
length profile n = [n1, n2, . . . , nℓ] ∈ Zℓ

≥0 be given. For each i ∈ {1, . . . , ℓ}, let the vector
β(i) = [β(i)

1 , . . . , β(i)
ni

] ∈ Fni
qm consist of Fq-linearly independent elements from Fqm, and

consider the vector β = [β(1) | β(2) | . . . | β(ℓ)] ∈ Fn
qm.

Let the following conditions hold

ℓ ≤ q − 1 and m ≥ ni ∀i ∈ {1, . . . , ℓ}.

38

2.6 Codes in the Sum-Rank Metric

A LRS code of length n = ∑ℓ
i=1 ni and dimension k is defined as

LRS[β, ξ, ℓ; n, k] def=
{[
f(β(1))ξ1 | · · · | f(β(ℓ))ξℓ

]
: f ∈ Fqm [x;σ, δ]<k

}
⊆ Fn

qm .

With respect to the length profile n, each codeword c ∈ LRS[β, ξ, ℓ; n, k] is struc-
tured as

c =
[
c(1) | c(2) | . . . | c(ℓ)

]
,

where c(i) = f(β(i))ξi
∈ Fni

qm for all i ∈ {1, . . . , ℓ}.
Another way to describe an LRS[β, ξ, ℓ; n, k] code is through its generator matrix,

given by the generalized Moore matrix (see Definition 2.8)

GLRS = Mk(β)ξ.

LRS codes achieve the Singleton-like bound in the sum-rank metric (see [Mar18,
Proposition 34]) with equality, meaning the minimum sum-rank distance equals n −
k + 1.

Efficient (polynomial-time) algorithms exist [Mar18; Car19; Bou20] that enable
BMD decoding of errors with sum-rank weight w up to

w ≤ n− k
2

.

Note that for constant block lengths, we write LRS[β, ξ, ℓ;n, k] instead, where

n = ηℓ,

and η is implicitly defined by β(i) ∈ Fη
qm for i ∈ {1, . . . , ℓ}.

2.6.6 Interleaved Linearized–Reed Solomon Codes

Motivated by the results on IRS codes [KL97; KY98] and Gabidulin codes [Loi06] we
define ILRS [HB23] as follows.

Definition 2.14 (ILRS Code). Let ξ = [ξ1, ξ2, . . . , ξℓ] ∈ Fℓ
qm be a vector containing

representatives from different conjugacy classes of Fqm. Further let a length profile
n = [n1, n2, . . . , nℓ] ∈ Zℓ

≥0 be given and let the vectors β(i) = [β(i)
1 , . . . , β(i)

ni
] ∈ Fni

qm

contain Fq-linearly independent elements from Fqm for all i ∈ {1, . . . , ℓ}. Consider
the vector β = [β(1) | β(2) | . . . | β(ℓ)] ∈ Fn

qm. Assume ℓ ≤ q − 1 and m ≥ ni for all
i ∈ {1, . . . , ℓ}. Let LRS[β, ξ, ℓ; n, k] be the constituent LRS code. The corresponding

39

2 Preliminaries

s-interleaved LRS code is defined as

ILRS[β, ξ, ℓ, s; n, k] def=


c1
...

cs

 : cj ∈ LRS[β, ξ, ℓ; n, k]

 ⊆ Fs×n
qm .

The minimum distance of ILRS[β, ξ, ℓ, s; n, k] is dmin = n− k + 1.

Based on Definition 2.14 and Definition 2.13, we can characterize the structure of
codewords in ILRS[β, ξ, ℓ, s; n, k]. Each codeword C in this code can be expressed as

C =
[
C(1) | C(2) | . . . | C(ℓ)

]
, (2.36)

where

C(i) def=


c

(i)
1

c
(i)
2
...

c(i)
s

 =


f1(β(i))ξi

f2(β(i))ξi

...
fs(β(i))ξi

 ∈ Fs×ni
qm ,

for all i ∈ {1, . . . , ℓ}. Define the vector f that contains all message polynomials as

f
def= [f1, f2, . . . , fs] ∈ Fqm [x;σ, δ]s<k.

We use the shorthand notation for the codeword matrix evaluated at the corresponding
message polynomials, as in (2.36) as

C(f) def=
[
C(1)(f) | C(2)(f) | . . . | C(ℓ)(f)

]
∈ ILRS[β, ξ, ℓ, s; n, k].

2.7 Remark on the Notation of Complexity

In this thesis, we use the big-O notation, also known as Bachmann–Landau nota-
tion [Knu82] and denoted as O(·), to describe the asymptotic runtime of algorithms.
Additionally, we use the soft-O notation Õ(·), where f(n) ∈ Õ(g(n)) if there exists
a k such that f(n) ∈ O

(
g(n) logk g(n)

)
. This notation is coincides with the big-O

notation but ignores logarithmic factors.
For computational complexity regarding skew polynomials, we focus on those with

zero derivations, as explicit results are available in the literature. The isomorphism
between Fqm [x;σ, δ] and Fqm [x;σ] (see Section 2.5.2 and [Liu16; Mar18]) allows us to
derive complexity bounds even for nonzero derivations.

We denote by p(n) the cost of multiplying two skew polynomials from Fqm [x;σ] of

40

2.7 Remark on the Notation of Complexity

degree n. The currently best known cost bounds for p(n) are

p(n) ∈ O
(
nmin{ ζ+1

2 ,1.635}
)
,

operations in Fqm (see [PW18]), and

p(n) ∈ Õ
(
min

{
nζ−2m2, nmζ−1

})
,

operations in Fq (see [CL17b; CL17a]). Here, ζ denotes the matrix multiplication
exponent, defined as the infimum of values ζ0 ∈ [2, 3] for which an algorithm exists
to multiply n × n matrices over Fqm in O(nζ0) operations. The best-known bound is
currently ζ < 2.37286 (see [AW21]).

Notably, the following skew polynomial operations in Fqm [x;σ] can be performed in
Õ(p(n)):

• Left/right division of two skew polynomials of degree at most n,

• Generalized operator / remainder evaluation of a skew polynomial of degree at
most n at n elements from Fqm ,

• Computation of the minimal polynomials Mop
B (x)a for |B| ≤ n w.r.t. the re-

mainder and generalized operator evaluation, respectively,

• Computation of the lclm (see [CL17a, Theorem 3.2.7]).

While these notations provide asymptotic approximations and omit constant factors,
they are useful for estimating performance with large input sizes. In some parts of the
thesis, we evaluate or plot complexities using these notations. For finite input sizes, we
emphasize that these values are approximations, as the exact complexities depend on
the specific implementation details of the algorithms and the underlying hardware.

41

3
Efficient Decoding of Interleaved
Linearized Reed–Solomon Codes

In code-based cryptography, decryption typically involves a decoding step where the
error introduced in encryption is corrected to retrieve the original message. To enable
efficient error-correction algorithms that support the decryption processes in potential
code-based cryptosystems built on sum-rank-metric codes, we focus on the decoding
of ILRS codes. As discussed in Chapter 1 interleaved structures, such as ILRS codes,
offer a promising approach to improve key sizes by extending the decoding radius.

In this chapter, we revisit key decoding concepts for ILRS codes in Section 3.1. We
then provide an overview of weak Popov forms and Gröbner bases in Section 3.2. Next,
in Section 3.3, we explore the skew Kötter–Nielsen–Høholdt interpolation over skew
polynomial rings and the corresponding algorithm for solving the interpolation step in
interpolation-based decoding. In Section 3.4, we introduce an optimized version of this
algorithm that matches the best-known asymptotic complexity while eliminating the
need for pre-processing and specific requirements on the interpolation points. Finally,
in Section 3.5, we summarize, provide further discussion, and outline future research
directions.

The content presented in the first parts of the chapter serves primarily as a re-
view of well-established decoding concepts for ILRS codes. Section 3.4 is based on
prior works, including [BJPR21] and [BJR24], both of which the author of this dis-
sertation co-authored. In these works, the author contributed to discussions and the
overall development of these papers. Furthermore, Section 3.5 is largely based on
[BJR24], published in Designs, Codes and Cryptography in 2023 and the conference
version [BJR22]. Specifically, the author made significant contributions to the results
shown in Section 3.4.2, which is about precomputing methods for the Skew Kötter–
Nielsen–Høholdt interpolation algorithm.

43

3 Efficient Decoding of Interleaved Linearized Reed–Solomon Codes

3.1 Known Decoding Approaches
In this section, we provide a brief and comprehensive overview of three prominent
decoding approaches for (interleaved) LRS codes: syndrome-based decoding (non-
interleaved) LRS codes [HBP22], the Loidreau–Overbeck decoding method for ILRS
codes [Loi06] and interpolation-based decoding [BP22] for ILRS codes.

3.1.1 Syndrome-Based Decoding
Syndrome-based decoding is a common method for error correction using linear codes,
including RS codes [Mas69; Gao03], Gabidulin codes [Gab85; Rot91; PT91; Gab92;
RP04b] and also LRS codes [HBP22].

Syndrome decoding can also be extended to interleaved versions of these code fam-
ilies. For example, interleaved Gabidulin codes are addressed in [SB10], and for ILRS
codes, syndrome decoding has been considered in the non-interleaved case [HBP22],
with potential extensions to interleaved codes1.

The general process involves three main steps:

• Syndrome calculation: The syndrome is computed by multiplying the re-
ceived word y ∈ Fn

qm with the transpose of the parity-check matrix H ∈ F(n−k)×n
qm

s = y ·H> = e ·H> ∈ F(n−k)
qm .

A zero syndrome indicates no errors, while a non-zero syndrome provides infor-
mation about the error pattern.

• Solving the key equation: The next step is to solve a key equation that
relates the syndrome to the error. For both RS and Gabidulin codes, this step
involves solving a system of linear equations. Specialized algorithms, like the
Berlekamp–Massey algorithm for RS codes and similar techniques for Gabidulin
codes, can solve this system more efficiently [MS77; Gab85].

• Finding the error locations and values: Once the key equation is solved,
the error locations and values are determined. In Gabidulin codes, this step can
be more challenging than in RS codes [Wac16]. The error locations correspond
to the roots of the error locator polynomial, and the error values are derived
from the syndrome and the error positions.

1In [HBP22], syndrome decoding of LRS codes is considered for the non-interleaved case. The au-
thors hint at the possibility of extending error-erasure decoding to interleaved LRS codes and
discuss future work on the implications of errors and erasures in the skew metric, which is iso-
morphic to the sum-rank metric.

44

3.1 Known Decoding Approaches

In Chapter 4, we revisit syndrome decoding in the context of the rank metric,
particularly for space-symmetric errors. Additionally, for the sum-rank metric, syn-
drome decoding has been applied for efficient error-and-erasure decoding, as outlined
in [HBP22]. For further details on syndrome decoding in the sum-rank metric, we
refer the reader to this work.

3.1.2 The Loidreau–Overbeck Decoder

In [Loi06], Loidreau and Overbeck introduced a unique decoding method for inter-
leaved Gabidulin codes. This subsection examines an adaptation of their approach for
ILRS codes in the sum-rank metric, as presented in [BP22]. This algorithm enables
decoding of interleaved codes beyond the unique decoding radius of the underlying
constituent code, at the cost of a nonzero probability of decoding failure. However,
the probability of successful decoding in general remains high. Specifically, the decoder
can correct errors with sum-rank weight w up to

w ≤ τL,

where
τL

def= s

s+ 1
(n− k). (3.1)

A connection between this decoder and the Metzner–Kapturowski-like decoder will
be established in Chapter 5.

Assume a codeword C ∈ ILRS[β, ξ, ℓ, s; n, k] of an s-interleaved ILRS code is trans-
mitted over a sum-rank error channel, resulting in the corrupted matrix

Y = C + E,

where wt(n)
ΣR(E) = w.

The received matrix Y and the error matrix E are defined as follows

Y =


y1
y2
...

ys

 ∈ Fs×n
qm and E =


e1
e2
...

es

 ∈ Fs×n
qm ,

with each row ei ∈ Fn
qm for i ∈ {1, . . . , s}.

45

3 Efficient Decoding of Interleaved Linearized Reed–Solomon Codes

To proceed with the decoding algorithm, we construct a matrix L as

L
def=



Mn−w−1(β)ξ

Mn−w−k(y1)ξ

Mn−w−k(y2)ξ
...

Mn−w−k(ys)ξ

 ∈ F(n−w−1+s(n−k−w))×n
qm (3.2)

from the received matrix Y and the codeword parameters β and ξ. Observe that

Rqm(L) = Rqm





Mn−w−1(β)ξ

Mn−w−k(e1)ξ

Mn−w−k(e2)ξ
...

Mn−w−k(es)ξ



 .

If rkqm (L) = n− 1, then the Fqm-dimension of the kernel of L is 1, and there exists
a nonzero vector v ∈ ker (L)Fqm

\ {0} ⊆ Fn
qm .

Partition this vector v into blocks

v =
[
v(1) | v(2) | . . . | v(ℓ)

]
,

with v(i) ∈ Fni
qm for each i ∈ {1, . . . , ℓ}.

It can be shown that wt(n)
ΣR(v) = w (see [BP22]), and thus rkq

(
v(i)

)
= wi for all

i ∈ {1, . . . , ℓ}.
For each v(i), find a transformation matrix T (i) ∈ Fni×ni

q such that the ni − wi

leftmost entries of v(i)T (i) are zero

ṽ(i) = v(i)T (i) = [0, . . . , 0, ṽ1, ṽ2, . . . , ṽwi
] ∈ Fni

qm ,

for all i ∈ {1, . . . , ℓ}.

This implies that the rightmost columns of the matrix E(i)
(
T (i)

)−>
are zero. As

a consequence, the rightmost columns of Y (i)
(
T (i)

)−>
correspond to non-corrupted

positions. Therefore, the transmitted codeword can be reconstructed by (column)
erasure decoding on the n− w positions of

Y · diag
(
T (1),T (2), . . . ,T (ℓ)

)
.

These positions are formed by the ni − wi rightmost positions of each block with
i ∈ {1, . . . , ℓ}. The reconstruction can be achieved, for example, using Lagrange

46

3.1 Known Decoding Approaches

interpolation [BP22].
The success of this decoder depends on the probability that the matrix L, as defined

in (3.2), has Fqm-rank equal to n− 1. By Theorem 2.1, we know that

rkqm

(
Mn−w−1(β)ξ

)
= n− w − 1,

so the probability of decoding success reduces to the probability that the matrix

L̃
def=


Mn−w−k(e1)ξ

Mn−w−k(e2)ξ
...

Mn−w−k(es)ξ

 ∈ Fs(n−w−k)×n
qm , (3.3)

has Fqm-rank equal to w. This probability is bounded as follows [BP22]

Pr [success] = Pr
[
rkqm

(
L̃
)

= w
]
≥ 1− γℓ+1

q q−m((s+1)(τL−w)+1),

with τL as in (3.1) and γq as in (2.5).

3.1.3 Interpolation-Based Decoding of Interleaved LRS Codes
Interpolation-based decoding is a powerful decoding approach for interleaved algebraic
codes such as IRS codes in the Hamming metric, interleaved Gabidulin codes in the
rank metric and ILRS in the sum-rank metric. This method relies on constructing
a multivariate polynomial that interpolates through points derived from the received
codeword, followed by finding suitable roots of the polynomial that give rise to the
transmitted message. The interpolation-based decoding procedure for ILRS codes can
be summarized in two key steps:

1. Interpolation: Construct a multivariate skew polynomial Q(x, y1, . . . , ys) with
a specific degree constraint, of the form

Q(x, y1, . . . , ys) = Q0(x) +Q1(x)y1 + · · ·+Qs(x)ys,

where Qi(x) ∈ Fqm [x;σ, δ] for all i ∈ {0, . . . , s}. This polynomial must vanish
at a set of interpolation points derived from the code locators and the received
matrix Y .

2. Root-Finding: Determine all degree restricted skew polynomials f1, . . . , fs with
fi ∈ Fqm [x;σ, δ]<k for all i ∈ {1, . . . , s}, that satisfy the equation

Q0(x) +Q1(x)f1(x) + · · ·+Qs(x)fs(x) = 0. (3.4)

47

3 Efficient Decoding of Interleaved Linearized Reed–Solomon Codes

Definition 3.1 (Generalized Operator Vector Evaluation Map). Given an interpola-
tion point set

P = {[pi,0, pi,1, . . . , pi,s] : i ∈ {1, . . . , n}} ⊆ Fs+1
qm ,

a vector Q = [Q0, Q1, . . . , Qs] ∈ Fqm [x;σ, δ]s+1, and a vector a = [a1, a2, . . . , an] ∈ Fn
qm

containing the generalized operator evaluation parameters, we define the generalized
vector evaluation map E op

i : Fqm [x;σ, δ]s+1 → Fqm as

E op
i (Q)ai

def=
s∑

j=0
Qj(pi,j)ai

∀i ∈ {1, . . . , n}. (3.5)

Note that for i ∈ {1, . . . , n} the evaluation map E op
i (Q)ai

depends on [pi,0, pi,1, . . . , pi,s]
but for simplicity of notation we omit this dependency and always assume that an
evaluation map is defined with respect to some interpolation point set P.

Consider now an ILRS[β, ξ, ℓ, s; n, k] code with vectors ξ = [ξ1, ξ2, . . . , ξℓ] ∈ Fℓ
qm and

β = [β(1) | β(2) | . . . | β(ℓ)] ∈ Fn
qm transmitted over an additive channel as in (2.29).

The interpolation point set is given as

P = {[βi, y1,i, . . . , ys,i] : i ∈ {1, . . . , n}} ⊂ Fs+1
qm ,

where yj,i for j ∈ {1, . . . , s} and i ∈ {1, . . . , n} are the entries of the received matrix
Y . We define the vector a as follows

a =
[
a(1) | a(2) | . . . | a(ℓ)

]
∈ Fn

qm , (3.6)

where for each i ∈ {1, . . . , ℓ}, we have

a(i) = [ξi, ξi, . . . , ξi]︸ ︷︷ ︸
ni times

∈ Fni
qm .

Given a vector Q = [Q0, Q1, . . . , Qs] ∈ Fqm [x;σ, δ]s+1 of skew polynomials and a
weighting vector ω = [ω0, ω2, . . . , ωs] ∈ Zs+1

≥0 , we define the ω-weighted degree of Q as

degω(Q) def= max
0≤j≤n

{deg(Qj) + ωj}.

With the notion of the generalized operator vector evaluation map established, we
are now equipped to define the interpolation problem for ILRS codes.

Problem 3.1 (Vector Interpolation Problem). Given the interleaving order s ∈ Z≥0,
a degree constraint D ∈ Z≥0, a set of Fqm-linear vector evaluation maps, i.e.
Eop = {E op

i : i ∈ {1, . . . , n}} as defined in (3.5), a vector a = [a1, a2, . . . , an] ∈ Fn
qm

as defined in (3.6) and a vector ω = [0, k − 1, . . . , k − 1] ∈ Zs+1
≥0 , compute a vector

Q ∈ Fqm [x;σ, δ]s+1 that satisfies:

48

3.2 Weak Popov and Gröbner Bases

• E op
i (Q)ai

= 0, ∀i ∈ {1, . . . , n},

• degw(Q) < D.

A nonzero solution of Problem 3.1 exists if the degree constraint satisfies [BP22]

D =
⌈
n+ s(k − 1) + 1

s+ 1

⌉
.

If the sum-rank weight of the error, w = wt(n)
ΣR(E), satisfies

w <
s

s+ 1
(n− k + 1),

then, according to [BJR24, Theorem 2], a basis for a list L of candidate solutions of
size

|L| ≤ qmk(s−1),

can be found in polynomial time. This list L consists of all solutions to the root-finding
problem, that means all polynomials

f1, . . . , fs ∈ Fqm [x;σ]<k,

that satisfy (3.4). The list L also contains all possible message polynomial vectors
f ∈ Fqm [x;σ, δ]s<k corresponding to codewords C ∈ ILRS[β, ξ, ℓ, s; n, k] that satisfy

d
(n)
ΣR(C(f),Y) < s

s+ 1
(n− k + 1).

The root-finding problem can be solved efficiently using the minimal approximant basis
methods described in [BJPR19; BJPR21], requiring at most

Õ
(
sζp(n)

)
,

operations in Fqm .

3.2 Weak Popov and Gröbner Bases
For vectors a, b ∈ Fqm [x;σ, δ]n, we define the element-wise right modulo operation as

a modr b
def= [a1 modr b1, a2 modr b2, . . . , an modr bn] .

Similarly, we define the element-wise lclm for a, b ∈ Fqm [x;σ, δ]n as

lclm (a, b) def= [lclm (a1, b1) , lclm (a2, b2) , . . . , lclm (an, bn)] .

49

3 Efficient Decoding of Interleaved Linearized Reed–Solomon Codes

Furthermore, we introduce a ω-weighted monomial ordering ≺ω on Fqm [x;σ, δ]n.
For bi, bi′ ∈ Fqm \ {0}, we have

bix
iej ≺ω bi′xi′

ej′ , (3.7)

if either i + ωj < i′ + ωj′ , or i + ωj = i′ + ωj′ and j < j′, where ej denotes the
j-th unit vector over Fqm [x;σ, δ]. This definition of ≺ω aligns with the ω-weighted
term-over-position (TOP) ordering as described in [AL94].

Consider a nonzero vector a ∈ Fqm [x;σ, δ]n of skew polynomials and a weighting
vector ω = [ω1, . . . , ωn] ∈ Zn

≥0. We define the ω-pivot index Indw(a) of a as the
largest index j, where 1 ≤ j ≤ n, satisfying

deg(aj) + ωj = degω(a).

For any nonzero vector a ∈ Fqm [x;σ, δ]n, we define its leading term LT(a) as the
maximal term ai,jx

j under the ≺ω ordering. In this case, j corresponds to the ω-pivot
index of a.

A matrix A ∈ Fqm [x;σ, δ]a×b with a ≤ b is said to be in (row) ω-ordered weak Popov
form if the ω-pivot indices of its rows form a strictly increasing sequence with respect
to the row index [MS03].

A module over a ring, such as a Fqm [x;σ, δ]-module, is a generalization of the concept
of a vector space, where scalars are elements of a ring instead of a field.

Since Fqm [x;σ, δ] is not commutative, we distinguish between left and right modules.

Definition 3.2 (Left Module). A left Fqm [x;σ, δ]-moduleM is an abelian group under
addition with a scalar multiplication Fqm [x;σ, δ]×M→M satisfying:

1. u(a + b) = ua + ub for all u ∈ Fqm [x;σ, δ] and a, b ∈M,

2. (u+ v)a = ua + va for all u, v ∈ Fqm [x;σ, δ] and a ∈M,

3. (uv)a = u(va) for all u, v ∈ Fqm [x;σ, δ] and a ∈M.

A right Fqm [x;σ, δ]-module is similarly defined, but the scalar multiplication is from
the right, i.e., elements of the module are multiplied by elements of Fqm [x;σ, δ] from
the right.

A free Fqm [x;σ, δ]-module is a module that has a basis, a set of Fqm [x;σ, δ]-linearly
independent elements that span the module. The rank of this module is the number
of elements in its basis.

We now consider specific bases for left Fqm [x;σ, δ]-modules.

Definition 3.3 (ω-Ordered Weak Popov Basis [BJPR21]). LetM be a left Fqm [x;σ, δ]-
submodule of Fqm [x;σ, δ]b. For ω ∈ Za

≥0, a left ω-ordered weak Popov basis for M is
a full-rank matrix A ∈ Fqm [x;σ, δ]a×b satisfying:

50

3.2 Weak Popov and Gröbner Bases

1. A is in ω-ordered weak Popov form,

2. The rows of A form a basis of M.

We now explore the relationship between ω-ordered weak Popov bases and Gröb-
ner bases with respect to ≺ω for left Fqm [x;σ, δ]-submodules. This connection is
well-established for ordinary commutative polynomial rings (see, e.g., [Fit95; Ale02;
KRT07; Nie13; Nei16]). For skew polynomial rings, this relationship was derived
in [Mid12, Chapter 6] and applied in [BJPR21].

For a concise introduction to Gröbner bases, readers are referred to [Stu05], while
a comprehensive study can be found in [CLO92].

Let h1, h2, . . . , hk be elements of a left module. The span of these elements, denoted
by 〈h1, h2, . . . , hk〉, is defined as

〈h1, h2, . . . , hk〉 =
{

k∑
i=1

rihi : ri ∈ Fqm [x;σ, δ]
}
.

Definition 3.4 (Gröbner Basis [CLO92]). Let M be a left Fqm [x;σ, δ]-submodule. A
subset B = {b1, b2, . . . , bν} ⊂ M is a Gröbner basis for M under ≺ω if the leading
terms of B generate a left module containing all leading terms in M, i.e., if

〈LT(b1),LT(b2), . . . ,LT(bν)〉 = 〈LT(M)〉,

where LT(M) is the set of all leading terms of elements in M, determined by the
order ≺ω applied to the polynomial entries of the module vectors.

A Gröbner basis for an Fqm [x;σ, δ]-submoduleM does not necessarily form a mini-
mal generating set forM, since any larger set withinM that includes a Gröbner basis
will also qualify as a Gröbner basis (see [CLO92; Stu05]). The following definition
introduces a minimality condition on the size of Gröbner bases for an Fqm [x;σ, δ]-
submodule with respect to the order ≺ω.

Definition 3.5 (Minimal Gröbner Basis [CLO92]). For a given monomial ordering
≺ω, a Gröbner basis B for a left Fqm [x;σ, δ]-submoduleM is minimal if for all p ∈ B,
the leading term LT(p) is not in the module 〈LT(B \ {p})〉.

A minimal Gröbner basis B with respect to ≺ω is referred to as a reduced Gröbner
basis if its leading terms are normalized, and no monomial of any element p ∈ B is
contained within 〈LT(B \ {p})〉.

Theorem 6.29 in [Mid12] illustrates the relationship between the stronger w-ordered
Popov form and the corresponding reduced Gröbner basis with respect to ≺ω. This
reasoning can also be applied to establish a connection between the w-ordered weak
Popov form and the minimal Gröbner basis for ≺ω.

For any given module monomial order≺ and a basis B ⊂ Fqm [x;σ, δ]n of a submodule
M, there is an efficient approach to find a weight vector ω and a column permutation

51

3 Efficient Decoding of Interleaved Linearized Reed–Solomon Codes

P such that the weak Popov form under ≺ω of P (M) corresponds to the P -permuted
minimal Gröbner basis of M with respect to ≺ (see [Nei16, Chapter 1.3.4]).

3.3 Skew Kötter–Nielsen–Høhold Interpolation over
Skew Polynomial Rings

We now consider the skew Kötter–Nielsen–Høholdt (KNH) interpolation introduced
by Liu et al. [LMK14], which extends the KNH interpolation concept from ordinary
polynomial rings [WMW05] to the skew polynomial domain. Notably, when the auto-
morphism σ is the Frobenius automorphism and the derivation δ is zero, Fqm [x;σ, δ]
becomes isomorphic to the ring of linearized polynomials. Consequently, the KNH
variant for linearized polynomial rings proposed by Xie et al. [XYS11] can be consid-
ered a specific instance of the more general approach presented in [LMK14].

In this section, we consider the general case of the interpolation algorithm, which
works for any evaluation map. Later, we will apply this to ILRS codes using the
evaluation maps defined in Definition 3.1.

As input to our problem, we consider n many Fqm-linear skew vector evaluation
maps2 Ei, i.e.

Ei : Fqm [x;σ, δ]s+1 → Fqm , (3.8)
where i ∈ {1, . . . , n}. Here, n represents the number of interpolation constraints,
which will later coincide with the codeword length in the context of ILRS codes. The
parameter s is an interpolation parameter and later coincides with the interleaving
order of ILRS codes.

For each skew vector evaluation map Ei we define the kernels

Ki
def= {Q ∈ Fqm [x;σ, δ]s+1 : Ei(Q) = 0}, ∀i ∈ {1, . . . , n}.

For i ∈ {1, . . . , n} the intersection Ki
def= K1 ∩ K2 ∩ . . . ∩ Ki contains all vectors from

Fqm [x;σ, δ]s+1 that are mapped to zero under E1,E2, . . . ,Ei, i.e.

Ki = {Q ∈ Fqm [x;σ, δ]s+1 : Ej(Q) = 0,∀j ∈ {1, . . . , i}}.

Assuming that each Ki (for all i ∈ {1, . . . , n}) is a left Fqm [x;σ, δ]-submodule
(see [LMK14]), we can state the general skew polynomial vector interpolation problem.

2Previous works like [WMW05; LMK14; XYS11] use linear functionals for each interpolation point.
Our approach defines evaluation maps on skew polynomial vectors, which is equivalent when
Fqm [x; σ, δ]s+1 is viewed as an Fqm -vector space.

52

3.3 Skew Kötter–Nielsen–Høhold Interpolation over Skew Polynomial Rings

Problem 3.2 (General Vector Interpolation Problem). Given the integer s ∈ Z≥0, a
tuple of Fqm-linear vector evaluation maps E = (E1, . . . ,En) and a vector ω ∈ Zs+1

≥0 ,
compute a ω-ordered weak-Popov Basis for the left Fqm [x;σ, δ]-module

Kn = {b ∈ Fqm [x;σ, δ]s+1 : Ei(b) = 0,∀i ∈ {1, . . . , n}}.

To solve Problem 3.2, we can use a modified version of the multivariate skew KNH
interpolation algorithm from [LMK14]. The main adjustment lies in the output: rather
than returning a single minimal polynomial vector, we adapt [LMK14, Algorithm 1]
to return a w-ordered weak Popov basis for the entire interpolation module Kn. This
method resembles the approach employed in [Bar17] for linearized polynomial rings.

The modified multivariate skew KNH interpolation is summarized in Algorithm 1.

Algorithm 1: Modified Skew KNH Interpolation
Input : A tuple (E1, . . . ,En) of vector evaluation maps

A weighting vector ω = [w1, w2, . . . , ws+1] ∈ Zs+1
≥0

Output : A ω-ordered weak-Popov Basis B ∈ Fqm [x;σ, δ](s+1)×(s+1) for Kn

1 Initialize: B = Is+1 ∈ Fqm [x;σ, δ](s+1)×(s+1)

2 for i← 1 to n do
3 for j ← 1 to s+ 1 do
4 ∆j ← Ei(bj)
5 J ← {j : ∆j 6= 0}
6 if J 6= ∅ then
7 j∗ ← minj∈J {arg minj∈J {degω(bj)}}
8 b∗ ← bj∗

9 for j ∈ J do
10 if j = j∗ then
11 bj ←

(
x− Ei(xb∗)

∆j∗

)
b∗ /* degree-increasing step */

12 else
13 bj ← bj − ∆j

∆j∗
b∗ /* cross-evaluation step */

14 return B

Note that
min
j∈J
{arg min

j∈J
{degω(bj)}},

in Line 7 returns the smallest index j ∈ J to break ties, i.e. the index j of the minimal
vector bj w.r.t. ≺ω for which ∆j 6= 0 (see (3.7)).

53

3 Efficient Decoding of Interleaved Linearized Reed–Solomon Codes

In each iteration of Algorithm 1 (and so [LMK14, Algorithm 1]) there are three
possible update steps:

1. No update: The vector bj is not updated if bj is in the kernel Ki already, i.e.
if ∆j = Ei(bj) = 0.

2. Cross-evaluation (or order-preserving [LMK14]) update: For any bj that is
not minimal w.r.t. ≺ω (i.e. j 6= j∗) the cross-evaluation update (Line 13) is
performed such that

Ei

(
bj −

∆j

∆j∗
b∗
)

= Ei(bj)−
Ei(bj)
Ei(bj∗)

Ei(bj∗) = 0.

Note that the (w-weighted) degree of bj is not increased by this update.

3. Degree-increasing (or order-increasing [LMK14]) update: For the minimal
vector bj∗

def= b∗ w.r.t. ≺ω the degree-increasing update (Line 11) is performed
such that

Ei

((
x− Ei(xb∗)

∆j∗

)
b∗
)

= Ei(xb∗)− Ei(xb∗)
Ei(b∗)

Ei(b∗) = 0.

The (w-weighted) degree of b∗ is increased by one in this case.

Define the sets

Sj
def= {Q ∈ Fqm [x;σ, δ]s+1 : Indw(Q) = j} ∪ {0},

and
Xi,j

def= Ki ∩ Sj,

for all i ∈ {1, . . . , n} and j ∈ {1, . . . , s + 1}. Note that Sj ∩ Sj′ = {0} for all
1 ≤ j, j′ ≤ s+ 1.

The following result from [LMK14] is fundamental for proving the correctness of
Algorithm 1.

Theorem 3.1 ([LMK14, Theorem 5]). Assume that Ki are left Fqm [x;σ, δ]-submodules
for all i ∈ {1, . . . , n}. Then after each iteration i of Algorithm 1, the updated bj is a
minimum w.r.t. ≺ω in Xi,j = Ki ∩ Sj for all j ∈ {1, . . . , s+ 1}.

In other words, after the i-th iteration each bj has Indw(b) = j and the minimal
w-weighted degree among all vectors in Xi,j. Therefore, after the i-th iteration, the
matrix B is a w-ordered weak Popov basis for Ki.

Lemma 3.1 (Correctness of Algorithm 1). Algorithm 1 is correct and provides a
solution to the general vector interpolation problem in Problem 3.2.

54

3.3 Skew Kötter–Nielsen–Høhold Interpolation over Skew Polynomial Rings

Proof. The update steps of Algorithm 1 and [LMK14, Algorithm 1] are equivalent and
therefore we have by [LMK14, Theorem 5] that after the i-th iteration each bj ∈ Ki.
We now show that after the i-th iteration of Algorithm 1 the matrix B is a w-ordered
weak Popov basis for Ki. By Theorem 3.1 ([LMK14, Theorem 5]) each bj has the
minimal w-weighted degree among all polynomials in Xi,j, which implies that the w-
pivot indices of b0, . . . , bs are increasing and distinct. Now assume that there exists a
vector p ∈ Ki that can not be represented by a Fqm [x;σ, δ]-linear combination of the
form

p =
s∑

j=0
ajbj,

for some aj ∈ Fqm [x;σ, δ]. Then we must have that p can be written as

p = r +
s∑

j=0
ajbj,

where degw(r) < minj{degw(bj)}. This contradicts that bj is a minimum w.r.t. ≺ω

in Xi,j since Indw(r) ∈ {0, . . . , s}. Therefore we conclude that after the i-th iteration
B is a w-ordered weak Popov basis for Ki.

Proposition 3.1 (Computational Complexity of Algorithm 1). The complexity of
Algorithm 1 is dominated by the complexity of:

• O(sn) evaluation maps Ei applied to a vector from Fqm [x;σ, δ]s+1
≤n ,

• n multiplications involving a monic degree-1 skew polynomial and a vector from
Fqm [x;σ, δ]s+1

≤n (degree-increasing step),

• O(sn) multiplications of an element from Fqm with a vector from Fqm [x;σ, δ]s+1
≤n

(cross-evaluation step).

Proof. In each of the n iterations we have:

• s+ 2 evaluation maps Ei applied to a vector from Fqm [x;σ, δ]s+1
≤n (Line 4),

• one product of a skew polynomial of degree 1 with a vector from Fqm [x;σ, δ]s+1
≤n

(degree-increasing step in Line 11),

• s multiplications of an element from Fqm with a vector from Fqm [x;σ, δ]s+1
≤n (cross-

evaluation step in Line 13),

• s+ 1 inversions/divisions in Fqm .

55

3 Efficient Decoding of Interleaved Linearized Reed–Solomon Codes

3.4 Fast Skew Kötter–Nielsen–Høhold Interpolation

In [Nie14], a fast divide-and-conquer (D&C) variant of the Kötter interpolation was
introduced for the Guruswami–Sudan decoder of Reed–Solomon codes. We extend
this approach to the skew KNH interpolation proposed in [LMK14].

The core strategy involves decomposing Problem 3.2 into a tree-like structure, typ-
ical of D&C approaches. This tree represents a hierarchy of increasingly smaller sub-
problems. At the lowest level, leaf nodes correspond to the smallest subproblems,
each associated with a linear functional. Updates at this level are represented as skew
polynomial matrices. Moving up the tree, inner nodes combine these updates through
matrix multiplication. The algorithm’s efficiency stems from a key insight: at any
given node, only the intermediate basis’s image on the linear functionals within that
node’s subtree is necessary, significantly reducing computational complexity.

We now present the general framework for the fast skew KNH interpolation algo-
rithm. Its application to ILRS codes will be discussed in Section 3.4.3.

The transformations applied to the basis B during the inner loop of the i-th iteration
in Algorithm 1 can be encapsulated by the matrix U , defined as

U
def=



1 − ∆0
∆j∗

. . .
...

1 −∆j∗−1
∆j∗(

x− Ei(xbj∗)
∆j∗

)
−∆j∗+1

∆j∗
1

...
. . .

− ∆s

∆j∗
1



. (3.9)

After the i-th iteration, the resulting basis for Ki is given by UB. Note that when
∆j = 0, the corresponding row bj remains unchanged, as the ratio ∆j/∆j∗ evaluates
to zero.

3.4.1 Divide-and-Conquer Skew Kötter Interpolation

First, let us introduce the notation necessary for describing the subsequent algorithms.
For j ≥ i, let m[i,j] ∈ Fqm [x;σ, δ]s+1 denote a skew polynomial vector associated with
the index set {i, i+ 1, . . . , j − 1, j}, where m[i,i] = mi.

We define P as a globally accessible ordered set encompassing all possible skew
polynomial vector elements m[i,j] as

56

3.4 Fast Skew Kötter–Nielsen–Høhold Interpolation

P def=
{
m[0,n−1],m[0,bn/2c−1],m[bn/2c,n−1], . . . ,m0,m1, . . . ,mn−1

}
⊆ Fqm [x;σ, δ]s+1,

where n ∈ N. This vector is assumed to be precomputed for the subsequent algo-
rithms. The process of efficiently precomputing P is described in detail in Section 3.4.2.

For a tuple of evaluation maps E = (E1, . . . ,En), we introduce a similar indexing
convention to represent an ordered segment of E as

E[i,j] = (Ei, . . . ,Ej).

Depending on the considered interpolation problem, we will later on define the poly-
nomial vectors m[i,j] to contain minimal polynomials that depend on the interpolation
points corresponding to the vector evaluation maps in E[i,j].

In contrast to the general interpolation problem presented in Problem 3.2, which
considers sets of evaluation maps, our approach employs the global set P and the
segmentation notation. This notation facilitates the construction of the problem-
solving tree within the D&C algorithm, providing a structured framework for the
divide-and-conquer process.

To establish a general framework for the fast skew KNH interpolation, we introduce
a key assumption. We demonstrate in Section 3.4.3 that this assumption holds for
decoding ILRS codes.

Assumption 1. Consider a tuple of linear functionals E = (E1, . . . ,En) as defined
in (3.8), and let E[i,j] = (Ei, . . . ,Ej) be an ordered segment of E for 1 ≤ i ≤ j ≤ n.

For any Q ∈ Fqm [x;σ, δ]s+1, we assume that the skew polynomial vector m[i,j] ∈ P,
containing minimal skew polynomials dependent on E[i,j], satisfies

El(Q) = El(Q modr m[i,j]), ∀l ∈ {i, . . . , j}.

Having established the necessary framework and assumptions, we now present an
algorithm that forms a crucial component of our fast skew KNH interpolation method.
Algorithm 2, named SkewInterpolatePoint, performs a key step in the interpolation
process by updating a basis matrix to satisfy a single interpolation condition.

57

3 Efficient Decoding of Interleaved Linearized Reed–Solomon Codes

Algorithm 2: SkewInterpolatePoint
Input : A skew vector evaluation map Ei

B ∈ Fqm [x;σ, δ](s+1)×(s+1)

d = [d1, d2, . . . , ds+1] ∈ Zs+1
≥0 s.t. dj = degω(bj) ∀j ∈ {1, . . . , s+ 1}

Output : T ∈ Fqm [x;σ, δ](s+1)×(s+1) s.t. the rows of B̂
def= T B ∀ω-ordered

weak-Popov Basis for 〈B〉 ∩ Ki

d̂ = [d̂1, d̂2, . . . , d̂s+1] ∈ Zs+1
≥0 s.t. d̂j = degω(b̂j) ∀j ∈ {1, . . . , s+ 1}

1 d̂← d

2 for j ← 0 to s do
3 ∆j ← Ei(bj)
4 J ← {j : dj 6= 0}
5 T ← Is+1 ∈ Fqm [x;σ, δ](s+1)×(s+1)

6 if J 6= ∅ then
7 j∗ ← minl∈J {arg minl∈J {dl}}
8 T ← U where U is as in (3.9)
9 d̂j∗ ← d̂j∗ + 1

10 return (T , d̂)

The correctness of Algorithm 2 is established by the following lemma.

Lemma 3.2 (Correctness of Algorithm 2). The SkewInterpolatePoint procedure de-
scribed in Algorithm 2 correctly transforms the input basis to satisfy the given inter-
polation condition.

Proof. The structure of the matrix U is designed to perform two key operations:

1. For all columns except the j∗-th, U implements the cross-evaluation step for the
non-minimal rows of B. This operation, corresponding to Line 13 in Algorithm 1,
is achieved through the entries in the j-th row and j∗-th column of U .

2. The entry at position (j∗, j∗) in U executes the degree-increasing step, mirroring
Line 11 in Algorithm 1.

As a result of these operations, the algorithm produces a transformation matrix T
with the property that Ei maps all rows of T B to zero. This demonstrates that the
algorithm successfully adjusts the basis to meet the required interpolation condition.

Having established the basic step with the SkewInterpolatePoint routine, we can now
develop a D&C variant of the skew KNH interpolation. This approach, which we call
SkewInterpolateTree, is presented in Algorithm 3.

58

3.4 Fast Skew Kötter–Nielsen–Høhold Interpolation

Algorithm 3: SkewInterpolateTree
Input : Skew vector evaluation maps E[i1,i2] = (Ei1 , . . . ,Ei2)

B ∈ Fqm [x;σ, δ](s+1)×(s+1)

d = [d1, d2, . . . , ds+1] ∈ Zs+1
≥0 s.t. dj = degω(bj) ∀j ∈ {1, . . . , s+ 1}

Output : A matrix T ∈ Fqm [x;σ, δ](s+1)×(s+1) s.t. B̂
def= T B is a ω-ordered

weak-Popov Basis for 〈B〉 ∩ Ki1 ∩ · · · ∩ Ki2

d̂ = [d̂1, d̂2, . . . , d̂s+1] ∈ Zs+1
≥0 s.t. d̂j = degω(b̂j) ∀j ∈ {1, . . . , s+ 1}

1 if i1 = i2 then
2 return SkewInterpolatePoint(Ei1 ,B,d)
3 else
4 z ←

⌊
i1+i2

2

⌋
5 B1 ← B modr m[i1,z]

6 (T1,d1)← SkewInterpolateTree(E[i1,z],B1,d)
7 B2 ← T1B modr m[z+1,i2]

8 (T2,d2)← SkewInterpolateTree(E[z+1,i2],B2,d1)
9 return (T = T2T1, d̂ = d2)

To establish the validity of our D&C approach, we now prove the correctness of the
SkewInterpolateTree algorithm.

Lemma 3.3 (Correctness of Algorithm 3). Given Assumption 1, the SkewInterpolate-
Tree procedure described in Algorithm 3 correctly computes a basis for the intersection
of the input module with the kernels of the given evaluation maps.

Proof. The correctness of Algorithm 3 can be established through the following key
points:

1. The base case (when i1 = i2) is handled correctly by the SkewInterpolatePoint
routine, as shown in Lemma 3.2.

2. For the recursive case, the algorithm correctly divides the problem into two
subproblems, thanks to Assumption 1. This assumption ensures that the modulo
operations in Lines 5 and 7 preserve the necessary information.

3. The combination of the subproblem solutions in Line 9 is valid due to the prop-
erties of the transformation matrix U defined in (3.9).

These elements together ensure that the algorithm produces a correct basis for the
intersection of the input module with all the kernel modules defined by the given
evaluation maps.

59

3 Efficient Decoding of Interleaved Linearized Reed–Solomon Codes

3.4.2 Precomputing Minimal-Polynomial Vectors
We now introduce an efficient method to pre-compute the set P of minimal-polynomial
vectors m[i,j] required in Algorithm 3. Our approach builds upon the work presented
in [CL17b, Theorem 3.2.7] and utilizes the concept of generalized operator evaluation,
which can be constructed using the lclm of polynomial sequences (see (2.15)).

Algorithm 4 outlines this efficient procedure, which employs a D&C structure. To
illustrate this structure, we provide a visual representation in Figure 3.1 for the case
where n = 4.

The algorithm begins with the initial minimal-polynomial vectors m1,m2, . . . ,mn,
from which all other minimal polynomials are computed via the lclm. The compu-
tation of these initial vectors is based on the general operator evaluation, as defined
in Section 2.5.3. Later in (3.10) we show how this can be defined for decoding ILRS
codes.

Algorithm 4: PreComputeMinVectorsTree
Input : Upper and lower index bound a ∈ Z≥0 and b ∈ Z≥0 with b ≥ a

Minimal-polynomial vectors ma,ma+1, . . . ,mb ∈ Fqm [x;σ, δ]s+1

Output : A set

{m[a,b],m[a,b(b−1)/2c−1],m[b(b−1)/2c,b], ,m[a,a],

m[a+1,a+1], ,m[b,b]} ⊆ Fqm [x;σ, δ]s+1

1 if a = b then
2 return {ma}
3 else
4 δ ← b b−a+1

2 c
5 P1 ← PreComputeMinVectorsTree(a, a+ δ − 1)
6 P2 ← PreComputeMinVectorsTree(a+ δ, b)
7 m[a,b] ← lclm

(
m[a,a+δ−1],m[a+δ,b]

)
/* m[a,a+δ−1] ∈ P1 and m[a+δ,b] ∈ P2 */

8 return P1 ∪ P2 ∪ {m[a,b]}

Lemma 3.4 (Correctness of Algorithm 4). Algorithm 4 is correct.

Proof. The correctness of Algorithm 4 follows directly from [CL17a, Theorem 3.2.7].
The algorithm proceeds in a recursive manner and splits the size of the set of consid-
ered minimal polynomials in half. When sets consist only of one element, m[a,a] are
computed, using the generalized operator (see (2.15)). The sets of minimal polynomi-
als of larger size are then obtained by merging the smaller sets of minimal polynomials

60

3.4 Fast Skew Kötter–Nielsen–Høhold Interpolation

using the relation m[a,b] = lclm
(
m[a,a+δ−1],m[a+δ,b]

)
with δ = b b−a+1

2 c, also illustrated
in Figure 3.1.

m[1,4] = lclm
(
m[1,2], m[3,4]

)

m[1,2] = lclm
(
m[1,1], m[2,2]

)

m[1,1] = m1 m[2,2] = m2

m[3,4] = lclm
(
m[3,3], m[4,4]

)

m[3,3] = m3 m[4,4] = m4

Figure 3.1: Illustration of the computation tree of Algorithm 4 to precompute all
minimal-polynomial vectors in the set P for n = 4.

3.4.3 Application to Interleaved Linearized Reed–Solomon Codes
For an interpolation point set P = {[pi,0, pi,1, . . . , pi,s] | i ∈ {1, . . . , n}} ⊆ Fs+1

qm define
the vectors of minimal polynomials with respect to the generalized operator evaluation
for 1 ≤ i ≤ j ≤ n as

mop
[i,j](x)ai

def=
[
Mop

{pi,0,...,pj,0}(x)ai
,Mop

{pi,1,...,pj,1}(x)ai
, . . . (3.10)

. . . ,Mop
{pi,s,...,pj,s}(x)ai

]
∈ Fqm [x;σ, δ]s+1,

with the elements defined as in (2.15).
Lemma 3.5. Let Eop = (E op

1 , . . . ,E op
n) be a tuple of generalized operator vector

evaluation maps as defined in (3.5) and let Eop
[i,j] = (E op

i , . . . ,E op
j). Then for any

Q ∈ Fqm [x;σ]s+1 we have that

E op
l (Q)al

= E op
l (Q modr mop

[i,j](x)a)al
, ∀l ∈ {i, . . . , j},

where a = [ai, . . . , aj] contains the corresponding general operator evaluation parame-
ters.
Proof. The lemma follows directly by applying the result from Lemma 2.1 to the
elementary evaluations in the generalized operator vector operator evaluation maps
defined in (3.5).

61

3 Efficient Decoding of Interleaved Linearized Reed–Solomon Codes

Lemma 3.5 has a significant implication: the generalized operator vector evaluation
maps from Definition 3.1 and the minimal-polynomial vectors defined in (3.10) satisfy
Assumption 1. This compliance allows us to address Problem 3.1 using Algorithm 3.

To solve the problem, we invoke Algorithm 3 with the following parameters:

• Evaluation set: Eop,

• Basis: Is+1 (the (s+ 1)× (s+ 1) identity matrix),

• Initial degrees: ω = [0, k − 1, . . . , k − 1].

This approach leverages the properties established in Lemma 3.5 to efficiently solve
the interpolation problem for ILRS codes.

3.5 Summary and Discussion
In this chapter, we focused on efficient decoding algorithms for ILRS codes, motivated
by the need for efficient decryption algorithms for legitimate users of potential code-
based cryptosystems using sum-rank-metric codes. We revisited key decoding concepts
for ILRS codes, setting the stage for our main contribution.

The primary result is a fast D&C variant of the KNH interpolation algorithm over
free modules over skew polynomial rings. This variant solves the interpolation step
of interpolation-based decoding of ILRS codes in Õ

(
sζp(n)

)
operations in Fqm . Our

approach achieves the same asymptotic complexity as the fastest known methods for
skew polynomial rings but uses the well-established bottom-up KNH algorithm, avoid-
ing the more complex top-down minimal approximant bases techniques. Importantly,
it also eliminates the need for pre-processing of interpolation points, making it more
straightforward to implement.

Despite this improvement, Table 3.1 highlights that the optimal complexity of
Õ
(
sζ−1p(n)

)
achievable for ordinary polynomial rings is still out of reach for skew

polynomials. Closing this gap remains an open area for future research.
This work advances the decoding efficiency for ILRS codes and applies to RS codes

and Gabidulin codes as special cases. Our algorithmic improvements are crucial for
enabling efficient decryption for legitimate users of potential code-based cryptosystems,
making practical decoding more feasible.

Future research could focus on closing the complexity gap between skew and ordinary
polynomial rings, as well as exploring applications of this algorithm to alternative
metrics or algebraic structures. These developments could enhance the efficiency of
decoding algorithms and the practical use of ILRS codes in cryptographic systems.

62

3.5 Summary and Discussion

Table 3.1: Overview of the computational complexity of the proposed fast KNH in-
terpolation approach compared to existing methods for the case of zero
derivations (δ = 0).

Interpolation Method Type Polynomial Ring Complexity (δ = 0)

or
di

na
ry

KNH [WMW05] bottom-up Fqm [x; Id, 0] O(s2n2)
DaC KNH [Nie14] bottom-up Fqm [x; Id, 0] Õ

(
sζp(n)

)
Min. approximant
bases [GJV03]

top-down Fqm [x; Id, 0] Õ
(
sζp(n)

)
Min. interpolation
bases [JNSV17]

top-down Fqm [x; Id, 0] Õ
(
sζ−1p(n)

)

sk
ew

Linearized
KNH [XYS11]

bottom-up Fqm [x;σFrob, 0] O(s2n2)

Skew KNH [LMK14] bottom-up Fqm [x;σ, δ] O(s2n2)
DaC skew
KNH [BJR24]

bottom-up Fqm [x;σ, δ] Õ
(
sζp(n)

)
Skew min. approximant
bases [BJPR21]

top-down Fqm [x;σ, δ] Õ
(
sζp(n)

)

63

4
Decoding of Space-Symmetric Rank
Errors

In this chapter, we focus on Gabidulin codes, a specific type of rank-metric codes
[Gab85; Rot91; Del78]. Note that the rank metric is a special case of the sum-rank
metric, where the number of blocks is one. Similarly, Gabidulin codes are a specific
instance of LRS codes. These codes, analogous to RS codes in the Hamming metric,
play a crucial role in fields such as communication, cryptography, and network coding
[Loi16; Loi17; LGB03; SKK08; SRV12; LCG19].

Previous work [GP04; PG06; GP06] has shown that Gabidulin codes containing a
linear subcode of symmetric matrices can correct symmetric error matrices of rank up
to (n− 1)/2.

In this work, we relax the symmetry condition to focus on space-symmetric errors,
where only the column and row spaces of error matrices are required to match. We
demonstrate that for space-symmetric errors, decoding errors of rank up to 2(n−k)/3
is possible with high probability.

This chapter extends the understanding of symmetric errors to space-symmetric
ones, achieving enhanced decoding by using Gabidulin codes with a linear subcode of
symmetric matrices. We cover the theoretical basis of this approach, provide proofs,
and include simulation results. Additionally, we touch on potential applications in
code-based cryptography.

The content of this chapter is based on the work presented at the IEEE Interna-
tional Symposium on Information Theory (ISIT 2021) and published in its proceedings
[JSW21]. The author of this dissertation contributed significantly to all aspects of the
paper, including the theoretical framework, proofs, and simulation results.

65

4 Decoding of Space-Symmetric Rank Errors

4.1 Gabidulin Codes Generated by Weak
Self-Orthogonal Bases

Throughout this chapter, we focus on codewords that expand into square matrices over
Fq for symmetry definitions, so we let n = m. In this case and analogous to the general
definitions in (2.1) and (2.2), let the elements of the vector α = [α1, α2, . . . , αn] ∈ Fn

qn

correspond to a fixed basis of Fqn over Fq. We define the map1

ϕ : Fn
qn → Fn×n

q

a 7→ A,

where a ∈ Fn
qn and A ∈ Fn×n

q is the unique matrix such that a = αA. The map ϕ is
a bijection that preserves rank, so we have

rkq(a) = rkq(A).

For ϕ(a) = A, let â be the vector such that ϕ(â) = A>. We call â the ϕ-transposed
vector of a. If A is a symmetric matrix, meaning A = A>, then a = â. Furthermore
let GLn(Fq) denote the set of all matrices in Fn×n

q of full rank.
Gabidulin codes are constructed using linearized polynomials, which were introduced

by Ore [Ore33a]. The ring of linearized polynomials, denoted by Lqn[x], is isomorphic
to the ring of skew polynomials (see Section 2.5.2 for details).

Recall that x[i] = xqi denotes the i-th power of the Frobenius automorphism. For
a matrix M ∈ Fa×b

qm , we use M [i] to indicate the elementwise application of the i-th
power of the Frobenius automorphism to each entry of M .

A linearized polynomial f(x) ∈ Lqn[x] over Fqn takes the form

f(x) =
df∑

i=0
fi+1x

[i],

where fi ∈ Fqn . We define the q-degree of f(x), denoted degq f(x), as df when we
have that fdf +1 6= 0. With f = [f1, f2, . . . , fdf +1] ∈ Fdf +1

qn we denote the vector
containing the coefficients of f(x). The multiplication of two linearized polynomials
g(x), f(x) ∈ Lqn[x] is defined as the (noncommutative) composition, i.e.

g(x) · f(x) def= g(f(x)).

Linearized polynomials possess the property of q-linearity. Specifically, for all

1Here, we use ϕ(·) as a notation variant of ext(·) (cf. (2.1)) from Chapter 2, specifically to distinguish
this case where m = n.

66

4.1 Gabidulin Codes Generated by Weak Self-Orthogonal Bases

α1, α2 ∈ Fq and a, b ∈ Fqn , the following holds

f(α1a+ α2b) = α1f(a) + α2f(b).

A linearized polynomial of q-degree d is called the minimal subspace polynomial of
a d-dimensional subspace if it has all elements of that subspace as roots.

One possible definition of Gabidulin codes is through a generator matrix, which
coincides with the special case of the general Moore matrix described in (2.17).
Definition 4.1 (Gabidulin Code). Denote by Gabα[n, k] a Gabidulin code of dimension
k and length n over Fqn which is defined by its k × n generator matrix

Gk
def= Mk(α),

where α ∈ Fn
qn and α1, α2, . . . , αn are linearly independent over Fq. The Moore matrix

Mk(α) is as defined in (2.17). The set of all Gabidulin codewords is then given by

Gabα[n, k] def= {uGk : ∀u ∈ Fk
qn}.

Weak self-orthogonal bases play a significant role in coding theory and finite field
applications [MB93; MS77; PG06]. We use such a basis for α, defined in the following.
Definition 4.2 (Weak Self-Orthogonal Basis). A basis α = [α1, . . . , αn] ∈ Fn

qn of Fqn

over Fq is called a weak self-orthogonal basis if

Mn(α) ·Mn(α)> = D,

where D ∈ Fn×n
qn is a diagonal matrix.

In the following, we introduce the concept of transposed Gabidulin codes.
Definition 4.3 (Transposed Gabidulin Code). We define the transposed Gabidulin
code as

Gab>
α [n, k] def= {ϕ−1(ϕ(c)>) : ∀c ∈ Gabα[n, k]}.

The relationship between Gabidulin codes and their transposed counterparts be-
comes particularly interesting when considering their generator and parity-check ma-
trices.

If the first row α of a generator matrix of a Gabidulin code Gabα[n, k] forms a weak
self-orthogonal basis, then the parity-check matrix of the code is [PG06]

Hn−k = Mn−k(α)[k].

Furthermore, under the same conditions, the parity-check matrix of the transposed
code Gab>

α [n, k] takes a similar but distinct form [PG06]

Ĥn−k = Mn−k(α)[1].

67

4 Decoding of Space-Symmetric Rank Errors

4.2 Space-Symmetric Channel Model
We consider an additive channel model where a Gabidulin codeword c ∈ Gabα[n, k] is
corrupted by an error e of rank rkq(e) = w

y = c + e ∈ Fn
qm . (4.1)

In [GP04; GP06; PG06], the error matrix E = ϕ(e) ∈ Fm×n
q was considered to be

symmetric, i.e.
E = E>.

Under this assumption, errors of rank up to w ≤ (n−1)/2 can be corrected for certain
rates.

In this paper, we relax the condition of E being symmetric to the condition that
the row space of E, denoted by Rq(E), equals its column space, denoted by Cq(E).
That means

Rq(E) = Cq(E) .

We call a matrix of rank w, whose row space equals its column space space-symmetric.
Such a matrix can be decomposed as

E = AP A>, (4.2)

where A ∈ Fn×w
q and P ∈ GLw(Fq) are full-rank matrices. Note that the vector

a = [a1, a2, . . . , aw] = ϕ−1(A) ∈ Fn
qn , (4.3)

forms a basis over Fq for both the column space and the row space of E, since we have
that Rq(E) = Cq(E).

4.3 Syndrome-Based Decoding Approach
This section introduces a syndrome-based decoding approach for Gabidulin codes. We
then demonstrate how to transform the problem of decoding space-symmetric errors
into decoding a specific interleaved Gabidulin code of interleaving order two.

Our method hinges on computing two syndromes:

1. One from the original code,

2. Another by transposing the received noisy codeword matrix and obtaining the
syndrome from the transposed Gabidulin code.

These two syndromes are then used to jointly solve a linear system of equations,
potentially increasing the decoding radius beyond (n−k)/2. The feasibility of finding a

68

4.3 Syndrome-Based Decoding Approach

solution depends on the matrix P , as defined in (4.2). The resulting decoding process
closely resembles that of a 2-interleaved Gabidulin code.

For more details on syndrome-based correction of up to (n−k)/2 errors in Gabidulin
codes, we refer to [Gab85; Rot91; RP04a; SRB11]. For information on decoding
interleaved Gabidulin codes, see [Loi06; SWC12; SB10; WZ14].

From the channel model in (4.1), we can derive two key syndromes

s(1) = ŷĤ>
n−k = êĤ>

n−k, (4.4)

for the transposed code Gab>
k [α], and

s(2) = yH>
n−k = eH>

n−k, (4.5)

for the non-transposed Gabα[n, k] code. Each syndrome corresponds to a polynomial
in Lqn[x]

s(i)(x) =
n−k∑
j=1

sjx
[j−1], ∀i ∈ {1, 2}.

Given an error decomposed as in (4.2), we introduce the row error span polynomial.
This polynomial is defined as the minimal subspace polynomial of the vector a (see
[LN96]) as

Γ(x) def=
∏

u∈Rq(E)
(x− ϕ−1(u)) ∈ Lqn[x],

with degq (Γ(x)) = w.
The space-symmetric nature of our error implies that Rq(E) = Cq(E). Conse-

quently, the row error span polynomial is identical to the column error span polyno-
mial, and satisfies

Γ(ai) = 0,

for all i ∈ {1, . . . , w}, where ai are the entries of the vector a as defined in (4.3).
In the following, we give the key equation of the original code and the transposed

code.

Theorem 4.1 (Key Equations). Let Γ(x) = ∑w
i=0 Γi+1x

[i] ∈ Lqn[x] be the error span
polynomial with w = degq (Γ(x)) = rkq (e). Then for each syndrome we obtain a key
equation as follows

Γ(s(i)(x)) ≡ Ω(i)(x) mod x[n−k],∀i ∈ {1, 2},

for some Ω(i)(x) with degq(Ω)(i)(x)) < w.

Proof. See Appendix A.1.1.

69

4 Decoding of Space-Symmetric Rank Errors

Solving the key equation can be done by solving the linear system of equations

S(i) · Γ> = 0,

where Γ = [Γ1,Γ2, . . . ,Γw+1] and S(i)

S(i) def=


s

(i)
w+1

[0]
s(i)

w

[1]
. . . s

(i)
1

[w]

s
(i)
w+2

[0]
s

(i)
w+1

[1]
. . . s

(i)
2

[w]

...
...

. . .
...

s
(i)
n−k

[0]
s

(i)
n−k−1

[1]
. . . s

(i)
n−k−w+1

[w]

 . (4.6)

Since for each syndrome the error span polynomial in the key equation is the same,
we can solve the two key equations jointly. This approach is similar to decoding a
2-interleaved Gabidulin code [Loi06; SWC12; SB10; WZ14] which yields the following
linear system of equations

S · Γ> =
[
S(1)

S(2)

]
· Γ> = 0, (4.7)

where (see Appendix A.1.2)

S(1) = Mn−k−w(a)[w+1] · P ·Mw+1(a)>, (4.8)

and
S(2) = Mn−k−w(a)[w+k] · P > ·Mw+1(a)>. (4.9)

Thus, S is as follows

S =
[

Mn−k−w(a)[w+1] · P
Mn−k−w(a)[w+k] · P >

]
·Mw+1(a)>. (4.10)

When rkq (S) = w, we obtain a unique solution for Γ(x), up to a scalar factor.
Solving the key equation (4.7) yields the coefficients of Γ(x), allowing us to determine
a basis for its root space. This basis corresponds to a possible a in the decomposition
given in (4.2). With a potential a identified, we can then determine the error.

Algorithm 5 outlines the complete decoding process, which has a complexity of at
most O(n3) operations over Fqn . For a detailed method of obtaining the error matrix
E from a possible vector a, refer to Appendix A.1.3.

While Algorithm 5 suffices for our analysis, it’s worth noting that more efficient
methods exist for solving the joint syndrome key equation (4.7) and determining the
matrix B. The decoding techniques outlined in Chapter 3 are also applicable in this
context. These sophisticated algorithms operate with quadratic or even sub-quadratic

70

4.4 Probability of Decoding Failure

complexity in terms of n. For further details on alternative decoding methods and
algorithms, we refer the reader to [Loi06; SB10; SJB11; WZ14; PRLS17; PMM+17;
SWC12; PW18; PW16; BJPR21].

Algorithm 5: DecodeSpaceSymmetric
Input : y = [y1, y2, . . . , yn] ∈ Fn

qn

Parity-check matrix Hn−k of Gabα[n, k]
Output : c ∈ Gabα[n, k] or “decoding failure”

1 s(1) ← ŷĤ>
n−k

2 s(2) ← yH>
n−k

3 if s(2) = 0 then
4 return y

5 else
6 w ←

⌊
2
3(n− k)

⌋
7 Set up S(1) and S(2) as in (4.6)
8 S ← [(S(1))>, (S(2))>]>
9 while rk(S) < w do

10 w ← w − 1
11 Repeat Line 7 and 8
12 Solve: S · Γ> = 0 for Γ = [Γ1, . . . ,Γw+1] ∈ Fw+1

qn

13 Find a basis a ∈ Fz
qn of the root space of Γ(x)

14 if z = w then
15 Find B s.t. e = aB /* cf. Appendix A.1.3 */
16 c← y − aB

17 return c

18 else
19 return “decoding failure”

4.4 Probability of Decoding Failure
In this section, we demonstrate that decoding space-symmetric errors is likely to suc-
ceed with high probability. We focus on space-symmetric error matrices as represented
in (4.2), and for simplicity in the analysis, we assume that the matrix

Q
def= P −1 · P >,

71

4 Decoding of Space-Symmetric Rank Errors

is uniformly distributed over GLw(Fq). Section 4.5 provides simulation results to
support this assumption.

Theorem 4.2 (Decoding of Space-Symmetric Errors). Let Gabα[n, k] be a Gabidulin
code, where α is a weak self-orthogonal basis. Let r be a noisy Gabidulin codeword
as in (4.1) where E is a space-symmetric matrix of rank w ≤ 2(n − k)/3. Then
decoding is guaranteed with probability of at least 1 − Pf , where Pf is the decoding
failure probability.

Assume that the matrix
Q = P −1 · P >, (4.11)

where P is defined in (4.2), is uniformly drawn at random from GLw(Fq). That means

Q
$← GLw(Fq).

Then Pf is bounded from above by

Pf ≤ 4/qn.

Proof. As discussed above, we obtain a unique solution for rkq (S) = w to succeed with
decoding. To analyze the probability of failure, we restrict to the case for which the
matrices Mn−k−w(a)[w+k] and Mn−k−w(a)[w+1] have no common rows, which means
that w > n−2k. Consider the case of symmetric error matrices E for which P = P >,
we have that

S =
[
Mn−k−w(a)[w+1]

Mn−k−w(a)[w+k]

]
· P ·Mw+1(a)>,

for which we know that rkq (P) = w by definition, rkq (Mw+1(a)>) = w and since
n − k < w + k also the left part of the decomposition of S has always rank w for
w ≤ 2(n− k)/3.

For the case where P is not symmetric, we can rewrite (4.10) in a more compact
form. Let us define

M̃n−k−w
def= Mn−k−w(a) · P .

Using this definition, we can express the syndrome matrix S as

S =
[

M̃
[w+1]
n−k−w

M̃
[w+k]
n−k−w ·Q

]
·Mw+1(a)>. (4.12)

Assuming that Q is uniformly drawn at random from the set of all matrices in
GLw(Fq) the matrix S is similar to the syndrome matrix of decoding a 2-interleaved
Gabidulin code and we can bound the probability of decoding error Pf according
to [SB10] and Theorem 4.2 follows.

72

4.5 Numerical Results

4.5 Numerical Results
We simulated a Gabidulin code using a weak self-orthogonal basis as locators, with
parameters n = 8 and k = 2 over F28 , in a space-symmetric error channel with a fixed
error weight. Specifically, we set

w = rk(E) = 2(n− k)
3

= 4.

The maximum error weight possible for unique decoding of any rank error is

(n− k)/2 = 3.

We generated 106 noisy Gabidulin codeword samples and compared the outcomes
across various scenarios:

1. Space-symmetric errors: Draw the matrix A and P , both of rank w uni-
formly at random and decode using Algorithm 5.

2. Uniform assumption: The matrix Q ∈ GLw(Fq) as in (4.11) is drawn uni-
formly at random instead of P . We compute the matrix S as in (4.12) and check
its rank. If rk(S) 6= w we declare a decoding failure.

3. 2-interleaved Gabidulin code: Simulation of a 2-interleaved Gabidulin code
where the two error matrices are drawn uniformly at random such that the
dimension of its column space is at most 2(n− k)/3 = 4.

4. Intersection probability: Consider the probability that the intersection of
two subspaces U and V of Fw

qn with dimension ℓ drawn uniformly at random has
dimension larger than or equal to z, This probability is [EV11]

Pr[dim (U ∩ V) ≥ z] =
∑ℓ

i=z

[
w−ℓ
ℓ−i

]
qn

[
ℓ
i

]
qn
· q(ℓ−i)2[

w
ℓ

]
qn

. (4.13)

Consider the rows of Mn−k−w(a)[w+1] ·P being a basis of a subspace Ũ of Fw
qn of

dimension ℓ = n − k − w and consider the rows of Mn−k−w(a)[w+k] · P > being
a basis of another subspace Ṽ also of dimension ℓ = n − k − w. Use (4.13) as
an estimation of the probability Pr[dim (Ũ ∩ Ṽ) ≥ z] for z = 2(n− k)− 3w + 1
which is equal to the probability of[

Mn−k−w(a)[w+1]

Mn−k−w(a)[w+k]

]
,

having rank w and therefore rk(S) = w according to (4.10).

73

4 Decoding of Space-Symmetric Rank Errors

Table 4.1 shows the simulation results, including the different scenarios for com-
parison. The decoding failure rate for space-symmetric errors using a Gabidulin code
with a weak self-orthogonal basis is nearly identical to that observed under the uni-
form assumption. Furthermore, it aligns closely with the failure rate of decoding a
2-interleaved Gabidulin code over a standard rank-metric channel with fixed-rank er-
rors. The upper bound on Pf is also provided, and we observe that the intersection
probability offers a reliable estimate of the decoding failure rate.

Table 4.1: Simulation results for n = 8, k = 2 over F28 and w = 4.
Scenario Decoding failure rate
1) Space-symmetric errors 0.004124
2) Uniform assumption 0.004229
3) 2-interleaved Gabidulin code 0.003965
4) Intersection probability 0.003921

Upper bound: 4/qn 0.015625

4.6 Number of Space-Symmetric Matrices
We now determine the exact number of space-symmetric matrices of a given rank over
a finite field.

Theorem 4.3 (Number of Space-Symmetric Matrices). The number Nsp-sym(n,w, q)
of n× n matrices over Fq of rank w that are space-symmetric is

Nsp-sym(n,w, q) =
w−1∏
i=0

(qn − qi). (4.14)

Proof. Recall that the Gaussian binomial coefficient
[

n
w

]
q
, defined in (2.4), gives the

number of w-dimensional subspaces of Fn
q over Fq. For square matrices, we can identify

the column space with the image of the associated linear map from Fn
q to Fn

q . Since
column space and row space are equal for space-symmetric matrices, there are

w−1∏
i=0

(qw − qi),

surjective linear maps from Fw
q to that w-dimensional image.

It follows that
Nsp-sym(n,w, q) =

[
n

w

]
q
·

w−1∏
i=0

(qw − qi).

74

4.7 Application to Code-Based Cryptography

Substituting the definition of
[

n
w

]
q

from (2.4), we obtain

Nsp-sym(n,w, q) =
(

w−1∏
i=0

qn − qi

qw − qi

)
·

w−1∏
i=0

(qw − qi)

=
w−1∏
i=0

(qn − qi),

which proves (4.14).

4.7 Application to Code-Based Cryptography
The Gabidulin–Paramonov–Tretjakov (GPT) cryptosystem, a McEliece-like scheme
based on Gabidulin codes, was initially introduced in [GPT91a]. However, both the
original version and many of its subsequent variants were later compromised by attacks
from Gibson [Gib95; Gib96] and Overbeck [Ove06; Ove05; Ove08].

In this section, the potential application of space-symmetric rank errors in code-
based cryptography is explored by comparing the key sizes of Loidreau’s GPT vari-
ant [Loi16; Loi17] for arbitrary rank errors, symmetric errors, and space-symmetric
errors. Although we do not offer security proofs, it is noted that both symmetric and
space-symmetric errors introduce structure that could lead to new structural attacks,
with space-symmetric errors offering less structure than symmetric ones.

The best known algorithm for decoding generic rank-metric codes [BBC+20] may be
adaptable to these structured errors, potentially yielding improved complexity. Further
analysis is necessary to rule out structural attacks for practical cryptosystems.

It’s worth noting that restricting to symmetric or space-symmetric errors might en-
able reduced key sizes in other modern rank-metric code-based cryptographic schemes,
such as the RQC scheme [MAB+20], a second-round submission to the NIST post-
quantum cryptography standardization process.

Loidreau’s GPT variant [Loi16; Loi17] includes a parameter λ that amplifies the
error matrix’s rank. Table 4.2 presents parameters assuming the possibility of embed-
ding structured rank errors in this cryptosystem. We provide different hypothetical
SLs, defined by the smallest WF of an attack in bits. We consider three WFs, the first
two described in [Loi16]:

• Decoding attack: WFdec = n3q(w′−1)k,

• Structural attack: WFstruc = n3qn(λ−1)−(λ−1)2 ,

• Brute-force attack on error patterns: WFe.

Here, w′ = w/λ, where w represents the maximum number of correctable errors in
each scenario:

75

4 Decoding of Space-Symmetric Rank Errors

1. Conventional Gabidulin codes: w = b(n− k)/2c,

2. Symmetric rank errors: w = b(n− 1)/2c,

3. Space-symmetric rank errors: w = b2(n− k)/3c.

The work factor WFe corresponds to the number of distinct error matrices, which
varies for each case:

1. Conventional rank errors: The number of n× n matrices of rank w′ over Fq

is given by [LN96]:

Nrank(n,w′, q) =
w′−1∏
j=0

(qn − qj)2

qw′ − qj
,

2. Symmetric rank errors: Let Nsymm(n,w′, q) denote the number of symmetric
matrices of size n× n with rank w′ over Fq. According to [MS77], we have

• For even rank w′ = 2s:

Nsymm(n, 2s, q) =
s∏

i=1

q2i

q2i − 1
·

2s−1∏
i=0

(qn−i − 1),

• For odd rank w′ = 2s+ 1:

Nsymm(n, 2s+ 1, q) =
s∏

i=1

q2i

q2i − 1
·

2s∏
i=0

(qn−i − 1),

3. Space-symmetric rank errors: The number of space-symmetric matrices,
denoted by Nsp-sym(n,w′, q), is given by the expression in (4.14).

Table 4.2 presents the key sizes for a variant of the GPT cryptosystem [Loi16; Loi17]
that utilizes different types of rank errors: conventional (Conv), symmetric (Sym), and
space-symmetric (Sp-Sym), across various SLs. Each configuration employs codes with
a code rate close to 1/2 to ensure comparability.

The columns show relevant parameters for each scheme, including the code length
n, dimension k, the parameter λ and w′. While WFdec, WFstruc, and WFe denote
the work factors associated with decoding attack, structural attacks, and brute-force,
respectively.

The results indicate that both symmetric and space-symmetric rank errors can re-
duce the key size compared to conventional rank errors, while also maintaining or
even improving the associated work factors. For instance, at the 256-bit security level,
space-symmetric errors achieve a key size reduction compared to conventional errors,
lowering the storage requirement from 27.65 KB to 17.87 KB. Similarly, symmetric

76

4.8 Summary and Discussion

errors provide the most significant reduction at the 192-bit security level, achieving a
key size of 7.45 KB versus 21.30 KB for conventional errors.

However, it is worth mentioning that symmetric errors, due to their inherent sym-
metry, may be more susceptible to structural attacks that could exploit this property.
Space-symmetric errors, by contrast, could offer a balance by reducing key size while
potentially being more resilient to such attacks.

Table 4.2: Key sizes of the GPT cryptosystem variant [Loi16; Loi17] using different
types of errors: conventional rank errors (Conv), symmetric (Sym) and
space-symmetric (Sp-Sym) rank errors for different SLs. The code rate of
all codes is approximately 1/2.

SL Type n k λ w′ WFdec WFstruc WFe Keysize
256 Conv 96 48 4 6 259.75 298.75 1117.77 27.65 KB
256 Sym 80 40 5 7 258.97 322.97 539.53 16.00 KB
256 Sp-Sym 83 41 4 7 265.13 259.13 581.00 17.87 KB
192 Conv 88 44 4 5 195.38 274.38 856.75 21.30 KB
192 Sym 62 31 4 7 203.86 194.86 413.53 7.45 KB
192 Sp-Sym 71 35 4 6 193.45 222.45 426.00 11.18 KB
128 Conv 59 29 3 5 133.65 131.65 566.75 6.41 KB
128 Sym 49 24 4 6 136.84 154.84 279.53 3.68 KB
128 Sp-Sym 58 29 4 6 162.57 129.57 348.00 6.10 KB

4.8 Summary and Discussion
In this chapter, we focused on decoding Gabidulin codes under the assumption of
space-symmetric errors. Space-symmetric errors, where the row and column spaces
of the error matrix coincide, allow for improved decoding performance compared to
conventional rank errors. Specifically, we demonstrated that using Gabidulin codes,
errors of rank up to 2(n − k)/3 can be decoded with high probability, which extends
the known decoding radius for Gabidulin codes.

We built on previous work that considered symmetric matrices, relaxing the symme-
try condition to include space-symmetric errors. Our approach enables more flexible
decoding while maintaining high decoding efficiency. The key insight is that by using
Gabidulin codes with a linear subcode of symmetric matrices, we can exploit the error
structure to correct higher-rank errors.

This chapter contributes to the broader objective of the thesis by exploring alterna-
tive error structures and decoding strategies to enhance the performance of code-based
cryptosystems. While we do not propose a specific cryptosystem, we discussed poten-
tial applications of space-symmetric errors in cryptographic contexts, such as in the

77

4 Decoding of Space-Symmetric Rank Errors

GPT cryptosystem and other rank-metric schemes. As shown in Table 4.2, using
structured errors like symmetric or space-symmetric errors could lead to reductions in
key sizes, which is of particular importance for code-based cryptography. However,
these structured errors also introduce new attack vectors, and further cryptanalysis is
needed to evaluate the security implications.

The analysis presented here opens avenues for future research, particularly in re-
fining error structures for cryptosystems and closing the gap between theoretical de-
coding improvements and practical security measures. Further exploration into the
complexity of decoding algorithms for space-symmetric errors, along with rigorous
cryptanalysis, could yield valuable insights for the design of more secure and efficient
cryptosystems.

78

5
Decoding of High-Order Interleaved
Sum-Rank-Metric Codes

In the previous chapters, we focused on decoding structured codes such as LRS codes
and their interleaved versions (i.e. ILRS), as well as addressing space-symmetric errors
for Gabidulin codes.

In this chapter, we extend our attention to a more general setting by presenting
a Metzner–Kapturowski-like decoding algorithm that can be applied to any linear
constituent code, including unstructured or random codes, as well as inherently struc-
tured codes whose structure is concealed (e.g., as in McEliece-like cryptosystems).
This algorithm is designed for high-order (vertical) interleaved sum-rank-metric codes
and generalizes the Metzner–Kapturowski decoding approach originally developed for
the Hamming metric [MK90]. The ability to decode unstructured codes makes the
proposed decoder highly versatile and broadens its applicability significantly.

Building upon the original Metzner–Kapturowski decoder for the Hamming metric,
extensions to the rank metric were introduced in [PRW19; RPW21a], adapting the
principles to accommodate the structure and properties of rank-metric codes. We
further generalize this approach to the sum-rank metric.

A key contribution of our work is the introduction of the concept of an error code,
which is spanned by the s rows of the error matrix. This new perspective provides
a more intuitive understanding of the decoding process by relating it to properties of
the error code. It also enables us to derive new interpretations, particularly for the
special cases in the Hamming and rank metrics.

The computational complexity of the proposed algorithm is of the order

O
(
max{n3, n2s}

)
,

operations over Fqm . Importantly, the decoding complexity is independent of the code
structure of the constituent code, as the algorithm exploits properties of high-order
interleaving only.

79

5 Decoding of High-Order Interleaved Sum-Rank-Metric Codes

This generalization of the Metzner–Kapturowski decoder to the sum-rank metric
not only recovers the original decoder for the Hamming metric [MK90] and its rank-
metric analogs [PRW19; RPW21a], but also provides critical insights for the design
of McEliece-like cryptosystems based on interleaved codes in the sum-rank metric.
Specifically, our results indicate that the interleaving order cannot be chosen too large,
as this would enable the proposed algorithm to efficiently recover the message or
decrypt without the private key in polynomial time.

Generally, the decoder is capable of correcting errors with sum-rank weight w up to

w ≤ dmin − 2.

Moreover, under certain conditions, it can handle errors with sum-rank weight w up
to

w ≤ n− k − 1,

where n is the code length and k is the constituent code dimension. The decoder’s
success relies on the following assumptions:

• High-order condition: The interleaving order s must be at least the sum-rank
weight of the error, i.e.,

s ≥ w.

• Full-rank condition: The error matrix must have full Fqm-rank, meaning

rkqm(E) = w.

It is important to note that the full-rank condition inherently implies the high-order
condition, as explained in Section 5.5. This is because the Fqm-rank of a matrix
E ∈ Fs×n

qm is bounded by the interleaving order s.
A key contribution of this work is the analysis of the decoder’s success probability

when dealing with errors chosen uniformly at random from the set of all possible errors
with a fixed sum-rank weight w. In Section 5.4, we examine the likelihood that the
full-rank condition is met under these circumstances.

In Section 5.5, we extend our analysis beyond the unique decoding radius, explor-
ing the average success probability of the decoder when the full-rank assumption is
satisfied. We utilize random coding techniques to assess the probability of successful
decoding beyond dmin − 2.

Figure 5.1 illustrates the decoding regions for the decoder in Algorithm 6 when the
full-rank condition is satisfied.

The findings presented in this chapter have significant implications for the design
and security analysis of code-based cryptosystems using interleaved sum-rank-metric
codes. By offering new insights into the decoding process and demonstrating high
success probabilities beyond the unique decoding radius, our work contributes to the

80

5.1 Problem Description

0 d− 2 min(µ(s)ℓ, n− k − 1)

Unique decoding
always possible

Probabilistic
decoding

w

Figure 5.1: Illustration of the decoding regions for the proposed Metzner–Kapturowski-
like decoder if the full-rank condition is satisfied.

ongoing development of robust post-quantum cryptographic solutions.
The content of this chapter is based on the work presented by the author at the

Code-Based Cryptography Conference (CBCrypto 2022) [JHB23] and has been fur-
ther extended in the journal version [JHB24], which is currently under review in IEEE
Transactions on Information Theory. The author of this dissertation contributed sig-
nificantly to all aspects of both papers. The probability analysis, as well as the simu-
lations and numerical analysis detailed in Section 5.4 and Section 5.5, were primarily
developed by the author, representing key contributions to the understanding of the
decoding algorithm’s performance.

5.1 Problem Description
This chapter focuses on homogeneous (vertically) s-interleaved sum-rank-metric codes
over Fqm as defined in Definition 2.4 and denoted as ICΣR[s; n, k, dmin]. These codes
have constituent codes CΣR[n, k, dmin] defined by a parity-check matrix

H =
[
H(1) |H(2) | . . . |H(ℓ)

]
∈ F(n−k)×n

qm ,

where each H(i) ∈ F(n−k)×ni
qm . For the sake of simplicity and convenience, we sometimes

use the notation C to represent the constituent code CΣR[n, k, dmin] throughout this
chapter.

The objective is to recover codewords C ∈ ICΣR[s; n, k, dmin] from corrupted ma-
trices

Y = C + E ∈ Fs×n
qm ,

where E is an error matrix with sum-rank weight wt(n)
ΣR(E) = w. We assume both the

high-order and full-rank conditions are met.
Within this chapter we define the notion of error support as the row support of E

as
suppΣR(E) def= supp(R)

ΣR(E), (5.1)

with supp(R)
ΣR(E) as in (2.33).

81

5 Decoding of High-Order Interleaved Sum-Rank-Metric Codes

Additionally, we define the dual sum-rank support as

supp⊥
ΣR (E) def= supp⊥

R

(
E(1)

)
× supp⊥

R

(
E(2)

)
× · · · × supp⊥

R

(
E(ℓ)

)
=Rq

(
B(1)

)⊥
×Rq

(
B(2)

)⊥
× · · · × Rq

(
B(ℓ)

)⊥
.

Also recall that the error matrix can be decomposed as in (2.30) as E = AB.
Inspired by the original Metzner–Kapturowski algorithm and its adaptation to the

rank metric, the proposed decoding process involves two key steps:

1. Recovering the error support: Identify the error support suppΣR(E) to
determine the locations of errors.

2. Erasure decoding: Use the syndrome matrix

S = HY > = HE>,

to recover the error matrix E. Consequently, retrieve the codeword C by com-
puting C = Y −E.

The following lemma, adapted from [PRR22], illustrates a method for reconstructing
the error matrix E using its sum-rank support suppΣR(E) and the syndrome matrix S.
This lemma allows to solve the second step of the Metzner–Kapturowski-like decoder.

While the original theorem in [PRR22] assumes the condition w < dmin, we present
a more generalized version by relaxing this constraint. This modification enhances the
lemma’s applicability, particularly in scenarios where the error weight may exceed the
minimum distance of the code.

Lemma 5.1 (Column-Erasure Decoder [PRR22, Theorem 13]). Let the basis

B = diag (B(1), . . . ,B(ℓ)) ∈ Fw×n
q ,

be a basis for the error support suppΣR(E) of the error matrix E ∈ Fs×n
qm , and let

S = HE> ∈ F(n−k)×s
qm be the corresponding syndrome matrix.

Assume that HB> is full-rank. Then, E can be uniquely recovered as E = AB,
where A ∈ Fs×w

qm is the unique solution to the linear system

S = (HB>)A>.

Moreover, E can be computed in O((n− k)3m2) operations over Fq.

Remark 5.1. As noted in [PRR22, Lemma 12], when w < dmin, the condition that
HB> is full-rank is inherently satisfied. We have relaxed this requirement to make the
result applicable even when w ≥ dmin, since we consider this scenario in Section 5.5.
The proof from [PRR22, Lemma 12] still holds.

82

5.2 Recovering the Error Support

5.2 Recovering the Error Support
In this section, we focus on the first step of the Metzner–Kapturowski-like decoder as
described in Section 5.1.

Let w = [w1, . . . , wℓ] ∈ Zℓ
≥0 denote the rank profile of the error matrix E ∈ Fs×n

qm ,
with wi = rkq(E(i)) for i ∈ {1, . . . , ℓ}. We assume that E fulfills the full-rank condi-
tion, meaning its Fqm-rank is equal to its sum-rank weight w. Note that the full-rank
condition is satisfied if and only if rkqm(A) = w for every A ∈ Fs×w

qm as in (2.30).
With these assumptions, the rows of E span an Fqm-linear EΣR[n, w] sum-rank

metric code, denoted as

E def= Rqm(E) , (5.2)
which we refer to as the error code.
Let GE ∈ Fw×n

qm denote the generator matrix of E . We can decompose GE as

GE = AEB, (5.3)

where AE =
[
A

(1)
E | . . . | A

(ℓ)
E

]
∈ Fw×w

qm with rkqm(AE) = w and B is the same matrix
as defined in the error decomposition (2.30) and (2.28). Each block A

(i)
E is a matrix

of size w × wi. The rank profile w specifies the rank of each block A
(i)
E , given by

rkqm(A(i)
E) = wi.

It follows directly from (5.2), the definition of the error code that

suppΣR (E) = suppΣR (E).

Because of this property, we say that the error code E is support-restricted by the row
support of E with E ⊂ Fn

q .
Let us now consider the parity-check matrix HE ∈ F(n−w)×n

qm of the error code E . By
definition, the parity-check matrix satisfies

GEH>
E = 0.

The following lemma establishes a relationship between the support of the parity-
check matrix and the error matrix.
Lemma 5.2. Let HE =

[
H

(1)
E | . . . |H(ℓ)

E

]
∈ F(n−w)×n

qm be the parity-check matrix of
the [n, w] error code E with length partition n. Then, we have

suppΣR(HE) = supp⊥
ΣR (E).

Proof. Since HE is a parity-check matrix of E , we have rkqm(HE) = n − w. With

83

5 Decoding of High-Order Interleaved Sum-Rank-Metric Codes

respect to the sum-rank metric, we can partition the parity-check matrix of the error
code as

HE =
[
H

(1)
E | . . . |H(ℓ)

E

]
, (5.4)

such that H
(i)
E ∈ F(n−w)×ni

qm for all i ∈ {1, . . . , ℓ}.
To satisfy the check equations, we must have

GEH>
E = 0 ⇔ (AEB)H>

E = 0 ⇔ BH>
E = 0.

From (5.4) and the block-diagonal structure of B (see (2.28)), it follows that

B(i)H
(i)
E

>
= 0 ∀i ∈ {1, . . . , ℓ}.

By the rank-nullity theorem and since B(i) is over Fq, we have

dim
(
Rq

(
H

(i)
E

))
≤ ni − wi,

for all i ∈ {1, . . . , ℓ}. However, since HE must have (n − w) many Fqm-linearly inde-
pendent rows and ∑ℓ

i=1(ni − wi) = n− w, we conclude that

dim
(
Rq

(
H

(i)
E

))
= ni − wi,

and hence
Rq

(
H

(i)
E

)
= Rq

(
B(i)

)>
∀i ∈ {1, . . . , ℓ}.

By the definition of the sum-rank support, this concludes the proof.

The following theorem is crucial for decoding, as it reveals how the sum-rank support
of an error matrix relates to the dual sum-rank support of the code resulting from
combining the error code and the constituent code. This relationship helps us recover
the error support.
Theorem 5.1. Let C be an Fqm-linear [n, k] sum-rank-metric code with generator
matrix G ∈ Fk×n

qm and parity-check matrix H ∈ F(n−k)×n
qm . Let E = AB ∈ Fs×n

qm be a
matrix with A ∈ Fs×w

qm , B ∈ Fw×n
q , rkqm(E) = w, and wt(n)

ΣR (E) = w. Let w ≤ n−k−1
and suppose that

rkqm

H

[
B
b

]>
 = w + 1 ∀ b ∈ Fn

q \ suppΣR (E) s.t. wt(n)
ΣR (b) = 1. (5.5)

Further, denote by GE ∈ Fw×n
qm the generator matrix of the error code E = Rqm(E).

Consider the Fqm-linear code S = E + C defined as

S def= Rqm(GS) , (5.6)

84

5.2 Recovering the Error Support

with generator matrix

GS
def=
[

G
GE

]
.

Then, for any valid parity-check matrix HS ∈ F(n−k−w)×n
qm of the Fqm-linear [n, k + w]

sum-rank-metric code S, we have

supp⊥
ΣR (HS) = suppΣR (E). (5.7)

Proof. See Appendix A.2.1.

The following remark highlights a key relationship between the row spaces of the
code, the error, and the received matrix in interleaved decoding.

Remark 5.2 (Row Space Relationships). Due to the properties of the error code and
the relationship Y = C + E, the following row spaces over Fqm are the same

Rqm

([
G
GE

])
= Rqm

([
G
E

])
= Rqm

([
G
Y

])
.

Thus, the rows of all three matrices are generating sets for the code S = C + E.

The next remark explores the implications of using very high-order interleaving,
providing new insights for cases where s ≥ k + w.

Remark 5.3 (Very High-Order Interleaving). Viewing the Metzner–Kapturowski-like
algorithm from an error-code perspective provides valuable insights for cases with very
high-order interleaving, specifically when s ≥ k + w. Specifically, if the rows of the
transmitted codeword C form a generating set for C (i.e., rkqm(C) = k) and the error
matrix E satisfies the full-rank condition, then rkqm(Y) = k + w, and the rows of Y
form a generating set for S = C + E.

This enables the computation of a parity-check matrix HS for S directly from the
received matrix Y , by finding a basis for the right Fqm-kernel of Y . The support of the
error can then be recovered as supp⊥

ΣR (HS) = suppΣR (E) (see (5.7) in Theorem 5.1).
Notably, this allows the error support suppΣR (E) to be determined without knowledge

of the codes C and S.
This observation could have significant implications for cryptosystems based on (se-

cret) very high-order interleaved codes, as knowledge of the error support could sub-
stantially lower the security level as discussed in [HPR+22]. The security level of a
cryptosystem refers to the computational difficulty of breaking the system.

After proving that supp⊥
ΣR (HS) = suppΣR (E), we present a theorem that estab-

lishes a connection between the syndrome matrix S and the parity-check matrix HS
of the sum code S = C+E . This theorem provides a direct method to derive HS from
S.

85

5 Decoding of High-Order Interleaved Sum-Rank-Metric Codes

Alternatively, a parity-check matrix can be obtained by stacking GS with Y and
using Gaussian elimination.

Theorem 5.2. Let ICΣR[s; n, k, dmin] be an Fqm-linear interleaved sum-rank-metric
code with constituent code C, which has parity-check matrix H ∈ F(n−k)×n

qm . Let E ∈
Fs×n

qm be an error matrix with rkqm(E) = w and wt(n)
ΣR (E) = w ≤ n − k − 1 and let

E be the error code spanned by the rows of E. The received word is Y = C + E,
where C ∈ ICΣR[s; n, k, dmin]. The syndrome matrix is S = HY > = HE>, where
S ∈ F(n−k)×s

qm .
Let P ∈ F(n−k)×(n−k)

qm be a full-rank matrix such that P S is in row-echelon form,
i.e.,

P S =
[
S′

0

]
=⇒ P H =

[
H ′

HS

]
,

where S′ ∈ Fw×s
qm , H ′ ∈ Fw×n

qm . Then HS ∈ F(n−k−w)×n
qm is a parity-check matrix for the

sum-rank-metric code S = E + C as defined in (5.6).

Proof. Since P is invertible, multiplying both sides of S = HE> by P yields

P S = P HE>.

As H has full row rank rkqm(H) = n− k and rkqm(E) = w, we have

rkqm(S) = rkqm(HE>) = min{rkqm(H), rkqm(E)} = min{n− k, w} = w.

By the rank-nullity theorem, rkqm(P S) = rkqm(S) = w, so P S has w nonzero rows.
As P S is in row-echelon form, we can write

P S =
[
S′

0

]
,

where S′ ∈ Fw×s
qm has full row rank.

Partitioning P H conformally with P S, we have

P H =
[

H ′

HS

]
,

where H ′ ∈ Fw×n
qm and HS ∈ F(n−k−w)×n

qm . Since P HE> = P S, we have[
H ′

HS

]
E> =

[
S′

0

]
,

which implies HSE> = 0. As the rows of E span E , this means HS satisfies the parity-
check equations for E . By construction, HS also satisfies the parity-check equations

86

5.3 A Metzner–Kapturowski-like Decoding Algorithm for Sum-Rank-Metric
Codes

for C, as it is a submatrix of P H . And since HS has n − k − w rows and is of
full-rank, it is a parity-check matrix for the sum-rank-metric code S defined in (5.6),
which contains both C and E .

5.3 A Metzner–Kapturowski-like Decoding Algorithm
for Sum-Rank-Metric Codes

Using Theorem 5.1 and Theorem 5.2, we can formulate an efficient decoding algo-
rithm for high-order interleaved sum-rank-metric codes. The algorithm is detailed in
Algorithm 6 and follows a similar approach to the Metzner–Kapturowski-like decoding
algorithm for Hamming and rank-metric codes.

Algorithm 6: Decoding High-Order Interleaved Sum-Rank-Metric Codes
Input : Parity-check matrix H of CΣR[n, k, dmin]

Received word Y = C + E

with C ∈ ICΣR[s; n, k, dmin] and
wt(n)

ΣR(E) = rkqm(E) = w (full-rank condition)
Output : Transmitted codeword C

1 S ←HY > ∈ F(n−k)×s
qm

2 Compute P ∈ F(n−k)×(n−k)
qm s.t. P S = REF(S)

3 HS =
[
H

(1)
S |H(2)

S | . . . |H(ℓ)
S

]
← (P H)[w+1:n−k],[1:n] ∈ F(n−w−k)×n

qm

4 for i ∈ {1, . . . , ℓ} do
5 Compute B(i) ∈ Fwi×ni

q s.t. ext(H(i)
S)(B(i))> = 0 and wi = ni − rkq(H(i)

S)
6 B ← diag(B(1),B(2), . . . ,B(ℓ)) ∈ Fw×n

q

7 Compute A ∈ Fs×w
qm s.t. (HB>)A> = S

8 C ← Y −AB ∈ Fs×n
qm

9 return C

Once HS is derived from the syndrome matrix S, the rank support of each block
can be independently determined using Theorem 5.1. This involves finding a basis
matrix B(i) ∈ Fwi×ni

q such that

ext(H(i)
S)(B(i))> = 0,

for all i ∈ {1, . . . , ℓ}. Here, wi is calculated using the rank-nullity theorem as

wi = ni − rkq(H(i)
S),

87

5 Decoding of High-Order Interleaved Sum-Rank-Metric Codes

according to (5.7).
In the following theorem, we address the computational complexity of Algorithm 6.

This result demonstrates the efficiency of the decoding process under specific condi-
tions.

Theorem 5.3. Let C be a codeword of an s-interleaved sum-rank-metric code, de-
noted by ICΣR[s; n, k, dmin] and let H be the parity-check matrix of the corresponding
constituent code CΣR[n, k, dmin]. Furthermore, let E ∈ Fs×n

qm be an error matrix of
sum-rank weight

wt(n)
ΣR(E) = w,

that fulfills

w ≤ s (high-order condition),

and

rkqm(E) = w (full-rank condition).

Let B be a basis of the Fq-row space of E. If (5.5) holds, then C can be uniquely
recovered from the received word Y = C + E using Algorithm 6 in a time complexity
equivalent to

O
(
max{n3, n2s}

)
,

operations in Fqm.

Proof. Lemma 5.1 states that the error matrix E can be factored as E = AB. The
decoding procedure in Algorithm 6 starts by finding a basis B of the error support
suppΣR(E) and then uses erasure decoding with respect to Lemma 5.1 to recover
A. The matrix B is computed by transforming S into row-echelon form using a
transformation matrix P (see Line 2).

In Line 3, HS is obtained by choosing the last n − k − w rows of P H . According
to Theorem 5.2, the matrix HS serves as a parity-check matrix for both the error code
E associated with the error matrix E and the constituent code CΣR[n, k, dmin]. Then
using Theorem 5.1 for each block (see Line 5) we find a matrix B(i) whose rows form
a basis for

Rq

(
ext(H(i)

S)
)>
,

and therefore a basis for suppR(E(i)) for all i ∈ {1, . . . , ℓ}.
The matrix B is the block-diagonal matrix formed by B(i) (cf. (2.28) and see Line 6)

for i ∈ {1, . . . , ℓ}.
Finally, A can be computed from B and H using Lemma 5.1 in Line 7. Hence,

Algorithm 6 returns the transmitted codeword in Line 9.
The complexities of the lines in the algorithm are as follows:

88

5.4 Probabilistic Decoding for Uniform Random Errors

• Line 1: The syndrome matrix S = HY > can be computed in at most O(n2s)
operations in Fqm .

• Line 2: The transformation of [S | I] into row-echelon form requires

O
(
(n− k)2(s+ n− k)

)
⊆ O

(
max{n3, n2s}

)
,

operations in Fqm .

• Line 3: The product (P H)[w+1:n−k],[1:n] can be computed requiring at most

O(n(n− k − w)(n− k)) ⊆ O
(
n3
)
,

operations in Fqm .

• Line 5: The transformation of [ext(H(i)
S)> | I>]> into column-echelon form

requires O(n2
i ((n− k − w)m+ ni)) operations in Fq per block. Overall we get

O

(
ℓ∑

i=1
n2

i ((n− k − w)m+ ni)
)
⊆ O

(
n3m

)

operations in Fq since we have that O
(∑ℓ

i=1 n
2
i

)
⊆ O(n2).

• Line 7: According to Lemma 5.1, this step can be done in O((n− k)3m2)
operations over Fq.

• Line 8: The product AB =
[
A(1)B(1) | A(2)B(2) | . . . | A(ℓ)B(ℓ)

]
can be com-

puted in O
(∑ℓ

i=1 swini

)
⊆ O(sn2) and the difference of Y −AB can be com-

puted in O(sn) operations in Fqm .

The complexities for Line 5 and Line 7 are given for operations in Fq. The number
of Fq-operations of both steps together is in O(n3m2) and their execution complexity
can be bounded by O(n3) operations in Fqm (see [CL09]).

Thus, Algorithm 6 requires O(max{n3, n2s}) operations in Fqm .

Note that the complexity of Algorithm 6 is independent of the structure of the
underlying constituent code. This applies even when the code is random.

5.4 Probabilistic Decoding for Uniform Random Errors
In practical settings, the full-rank condition may not always hold. Therefore, we con-
sider the performance of the decoder when the error is drawn uniformly at random
from the set of all error matrices of a given sum-rank weight w. We then derive an

89

5 Decoding of High-Order Interleaved Sum-Rank-Metric Codes

upper bound on the error probability, which, for fixed code parameters, decays expo-
nentially with respect to the difference between the error weight w and the interleaving
order s.

Note that we still require the high-order condition, i.e., s ≥ w. Otherwise, no error
can possibly satisfy the full-rank condition since

rkqm(E) ≤
ℓ∑

i=1
rkqm(E(i)) ≤

ℓ∑
i=1

rkq(E(i)) =
ℓ∑

i=1
wi = w,

holds, and E has size s× n (with s ≤ n).
For the sake of simplicity in the analysis, we focus on the case where the length

partition n = [n1, . . . , nℓ] has constant block lengths, i.e., there exists a positive integer
η such that ni = η for all i ∈ {1, . . . , ℓ}.

We introduce the following sets, which are integral to the proofs of the forthcoming
theorems in this section.

The set of all error matrices with a sum-rank weight of w in the interleaved case is
defined as

E (s)
w

def=
{

E =
[
E(1) | · · · | E(ℓ)

]
: wtΣR(E) =

ℓ∑
i=1

rkq(E(i)) = w

}
⊆ Fs×n

qm ,

which includes all error matrices with a total sum-rank weight of w and an interleaving
order s. The corresponding set of all possible rank profiles is denoted by Tw,ℓ,µ(s)

(see Definition 2.9). For a fixed rank profile w = [w1, w2, . . . , wℓ] ∈ Tw,ℓ,µ(s) we define

E (s)
w

def=
{
E =

[
E(1) | · · · | E(ℓ)

]
: rkq(E(i)) = wi

}
⊆ Fs×n

qm .

From (2.30) we have that we can decompose the error into E = AB with A ∈ Fs×w
qm

and B ∈ Fw×n
q with A and B both of full-rank over Fq. Let us define the set of all

possible matrices A

A(s)
w

def=
{
A ∈ Fs×w

qm : wt(w)
ΣR (A) = w

}
, (5.8)

and all possible matrices B as

Bw
def=
{

diag
(
B(1), . . . ,B(ℓ)

)
: (5.9)

B(i) ∈ Fwi×η
q with rkq(B(i)) = wi ∀i ∈ {1, . . . , ℓ}

}
⊆ Fw×n

q .

When drawing E uniformly at random from E (s)
w the marginal distribution for the

90

5.4 Probabilistic Decoding for Uniform Random Errors

corresponding rank profile w ∈ Tw,ℓ,µ(s) is given by

Pr[w] = 1
|E (s)

w |

ℓ∏
i=1

NMq(sm, η, wi),

where NMq(sm, η, wi) denotes the number of matrices over Fq of size sm × η of rank
wi as given in (2.26).

In the following lemma, we provide the conditional probability of an error matrix
E drawn uniformly at random from E (s)

w having Fqm-rank w, given a rank profile w.

Lemma 5.3. For a given rank profile w = [w1, w2, . . . , wℓ], let E be an error matrix
drawn uniformly at random from the set E (s)

w . The probability that E has Fqm-rank
equal to w, given w, is

Pr[rkqm(E) = w | w] = Pr[rkqm(A) = w | w]

=
∏w−1

j=0 (qsm − qjm)∏ℓ
i=1

∏wi−1
j=0 (qsm − qj)

,

where A is a matrix drawn uniformly at random from the set defined in (5.8).

Proof. Every error matrix E ∈ Fs×n
qm can be decomposed as in (2.30), i.e., E = AB.

Since A is the only part influencing the Fqm-rank of E and is unique if an arbitrary
block-diagonal matrix B with Rq(B) = Rq(E) is fixed (see, e.g., [MP74, Theorem
1]), we obtain

Pr[rkqm(E) = w |w] = Pr[rkqm(A) = w |w].

Recall that Bw is defined in (5.9) as the set of all block-diagonal matrices B with
Rq(B) = Rq(E) and rank profile w. By the law of total probability, we then have

Pr[rkqm(E) = w |w] =
∑

B∈Bw

Pr[rkqm(A) = w |w,B] · Pr[B |w]

=
∑

B∈Bw

Pr[rkqm(A) = w |w] · Pr[B |w]

= Pr[rkqm(A) = w |w],

where we used the fact that Pr[B |w] = 1
|Bw| since B is uniformly distributed over Bw.

The probability Pr[rkqm(A) = w |w] can be computed as

Pr[rkqm(A) = w |w] =
|{A′ ∈ Fs×w

qm : wt(w)
ΣR (A′) = rkqm(A′) = w}|

|{A′ ∈ Fs×w
qm : wt(w)

ΣR (A′) = w}|
.

Consider any matrix A ∈ {A′ ∈ Fs×w
qm : rkqm(A′) = w}. Since A is full-rank over Fqm

and s ≥ w, we can make several observations about the ranks of its blocks A(i). First,

91

5 Decoding of High-Order Interleaved Sum-Rank-Metric Codes

the Fqm-rank of each block A(i) is equal to its corresponding rank profile component,
i.e., rkqm(A(i)) = wi. Moreover, the Fq-rank of each block A(i) is lower bounded by its
Fqm-rank, meaning that wi ≤ rkq(A(i)). At the same time, the Fq-rank of each block
A(i) is upper bounded by min(wi, s), because the rank of a matrix cannot exceed its
number of rows or columns. In this case, each block A(i) has dimensions s×wi, so its
Fq-rank is at most min{wi, s}. However, since w = ∑ℓ

i=1 wi ≤ s, we have wi ≤ s for all
i ∈ {1, . . . , ℓ}, which implies that min{wi, s} = wi. By combining the lower and upper
bounds, we conclude that rkq (A(i)) = wi for all i ∈ {1, . . . , ℓ}. This implies that for
any A ∈ {A′ ∈ Fs×w

qm : rkqm(A′) = w} we have that wt(w)
ΣR (A) = w and therefore, we

have the following equality

{A′ ∈ Fs×w
qm : wt(w)

ΣR (A′) = rkqm(A′) = w} = {A′ ∈ Fs×w
qm : rkqm(A′) = w},

and hence

Pr[rkqm(A) = w |w] =
|{A′ ∈ Fs×w

qm : rkqm(A′) = w}|
|{A′ ∈ Fs×w

qm : wt(w)
ΣR (A′) = w}|

=
∏w−1

j=0 (qsm − qjm)∏ℓ
i=1

∏wi−1
j=0 (qsm − qj)

,

where
t−1∏
j=0

(qsm − qjm),

is the number of all full-rank matrices of size s× w over Fqm and

ℓ∏
i=1

wi−1∏
j=0

(qsm − qj),

is the number of all matrices in Fs×w
qm with sum-rank weight w with corresponding

length partition w. Both relations can be derived from (2.26).

In the next lemma, we provide the probability that an error matrix E drawn uni-
formly at random from the set E (s)

w has Fqm-rank w.

Lemma 5.4. Let E be an error matrix drawn uniformly at random from the set E (s)
w .

Then, the probability that rkqm(E) = w is given by

Pr[rkqm(E) = w] =
∏w−1

j=0 (qsm − qjm)
|E (s)

w |
·

∑
w∈T

w,ℓ,µ(s)

ℓ∏
i=1

[
η

wi

]
q

. (5.12)

Proof. Recall the sets Aw and Bw defined in (5.8) and (5.9), respectively.
According to Lemma 5.3, for a fixed rank profile w, we can draw A ∈ Aw and

B ∈ Bw independently and uniformly from their corresponding domains and obtain
E = AB with wt(n)

ΣR(E) = w such that E is uniformly drawn at random from Ew.

92

5.4 Probabilistic Decoding for Uniform Random Errors

This means the probability Pr[rkqm(E) = w] is

Pr[rkqm(E) = w] =
∑

w∈T
w,ℓ,µ(s)

Pr[w] · Pr[rkqm(A) = w | w]

=
∑

w∈T
w,ℓ,µ(s)

∏ℓ
i=1 NMq(sm, η, wi)

|E (s)
w |

·
∏w−1

j=0 (qsm − qjm)∏ℓ
i=1

∏wi−1
j=0 (qsm − qj)

=
∏w−1

j=0 (qsm − qjm)
|E (s)

w |
·

∑
w∈T

w,ℓ,µ(s)

∏ℓ
i=1 NMq(sm, η, wi)∏ℓ
i=1

∏wi−1
j=0 (qsm − qj)

.

Here, we first apply the law of total probability to express Pr[rkqm(E) = w] as a sum
over all possible rank profiles w ∈ Tw,ℓ,µ(s) . Then, we use the fact that A and B
are drawn independently and uniformly from their respective domains to compute the
conditional probability Pr[rkqm(A) = w |w].

Next, we simplify the expression using the definition of the Gaussian binomial co-
efficient

Pr[rkqm(E) = w] =
∏w−1

j=0 (qsm − qjm)
|E (s)

w |
·

∑
w∈T

w,ℓ,µ(s)

∏ℓ
i=1

∏wi−1
j=0

(qsm−qj)(qη−qj)
(qwi −qj)∏ℓ

i=1
∏wi−1

j=0 (qsm − qj)

=
∏w−1

j=0 (qsm − qjm)
|E (s)

w |
·

∑
w∈T

w,ℓ,µ(s)

ℓ∏
i=1

wi−1∏
j=0

(qη − qj)
(qwi − qj)

=
∏w−1

j=0 (qsm − qjm)
|E (s)

w |
·

∑
w∈T

w,ℓ,µ(s)

ℓ∏
i=1

[
η

wi

]
q

.

In the first step, we rewrite the numerator using the definition of NMq(sm, η, wi).
Then, we cancel out the common terms in the numerator and denominator, leaving
only the Gaussian binomial coefficients in the final expression, which completes the
proof.

At first glance, the expression in (5.12) does not appear to be computationally
efficient. However, in [PRR20], it was shown that the term |E (s)

w | can be efficiently
computed using a dynamic programming approach. Inspired by this, we propose a
similar procedure to compute the right-hand side of (5.12). To this end, let us define

Φq,η(w, ℓ) def=
∑

w∈T
w,ℓ,µ(s)

ℓ∏
i=1

[
η

wi

]
q

,

where Φq,η(w, ℓ) represents the sum over all possible rank profiles w for a given sum-
rank weight w. For each rank profile, the q-binomial coefficient

[
η

wi

]
q

counts the num-

93

5 Decoding of High-Order Interleaved Sum-Rank-Metric Codes

ber of subspaces of dimension wi in an η-dimensional space over Fq. This expression
can be computed recursively as

Φq,η(w, ℓ) =



[
η

w

]
q

if ℓ = 1
min{η,w}∑

w′=0

[
η

w′

]
q
· Φq,η(w − w′, ℓ− 1) else

. (5.13)

The recursive relation can be understood as follows: For the base case, when the
number of blocks ℓ = 1, there is only one block, and the number of subspaces of
dimension w in an η-dimensional space over Fq is given by the q-binomial coefficient[

η
w

]
q
. For ℓ > 1, we consider all possible dimensions w′ for the first block, ranging

from 0 to min{η, w}. For each choice of w′, we multiply the number of subspaces of
dimension w′ in the first block, given by

[
η
w′

]
q
, with the number of ways to distribute

the remaining sum-rank weight w − w′ among the remaining ℓ− 1 blocks, recursively
computed by

Φq,η(w − w′, ℓ− 1).

Algorithm 7: Compute Φq,η(w, ℓ)
Input : Parameters: q, η, w and ℓ

Output : Φq,η(w, ℓ)
Initialize: N(w′, ℓ′) = 0 ∀w′ ∈ {1, . . . , w} and ℓ′ ∈ {1, . . . , ℓ}

1 for w′ ∈ {1, . . . , w} do
2 N(w′, 1)←

[
η
w′

]
q

3 for ℓ′ ∈ {2, . . . , ℓ} do
4 for w′ ∈ {1, . . . , w} do
5 N(w′, ℓ′)← ∑min{η,w′}

w′′=0 N(w′ − w′′, ℓ′ − 1) ·
[

η
w′′

]
q

6 return N(w, ℓ)

The details of the algorithm are provided in Algorithm 7, and the following theorem
establishes its correctness and complexity.

Theorem 5.4. Algorithm 7 is correct and requires ℓ · w2 integer multiplications.

Proof. The correctness of Algorithm 7 follows from the recursive relationship estab-
lished in (5.13) with the base cases Φq,η(w, 1) =

[
η
w

]
q
.

Regarding the complexity, the algorithm performs ℓ·w2 integer multiplications. This
is because, for each ℓ′ ∈ {2, . . . , ℓ} and each w′ ∈ {1, . . . , w}, the inner loop runs over

94

5.4 Probabilistic Decoding for Uniform Random Errors

min{η, w′} values, leading to at most w iterations per combination of ℓ′ and w′. Thus,
the total number of iterations is ℓ · w2.

Building on the previous theorem, we derive the following corollary regarding com-
putational complexity.

Corollary 5.1. The success probability in (5.12) can be computed with polynomially-
bounded complexity.

Proof. The success probability in (5.12) is given by∏w−1
j=0 (qsm − qjm)
|E (s)

w |
· Φq,η(w, ℓ).

We analyze the complexity of computing each term in this expression:

• The cardinality |E (s)
w | can be computed with polynomially bounded complexity,

as shown in [PRR22].

• The term Φq,η(w, ℓ) can be computed with polynomially bounded complexity
according to Theorem 5.4.

• The computation of ∏w−1
j=0 (qsm − qjm) is also polynomially bounded. The terms

qsm and qjm can be computed using repeated squaring, and their differences and
products involve polynomially-bounded integer operations.

The overall complexity is dominated by the complexity of computing |E (s)
w | and the

term Φq,η(w, ℓ) both of which are polynomially bounded. Thus, the success probability
can be computed with polynomially bounded complexity.

5.4.1 Main Theorem
The following theorem establishes an upper bound on the failure probability of the
decoding algorithm.

Theorem 5.5. Let ICΣR[s; n, k, dmin] be an Fqm-linear homogeneous s-interleaved sum-
rank-metric code with component code CΣR[n, k, dmin] of minimum sum-rank distance
dmin, and let w ≤ min{s, dmin − 2}. Furthermore, let

Y = C + E,

where C is a codeword of the interleaved code ICΣR[s; n, k, dmin] and E ∈ Fs×n
qm is

an error matrix uniformly drawn at random from E (s)
w . Then the probability that

Algorithm 6 cannot decode, which is the probability that rkqm(E) 6= w, is bounded from
above as

Pr[rkqm(E) 6= w] ≤ wq−m(s−w+1). (5.14)

95

5 Decoding of High-Order Interleaved Sum-Rank-Metric Codes

Proof. From Lemma 5.4, we have

Pr[rkqm(E) = w] =
∏w−1

j=0 (qsm − qjm)
|E (s)

w |
·

∑
w∈T

w,ℓ,µ(s)

ℓ∏
i=1

[
η

wi

]
q

.

Next, we consider the following inequality to bound the denominator |E (s)
w |

|E (s)
w | =

∑
w∈T

w,ℓ,µ(s)

ℓ∏
i=1

[
η

wi

]
q

wi−1∏
j=0

(qsm − qj)

≤
∑

w∈T
w,ℓ,µ(s)

ℓ∏
i=1

[
η

wi

]
q

wi−1∏
j=0

qsm

=
∑

w∈T
w,ℓ,µ(s)

(
ℓ∏

i=1

[
η

wi

]
q

)
qsm

∑ℓ

i=1 wi

=
∑

w∈T
w,ℓ,µ(s)

(
ℓ∏

i=1

[
η

wi

]
q

)
qsmw.

Using this inequality, we can further bound Pr[rkqm(E) = w] as follows

Pr[rkqm(E) = w] ≥
∏w−1

j=0 (qsm − qjm)
qsmw

=
w−1∏
j=0

(1− qm(j−s)) ≥ 1− wqm(w−s−1).

At this point, we have the same equation as in the rank-metric case. The last step
follows from [RPW21a, Theorem 10].

Finally, the claim of the theorem follows from the fact that

Pr[rkqm(E) 6= w] = 1− Pr[rkqm(E) = w].

5.4.2 Numerical Results
In Figure 5.2, we show the actual value of the failure probability, using Algorithm 7 to
evaluate (5.12) and compare with the derived upper bound from (5.14). The failure
probability is presented in logarithmic scale (base 10) versus the difference between
the interleaving order s and the sum-rank error weight w for two different parameter
sets:

96

5.4 Probabilistic Decoding for Uniform Random Errors

0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

s− w

Lo
g

Fa
ilu

re
Pr

ob
ab

ili
ty

(B
as

e
10

) ℓ = 1
ℓ = 5
ℓ = 10

Bound (5.14)

(a) q = 2, m = 2, n = 10 and w = 4

0 1 2 3 4 5 6 7 8 9 10
−30

−25

−20

−15

−10

−5

0

s− w
Lo

g
Fa

ilu
re

Pr
ob

ab
ili

ty
(B

as
e

10
) ℓ = 1

ℓ = 6
ℓ = 30

Bound (5.14)

(b) q = 2, m = 10, n = 30 and w = 11

Figure 5.2: Logarithmic failure probability vs. the difference s−w for different values
of ℓ with q, m, n and w.

• Figure 5.2a illustrates the failure probability for very small code parameters,
with q = 2, m = 2, n = 10, and w = 4.

• Figure 5.2b shows the failure probability for larger, but still relatively small,
code parameters, with q = 2, m = 10, n = 30, and w = 11.

From these plots, we can observe several key points:

1. As the code parameters increase, the difference in failure probability between
the rank metric (ℓ = 1), sum-rank metric (1 ≤ ℓ ≤ n), and Hamming met-
ric (ℓ = n) becomes negligibly small. This suggests that for sufficiently large
code parameters, the choice of metric has a diminishing impact on the failure
probability.

2. The failure probability declines exponentially fast as s − w increases, which is
expected based on the expression of the upper bound in (5.14).

3. The gap between the upper bound and the actual failure probability narrows as
the code parameters increase. In Figure 5.2b, with larger code parameters, the
bound and the actual values are more closely aligned compared to Figure 5.2a.
This suggests that the derived upper bound becomes tighter and more accurate
for larger code parameters.

97

5 Decoding of High-Order Interleaved Sum-Rank-Metric Codes

5.5 Decoding Radius
For the decoder presented in Algorithm 6 to succeed and uniquely recover the error,
the following conditions must be satisfied:

1. The error matrix E must satisfy the high-order and full-rank conditions, i.e.,
s ≥ w and rkqm(E) = w. Note that the full-rank condition already implies a
high interleaving order, since for E to have rank w, the interleaving order s must
be at least w.

2. The parity-check matrix H must satisfy the condition in (5.5), which can be
expressed as

rkqm

H

[
B
b

]>
 = w + 1 ∀ b ∈ Fn

q \ suppΣR (E) s.t. wt(n)
ΣR (b) = 1

where B is a basis of the row support of the error with respect to the sum-rank
metric as in (2.28).

For w ≤ dmin − 2, the second condition is always satisfied, as shown in [PRR22,
Lemma 8]. However, for w ≥ dmin − 1, the decoder becomes probabilistic and returns
a unique solution to the decoding problem only if the second condition holds. When
averaging over all error matrices E, the probability of this condition being met becomes
a property of the code itself, determined by the parity-check matrix H and thus the
distance spectrum, which describes the distribution of distances between codewords.
Note that the decoder in Algorithm 6 can correct errors with a maximum weight of

w ≤ min{n− k − 1, µ(s)ℓ}.

The term n−k−1 ensures that the common parity-check matrix of the error code and
the component code has at least one nonzero row, which is necessary for successful
decoding. This prevents reaching n− k, as it would result in no rows in the common
parity-check matrix. The term µ(s)ℓ represents the maximum sum-rank weight for the
given parameters, with µ(s) defined in (2.32).

Figure 5.1 illustrates the decoding regions for Algorithm 6 when the error matrix
E satisfies the full-rank condition, i.e., rkqm(E) = w. This condition is crucial for the
success of the decoding algorithm.

Consequently, this leads to two important results:

1. Unique decoding is always possible for

w ≤ dmin − 2,

when the full-rank condition is satisfied.

98

5.5 Decoding Radius

2. Decoding is possible with high probability for

dmin − 2 < w ≤ n− k − 1,

when m is large.

In this section, we establish bounds on the probability for the second case. The
following theorem provides a connection between the error matrix characteristics and
the likelihood of satisfying the decoding condition.

Theorem 5.6. Let H ∈ F(n−k)×n
qm be a matrix chosen uniformly at random from

F(n−k)×n
qm . We assume that qm is large enough such that the probability of H having

full Fqm-rank is close to 1. Consider an error matrix E picked uniformly at random
from the set E (s)

w , where E, A, and B are as in (2.30), and wt(n)
ΣR(E) = w = ∑ℓ

i=1 wi,
satisfying the full-rank condition, i.e., rkqm(E) = w. Then, on average, the probability
that the condition (5.5) is satisfied is bounded from below and above as follows

PLB ≤ Pr[(5.5) is satisfied] ≤ PUB,

where

PLB
def=

1− 1
|E (s)

w |
·

∑
w∈T

w,ℓ,µ(s)

ℓ∏
i=1

NMq(sm, η, wi) ·
Nw

qm(n−k−w)

 ·
·

w−1∏
j=0

(
1− 1

qm(n−k−j)

)
, (5.15)

with
Nw

def= min{qm(n−k),
ℓ∑

i=1
(qni − qwi)}, (5.16)

and
PUB

def=
w∏

j=0

(
1− 1

qm(n−k−j)

)
.

Proof. The proof consists of two parts, one for the lower bound and one for the upper
bound.

First, we show the lower bound. Condition (5.5) can only be satisfied if HB> is
of full Fqm-rank. Since H is chosen uniformly at random, HB> is also a matrix
uniformly distributed over F(n−k)×w

qm . The probability of HB> having full Fqm-rank is
given by

p1
def=

w−1∏
j=0

(
1− 1

qm(n−k−j)

)
.

99

5 Decoding of High-Order Interleaved Sum-Rank-Metric Codes

Now, consider a specific vector b ∈ Fn
q \ suppΣR (E) and append it to B. Note that for

the bound we omit the restriction with wt(n)
ΣR (b) = 1. The probability that H [B> | b>]

is of full Fqm-rank, given that HB> is of full Fqm-rank, is equal to

p2
def=
(

1− 1
qm(n−k−w)

)
,

which is the probability that the (w + 1)-th additional column in H [B> | b>] is
linearly independent of the w remaining columns. This must hold true for any vector
b ∈ Fn

q \ suppΣR (E) simultaneously. Define the event Zi as the (w + 1)-th column
in H [B> | b>

i] for a given bi ∈ Fn
q \ suppΣR (E) being linearly dependent on the

remaining w columns, with i ∈ {1, . . . , Nw} and

Nw ≥ min{qm(n−k), |Fn
q \ suppΣR (E)|}.

The cardinality |Fn
q \ suppΣR (E)| is given by

ℓ∑
i=1

(qni − qwi),

which is the sum of the cardinalities of the blocks that correspond to

|Fni
q \ Rq

(
B(i)

)
| = qni − qwi .

By applying the union bound on the events Zi, the probability that (5.5) is not satisfied
is bounded from above as

Pr[(5.5) is not satisfied] ≤ (1− p1) + p1 ·
∑

w∈T
t,ℓ,µ(s)

Pr[w] · Pr
[

Nw⋃
i=1
Zi

]

≤ (1− p1) + p1 ·
∑

w∈T
w,ℓ,µ(s)

Pr[w] ·
Nw∑
i=1

Pr[Zi],

where Pr[w] is the marginal distribution of the rank profiles, given by

Pr[w] = 1
|E (s)

w |

ℓ∏
i=1

NMq(sm, η, wi).

Now, assuming that all Zi are independent, we have that for a given w,

Pr[Zi] = 1− p2 = 1
qm(n−k−w) .

100

5.5 Decoding Radius

Therefore,

Pr[(5.5) is not satisfied] ≤ (1− p1) + p1 ·
∑

w∈T
t,ℓ,µ(s)

Pr[w] ·
Nw∑
i=1

Pr[Zi]

= (1− p1) + p1 ·
∑

w∈T
t,ℓ,µ(s)

1
|E (s)

w |

ℓ∏
i=1

NMq(sm, η, wi) ·
Nw∑
i=1

1
qm(n−k−w)

= (1− p1) + p1 ·
∑

w∈T
t,ℓ,µ(s)

1
|E (s)

w |

ℓ∏
i=1

NMq(sm, η, wi) ·
Nw

qm(n−k−w) .

Consequently,

Pr[(5.5) is satisfied] = 1− Pr[(5.5) is not satisfied]

≥ 1−

(1− p1) + p1 ·
∑

w∈T
t,ℓ,µ(s)

1
|E (s)

w |

ℓ∏
i=1

NMq(sm, η, wi) ·
Nw

qm(n−k−w)


= p1 − p1 ·

∑
w∈T

t,ℓ,µ(s)

Nw ·
∏ℓ

i=1 NMq(sm, η, wi)
|E (s)

w | · qm(n−k−w)

= p1 ·

1−
∑

w∈T
t,ℓ,µ(s)

Nw ·
∏ℓ

i=1 NMq(sm, η, wi)
|E (s)

w | · qm(n−k−w)


=

1−
∑

w∈T
w,ℓ,µ(s)

Nw ·
∏ℓ

i=1 NMq(sm, η, wi)
|E (s)

w | · qm(n−k−w)

 w−1∏
j=0

(
1− 1

qm(n−k−j)

)
,

which establishes the lower bound PLB.
For the upper bound, we observe that the probability that condition (5.5) is satisfied

is upper bounded by the event that at least one matrix H [B> | b>] ∈ F(n−k)×(w+1)
qm is of

full Fqm-rank, where b ∈ Fn
q \ suppΣR (E). This probability is equal to the probability

that a random matrix in F(n−k)×(w+1)
qm is of full Fqm-rank (see [LN96]), which is given

by

PUB =
w∏

j=0

(
1− 1

qm(n−k−j)

)
.

This completes the proof.

5.5.1 Numerical Results
We now investigate the tightness of the upper and lower bounds on the failure probabil-
ity of condition (5.5) derived in Theorem 5.6. While these bounds provide theoretical

101

5 Decoding of High-Order Interleaved Sum-Rank-Metric Codes

guarantees, they may not always give a precise estimate of the actual failure proba-
bility. To assess their accuracy and explore alternative approximations, we conduct
simulations.

The following presents an approximation obtained by modifying the proof of The-
orem 5.6. Although this approximation does not provide strict bounds, it may yield
more realistic estimates of the failure probability and serves as a basis for comparison
with the simulated results.

If, in the proof of Theorem 5.6, we ignore the dependence of the events Zi for
i ∈ {1, . . . , Nw}, we obtain neither a lower nor an upper bound on the failure/success
probability of condition (5.5) for a random parity-check matrix H . Nevertheless, we
state the expression under that circumstance and use it as an approximation. We then
show through simulation that this approximation provides a more realistic estimate
of the success probability for relative small η. From the proof of Theorem 5.6, it is
straightforward to show that, in this case

Pr[condition (5.5) is satisfied] ≈
w−1∏
j=0

(
1− 1

qm(n−k−j)

)
(5.17)

·
∑

w∈Tw,ℓ,µ

Pr[w]
(

1− 1
qm(n−k−w)

)Nw

.

In the case of the Hamming metric, the events Zi for i ∈ {1, . . . , Nw} are actually
independent. This is because the rows of the matrix B consist solely of (scaled) unit
vectors. For the Hamming metric, we have Nw = n − w. When multiplying B> on
the right side of H , we effectively select specific columns of H . Moreover, for any
additional unit vector b, we select another column from H to form H · [B> | b>],
choosing from the remaining n − w columns. Given the assumption that the entries
of H are independently and uniformly distributed, these selected columns are also
independent.

In contrast, this independence does not hold for the rank metric. In the rank-
metric case, the matrices B> and [B> | b>] can be any full-rank matrices, rather
than being limited to (scaled) unit vectors. Consequently, when multiplying these
matrices on the right side of H , we obtain linear combinations of the columns of H
rather than simply selecting individual columns. These linear combinations introduce
dependencies among the events Zi, violating the independence assumption.

We investigate the tightness of the upper and lower bounds on the failure probability
of condition (5.5) derived in Theorem 5.6 by comparing them with simulated values
and an approximation (given in (5.17)). The simulation was performed using a Monte
Carlo approach with 105 samples for each point. Each sample involved picking a
random parity-check matrix and evaluating the failure probability. The simulation
was implemented using the computer-algebra system SageMath [The23].

102

5.5 Decoding Radius

Figure 5.3 shows parameters corresponding to the Hamming metric

η = 1, ℓ = 24, n = 24, q = 2, m = 2, k = 8.

In this case, we observe that the approximation closely matches the simulated values,
and both the upper and lower bounds hold. This reinforces our theory that the ap-
proximation is exact in the Hamming-metric case. In Figures 5.4 and 5.5, we increase
η to η = 2 and η = 3, respectively, while keeping the code parameters constant (i.e.,
code length n and dimension k). As we move away from the Hamming metric by
increasing η, we observe that the approximation becomes less accurate, and the lower
bound provides a better estimate. In all plots, the upper bound is relatively loose
compared to the lower bound.

Notably, across all scenarios, the success probability remains above 40% for error
weights w = 14. This value represents the second-largest decodable error weight for
the given code parameters and the Metzner–Kapturowski-like decoder described in
Algorithm 6, where the theoretical maximum is n− k − 1 = 15. This level of success
probability is relatively high, even near the upper limit of decodable errors.

151413121110
0

0.2

0.4

0.6

0.8

1

w

Su
cc

es
s

Pr
ob

ab
ili

ty

Simulated
Lower Bound, cf. (5.15)
Upper Bound, cf. (5.16)

Approximation, cf. (5.17)

Figure 5.3: Success probability vs error weight w for q = 2, m = 2, n = 24, k = 8,
η = 1, and ℓ = 24 with interleaving order s = w.

103

5 Decoding of High-Order Interleaved Sum-Rank-Metric Codes

151413121110
0

0.2

0.4

0.6

0.8

1

w

Su
cc

es
s

Pr
ob

ab
ili

ty

Simulated
Lower Bound, cf. (5.15)
Upper Bound, cf. (5.16)

Approximation, cf. (5.17)

Figure 5.4: Success probability vs error weight w for q = 2, m = 2, n = 24, k = 8,
η = 2, and ℓ = 12 with interleaving order s = w.

151413121110
0

0.2

0.4

0.6

0.8

1

w

Su
cc

es
s

Pr
ob

ab
ili

ty

Simulated
Lower Bound, cf. (5.15)
Upper Bound, cf. (5.16)

Approximation, cf. (5.17)

Figure 5.5: Success probability vs error weight w for q = 2, m = 2, n = 24, k = 8,
η = 3, and ℓ = 8 with interleaving order s = w.

104

5.6 Examples

5.6 Examples

In this section, we present two examples to illustrate the decoding process using Al-
gorithm 6 with small code parameters and randomly chosen codes. The first example
demonstrates a successful decoding, while the second example showcases a decoding
failure where the condition in (5.5) is not satisfied.

Example 5.1 (Successful Decoding). Let Fqm = F23 with primitive element α and
primitive polynomial α3 + α + 1. Consider an interleaved sum-rank-metric code
ICΣR[s; n, k, dmin] of length n = 6 with n = [2, 2, 2], k = 2, η = 2, ℓ = 3, d = 3,
and s = 3, defined by the parity-check matrix

H =


1 0 0 0 α2 + 1 α
0 1 0 0 1 α2

0 0 1 0 α α
0 0 0 1 α2 + α + 1 α + 1

 .

Suppose the codeword

C =

 α2 + 1 1 1 1 α2 + α α + 1
α + 1 α2 + α α2 α 1 α + 1

0 0 1 α α2 1

 ,
is corrupted by an error

E =

 0 α2 + 1 α2 + 1 α2 + 1 0 0
1 0 α2 α2 0 0

α + 1 α α + 1 α + 1 0 0

 ,
with CH> = 0, rkqm(E) = wt(n)

ΣR(E) = 3 and w = [2, 1, 0]. The received word is
Y = C + E, given by

Y =

 α2 + 1 α2 α2 α2 α2 + α α + 1
α α2 + α 0 α2 + α 1 α + 1

α + 1 α α 1 α2 1

 .
The syndrome S = HY > is computed as

S =


0 1 α + 1

α2 + 1 0 α
α2 + 1 α2 α + 1
α2 + 1 α2 α + 1

 .

105

5 Decoding of High-Order Interleaved Sum-Rank-Metric Codes

We find a matrix P ∈ F(n−k)×(n−k)
qm with rkqm(P) = n− k = 4, such as

P =


1 α2 + 1 0 α2 + α + 1

α + 1 α2 + 1 0 α2 + 1
α2 + α + 1 α + 1 0 α + 1

0 0 1 1

 ,

which transforms P S into row-echelon form.
The last n− k − w = 1 rows of P H yield

HS =
[

0 0 1 1 α2 + 1 1
]
.

Expanding each sub-block of HS over F2 yields

ext
(
H

(1)
S

)
=

0 0
0 0
0 0

 , ext
(
H

(2)
S

)
=

1 1
0 0
0 0

 , ext
(
H

(3)
S

)
=

1 1
0 0
1 0

 .

Note that ext
(
H

(1)
S

)
is an all-zero matrix, indicating that this block corresponds to

a full-rank error.
Next, we compute a basis for each of the right kernels of ext

(
H

(1)
S

)
, ext

(
H

(2)
S

)
,

and ext
(
H

(3)
S

)
such that

ext
(
H

(1)
S

)
B(1)> = 0, ext

(
H

(2)
S

)
B(2)> = 0, ext

(
H

(3)
S

)
B(3)> = 0,

and

rkq(B(1)) = n1 − rkq(H(1)
S) = 2,

rkq(B(2)) = n2 − rkq(H(2)
S) = 1,

rkq(B(3)) = n3 − rkq(H(3)
S) = 0.

This gives us

B(1) =
[
1 0
0 1

]
∈ F2×2

q , B(2) =
[
1 1

]
∈ F1×2

q , B(3) =
[]

∈ F0×2
q .

The matrix B is then given by

B = diag
(
B(1),B(2),B(3)

)
=

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 1 0 0

 .

106

5.6 Examples

Finally, solving for A, i.e.,

HB>A> = S
1 0 0
0 1 0
0 0 1
0 0 1

A> =


0 1 α + 1

α2 + 1 0 α
α2 + 1 α2 α + 1
α2 + 1 α2 α + 1

 ,

yields

A =

 0 α2 + 1 α2 + 1
1 0 α2

α + 1 α α + 1



=⇒ Ê = AB =

 0 α2 + 1 α2 + 1 α2 + 1 0 0
1 0 α2 α2 0 0

α + 1 α α + 1 α + 1 0 0

 ,
and Ê = E. Note that decoding is possible since rkqm(H [B> | b>]) = w + 1 = 4 for
all b ∈ Fn

q \ suppΣR (E) such that wt(n)
ΣR (b) = 1. The codeword C can be recovered as

C = Y − Ê.

Example 5.2 (Decoding Failure). Let Fqm = F22 with primitive element α and mini-
mal polynomial α2 + α+ 1. Further let ICΣR[s; n, k, dmin] be an interleaved sum-rank-
metric code of length n = 6 with n = [2, 2, 2], k = 2, dmin = 4, η = 2, ℓ = 3 and s = 3,
defined by the parity-check matrix

H =


1 0 0 α + 1 0 α
0 1 0 1 0 1
0 0 1 α 0 0
0 0 0 0 1 α + 1

 .

Suppose that the codeword

C =

 0 α 1 α + 1 α + 1 1
α 0 α + 1 α 1 α
0 α 1 α + 1 α + 1 1

 ,
is corrupted by an error

E =

 α 0 α α 0 0
1 1 α + 1 α + 1 0 0
α 1 α + 1 α + 1 0 0

 ,

107

5 Decoding of High-Order Interleaved Sum-Rank-Metric Codes

with rkqm(E) = wt(n)
ΣR(E) = 3 and w = [2, 1, 0]. The resulting received word is then

Y = C + E and thus

Y =

 α α α + 1 1 α + 1 1
α + 1 1 0 1 1 α
α α + 1 α 0 α + 1 1

 .
The syndrome is then

S = HY > =


α + 1 α + 1 0
α α α
1 α α
0 0 0

 .

We can find P ∈ F(n−k)×(n−k)
qm with rkqm(P) = n− k = 4, hence

P =


0 α α 0
α α α 0
α α + 1 0 0
0 0 0 1

 ,

such that P S is in row-echelon form. The last n− k − w = 1 rows of

P H =


0 α α 1 0 α
α α α 0 0 1
α α + 1 0 α 0 0
0 0 0 0 1 α + 1

 ,

yields
HS =

[
0 0 0 0 1 α + 1

]
.

Next we expand every sub-block of HS over F2 and obtain

ext
(
H

(1)
S

)
=
[
0 0
0 0

]
, ext

(
H

(2)
S

)
=
[
0 0
0 0

]
, ext

(
H

(3)
S

)
=
[
1 1
0 1

]
.

Next we compute a basis for each of the right kernels of ext
(
H

(1)
S

)
, ext

(
H

(2)
S

)
and

ext
(
H

(3)
S

)
such that

ext
(
H

(1)
S

)
B(1)> = 0, ext

(
H

(2)
S

)
B(2)> = 0, ext

(
H

(3)
S

)
B(3)> = 0,

108

5.7 Special Cases of the Algorithm for Hamming and Rank Metric

and

rkq(B(1)) = n1 − rkq(H(1)
S) = 2,

rkq(B(2)) = n2 − rkq(H(2)
S) = 2,

rkq(B(3)) = n3 − rkq(H(3)
S) = 0,

which gives us

B(1) =
[
1 0
0 1

]
, B(2) =

[
1 0
0 1

]
, B(3) =

[]
.

The matrix B is then given by

B = diag
(
B(1),B(2),B(3)

)
=


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

 .

In fact, we have that rkq(B(1)) + rkq(B(2)) + rkq(B(3)) = 4 > w = 3, and therefore we
cannot uniquely recover the error E anymore. This is because the decoding condition
in (5.5) is not satisfied, since there exists b ∈ Fn

q \ suppΣR (E) such that wt(n)
ΣR (b) = 1

and rkqm(H [B> | b>]) 6= w + 1 = 4. That is, for b =
[

0 0 1 0 0 0
]
, we have

H
[
B> | b>

]
=


1 0 α + 1 0
1 1 1 0
0 0 α + 1 1
0 0 0 0

 =⇒ rkqm

(
H
[
B> | b>

])
= 3 < 4.

5.7 Special Cases of the Algorithm for Hamming and
Rank Metric

The decoder described in Algorithm 6 extends the Metzner–Kapturowski decoder orig-
inally developed for the Hamming metric [MK90] as well as the Metzner–Kapturowski-
like decoder for the rank metric [PRW19; RPW21a] to the sum-rank metric. In this
section, we outline the differences in the operation of the proposed decoder across
three metrics: the Hamming metric, the rank metric, and the sum-rank metric. It is
important to note that both the Hamming and rank metrics can be considered special
cases of the sum-rank metric. We also highlight the similar definitions of error support
applicable to all three metrics. To clarify the distinction between the error weights in
each metric, we introduce the following notation: wH for the Hamming metric, wR for
the rank metric, and wΣR for the sum-rank metric.

109

5 Decoding of High-Order Interleaved Sum-Rank-Metric Codes

In the Hamming metric (i.e. ℓ = n and ni = 1), the support of an error matrix E
is defined as the set of indices corresponding to the nonzero columns of E, that is,

suppH(E) def= {j : the j-th column of E is nonzero}.

However, this classical notion of support does not directly align with the definition of
sum-rank support given in Definition 2.12. Nonetheless, a one-to-one correspondence
exists between the two concepts. We establish this by first describing suppΣR(E) and
then linking it to suppH(E). Since each of the blocks

E(1), . . . ,E(ℓ) ∈ Fs×1
qm ,

has length one (i.e. consist of one column) in the Hamming-metric setting, at most one
rank error can occur per block. Thus, the i-th block B(i) in the error decomposition

E = A · diag(B(1), . . . ,B(ℓ)),

from (2.30) has size w(i)
H × 1 with w

(i)
H ∈ {0, 1}. If the i-th block for an i ∈ {1, . . . , ℓ}

is erroneous, the matrix B(i) contains one nonzero Fq element, which implies

Rq

(
B(i)

)
= Fq.

If, on the other hand, the block E(i) is error-free, the matrix B(i) has size 0×1 and its
row space Rq

(
B(i)

)
is the trivial vector space {0} ⊆ Fq. Thus, the sum-rank support

suppΣR(E) = Rq

(
B(1)

)
× · · · × Rq

(
B(ℓ)

)
,

of E is a Cartesian product containing copies of Fq 6= {0} and {0} in the respective
positions. This allows us to define a bijection between the sum-rank support and the
classical definition of Hamming support given above. Namely,

suppH(E) 7→ suppΣR(E) = X1 ×X2 × · · · ×Xn,

with

Xi =

Fq if i ∈ suppH(E)
{0} if i /∈ suppH(E)

,

maps a subset of the indices {1, . . . , n} to the corresponding sum-rank support con-
tained in Fn

q with n = [1, . . . , 1] ∈ Zn
≥0. We stick to suppH(E) to explain the conse-

quences for decoding in the Hamming metric in the following.
An error matrix E with wH errors in the Hamming metric can be factored into

E = AB, where the rows of B are (scaled) unit vectors corresponding to the wH

110

5.7 Special Cases of the Algorithm for Hamming and Rank Metric

error positions. Consequently, the support of E is the union of the supports of the
rows Bi (∀i ∈ {1, . . . , wH}) of B, i.e.,

suppH(E) =
wH⋃
i=1

suppH(Bi).

When the full-rank condition for the Metzner–Kapturowski decoder is satisfied, the
zero columns in HS reveal the error positions and determine the error support. In
this case, we have

suppH(E) = {1, . . . , n} \
n−k−wH⋃

i=1
suppH(HS,i),

where HS,i denotes the i-th row of HS . Note that this equality corresponds to (5.7)
in the general case. The process of recovering the error support suppH(E) from HS
is depicted in Figure 5.6.

The rank-metric case (i.e., ℓ = 1 and n1 = n) is analogous to the Hamming-metric
case, with a different definition of error support. For an error matrix E with rank
rkq(E) = wR, we can decompose it as E = AB. The rank support suppR(E) of E is
defined as the row space of B, spanned by the union of all rows Bi of B, where Bi is
the i-th row of B. This definition matches exactly with the more general one in the
sum-rank metric from Definition 2.12 when ℓ = 1. Thus, the support of E is given by

suppR(E) =
wR⊕
i=1

suppR(Bi),

where ⊕ denotes the addition of vector spaces, i.e., the span of the union of the
considered spaces. If the full-rank condition on the error matrix is satisfied, the rank
support of E can be determined by the Fq-kernel of HS (see [RPW21a]).The Fq-row
space of HS can be computed by taking the span of the union of spaces suppR(HS,i),
where HS,i is the i-th row of HS . Consequently, the support of E is given by

suppR(E) =

n−k−wR⊕
j=1

suppR(Hsub,j)

⊥

.

In the sum-rank metric, according to Definition 2.12, we have

suppΣR(E) = suppR (B(1))× suppR (B(2))× · · · × suppR (B(s))

=

n−k−wΣR⊕
j=1

suppR(B(1)
j)

× · · · ×
n−k−wΣR⊕

j=1
suppR(B(ℓ)

j)

 .

111

5 Decoding of High-Order Interleaved Sum-Rank-Metric Codes

Based on Theorem 5.1, we have

suppΣR(E) =

n−k−wΣR⊕
j=1

suppR(H(1)
S,j)

⊥

× . . .

· · · ×

n−k−wΣR⊕
j=1

suppR(H(s)
S,j)

⊥

.

The relation between the error matrix E, the matrix HS , and the error supports for
the Hamming metric, rank metric, and sum-rank metric are illustrated in Figure 5.6,
Figure 5.7, and Figure 5.8, respectively. In particular, Figure 5.8 demonstrates the
process of determining the sum-rank support suppΣR(E) from the row spaces of the
blocks H

(i)
S for i ∈ {1, . . . , ℓ}.

E

error positions

=

A

·

B

1
1

1
1

error positions

HS =

all-zero columns in error positions

⇒ suppH(E) =
wH⋃
i=1

suppH(Bi) =

= {1, . . . , n} \
n−k−wH⋃

i=1
suppH(HS,i)

Figure 5.6: Illustration of the error support for the Hamming-metric case with an
error matrix E = AB ∈ Fs×n

qm , A ∈ Fs×wH
qm , B ∈ FwH×n

q and a parity-check
matrix HS ∈ F(n−k−wH)×n

qm . Bi is the i-th row of B and HS,i the i-th row
of HS .

112

5.7 Special Cases of the Algorithm for Hamming and Rank Metric

E

=

A

·

B

Fq

HS = suppR (E) =
(

n−k−wR⊕
i=1

suppR(Hsub,i)
)⊥

Figure 5.7: Illustration of the error support for the rank-metric case with an error
matrix E = AB ∈ Fs×n

qm , A ∈ Fs×wR
qm , B ∈ FwR×n

q and a parity-check
matrix HS ∈ F(n−k−wR)×n

qm . Hsub,i the i-th row of HS .

E

blocks with rank errors

E(1) · · · E(ℓ)

=

A
A(1) · · · A(ℓ)

·

B
B(1) · · · B(ℓ)

error blocks

HS =

H
(1)
S · · · H

(ℓ)
S

all-zero blocks at position of full-rank errors

suppΣR (E) =
(

n−k−wΣR⊕
j=1

suppR(H(1)
S,j)

)⊥

× · · · ×
(

n−k−wΣR⊕
j=1

suppR(H(s)
S,j)

)⊥

Figure 5.8: Illustration of the error support for the sum-rank-metric case with an error
matrix E = AB ∈ Fs×n

qm , A ∈ Fs×wΣR
qm , B ∈ FwΣR×n

q and a parity-check
matrix HS ∈ F(n−k−wΣR)×n

qm . A(i) and B(i) are the i-th block of A and B

and H
(i)
S,j the j-th row of H

(i)
S .

113

5 Decoding of High-Order Interleaved Sum-Rank-Metric Codes

5.8 Connection to the Loidreau–Overbeck Decoder
In this section, we explore the connection between the success conditions of the
Loidreau–Overbeck decoder and the Metzner–Kapturowski-like decoder.

As introduced in (3.3), the matrix

L̃ =


Mn−w−k(e1)ξ

Mn−w−k(e2)ξ
...

Mn−w−k(es)ξ

 ∈ Fs(n−w−k)×n
qm ,

determines the success of the Loidreau–Overbeck decoder, as described in Section 3.1.2.
This decoder succeeds if the matrix L̃ has rank equal to w.

Note that the first row of each submatrix Mn−w−k(ei)ξ in L̃ is equal to ei. Therefore,
the matrix

E =


e1
e2
...

es

 ,

is a submatrix of L̃. The Metzner–Kapturowski-like decoder succeeds if the matrix E
has rank w.

Since E is a submatrix of L̃, the success of the Metzner–Kapturowski-like decoder
(i.e., E has rank w) implies that L̃ also contains a submatrix of rank w. Thus, the
success of this decoder is sufficient for the success of the Loidreau–Overbeck decoder.
However, the condition for the Loidreau–Overbeck decoder (i.e., L̃ having rank w)
does not guarantee the success of the Metzner–Kapturowski-like decoder, as E could
have a lower rank even if L̃ meets the rank requirement.

This demonstrates a hierarchical relationship between the two decoders: while the
Loidreau–Overbeck decoder may handle broader conditions, it is specifically designed
for ILRS codes, whereas the Metzner–Kapturowski-like decoder is more general and
can be applied to an interleaved sum-rank-metric code with any constituent code.

5.9 Summary and Discussion
In this chapter, we investigated a Metzner–Kapturowski-like decoding algorithm tai-
lored for high-order interleaved sum-rank-metric codes. By introducing the novel
concept of an error code, we provided a fresh perspective on the decoding process,
enhancing our understanding of the decoder’s functionality and offering new insights.

Our proposed algorithm demonstrates significant versatility, being applicable to any
linear constituent code, including those that are unstructured or random. This gen-

114

5.9 Summary and Discussion

eral applicability positions our decoder as a robust tool for cryptanalysis of code-based
cryptosystems that utilize high order interleaving to reduce public key sizes. The abil-
ity to decode codes with arbitrary constituent codes suggests potential vulnerabilities
in cryptosystems that rely on interleaving for security.

We analyzed the computational complexity of our algorithm, which is on the or-
der of O(max{n3, n2s}) operations over Fqm , and found it to be independent of the
structure of the constituent codes. This independence is particularly advantageous in
cryptanalytic applications, where the codes may be designed to obscure their structure.

Furthermore, we explored the success probability of our decoder both within and
beyond the error weight bound where unique decoding is guaranteed (up to dmin− 2).
Our analysis revealed that the decoder maintains a high success probability even for
error weights exceeding this limit, as illustrated in Figure 5.9. This property is crucial
for cryptanalysis, as it enables the decoding of ciphertexts encrypted with higher error
weights, potentially compromising the security of the cryptosystem. Notably, since
the sum-rank metric generalizes both the Hamming and rank metrics, our results also
apply to these metrics, highlighting vulnerabilities in cryptosystems that utilize high
interleaving in these contexts as well.

s − w is large m is large

Full-rank condi-
tion satisfied with
high probability

Unique decoding
for w ≤ dmin − 1

Decoding with high
probability up to
w ≤ n − k − 1

Figure 5.9: Relationships between parameters, conditions, and decoding success.

Our work extends previous studies and provides valuable insights for the design and
security analysis of future code-based cryptosystems based on interleaving and the
sum-rank metric. The decoder’s guaranteed success for error weights up to dmin − 2
under the full-rank condition, and its high success probability beyond this range,
highlight the need for careful consideration when selecting code parameters for cryp-
tographic purposes.

The algorithm considered in this work is designed for interleaved codes where the
constituent codes are aligned vertically, also known as vertically interleaved codes.
From the error code perspective, this means that the error code’s row support is
restricted. In an alternative model, codewords could be aligned horizontally (horizontal
interleaving), resulting in the error code’s column support being restricted. Adapting

115

5 Decoding of High-Order Interleaved Sum-Rank-Metric Codes

the algorithm to this horizontal interleaving model is not straightforward and remains
an open problem.

Future research could explore further optimizations of the decoding algorithm and
its application to other metrics, such as the Lee metric [Lee58]. Additionally, inves-
tigating the adaptation of the algorithm to horizontal interleaving could reveal new
avenues for cryptanalysis and contribute to the development of more secure code-based
cryptosystems.

116

6
Support-Guessing Decoding
Algorithms in the Sum-Rank Metric

Decoding problems in the sum-rank metric are crucial for the security analysis of code-
based cryptosystems that utilize this metric. Continuing our focus on non-interleaved
codes and generic decoding problems, in this chapter we further investigate decoding
challenges within the sum-rank metric.

Efficient generic decoding algorithms have been extensively developed for the Ham-
ming metric—such as Prange’s algorithm [Pra62], Stern’s algorithm [Ste89], the May–
Meurer–Thomae algorithm (MMT) [MMT11], the Becker–Joux–May–Meurer algo-
rithm (BJMM) [BJMM12], and many others. Significant progress has also been made
in the rank metric with algorithms like Chabaud and Barbier’s algorithm [CS96],
combinatorial approaches by Gaborit et al. [GRS16], and improved syndrome decod-
ing algorithms by Aragon et al. [AGHT17]. However, there has been relatively little
advancement in developing such algorithms for the sum-rank metric, which bridges
the Hamming and rank metrics. Notably, Puchinger et al. [PRR22] have initiated
work in this area by providing upper and lower bounds on the decoding complexity
based on worst-case rank profiles. Their analysis focuses on the worst-case scenarios
over all possible rank profiles, offering valuable insights into the theoretical limits of
decoding in the sum-rank metric. However, this worst-case perspective may not accu-
rately reflect the average decoding complexity encountered in potential cryptographic
applications. Therefore, further efforts are needed to understand and improve the
complexity of decoding in the sum-rank metric from an average-case perspective.

In this chapter, we advance the complexity analysis of decoding problems in the sum-
rank metric, addressing key limitations in existing work and providing insights essential
for cryptographic applications. Specifically, we focus on improving the understanding
of the expected decoding complexity for generic decoding algorithms by transitioning
from worst-case to average-case analysis and introducing decoding algorithms for LRS
codes beyond the unique decoding radius. The proposed algorithm for LRS codes

117

6 Support-Guessing Decoding Algorithms in the Sum-Rank Metric

offers significant complexity reductions compared to fully generic decoding algorithms
that do not exploit the underlying code structure.

While the lower bound presented in [PRR22] is tight within the unique decoding
radius—where at most one decoding solution exists—it becomes less applicable beyond
that radius. Beyond the unique decoding radius, multiple decoding solutions may exist,
rendering the worst-case lower bound less representative of actual decoding complexity.
This scenario is illustrated in Figure 6.1, where decoding beyond the unique radius
leads to more than one possible solution. In such cases, the complexity of finding a
solution can be significantly lower than the worst-case bound suggests. Relying solely
on the previous lower bound may lead to overestimating the decoding complexity
and underestimating an attacker’s actual capabilities, potentially resulting in insecure
parameter choices.

For cryptographic applications, especially in selecting key sizes and system param-
eters, it is crucial to establish lower bounds on the decoding complexity that reflect
the minimum difficulty an attacker would face. Such bounds provide insights into the
best-case scenario for the attacker, ensuring that security assessments are based on re-
alistic estimates of the attack effort. By adopting an average-case analysis, we obtain
more precise and realistic estimates of the decoding complexity over all possible error
patterns, not just the worst-case scenarios. This ensures that the parameters chosen
for a cryptosystem provide the desired level of security, safeguarding against potential
attacks that exploit the existence of multiple decoding solutions.

In cryptography, it is essential that the complexity of the best-known attack does
not lead to a lower security level than intended. This requires that the lower bound on
the expected decoding complexity is sufficiently high to prevent efficient attacks. An
accurate average-case analysis enables that cryptographic parameters can be chosen
such that no known attack can break the system more efficiently than intended.

In this work, we extend the analysis to the average-case scenario by considering
all possible rank profiles and deriving a tailored support-guessing distribution that
optimizes the expected decoding complexity in the asymptotic setting. Specifically,
we consider the case where the number of blocks tends to infinity, which allows us to
assume independence between the probabilities of each block having a certain rank.
With this independence assumption, we derive an optimal support-guessing distribu-
tion applicable to finite-length scenarios. Numerical evaluations demonstrate that this
asymptotically derived distribution closely matches and often coincides with the distri-
bution obtained by considering the dependencies between the blocks in the finite-length
case, even though deriving the latter is more complex. Our analysis yields exact com-
plexity values for unique decoding cases and provides tighter upper and lower bounds
valid for decoding beyond the unique decoding radius, as illustrated in Figure 6.1. We
introduce a new lower bound that accounts for alternative decoding solutions using
random-coding union (RCU) bound arguments, offering a more precise estimation of
decoding complexity in this regime.

118

In addition to the average-case analysis of the generic decoding algorithm, we investi-
gate decoding LRS codes beyond the unique decoding radius. Previous work [RJB+20]
introduced a randomized decoding algorithm for Gabidulin codes, which are the rank
metric equivalent of LRS codes. We adapt and generalize this approach to the sum-
rank metric for LRS codes. This work is based on our previous publications [JBW23;
JBW24].

Both the generic decoder and the randomized decoder for LRS codes are support-
guessing algorithms. They operate by randomly guessing the support of the error
according to a predefined probability distribution, which needs to be optimized. In
each iteration of the guessing loop, a decoding step is performed. For the generic
decoder, this decoding step is an erasure decoder, requiring the guessed support to
fully contain the actual error support to succeed. In contrast, the randomized decoder
for LRS codes employs an error-and-erasure decoder, which only requires that the
intersection between the guessed support and the actual error support is sufficiently
large for successful decoding.

The error-and-erasure decoder leverages the underlying algebraic structure of LRS
codes, allowing it to succeed in cases where the fully generic decoder would fail. By
exploiting this structure, our randomized decoder achieves a higher success probability
and lower expected computational complexity. Although the randomized decoding
approach can conceptually be applied to any code equipped with an error-and-erasure
decoder, we focus on LRS codes due to their significance in the sum-rank metric.

By combining the optimized average-case analysis of the generic decoder with the
enhanced capabilities of the randomized decoder for LRS codes, we offer a compre-
hensive understanding of decoding complexities in the sum-rank metric. This work
aligns with the overarching narrative of this thesis, which focuses on developing ro-
bust complexity analyses and efficient decoding algorithms for codes in the sum-rank
metric.

Most parts of this chapter are based on [JBW24], submitted and currently under
review at IEEE Transactions on Information Theory. The chapter presents tighter
upper bounds on the worst-case setting, transitions from worst-case to average-case
complexity analysis, and introduces a new support-drawing distribution for both fully
generic and randomized decoding of LRS codes. These and all other new contributions
of [JBW24] were the ideas of the author of this dissertation and were solely developed
and worked out by the author.

Section 6.5 is primarily based on [JBW23] and [JBW24]. The conference ver-
sion [JBW23] was first presented at the IEEE International Symposium on Infor-
mation Theory (ISIT 2023) and was later extended in the journal version as discussed
above [JBW24].

The concept of the randomized decoder, which combines an error-and-erasure de-
coder with a support-guessing approach, was first proposed in the work presented at
the Code-Based Cryptography Conference (CBCrypto 2019) [JB19]. In that paper, we

119

6 Support-Guessing Decoding Algorithms in the Sum-Rank Metric

c1 c2

c3
dmin−1

2

y δ

Figure 6.1: Illustration of decoding ambiguity in the 2D plane, where an error e exceed-
ing the unique decoding radius causes the received point y to be equidistant
from multiple codewords.

introduced the core idea of the decoder, focusing on a specific type of support related
to criss-cross erasures. This initial concept was primarily developed by the author of
this dissertation and is briefly discussed in Section 6.5.7. The analysis of the decoder
was later generalized to handle a broader notion of support in the rank metric, as
presented at the international conference on Post-Quantum Cryptography (PQCrypto
2020). The author contributed significantly to this generalization, including discus-
sions, insights, algorithmic implementation, and simulations.

The work was further generalized to the sum-rank metric for LRS codes in [JBW23],
and extended to average-case complexity analysis in the journal version [JBW24], as
discussed earlier. These extensions enhance the understanding of decoding complexi-
ties and contribute valuable insights to the broader field of sum-rank-metric codes.

6.1 Overview of Decoding Problems
This section presents and categorizes decoding problems in the sum-rank metric, rel-
evant to both coding theory and cryptographic applications. In Section 2.4.2, we
introduced various decoding concepts aimed at finding an ”optimal” solution by min-
imizing either a distance metric or a likelihood.

In this chapter, we focus on problems where the error weight w is assumed to be
known. This assumption is justified by the fact that one can iterate through a set of
potential weights, i.e., w ∈ {0, . . . , n}, which has a cardinality polynomially bounded
in n. The solution corresponding to the desired criterion, such as minimal weight, can
then be selected. We begin with the most general decoding problem and then proceed

120

6.1 Overview of Decoding Problems

to more specific cases, formulating the corresponding problems along the way.

6.1.1 Sum-Rank Syndrome Decoding Problem
The sum-rank syndrome decoding problem is a generalization of both the syndrome
decoding problem in the Hamming metric and the rank syndrome decoding problem,
thereby covering a broad range of cryptosystems that rely on the hardness of this
problem. Examples include WAVE [DST19], BIKE [ABB+20], and HQC [MAB+24]
(based on the Hamming metric), as well as RQC [MAB+20] (based on the rank metric).

Problem 6.1 (Sum-Rank Syndrome Decoding Problem).

• Instance:
– A linear sum-rank-metric code CΣR[n, k] ⊆ Fn

qm with parity-check matrix
H ∈ F(n−k)×n

qm ,
– A syndrome s ∈ Fn−k

qm and an integer w > 0.

• Objective: Find an error vector e such that s = eH> and wtΣR(e) = w.

The sum-rank syndrome decoding problem is particularly interesting due to its appli-
cability across different metrics and cryptosystems. A solution to this problem is not
guaranteed.

The algorithm introduced in [PRR22] provides a generic decoding approach that
addresses the sum-rank syndrome decoding problem for error weights up to n− k.

6.1.2 Decoding Beyond the Unique Radius
The following problem can be seen as a special case of the sum-rank syndrome decoding
problem (see Problem 6.1). In this case, we assume that a specific codeword, corrupted
by an error of known weight, has been received. Under this assumption, the weight of
the error, denoted by w, is known, and we set the decoding radius accordingly to w.
This ensures that at least one solution exists, although it may not be unique, similar
to the general syndrome decoding problem. We first consider the problem of decoding
beyond the unique radius for arbitrary sum-rank-metric codes.

Problem 6.2 (Beyond Unique Decoding for Sum-Rank-Metric Codes).

• Instance:
– Linear sum-rank-metric code CΣR[n, k] ⊆ Fn

qm with unique decoding radius
τ ,

– Error vector e
$← Ew with wtΣR(e) = w ≥ τ ,

– Received vector y = c + e with c ∈ CΣR[n, k].

121

6 Support-Guessing Decoding Algorithms in the Sum-Rank Metric

• Objective: Find a codeword c ∈ CΣR[n, k], such that

wtΣR(y − c) = w.

Problem 6.2 extends the unique decoding problem by allowing error weights that
exceed the unique decoding radius. Unlike unique decoding, multiple codewords may
satisfy the decoding condition, and a solution is not guaranteed to be unique. The
generic decoder introduced in [PRR22] can efficiently address this problem for any
linear sum-rank-metric code without relying on its structure, handling error weights
up to n− k.

Next, we specialize this problem for LRS codes.

Problem 6.3 (Beyond Unique Decoding for LRS codes).

• Instance:

– LRS code LRS[β, ξ, ℓ; n, k] ⊆ Fn
qm, y ∈ Fn

qm,

– Error vector e
$← Ew with wtΣR(e) = w ≥ τ ,

– Received vector y = c + e ∈ Fn
qm with c ∈ LRS[β, ξ, ℓ; n, k].

• Objective: Find a codeword c ∈ LRS[β, ξ, ℓ; n, k], such that

wtΣR(y − c) = w.

Problem 6.3 is a specialization of Problem 6.2 for LRS codes. This specialization
allows us to exploit the inherent structure of LRS codes, potentially leading to more
efficient decoding algorithms. We compare the complexity of the generic decoder for
Problem 6.2, as introduced in [PRR22], with our proposed randomized decoder (see
Section 6.5) tailored for LRS codes.

The Faure–Loidreau (FL) system is a rank-metric code-based cryptosystem that
uses Gabidulin codes, which are a special case of LRS codes. Problem 6.3 is itself
a generalization of the decoding problem considered in [RJB+20], which focused on
Gabidulin codes. Our proposed randomized decoder generalizes the decoder intro-
duced in [RJB+20] to the sum-rank metric. We first introduced this generalization
in [JBW23].

Our proposed decoder and the complexity analysis for the sum-rank metric could be
valuable for future cryptosystems that are similar to the FL system but operate in the
sum-rank metric, or for different cryptosystems that rely on problems like Problem 6.3
in the sum-rank metric.

122

6.1 Overview of Decoding Problems

6.1.3 Unique Decoding Problem
The unique decoding problem (also known as bounded minimum distance decoding
problem) is a specific case of Problem 6.2, where the error weight does not exceed the
unique decoding radius, ensuring that there is exactly one solution within this radius.

Problem 6.4 (Unique Decoding Problem).

• Instance:
– A linear sum-rank-metric code CΣR[n, k] ⊆ Fn

qm with unique decoding radius
τ .

– An error vector e
$← Ew with w = wtΣR(e) ≤ τ .

– A received vector y = c + e where c ∈ CΣR[n, k].

• Objective: Determine the unique codeword c ∈ CΣR[n, k] such that

wtΣR(y − c) ≤ τ.

In this case, the decoder is guaranteed to find exactly one solution as long as the
error weight is within the unique decoding radius. Efficient polynomial-time decoders
are available for several well-known algebraic codes, such as Reed–Solomon codes,
BCH codes, and Goppa codes in the Hamming metric [MS77], as well as Gabidulin
codes in the rank metric [Gab85], and LRS codes in the sum-rank metric [Mar18],
provided that the code structure is known.

However, in cryptosystems such as McEliece-like cryptosystems, where the code
structure is intentionally obfuscated to increase security, decoding becomes much more
challenging for unauthorized parties. This further highlights the importance of efficient
decoders, particularly in cases where the error weight stays within the unique decoding
radius.

6.1.4 Channel Model
In Problem 6.2, Problem 6.3 and Problem 6.4, the error vector e is drawn uniformly
at random from Ew, the set of all vectors in Fn

qm with sum-rank weight w. This is done
by first determining a rank profile w ∈ Tw,ℓ,µ according to the marginal distribution
of the rank profile of the error given by

Pr[w] = 1
|Eq,η,m,ℓ(w)|

ℓ∏
i=1

NMq (m, η, wi). (6.1)

Then, for each i ∈ {1, . . . , ℓ}, an element e(i) ∈ Fηi
qm of rank weight wi is drawn

independently and uniformly at random from the set of all elements in Fηi
qm of rank

123

6 Support-Guessing Decoding Algorithms in the Sum-Rank Metric

weight wi, as described in [PRR22]. The resulting error vector e satisfies wtΣR(e) = w
and is uniformly distributed in Ew. The received word y is then considered to be of
the form

y = c + e,

with c ∈ CΣR[n, k] ⊆ Fn
qm .

6.2 Ordered Rank Profiles
We now define the set that contains only the ordered rank profiles, as introduced in
Definition 2.9. This concept helps to simplify the complexity of computing certain
expressions regarding the sum-rank metric by exploiting symmetry properties that are
the same for permuted versions of the rank profiles.

Definition 6.1 (Ordered Rank Profiles). Let w, ℓ, and µ be non-negative integers
with w ≤ ℓµ. We define the set

Jw,ℓ,µ
def= {w ∈ Tw,ℓ,µ : w1 ≥ w2 ≥ · · · ≥ wℓ} ,

which contains the ordered rank profiles of a vector with ℓ blocks and a sum-rank weight
of w.1

Note that every element w ∈ Jw,ℓ,µ is also an element in Tw,ℓ,µ, but not vice versa.

Next, for a given w ∈ Tw,ℓ,µ, we denote by Sℓ,µ(w) the set of all possible per-
mutations of w. Hence, each element σ in Sℓ,µ(w) is a permutation operator, i.e.,
σ : w 7→ σ(w), where σ(w) is a permutation of the entries of w.

Additionally, let w̃ = [w̃1, . . . , w̃ℓ] be the vector obtained by sorting the entries of
w in decreasing order. We denote this operation by sort(w), so that w̃ = sort(w).
In other words, sort(w) represents the permutation of the entries of w that yields the
sorted vector w̃, such that

w̃1 ≥ w̃2 ≥ · · · ≥ w̃ℓ.

This leads to the following two relations between the sets Jw,ℓ,µ and Tw,ℓ,µ

Jw,ℓ,µ = {sort(w) : ∀w ∈ Tw,ℓ,µ} ,
Tw,ℓ,µ =

⋃
w∈Jw,ℓ,µ

{σ(w) : ∀σ ∈ Sℓ,µ(w)} .

1In literature, this set is closely related to the concept of integer partitions of w, where an integer is
expressed as the sum of non-negative integers. Without the restrictions on the maximal number of
blocks ℓ and the maximum rank weight µ, this set would coincide with the set of integer partitions.
However, with these restrictions, it forms a constrained version, limited in both length by ℓ and
value by µ.

124

6.3 Generic Decoding in the Sum-Rank Metric

The number of possible permutations of w, denoted by |Sℓ,µ(w)|, is given by the
multinomial coefficient

|Sℓ,µ(w)| =
(

ℓ

λ0, λ1, . . . , λµ

)
= ℓ!
λ0!λ1! · · ·λµ!

,

where λi is the number of occurrences of the integer i in w for all i ∈ {0, . . . , µ}.
Therefore, by considering all permutations of all elements in Jw,ℓ,µ, we obtain the set
Tw,ℓ,µ.

For a given (non-ordered) rank profile w ∈ Tw,ℓ,µ we also define the restricted set of
rank profiles

T ≥w
w,ℓ,µ

def= {w′ ∈ Tw,ℓ,µ : w′
1 ≥ w1, . . . , w

′
ℓ ≥ wℓ}.

6.3 Generic Decoding in the Sum-Rank Metric
In this section, we summarize the generic decoding algorithm for the sum-rank metric
introduced by Puchinger et al. [PRR20; PRR22]. Their analysis focuses on solving a
special instance of Problem 6.1, where the syndrome is chosen such that at least one
solution exists. This scenario applies to both Problem 6.2 and Problem 6.4. In their
derivation of the lower bound, they assume that at most one solution exists within the
decoding radius, with no alternative solutions possible. As a result, the lower bound
applies only to Problem 6.4.

The decoding algorithm proceeds by guessing possible error supports according to
a probability distribution, which is a key design criterion that can be optimized to
maximize the decoder’s success probability. In each iteration of the decoding loop,
a new support is guessed, and the decoder attempts to correct the error based on
that support. If the guess is incorrect, the loop continues with another guess. The
success probability for each iteration depends on the support-guessing distribution.
The worst-case complexity is determined by evaluating all possible error rank profiles,
with the worst-case profile, denoted by wwc, representing the maximum number of
operations needed for the decoder to succeed.

Remark 6.1. In [PRR22, Remark 17], it was shown that an error e with row support
ER and column support EC can be uniquely recovered if either a row super-support
FR ⊇ ER or a column super-support FC ⊇ EC is found, both with sum-rank weight v,
such that w ≤ v < dmin. The sum-rank weight v cannot exceed

vmax
def= min

{
n− k,

⌊
m

η
(n− k)

⌋}
. (6.2)

Decoding beyond the unique erasure decoding radius is possible up to vmax. This
situation is analogous to the classical ISD algorithm in the Hamming metric (i.e. η = 1

125

6 Support-Guessing Decoding Algorithms in the Sum-Rank Metric

and n = ℓ), where a support of size vmax = n−k is selected. Successful decoding occurs
if the corresponding submatrix of the parity-check matrix formed by these columns is of
full rank, ensuring a unique solution to the system of linear equations. In the Hamming
metric, the probability that a submatrix is full rank is generally assumed to be close to
1, especially for large field sizes qm. However, in Theorem 5.6, we derived bounds on
this probability for randomly chosen parity-check matrices. As shown in Section 5.5.1,
this probability can be significantly lower for the sum-rank metric, depending on the
parameter choices. Consequently, the probability of finding a valid decoding support
under these conditions can be much lower than expected. In this chapter, we similarly
assume this probability to be close to 1 for simplicity in our analysis, but for certain
parameter sets, it may be advisable to verify this assumption in practice.

Algorithm 8 describes the decoding process, which selects the appropriate type of
(row or column) support. When m is smaller than η, the algorithm selects the row
support; otherwise, it chooses the column support. For the sake of simplicity, we
will henceforth refer to the selected support type as simply “support” throughout the
remainder of this chapter, with the understanding that the decoding algorithm makes
this choice based on the given parameters.

Algorithm 8: Generic Sum-Rank Decoder [PRR22]
Input : Parameters: q, m, n, k, ℓ, w and v with w ≤ v ≤ vmax

Received vector y ∈ Fn
qm

Parity-check matrix H ∈ F(n−k)×n
qm of an Fqm-linear sum-rank

metric code CΣR[n, k]
Output : Vector c′ ∈ CΣR[n, k] such that wtΣR(y − c′) = w

1 e′ ← 0 ∈ Fn
qm

2 η ← n/ℓ

3 µ← min{m, η}
4 while H(r − e′)> 6= 0 or wtΣR(e′) 6= w do
5 F ← Draw random support F ⊆ Fµ

q × · · · × Fµ
q of sum dimension v

6 if η < m then
7 e′ ← Column erasure decoding: F , H , y /* cf. [PRR22, Theorem 13] */

8 else
9 e′ ← Row erasure decoding: F , H , y /* cf. [PRR22, Theorem 14] */

10 return y − e′

126

6.3 Generic Decoding in the Sum-Rank Metric

6.3.1 Improved Simple Bound on the Worst-Case Success
Probability

Recall that we denoted the worst-case rank profile as wwc. In [PRR22, Theorem
16], the authors derive lower and upper bounds on the expected run time Wgen of
Algorithm 8 to decode an error pattern with rank profile wwc.

Given an error rank profile w ∈ Tw,ℓ,µ and a super-support rank profile v ∈ Tv,ℓ,µ,
we compute the probability φq,µ(v,w) that the error support lies within the guessed
super support as [PRR22]

φq,µ(v,w) def=
ℓ∏

i=1
P⊆

q,µ (wi,vi) , (6.3)

where P⊆
q,µ (wi,vi) is the probability as in (2.8).

Using this probability, we define φ(max)
q,µ,v (w) as the maximum probability over all

super-support rank profiles v ∈ Tv,ℓ,µ

φ(max)
q,µ,v (w) def= max

v∈Tv,ℓ,µ

φq,µ(v,w).

Further let vcompµ(w, v) be a function vcompµ : Tw,ℓ,µ×Z≥0 → Tv,ℓ,µ that for a given
integer v ∈ Z≥0 returns a rank profile such that

φ(max)
q,µ,v (w) = φq,µ(vcompµ(w, v),w).

The function vcompµ(w, v) can be implemented efficiently, see [PRR22].
With these definitions in place, Puchinger et al. [PRR22, Theorem 16] provide the

following bounds on the expected runtime Wgen of Algorithm 8 for Problem 6.4

W (LB)
gen,wc = W (iter)

gen |Tw,ℓ,µ|−1Qw,ℓ,µ, (6.4)
W (UB)

gen,wc = W (iter)
gen Qw,ℓ,µ, (6.5)

W̃ (UB)
gen,wc = W (iter)

gen

(
ℓ+ w − 1
ℓ− 1

)
γℓ

qq
w(µ− v

ℓ
), (6.6)

with
Qw,ℓ,µ

def=
∑

w∈Tw,ℓ,µ

φ(max)
q,µ,v (w)−1

, (6.7)

where W (iter)
gen represents the complexity of one iteration of the generic decoding al-

gorithm. To be more precise, W (iter)
gen is the sum of the complexities of two main

components: drawing an error super support and performing the row/column era-
sure decoding, as outlined in Algorithm 8. The complexity of drawing an error super
support is in the order of Õ(n3m2 log2(q)) bit operations. Meanwhile, the row/column-

127

6 Support-Guessing Decoding Algorithms in the Sum-Rank Metric

erasure decoding involves O((n− k)3m3) operations over Fq. While these complexities
are asymptotic approximations and neglect constant factors, they provide useful es-
timates for large input sizes. For finite lengths, the exact complexities depend on
the specific implementation details of the underlying algorithms. Therefore, for the
purpose of plotting and practical considerations, we approximate W (iter)

gen ≈ n3m3,
combining the dominant terms of both components.

The upper bound W (UB)
gen,wc requires computing the term Qw,ℓ,µ, a process that, while

feasible in polynomial time, relies on algorithms that are challenging to implement. To
simplify this, Puchinger et al. derived the closed-form bound W̃ (UB)

gen,wc on the expected
runtime of Algorithm 8. While convenient, this bound can be rather loose when
the parameters approach the Hamming metric, i.e., as ℓ → n for a fixed η and/or
η → 1 (see Figure 6.2). To address this, we introduce a new, tighter upper bound in
Theorem 6.1.

Theorem 6.1. Let c be a codeword of a sum-rank-metric code CΣR[n, k] with minimum
sum-rank distance dmin. Additionally, let e be an error of sum-rank weight w < dmin
with a rank profile corresponding to the worst-case rank profile wwc. Then Algorithm 8
in the context of Problem 6.1 returns a solution w.r.t. an error e′ ∈ Fn

qm with the
weight w. Each iteration of Algorithm 8 has complexity W (iter)

gen . The overall expected
worst-case runtime, also referred to as the complexity Wgen,wc of Algorithm 8 is upper
bounded by

Wgen,wc ≤ W̃ (UB,improved)
gen,wc , (6.8)

with

W̃ (UB,improved)
gen,wc

def= W (iter)
gen

(
ℓ+ w − 1
ℓ− 1

)
qw(µ− v

ℓ
) ·min

(
γℓ

q,

(
1− q−µ

1− q−1

)w)
.

Proof. To prove the theorem, we will show that

Wgen,wc ≤ W (iter)
gen

(
ℓ+ w − 1
ℓ− 1

)
qw(µ− v

ℓ
)
(

1− q−µ

1− q−1

)w

.

Starting from the bound in (6.5), it suffices to show that

Qw,ℓ,µ ≤
(
ℓ+ w − 1
ℓ− 1

)
qw(µ− v

ℓ
)
(

1− q−µ

1− q−1

)w

.

128

6.3 Generic Decoding in the Sum-Rank Metric

By the definition of Qw,ℓ,µ in (6.7), we can bound Qw,ℓ,µ as (cf. [PRR22])

Qw,ℓ,µ ≤ |Tw,ℓ,µ| · max
w∈Tw,ℓ,µ

φ(max)
q,µ,v (w)−1

≤
(
ℓ+ w − 1
ℓ− 1

)
· max

w∈Tw,ℓ,µ

φ(max)
q,µ,v (w)−1

, (6.9)

where

max
w∈Tw,ℓ,µ

φ(max)
q,µ,v (w)−1 = max

w∈Tw,ℓ,µ

{
φq,µ(v′,w)−1 : v′ = vcompµ(w, v)

}
.

Next, we can bound φq,µ(v′,w)−1 as

φq,µ(v′,w)−1 =
w∏

i=1

[
µ
wi

]
q[

v′
i

wi

]
q

≤
(

1− q−µ

1− q−1

)w

·
w∏

i=1
qwi(µ−v′

i), (6.10)

where the inequality follows from[
a
b

]
q[

c
b

]
q

= qb(a−b)

qb(c−b) ·
w∏

i=1

(1− q−a)(1− q−a+1) · · · (1− q−a+b−1)
(1− q−c)(1− q−c+1) · · · (1− q−c+b−1)

≤ qb(a−c) · 1− q
−a

1− q−1 .

Substituting (6.10) into (6.9) yields

Qw,ℓ,µ ≤
(
ℓ+ w − 1
ℓ− 1

)
·
(

1− q−µ

1− q−1

)w

· max
w∈Tw,ℓ,µ

{
q
∑ℓ

i=1 wi(µ−v′
i) : v′ = vcompµ(w, v)

}
.

The remainder of the proof follows from the proof in [PRR22, Proposition 21], which
leads to the desired result

Wgen,wc ≤ W̃ (UB,improved)
gen,wc .

129

6 Support-Guessing Decoding Algorithms in the Sum-Rank Metric

1 2 3 4 5 6 10 12 15 20 30 60
0

50

100

150

200

C
ol

um
n

Su
pp

or
t

R
ow

Su
pp

or
t

ℓ

lo
g 2

(C
om

pl
ex

ity
)

W̃
(UB)
gen,wc W̃

(UB,improved)
gen,wc W

(UB)
gen,wc W

(LB)
gen,wc

1 2 3 4 5 6

100

125

150

175

ℓ

lo
g 2

(C
om

pl
ex

ity
)

Figure 6.2: Illustration of the improved upper bound on the complexity of Algorithm 8
compared to the other bounds (6.4),(6.5) and (6.6) for parameters: q = 2,
m = 20, n = 60, k = 30, w = 9, s = 10. At ℓ = 3, the algorithm transitions
from guessing the column support to guessing the row support.

130

6.3 Generic Decoding in the Sum-Rank Metric

Figure 6.2 illustrates the existing bounds from Puchinger et al. [PRR22] alongside
the new improved bound W̃ (UB,improved)

gen,wc given by (6.8). The figure shows the complexity
as a function of the number of blocks ℓ for a fixed code length n, where the code length
is defined as n = ℓη. This representation allows for the analysis of how the bounds
and the improved bound behave as the number of blocks varies while keeping the code
length and rate constant.

The illustrated bounds also include the lower bound W (LB)
gen,wc, the upper bound

W (UB)
gen,wc, and the simplified upper bound W̃ (UB)

gen,wc, as defined in (6.4), (6.5), and (6.6),
respectively. For a fair comparison, we use the same parameters as those presented in
one of the figures from the original paper. The improved bound W̃ (UB,improved)

gen,wc is signif-
icantly tighter and closer to the upper bound W (UB)

gen,wc, particularly in the region near
the Hamming metric, which corresponds to cases where ℓ → n and η → 1. This sug-
gests that the new simplified bound provides a better approximation of the algorithm’s
complexity compared to the previous simplified upper bound W̃ (UB)

gen,wc, especially when
the sum-rank metric closely resembles the Hamming metric.

6.3.2 Success Probability Analysis for the Average Case
We now consider the channel model described in Section 6.1.4 and begin by deriving
the success probability for the case of unique decoding, where exactly one solution
exists. Additionally, we derive an upper bound on the success probability for decoding
beyond the unique decoding radius, using RCU arguments. This upper bound accounts
for alternative solutions that the decoder in Algorithm 8 may return in this scenario.

In this analysis, we assume that the support drawing distribution is known. In
the subsequent section, we will use the probabilities derived here to formalize an
optimization problem with respect to the support drawing distribution.

In Line 5 of Algorithm 8, we need to draw a suitable super support

F = F1 × · · · ×F ℓ,

where F ⊆ Fµ
q ×· · ·×Fµ

q , each F i has dimension vi for i ∈ {1, . . . , ℓ}, and ∑ℓ
i=1 vi = v.

The distribution from which these super supports are drawn is a critical design param-
eter of the algorithm and requires careful optimization to maximize the algorithm’s
performance.

To draw the super support F , we first draw a rank profile v = [v1, v2, . . . , vℓ] ∈ Tv,ℓ,µ.
Let S be a discrete random variable over Tv,ℓ,µ, and denote the probability distribution
of S as αv, i.e.,

αv
def= Pr[S = v].

Moreover, let α denote the probability vector for S, such that α = [αv1 , . . . , αv|Tv,ℓ,µ|],
where v1, . . . ,v|Tv,ℓ,µ| ∈ Tv,ℓ,µ and α ∈ D(Tv,ℓ,µ).

After drawing the rank profile v according to the distribution αv, the next step

131

6 Support-Guessing Decoding Algorithms in the Sum-Rank Metric

is to construct the super support F . We draw F uniformly from the set Ξq,µ(v),
which contains all valid super supports for the given rank profile v. Each block F i is
drawn independently from the set of subspaces of Fµ

q with dimension vi. By controlling
the distribution αv, we influence the distribution of the super support F and aim to
minimize the expected complexity of the decoding process.

The following theorem gives the success probability for uniquely decoding a solution
using a single iteration of Algorithm 8 under the average-case setting.

Theorem 6.2. Let C ⊆ Fn
qm be a linear sum-rank-metric code with length n and

dimension k. Let c ∈ C be a codeword and consider a channel model as described in
Section 6.1.4, where the error e is drawn uniformly at random from Eq,η,m,ℓ(w), as
defined in (2.24). Let wtΣR(e) = w, and assume that y = c + e. Let vmax denote the
maximum sum-rank weight of the guessed super support, as defined in (6.2). Define
the event Eunique as the event that Algorithm 8 outputs c in a single iteration for the
scenario of Problem 6.2. The probability of Eunique is given by

Pr [Eunique] = 1
|Eq,η,m,ℓ(w)|

vmax∑
v′=w

∑
w∈Tw,ℓ,µ

φq,µ,v′(w) ·
ℓ∏

i=1
NMq (m, η, wi), (6.11)

where φq,µ,v′(w) is the average probability defined in (6.12).

Proof. The average probability of decoding success can be expressed as a sum over all
possible super space dimensions v′ and error weight decompositions w, weighted by
the probability of each error weight decomposition

Pr [Eunique] =
vmax∑
v′=w

∑
w∈Tw,ℓ,µ

Pr [w] · φq,µ,v′(w).

Substituting the expression for Pr [w] from (6.1), we arrive at the expression given
in (6.11)

Pr [Eunique] = 1
|Eq,η,m,ℓ(w)|

vmax∑
v′=w

∑
w∈Tw,ℓ,µ

φq,µ,v′(w) ·
ℓ∏

i=1
NMq (m, η, wi),

completing the proof.

An upper bound on the probability of obtaining alternative solutions when using
random linear sum-rank-metric codes is provided by the upcoming theorem. For the
analysis, we define φq,µ,v(w) as the average probability over all super-support rank
profiles

φq,µ,v(w) def=
∑

v∈Tv,ℓ,µ

αv · φq,µ,v(v,w), (6.12)

where αv is the probability distribution over the super-support rank profiles.

132

6.3 Generic Decoding in the Sum-Rank Metric

Theorem 6.3 (Random Coding Union Bound). Let C be a random code of length n
and cardinality |C| = qmk over Fqm, where each codeword is drawn uniformly at random
from the ambient space Fn

qm. Suppose that the received word y ∈ Fn
qm is a noisy version

of a codeword c ∈ C, corrupted by an error vector e ∈ Fn
qm of sum-rank weight w, i.e.,

y = c + e. Let v be an integer satisfying w ≤ v ≤ vmax.
The probability Pr [ERCU] of one iteration of Algorithm 8 to output an alternative

solution c′ with c′ 6= c is upper bounded by

Pr [ERCU] ≤ p(UB,gen)
RCU ,

where

p(UB,gen)
RCU

def= qm(k−n) ∑
w∈Tw,ℓ,µ

φq,µ,v(w)
ℓ∏

i=1
NMq (m, η, wi),

and φq,µ,v(w) is the average probability defined in (6.12).

Proof. By assumption, each codeword in the codebook C is drawn uniformly at ran-
dom over Fn

qm . Let cj ∈ C with cj 6= c be one such alternative codeword with
j ∈ {1, . . . , qmk − 1}, and define Xj as the event that Algorithm 8 can decode this
codeword. Then

Pr [Xj] =
∑

e′∈Fn
qm

wtΣR(e′)=w

1
qmn
· φq,µ,v(ψ(e′)).

Since φq,µ,v(ψ(e′)) only depends on the rank profile of e′, we can change the sum to
be over all rank profiles w ∈ Tw,ℓ,µ and multiply by the number of error vectors that
have the same rank profile

Pr [Xj] =
∑

w∈Tw,ℓ,µ

1
qmn
· φq,µ,v(w)

ℓ∏
i=1

NMq (m, η, wi).

The total probability of successful decoding is given by the union of the events

X1, . . . ,Xqmk−1,

which can be upper bounded by

Pr

qmk−1⋃
j=1
Xj

 ≤ qmk−1∑
j=1

Pr [Xj] ≤ qmk Pr [Xj] = p(UB,gen)
RCU .

Substituting the expression for Pr [Xj] yields the desired upper bound on the success
probability.

133

6 Support-Guessing Decoding Algorithms in the Sum-Rank Metric

Combining Theorem 6.3 and Theorem 6.2, we can derive bounds on the success
probability of Algorithm 8 for one iteration to return at least one solution. We state
these bounds in the following lemma.

Theorem 6.4. Let C be a random code of length n and size qmk over Fqm, where each
codeword is drawn uniformly at random from the ambient space Fn

qm. Suppose that
the received word y ∈ Fn

qm is a noisy version of a codeword c ∈ C, corrupted by an
error vector e ∈ Fn

qm with wtΣR(e) = w, i.e., y = c + e. The success probability of
Algorithm 8 to output at least one solution satisfies

Pr[success] ≥ 1
|Eq,η,m,ℓ(w)|

vmax∑
v′=w

∑
w∈Tw,ℓ,µ

φq,µ,v′(w) ·
ℓ∏

i=1
NMq (m, η, wi),

and

Pr[success] ≤
(

1
|Eq,η,m,ℓ(w)|

+ qm(k−n)
)

vmax∑
v′=w

∑
w∈Tw,ℓ,µ

φq,µ,v′(w) ·
ℓ∏

i=1
NMq (m, η, wi).

Proof. First, we prove the lower bound on the success probability. Recall that we
assume the received word y ∈ Fn

qm is a noisy version of a codeword c ∈ C, corrupted
by an error vector e ∈ Fn

qm with wtΣR(e) = w, i.e., y = c + e. This implies that the
codeword c is always within the decoding radius of the received word y. Using the
expression for Pr[Eunique] from Theorem 6.2, we have

Pr[success] ≥ Pr[Eunique] = 1
|Eq,η,m,ℓ(w)|

vmax∑
v′=w

∑
w∈Tw,ℓ,µ

φq,µ,v′(w) ·
ℓ∏

i=1
NMq (m, η, wi).

Next, we prove the upper bound on the success probability. Using union bound
arguments and the expressions for Pr[ERCU] and Pr[Eunique] from Theorem 6.3 and
Theorem 6.2, respectively, we obtain

Pr[success] ≤ Pr[Eunique] + Pr[ERCU]

= 1
|Eq,η,m,ℓ(w)|

vmax∑
v′=w

∑
w∈Tw,ℓ,µ

φq,µ,v′(w) ·
ℓ∏

i=1
NMq (m, η, wi)

+ qm(k−n)
vmax∑
v′=w

∑
w∈Tw,ℓ,µ

φq,µ,v′(w) ·
ℓ∏

i=1
NMq (m, η, wi)

=
(

1
|Eq,η,m,ℓ(w)|

+ qm(k−n)
)

vmax∑
v′=w

∑
w∈Tw,ℓ,µ

φq,µ,v′(w) ·
ℓ∏

i=1
NMq (m, η, wi),

which concludes the lemma.

134

6.3 Generic Decoding in the Sum-Rank Metric

From Theorem 6.4 we get that to find an optimal distribution αv to draw v from
Tv,ℓ,µ we need to maximize the term

max
α∈D(Tv,ℓ,µ)

∑
w∈Tw,ℓ,µ

∑
v∈Tv,ℓ,µ

αv · φq,µ(v,w) ·
ℓ∏

i=1
NMq (m, η, wi),

where D(Tv,ℓ,µ) is the set of all valid PMFs over Tv,ℓ,µ as defined in (2.6).

6.3.3 Optimizing the Support-Drawing Distribution via Linear
Programming

The process of drawing a super support from a known distribution can be further
broken down. Instead of drawing a rank profile v ∈ Tv,ℓ,µ according to αv, we can draw
an ordered rank profile v′ ∈ Jv,ℓ,µ according to a distribution α̃v′ , where v′ = sort(v)
is obtained by sorting the elements of v in non-increasing order. This simplification
is possible due to symmetry, as the probability of drawing a particular rank profile
remains the same for all permutations of that profile.

After drawing the ordered rank profile v′, we perform a uniformly random permu-
tation to obtain the final rank profile v. The relation between the two probability
distributions is given by

αv =
α̃sort(v)

|Sℓ,µ(sort(v))|
=

α̃sort(v)

|Sℓ,µ(v)|
. (6.13)

By reducing the problem to optimizing the distribution α̃v′ of ordered rank profiles,
we have reduced the number of unknowns since we have |Jv,ℓ,µ| ≤ |Tv,ℓ,µ|.

In summary, the process of drawing a suitable super support F can be broken down
into three steps:

1) Draw an ordered rank profile v′ ∈ Jv,ℓ,µ according to a distribution α̃v′ , which
is the criterion we need to optimize, and then apply a uniformly random permu-
tation to obtain the rank profile v,

2) For each i ∈ {1, . . . , ℓ}, draw F i from the set of all spaces of dimension vi,
independently for all blocks,

3) Combine the individual blocks F i to form the overall super support

F = F1 × · · · ×F ℓ.

By making use of (6.13) we can reduce the number of unknowns and instead maxi-

135

6 Support-Guessing Decoding Algorithms in the Sum-Rank Metric

mize

max
α̃∈D(Jv,ℓ,µ)

∑
w∈Jw,ℓ,µ

∑
v∈T ≥w

v,ℓ,µ

|Sℓ,µ(w)|
|Sℓ,µ(v)|

α̃sort(v)φq,µ(v,w)
ℓ∏

i=1
NMq (m, η, wi)

= max
α̃v′ ∈D(Jv,ℓ,µ)

∑
v′∈Jv,ℓ,µ

α̃v′ · f(v′),
(6.14)

where

f(v′) :=
∑

w∈Jw,ℓ,µ

|Sℓ,µ(w)|
|Sℓ,µ(v′)|

 ∑
v′′∈Sℓ,µ(v′)

φq,µ,v(v′′,w)

 ℓ∏
i=1

NMq (m, η, wi).

This optimization problem can be solved via linear program (LP) methods, where
the objective function is (6.14) with |Jv,ℓ,µ| unknowns. Although we have reduced
the number of unknowns by restricting the optimization to the ordered set Jv,ℓ,µ, it
is important to note that the cardinality of this set, and consequently the number of
unknowns, can still grow super-polynomially with the parameters v, ℓ, and µ. Fur-
thermore, computing the coefficients of the constraints requires summing over the set
Jw,ℓ,µ, which can be computationally demanding due to its potentially large cardinal-
ity. Even if we successfully derive the optimal support-drawing distribution through
this process, implementing an efficient algorithm to sample from this distribution poses
another significant challenge. This limitation motivates the need for alternative ap-
proaches to simplify the optimization problem and develop more practical sampling
algorithms.

6.3.4 Efficient Optimization of the Support-Drawing Distribution
In this section, we propose an efficient method to optimize the support-drawing dis-
tribution, addressing the computational challenges discussed earlier. By assuming
independence between the sum-rank metric blocks, we greatly simplify the problem.
Instead of drawing a complete rank profile vector v ∈ Tw,ℓ,µ with a fixed total rank v,
we independently draw the rank vi for each of the ℓ blocks. As a result, the sum rank
v = ∑ℓ

i=1 vi becomes a random variable. To prevent it from becoming unbounded, we
constrain its expected value, E[v], to match a predetermined relative sum-rank weight
v/ℓ. This assumption reduces the complexity of the optimization problem by focusing
on the distributions for individual blocks, and it enables efficient sampling from the
optimized distribution, overcoming the practical limitations of the previous approach.

Although this heuristic approach may not always yield the optimal solution that
accounts for the dependencies between the ranks of the guessed supports across differ-
ent blocks, it still provides a good approximation. We demonstrate this numerically
in Section 6.3.5 by comparing the performance of the heuristic solution with solutions

136

6.3 Generic Decoding in the Sum-Rank Metric

that consider these dependencies, for parameters where the more complex optimization
method is feasible.

Let α(m)
i denote the marginal probability of drawing a super support Fi with dimen-

sion vi, where 0 ≤ vi ≤ µ for i ∈ {1, . . . , ℓ}, and let

α(m) = [α(m)
0 , . . . , α(m)

µ],

represent the marginal probability vector. Assuming that the dimension of each sub-
space Fi is drawn independently according to α(m), the probability of a given rank
profile v = [v1, . . . , vℓ] ∈ Tv,ℓ,µ is given by

αv =
ℓ∏

i=1
α(m)

vi
. (6.15)

We define the following two quantities

B̃q,m,η(w, v, ℓ) def=
∑

w∈Tw,ℓ,µ

∑
v∈Tv,ℓ,µ

αv

ℓ∏
i=1

NMq (m, η, wi)P⊆
q,µ (wi, vi) (6.16)

and

Bq,m,η(w, v, ℓ) def=
∑

w∈Tw,ℓ,µ

∑
v∈Tv,ℓ,µ

ℓ∏
i=1

α(m)
vi

NMq (m, η, wi)P⊆
q,µ (wi, vi) , (6.17)

where (6.17) is a special case of (6.16) using our independence assumption. In Ap-
pendix B.1, we show that (6.17) is efficiently computable in polynomial time. Using
the definition of Bq,m,η(w, v, ℓ) from (6.17) and the relaxation in (6.15), we can restate
Theorem 6.2, Theorem 6.3, and Theorem 6.4 in the following corollaries, respectively.

Corollary 6.1. The probability Pr[ERCU] of having an alternative solution in Algo-
rithm 8 for a random linear code of length n and cardinality M = qmk over Fqm can
be upper bounded as

Pr[ERCU] ≤ qm(k−n)
vmax∑
v′=w

B̃q,m,η(w, v′, ℓ).

Corollary 6.2. The probability Pr[Eunique] that Algorithm 8 outputs a unique solution
c for a random linear code of length n and cardinality M = qmk over Fqm is given by

Pr[Eunique] = 1
|Eq,η,m,ℓ(w)|

vmax∑
v′=w

B̃q,m,η(w, v′, ℓ).

Corollary 6.3. The success probability of Algorithm 8 to output at least one solution

137

6 Support-Guessing Decoding Algorithms in the Sum-Rank Metric

satisfies
Pr[success] ≥ 1

|Eq,η,m,ℓ(w)|

vmax∑
v′=w

B̃q,m,η(w, v′, ℓ),

and
Pr[success] ≤

(
1

|Eq,η,m,ℓ(w)|
+ qm(k−n)

)
vmax∑
v′=w

B̃q,m,η(w, v′, ℓ).

From Corollary 6.3, under our independence assumption, the success probability is
proportional to the term

vmax∑
v′=w

B̃q,m,η(w, v′, ℓ) =
vmax∑
v′=w

Bq,m,η(w, v′, ℓ), (6.18)

which we aim to maximize over all possible α(m) ∈ D({0, . . . , µ}).
In the following, we further upper bound the expression in (6.18) and propose a

method to maximize this upper bound, to obtain a valid solution for α(m).

vmax∑
v′=w

Bq,m,η(w, v′, ℓ) =
vmax∑
v′=t

∑
w∈Tt,ℓ,µ

∑
v∈Tv′,ℓ,µ

ℓ∏
i=1

α(m)
vi

NMq (m, η, wi)P⊆
q,µ (wi, vi)

≤
∑

w∈{0,...,µ}ℓ

∑
v∈{0,...,µ}ℓ

ℓ∏
i=1

α(m)
vi

NMq (m, η, wi)P⊆
q,µ (wi, vi)

=
(µ∑

w′=0

µ∑
v′=0

α
(m)
v′ NMq (m, η, w′)P⊆

q,µ (w′, v′)
)ℓ

. (6.19)

To maximize the right-hand side of (6.19), it suffices to maximize the expression
µ∑

w′=0

µ∑
v′=0

α
(m)
v′ NMq (m, η, w′)P⊆

q,µ (w′, v′) . (6.20)

This expression is closely related to the average probability that a randomly drawn
super space Fi contains the error space Ei in a single block, averaged over all possible
rank weights w′. The average single-block success probability is given as

µ∑
w′=0

Pr[w′]
µ∑

v′=0
α

(m)
v′ P⊆

q,µ (w′, v′) , (6.21)

where Pr[w′] is the marginal probability of an error of rank weight w′ occurring in a
single block.

In the asymptotic setting for ℓ → ∞, where η and m are fixed, the assumption of
independence between blocks becomes valid due to the law of large numbers and the
concept of typical sequences from statistical mechanics. In this regime, the empirical

138

6.3 Generic Decoding in the Sum-Rank Metric

distribution of error weights in the blocks converges to the marginal distribution Pr[w′],
which can be approximated by the Boltzmann distribution (see [CJB24]) as

Pr[w′] = NMq (m, η, w′)e−λw′∑µ
w′′=0 NMq (m, η, w′′)e−λw′′ , (6.22)

where λ is the unique solution to the weight constraint

E[w′] =
µ∑

w′′=0
w′′ · Pr[w′′] = w

ℓ
.

By substituting (6.22) into (6.21), we obtain the single-block success probability under
the asymptotic error weight distribution.

Maximizing the single-block success probability in (6.21) effectively maximizes the
overall success probability in the asymptotic regime. Although (6.20) represents an
upper bound on the success probability, this upper bound becomes tight as ℓ → ∞
due to the convergence properties established by the law of large numbers. Therefore,
optimizing this upper bound is justified because it aligns with maximizing the actual
success probability in the asymptotic setting.

This connection reveals that optimizing (6.20) to obtain an optimal marginal dis-
tribution α

(m)
v′ for the guessed super-support dimensions is beneficial for maximiz-

ing (6.18).
To optimize (6.20), our approach focuses on the marginal distribution α(m), rather

than directly optimizing α, aiming to approximate the optimal average rank profile for
the super support. Since directly optimizing α(m) results in a distribution independent
of the number of blocks ℓ, we impose the constraint

α
(m)
i = xi

ℓ
,

where xi ∈ Z≥0 represents the number of occurrences of rank i across the ℓ blocks.
We then maximize the objective in (6.19) using linear integer programming with

appropriate constraints and non-negativity conditions. This method assumes inde-
pendence of rank weights across the ℓ blocks, which holds asymptotically as ℓ → ∞
for fixed η and m.

By applying this method, we obtain a solution x = [x0, . . . , xµ], from which we
construct the ordered rank profile v̂ ∈ Jw,ℓ,µ as

v̂ = [µ, . . . , µ︸ ︷︷ ︸
xµ times

, µ− 1, . . . , µ− 1︸ ︷︷ ︸
xµ−1 times

, . . . , 1, . . . , 1︸ ︷︷ ︸
x1 times

, 0, . . . , 0︸ ︷︷ ︸
x0 times

], (6.23)

where each element i ∈ {0, . . . , µ} appears exactly xi times in the vector v̂. We then

139

6 Support-Guessing Decoding Algorithms in the Sum-Rank Metric

have that

α̃
(heu)
v′

def=

1 if v′ = v̂,

0 otherwise.
(6.24)

Using the relation in (6.13), we obtain the overall probability for v, i.e., α(heu)
v . For

this specific PMF we can write (6.16) as

B̃q,m,η(w, v, ℓ) =
∑

w∈Tw,ℓ,µ

ℓ∏
i=1

NMq (m, η, wi)P⊆
q,µ (wi, v̂i) .

As shown in Appendix B.1, this expression can be efficiently computed in polynomial
time since it is a special case of (6.17) for a fixed vector v = v̂.

Thus, the bounds on the overall expected runtime provided in the following theorem,
which are general for any support-guessing distribution, can be efficiently computed
for our specific support-guessing distribution given by (6.23) and (6.24).

Theorem 6.5. Under the same assumptions as in Corollary 6.3, the overall expected
runtime Wgen,RCU of Algorithm 8 to output at least one solution is bounded by

W
(LB)
gen,RCU ≤ Wgen,RCU ≤ W

(UB)
gen,RCU,

with

W
(LB)
gen,RCU

def= Werasure−dec

((
1

|Eq,η,m,ℓ(w)|
+ qm(k−n)

)
vmax∑
v=w

B̃q,m,η(w, v, ℓ)
)−1

, (6.25)

and
W

(UB)
gen,RCU

def= Werasure−dec

(
1

|Eq,η,m,ℓ(w)|

vmax∑
v=w

B̃q,m,η(w, v, ℓ)
)−1

, (6.26)

where Werasure−dec denotes the cost of one iteration of Algorithm 8 and

Werasure−dec ∈ O
(
(n− k)3m3

)
,

operations over Fq and we neglect the complexity of drawing from αv.

Proof. For the lower bound on the complexity, we consider the worst-case scenario
for the complexity of each iteration, denoted by Werasure−dec. The expected number of
iterations until success is the reciprocal of the success probability. Using the upper
bound on the success probability from Corollary 6.3, the lower bound on the overall
expected runtime satisfies

W
(LB)
gen,RCU = Werasure−dec

((
1

|Eq,η,m,ℓ(w)|
+ qm(k−n)

)
vmax∑
v=w

B̃q,m,η(w, v, ℓ)
)−1

.

140

6.3 Generic Decoding in the Sum-Rank Metric

For the upper bound on the complexity, we use the cost of one iteration Werasure−dec,
which is O((n− k)3m3) operations over Fq according to [PRR22, Theorem 13 and The-
orem 14]. Using the heuristic probability distribution for the guessing super support
as in (6.23), we can neglect the complexity of drawing the rank profile of the guessing
support. The expected number of iterations until success is the reciprocal of the suc-
cess probability. Using the lower bound on the success probability from Corollary 6.3,
the upper bound on the overall expected runtime satisfies

W
(UB)
gen,RCU = Werasure−dec

(
1

|Eq,η,m,ℓ(w)|

vmax∑
v=w

Bq,m,η(w,v, ℓ)
)−1

,

which concludes the proof.

Note that the assumption made in Theorem 6.5, which neglects the complexity of
drawing from αv, is valid since, in our solution, we only need to permute the support-
guessing rank profile v̂ uniformly at random.

6.3.5 Numerical Results
In this section, we compare the complexity analysis of using a support-drawing distri-
bution derived from the method described in Section 6.3.4 for the average case against
the worst-case bounds from [PRR22]. We evaluate the average complexity over all
error patterns for a specific sum-rank weight w and plot the logarithmic complexity
(base 2) versus the number of blocks ℓ, while keeping the code parameters and field
size qm constant. The length of each individual block η is adjusted as ℓ varies.

Table 6.1 summarizes the bounds considered in this analysis and their applicability
across different decoding scenarios, highlighting the conditions for each. This overview
provides context for the subsequent figures and complexity comparisons.

141

6 Support-Guessing Decoding Algorithms in the Sum-Rank Metric

Table 6.1: Overview of the bounds and their applicable scenarios.

Bound Applies to Conditions

W
or

st
ca

se W (LB)
gen,wc Problem 6.4 Exactly one solution exists for the worst-case

rank profile channel

W (UB)
gen,wc Problem 6.1 At least one solution exists for the worst-case

rank profile channel

Av
er

ag
e

ca
se W

(UB)
gen,RCU Problem 6.1 At least one solution exists; exact when

exactly one solution exists

W
(LB)
gen,RCU Problem 6.1 At least one solution exists; accounts for

alternative solutions

Figure 6.3 shows the complexity for generic decoding beyond the unique decoding
radius with parameters q = 2, m = 20, n = 60, k = 30, w = 9, and v = 10 while in
Figure 6.4, we increase v to vmax. We include the upper bound W (UB)

gen,RCU (6.26) and the
lower bound W

(LB)
gen,RCU (6.25) for the expected complexity of Algorithm 8. The lower

bound reflects the effect of decoding beyond the unique decoding radius and accounts
for alternative solutions.

The figures show that the effect of alternative solutions, indicated by the divergence
between the upper and lower bounds, becomes more prominent near the rank metric
(i.e., when ℓ approaches 1) for the chosen parameters (cf. Figure 6.3 and Figure 6.4)
and matches the upper bound for ℓ → n. However, the latter behavior can vary
depending on the parameters, as seen in Figure 6.5, which uses the parameters q = 2,
m = 6, n = 36, k = 22, w = 10, and v = 10. In this case, a significant difference
between the lower and upper bounds persists even when the number of blocks is rather
large, i.e. ℓ→ n.

With the increase of v to vmax in Figure 6.4, the upper bound W (UB)
gen,wc and lower

bound W (LB)
gen,wc for the worst-case scenario become even looser. With the increase of

v to vmax in Figure 6.4, the upper bound W (UB)
gen,wc and lower bound W (LB)

gen,wc for the
worst-case scenario become increasingly loose, making them less effective predictors of
the actual complexity. In contrast, our average-case analysis provides a more accurate
estimate of the decoding complexity.

The Prange algorithm [Pra62], a classic support-guessing decoding algorithm for the
Hamming metric (i.e., ℓ = n = 60), serves as a useful comparison for this case. The

142

6.3 Generic Decoding in the Sum-Rank Metric

1 2 3 4 5 6 10 12 15 20 30 60
20

50

100

150

200
C

ol
um

n
Su

pp
or

t
R

ow
Su

pp
or

t

ℓ

lo
g 2

(C
om

pl
ex

ity
)

W
(LB)
gen,wc

W
(UB)
gen,wc

W
(UB)
gen,RCU

W
(LB)
gen,RCU

WPrange

1 2 3 4 5 6
75

100

125

150

175

ℓ

lo
g 2

(C
om

pl
ex

ity
)

Figure 6.3: Complexity comparison for generic decoding using Algorithm 8 for codes
with parameters: q = 2, m = 20, n = 60, k = 30, w = 9, and v = 10.

1 2 3 4 5 6 10 12 15 20 30 60
20

40

60

80

100

120

C
ol

um
n

Su
pp

or
t

R
ow

Su
pp

or
t

ℓ

lo
g 2

(C
om

pl
ex

ity
)

W
(LB)
gen,wc

W
(UB)
gen,wc

W
(UB)
gen,RCU

W
(LB)
gen,RCU

WPrange

10 20 30 30 30 30 30 30 30 30 30 30
v

1 2 3 4 5 6
40

60

80

100

120

ℓ

lo
g 2

(C
om

pl
ex

ity
)

Figure 6.4: Complexity comparison for generic decoding using Algorithm 8 for codes
with parameters: q = 2, m = 20, n = 60, k = 30, w = 9 and v = vmax.

143

6 Support-Guessing Decoding Algorithms in the Sum-Rank Metric

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
20

30

40

50

60

70

80

ℓ

lo
g 2

(C
om

pl
ex

ity
)

W
(LB)
gen,wc

W
(UB)
gen,wc

W
(UB)
gen,RCU

W
(LB)
gen,RCU

Figure 6.5: Complexity comparison for generic decoding using Algorithm 8 for codes
with parameters: q = 2, m = 6, n = 36, k = 22, w = 10 and v = 10.

complexity of the Prange algorithm, denoted as WPrange and given by [Pra62],

WPrange = W (iter)
gen

(
n
w

)
(

v
w

) ,
shows that our approach converges to Prange’s performance for ℓ = n = 60 (cf.
Figure 6.3 and Figure 6.4). In this setting, our decoding algorithm not only matches
the complexity of the Prange algorithm but is effectively the Prange algorithm itself.

Additionally, in Figure 6.4, for ℓ < 12, the complexity of our solution falls below the
lower bound of the worst-case scenario. This demonstrates that worst-case bounds may
not always provide accurate estimates. For instance, when selecting parameters for
cryptosystems based on sum-rank-metric codes, relying solely on worst-case bounds
may lead to underestimating the actual complexity of practical attacks in certain
regimes. The lower bound W

(LB)
gen,RCU provides a closer approximation to the actual

complexity in practice than the worst-case bounds from [PRR22].
We performed extensive computations using LP to account for dependencies be-

tween the blocks, as described in Section 6.3.3, for the parameters used in Figure 6.3
and Figure 6.4. For these parameters this approach is feasible for ℓ up to 10 and we
obtained the exact same support-guessing distribution corresponding to the rank pro-
files as our efficient solution. This is interesting, as our efficient method is expected to
yield tighter results for larger block sizes, i.e., as ℓ → n. Thus, our findings indicate
that for these parameters, the efficient approach remains effective even at lower ℓ.

144

6.4 Generic Decoding for Large Error Weights

6.4 Generic Decoding for Large Error Weights
In the previous section, we focused on decoding for low error weights, specifically when
the error weight w satisfies w ≤ dmin−1, as erasure decoding is not possible beyond this
threshold, according to [PRR22, Theorem 13 and Theorem 14]. We explored unique
decoding for Problem 6.4 up to w ≤ dmin − 1 and going beyond unique decoding is
possible for w ≤ min{n− k, m

η
(n− k)} (see [PRR22]).

In this section, we introduce a generic decoding algorithm (see Algorithm 9) that
aims to solve Problem 6.1. The proposed algorithm generalizes the modified Prange
algorithm for the Hamming metric, as detailed in [DST19]. Our analysis of the al-
gorithm focuses on the asymptotic case ℓ → ∞ and its average performance. The
following proposition establishes the range of relative weights for which solutions to
Problem 6.1 can be found efficiently using Algorithm 9.

Algorithm 9: Prange-like Decoding Algorithm in the Sum-Rank Metric
Input : H ∈ Fη(ℓ−κ)×ηℓ)

qm , s ∈ Fη(ℓ−κ)
qm and w ∈ Z≥0

Output : eH> = s with wtΣR(e) = w

1 µ← min{m, η}
2 e← 0 ∈ Fηℓ

qm

3 while wt(n)
ΣR(e) 6= w do

4 H ′ ← 0 ∈ Fη(ℓ−κ)×ηℓ
qm

5 while rkqm(H ′
[1:η(ℓ−κ)]) 6= η(ℓ− κ) do

6 P
$← Set of ℓ× ℓ permutation matrices

7 P ′ ← P ⊗ Iη

8 H ′ ←HP ′

9 A←H ′
[1:η(ℓ−κ)]

10 B ←H ′
[η(ℓ−κ)+1:ηℓ]

11 w1
$← {0, . . . , κµ}

12 e′ $← {x ∈ Fκℓ
qm : wt[nκ+1,...,nℓ]

ΣR (e′) = w1}
13 e← ((s− e′B)A−>, e′)(P ′)>

14 return e

Proposition 6.1. Consider a Fqm-linear sum-rank-metric code of length n = ηℓ and
dimension k = ηκ with parity check matrix H ∈ F(n−k)×n

qm and R
def= k

n
= κ

ℓ
where

κ ∈ Z≥0 and 0 ≤ κ ≤ ℓ. Let the sum-rank weight be defined with respect to the length

145

6 Support-Guessing Decoding Algorithms in the Sum-Rank Metric

partition of constant block length, i.e., n = [n1, . . . , nℓ] = [η, . . . , η]. Define

ā
def=

∑µ
i=0 i · NMq (m, η, i)

qmη
,

as the average rank weight of a single block if drawn uniformly at random. Then, for
the relative weight wrel

def= w/n in the interval [w−
easy, w

+
easy], where

w−
easy

def= 1−R
η
· ā,

w+
easy

def= 1−R
η
· ā+ Rµ

η
,

a solution to Problem 6.1 can be found in probabilistic polynomial time using the
Prange-like Algorithm 9.

Proof. To address Problem 6.1, our goal is to find an error e with sum-rank weight
w that satisfies the condition eH> = s for a given syndrome s. The matrix H is
a full-rank matrix and therefore contains an invertible submatrix A ∈ F(n−k)×(n−k)

qm .
Without loss of generality, assume that this matrix is formed by the first n−k = η(ℓ−κ)
positions, i.e. we have

H = [A | B] . (6.27)

Assume e = [e′′, e′] ∈ Fηℓ
qm with e′′ ∈ Fη(ℓ−κ)

qm and e′ ∈ Fηκ
qm . Then, by (6.27), we have

e′′ = (s− e′B>)(A−1)>
.

The idea is to arbitrarily choose e′ of length k = ηκ. Then, on average, the expected
(partial) sum-rank weight of the remaining ℓ− κ blocks is

E
[
wt[nκ+1,...,nℓ]

ΣR (e′′)
]

= ā · (ℓ− κ).

The average probability of the sum-rank weight of e is then

E
[
wt(n)

ΣR(e)
]

= E
[
wt([n1,...,nκ])

ΣR (e′)
]

︸ ︷︷ ︸
def= w̄1

+E
[
wt([nκ+1,...,nℓ])

ΣR (e′′)
]

= w̄1 + ā · (ℓ− κ),

where w̄1 is determined by the distribution of e′, which we can choose freely. Nonethe-
less, we have 0 ≤ w̄1 ≤ µκ, and therefore

ā · (ℓ− κ)︸ ︷︷ ︸
=nw−

easy

≤ E
[
wt(n)

ΣR(e)
]
≤ µκ+ ā · (ℓ− κ)︸ ︷︷ ︸

=nw+
easy

.

146

6.4 Generic Decoding for Large Error Weights

From this, we deduce that any weight in the interval w ∈ [w−
easyn,w

+
easyn] can be

reached probabilistically in polynomial time using a distribution for e′ with

w̄1 = w − w−
easyn s.t. E

[
wt(n)

ΣR(e)
]

= w,

and which is sufficiently concentrated around its expectation. Algorithm 9 implements
this approach, where in Line 6 to Line 8, the parity-check matrix H is permuted block-
wise among the ℓ blocks, i.e., the permutation is applied to the block indices but not
within the blocks. Here, ⊗ denotes the Kronecker product, which is used to construct
the block-wise permutation matrix. This permutation is reversed in Line 13.

The proposition above provides the interval [w−
easy, w

+
easy] for which a solution to

Problem 6.1 can be found in probabilistic polynomial time using Algorithm 9. Com-
bining this with the asymptotic Gilbert-Varshamov bound for the sum-rank met-
ric [BGR21], we have the following summary of the relative weight intervals:

• wrel ∈ [w−, w+]: A solution to Problem 6.1 is likely to exist (Gilbert-Varshamov
bound for the sum-rank metric, see [BGR21])

• wrel ∈ [w−
easy, w

+
easy]: A solution to Problem 6.1 can be found in probabilistic poly-

nomial time using a Prange-like algorithm, as stated in the proposition above.

Figure 6.6 and Figure 6.7 show the regions of hardness for finding a solution using
Algorithm 9 and the bounds on the relative weight intervals for successful decoding
plotted against the code rate R for different parameters. These results apply asymp-
totically (ℓ→∞, for fixed m and µ) and on average. The ”no solution”, ”hard”, and
”easy” regions indicate the difficulty of finding a solution for different code rates.

In Figure 6.6, the parameters are set to m = η = 2, q = 2, while in Figure 6.7,
the parameters are m = η = 6, q = 2. Comparing the two figures, we observe that
the ”hard” region for large relative weights becomes smaller as the values of m and
η increase. This indicates that it is easier for Algorithm 9 to decode errors of large
relative weight when m and η are larger.

147

6 Support-Guessing Decoding Algorithms in the Sum-Rank Metric

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

no solution

hard

easy

hard

R

w
re

l

w−

w−
easy

w+
easy

Figure 6.6: Regions of hardness for Algorithm 9 and bounds on the relative weight
intervals for successful decoding vs code rate R = k/n for parameters:
m = η = 2, q = 2 (ℓ→∞, average-case).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

no solution

hard

easy

hard

R

w
re

l

w−

w−
easy

w+
easy

Figure 6.7: Regions of hardness for Algorithm 9 and bounds on the relative weight
intervals for successful decoding vs code rate R = k/n for parameters:
m = η = 6, q = 2 (ℓ→∞, average-case).

148

6.5 Randomized Decoding of Linearized Reed–Solomon Codes

6.5 Randomized Decoding of Linearized
Reed–Solomon Codes

In this section, we consider the probabilistic decoding algorithm introduced in [JBW23]
to solve Problem 6.3. In [JBW23], the complexity of this decoder was analyzed for
the worst-case rank profile. This algorithm generalizes the randomized decoder for
Gabidulin codes from [RJB+20] to LRS codes.

We revisit the decoder from [JBW23] and present two new contributions:

• We adapt the methods from [PRR22] to efficiently compute worst-case bounds
and sample the support rank profile for the randomized decoder for LRS codes.

• We extend the average-case analysis from Section 6.3 to the randomized decoder,
deriving an objective function to optimize the support-drawing distribution, mo-
tivated by the asymptotic setting.

The proposed decoder relies on two key aspects:
First, we consider an underlying LRS code (see Section 2.6.5). Recall that LRS

codes are MSRD codes with a minimum sum-rank distance as

dmin = n− k + 1.

Efficient algorithms exist to decode LRS codes up to the unique decoding radius

τ = n− k
2

.

We consider LRS codes of length n partitioned into constant block lengths n =
[n1, . . . , nℓ] = [η, . . . , η] and dimension k over Fqm , denoted by LRS[β, ξ, ℓ; n, k]. Ad-
ditionally, LRS codes are restricted to

ℓ ≤ q − 1 and ni ≤ m ∀i ∈ {1, . . . , ℓ}.

Second, we focus on decoding beyond the unique decoding radius, where the sum-
rank weight of the error w exceeds τ , i.e., wtΣR(w) = w > τ . The error excess beyond
the unique decoding radius is defined as

ξ
def= w − τ.

Note that while 2ξ is always an integer, ξ itself does not necessarily need to be an
integer.

As discussed in Section 6.1, for errors with weight w ≤ τ , Problem 6.3 has at most
one solution. However, for w > τ , multiple solutions may exist. The number of
solutions can vary, being either polynomially or exponentially bounded in terms of the

149

6 Support-Guessing Decoding Algorithms in the Sum-Rank Metric

code parameters and depending on the structure of the code. This behavior has been
studied for LRS codes in [PR21]. Following the reasoning in [RJB+20], we analyze the
complexity of finding at least one solution. If the code is list-decodable, this process
can be repeated to obtain a list of solutions.

6.5.1 Erasures in the Sum-Rank Metric

We consider an error of the form as described in Section 6.1.4. The error e can be
further decomposed into a sum of three types of error vectors

e = eF + eR + eC,

where eF represents full errors, eR represents row erasures, and eC represents column
erasures. The sum-rank weights of these error vectors are denoted by wF , wR, and
wC , respectively, such that wtΣR(eF) = wF , wtΣR(eR) = wR, and wtΣR(eC) = wC

(see [HBP22]).
Each of the three error vectors can be decomposed as in (2.27)

eF = aFBF with aF ∈ FwF
qm and BF ∈ FwF ×n

q ,

eR = aRBR with aR ∈ FwR
qm and BR ∈ FwR×n

q ,

eC = aCBC with aC ∈ FwC
qm and BC ∈ FwC×n

q .

For full errors, neither aF nor BF are known. For row erasures, aR is known but BR
is unknown. For column erasures, aC is unknown but BC is known.

An efficient algorithm for LRS codes was proposed in [HBP22], capable of correcting
combinations of full errors, row erasures, and column erasures up to

2wF + wC + wR ≤ n− k, (6.28)

with a complexity of O(n2) operations over Fqm . We estimate this complexity, de-
noted as Wee−dec, over Fq as O(m2n2) and approximate it, similar to the arguments in
Section 6.3, as

Wee−dec ≈ m2n2. (6.29)

We denote this error-erasure decoder by DEC(y,aR,BC), which takes as input the
received word y = c + e, along with a basis aR of the column support of eR (row
erasures) and/or a basis BC of the row support of eC (column erasures). The decoder
outputs a valid codeword ĉ if the condition in (6.28) is satisfied; otherwise, it returns
∅.

150

6.5 Randomized Decoding of Linearized Reed–Solomon Codes

6.5.2 Randomized Decoding Algorithm
We consider an error e with row support ER and column support EC . Unlike the
generic decoding algorithm, where we guess a super support that must completely
contain the actual error support to succeed, the randomized approach aims to guess
only parts of the error supports and utilizes an error-and-erasure decoder to succeed
with a smaller number of guesses. The steps are as follows:

For each block i ∈ ℓ, we have E (i)
R ⊆ Fη

q and E (i)
C ⊆ Fm

q . As shown in [RJB+20],
for Gabidulin codes, guessing a combination of row and column supports does not
improve success, and it is more effective to guess from a smaller ambient space. Since
this result applies block-wise in the sum-rank metric, we set µ = min{m, η} and guess
from ER if µ = η, otherwise from EC .

This ensures the guessed support is always a subspace of Fµ
q . For simplicity, we use

E to denote the error support, whether from ER or EC .
To guess parts of E , we first draw a corresponding rank profile u = [u1, . . . , uℓ] ∈ Zℓ

≥0

according to some PMF denoted as βu
def= Pr[u]. Then, a support U is drawn uniformly

at random from Ξq,µ(u) with u
def= dimΣ(U). Define ϵ as the sum dimension of the

intersection space between the guessed space U and the actual error support E , i.e.,

ϵ
def= dimΣ(U ∩ E).

The number of full errors wF is reduced by ϵ, so wF = w − ϵ, while the number of
column or row erasures increases by u, corresponding to the guessed parts of U . For
these guessed parts, we assume knowledge of the column support but not the row
support (or vice versa), effectively trading errors for erasures 2.

The error-and-erasure decoder takes as input a vector containing w − ϵ full errors
and u erasures. From the decoding condition in (6.28), we have

2(w − ϵ) + u ≤ n− k,

which implies that for successful decoding, we need to have

ϵ ≥ ϵmin
def= w + u− (n− k)

2
= ξ + u

2
. (6.30)

If the intersection between the guessed spaces and the actual error support is suffi-
ciently large, an error-erasure decoder can successfully decode. From (6.30), the valid
range for u is u ∈ {2ξ, . . . , n− k}, with the lower bound ensuring ϵ ≥ 0 and the upper
bound corresponding to the most favorable case, where ϵ = w. In the latter case,
u ≤ n − k, which is the maximum erasure decoding capability for LRS codes. The

2This approach is reminiscent of the generalized minimum distance (GMD) decoding strategy in-
troduced by Forney [For66] for Hamming metric codes, and later extended to the rank metric
in [BCG+03] by Bossert et al..

151

6 Support-Guessing Decoding Algorithms in the Sum-Rank Metric

performance of the randomized decoder depends on the choice of the PMF βu used to
draw the rank profile u. The optimal choice of βu and the analysis of the algorithm’s
success probability will be discussed in the following sections.

Algorithm 10 outlines the proposed approach. It can be easily generalized to variable
block lengths and other sum-rank-metric codes that support efficient error-and-erasure
decoders.

Algorithm 10: Randomized Sum-Rank Metric Decoder for LRS codes
Input : Parameters: q, m, η, ℓ, w and u with 2ξ ≤ u ≤ n− k and w ≥ τ

Received vector y ∈ Fn
qm

LRS code LRS[β, ξ, ℓ;n = ηℓ, k]
Error-erasure decoder DEC(·, ·, ·) for LRS[β, ξ, ℓ;n, k]

Output : Vector c′ ∈ LRS[β, ξ, ℓ;n, k] such that wtΣR(y − c′) = w

1 c′ ← ∅
2 µ← min{m, η}
3 while c′ = ∅ or wtΣR(y − c′) 6= w do
4 u← Draw rank profile for the guess space according to βu

5 U $← Ξq,µ(u)
6 if η < m then
7 BC ← Basis of U
8 c′ ← DEC(y, [],BC) /* Error-erasure decoding with row erasures */

9 else
10 aR ← Basis of U
11 c′ ← DEC(y,aR, []) /* Error-erasure decoding with column erasures */

12 return c′

The following lemma provides a useful result that contributes to the derivation of
the average complexity of the randomized approach in Algorithm 10.

Lemma 6.1. For a fixed error vector e = [e1, . . . , eℓ] ∈ Fn
qm with a given rank profile

w = [w1, . . . , wℓ] ∈ Zℓ
≥0 and another given rank profile u = [u1, . . . , uℓ] ∈ Zℓ

≥0, let E
and U be the error space and guessed space, respectively, where U is chosen uniformly
from Ξq,µ(u). Further, let Sj denote the event that dimΣ(E ∩ U) = j. The probability
of Sj given e and u is then

Pr[Sj|e,u] = Pr[Sj|w,u] =
(

ℓ⊛
i=1

P∩
q,µ,wi,ui

)
(j), (6.31)

152

6.5 Randomized Decoding of Linearized Reed–Solomon Codes

with (
ℓ⊛

i=1
P∩

q,µ,wi,ui

)
(j) def=

(
P∩

q,µ,w1,u1 ⊛ · · ·⊛ P∩
q,µ,wℓ,uℓ

)
(j),

being the ℓ-fold discrete convolution (denoted by ⊛) of the probability distributions
P∩

q,µ,wi,ui
evaluated at j for all i ∈ {1, . . . , ℓ}. Here, P∩

q,µ,wi,ui
represents the probability

distribution of the intersection dimension between the error space and the guessed space
in the i-th shot.

Proof. Given the error e = [e1, . . . , eℓ] ∈ Fn
qm with rank profile w = [w1, . . . , wℓ] ∈ Zℓ

≥0
and the rank profile u = [u1, . . . , uℓ] ∈ Zℓ

≥0 of the guessed support, let Vi be a random
variable that corresponds to the dimension of the intersection of the i-th guessed space
U (i) with the i-th actual error space E (i) for i ∈ {1, . . . , ℓ}. By (2.7), we have that
P∩

q,µ,wi,ui
(j) is the probability of that event, i.e.,

Pr[Vi = j|e,u] = P∩
q,µ,wi,ui

(j).

Note that the probability Pr[Vi = j|e,u] depends only on the rank weights wi and ui

of the error and guessed support in the i-th shot, respectively, and not on the specific
error vector e. Thus, we can write

Pr[Vi = j|e,u] = Pr[Vi = j|w,u] = P∩
q,µ,wi,ui

(j).

Since we are interested in the probability distribution of the sum of random vari-
ables, i.e., V = ∑ℓ

i=1 Vi, the resulting probability distribution is given by the ℓ-fold
discrete convolution of the probability distributions of the random variables Vi for
i ∈ {1, . . . , ℓ}. Thus

Pr[V = j|e,u] = Pr[V = j|w,u] =
(

ℓ⊛
i=1

P∩
q,µ,wi,ui

)
(j),

with
(

P∩
q,µ,w1,u1 ⊛P∩

q,µ,w2,u2

)
(j) def=

∞∑
r=−∞

P∩
q,µ,w1,u1(r) P∩

q,µ,w2,u2(j − r). (6.32)

Finally, let Sj be the event that V = j, which proves the claim.

The probability of the event Sj given the rank profiles of the error and the guessed
support, as stated in Lemma 6.1, can be further expanded using the concept of rank
profiles. The following proposition expresses this probability.

Proposition 6.2. Let e = [e1, . . . , eℓ] ∈ Fn
qm be a fixed error with given rank profile

w = [w1, . . . , wℓ] ∈ Zℓ
≥0, and let u = [u1, . . . , uℓ] ∈ Zℓ

≥0 be another given rank profile.
Further, let µ = min{η,m} and ϵ ∈ {0, . . . , ℓµ}. Then, we can write (6.31) from

153

6 Support-Guessing Decoding Algorithms in the Sum-Rank Metric

Lemma 6.1 as
Pr[Sϵ|w,u] =

∑
ϵ∈Tϵ,ℓ,µ

ℓ∏
i=1

P∩
q,µ,wi,ui

(ϵi). (6.33)

Proof. Starting from the right-hand side of (6.33), we have

∑
ϵ∈Tϵ,ℓ,µ

ℓ∏
i=1

P∩
q,µ,wi,ui

(ϵi) =
∑

µ≥ϵ1,...,ϵℓ≥0
ϵ1+···+ϵℓ=ϵ

ℓ∏
i=1

P∩
q,µ,wi,ui

(ϵi)

=
(

ℓ⊛
i=1

P∩
q,µ,wi,ui

)
(ϵ)

= Pr[Sϵ|w,u],

where the first equality follows from the definition of the set of rank profiles, the second
equality follows from the definition of discrete convolution as defined in (6.32), and
the last equality follows from the recursive application of the definition of discrete
convolution of two PMFs. This completes the proof.

The probability of successful decoding is given by the sum of the probabilities of
the events Sϵ over all feasible values of the total intersection dimension ϵ. Since these
events are mutually exclusive, we define

ϕµ(u,w) def=
min{u,w}∑

ϵ=ϵmin

Pr[Sϵ | u,w], (6.34)

where ϕµ(u,w) denotes the probability of successful decoding. The lower bound ϵmin,
defined in (6.30), ensures that the intersection support has enough dimensions for
successful decoding. The upper bound min{u,w} reflects that the intersection cannot
have a greater dimension than either of the supports.

Given a probability distribution βu over the rank profiles u, the overall probability
of successful decoding for a fixed error rank profile w is

ϕµ,u(w) def=
∑

u∈Tu,ℓ,µ

βu · ϕµ(u,w). (6.35)

6.5.3 Worst-Case Complexity
When decoding beyond the unique decoding radius for LRS codes (Problem 6.3),
multiple solutions may exist, and the proposed decoder (Algorithm 10) lacks a mecha-
nism to identify the original codeword among them. To make the complexity analysis
exact, we assume a genie-aided version of the decoder that can identify the correct
solution and allows us to stop the decoder at the iteration when the original codeword
is found. Consequently, only the upper bound on the expected complexity applies to

154

6.5 Randomized Decoding of Linearized Reed–Solomon Codes

the non-genie-aided decoder, similar to the bounds derived in [PRR22] for the generic
decoder.

We analyze the worst-case expected complexity over all possible rank profiles of
errors with wtΣR(e) = w. We derive lower and upper bounds on this complexity
and provide algorithms to efficiently compute these bounds. Additionally, we present
methods to optimize the guessing-support distribution for this worst-case scenario.

Determining the optimal sum-rank weight u ∈ {2ξ, . . . , n − k} for the guessing
support to minimize the expected complexity of Algorithm 10 is not straightforward.
The success probability bounds from [RJB+20] for the rank metric are convex in u,
suggesting that the probability is maximized at u = 2ξ or u = n − k. However, this
does not guarantee that these values always yield the optimal expected complexity.
Similarly, for the sum-rank metric, we cannot be certain, though these extreme values
for u remain important points of interest. For these two specific values of u, we can
express the success probability from (6.34) as follows. When u = 2ξ ≤ w, we have

ϕµ(u,w) =
u∑

ϵ=u

Pr[Sϵ|u,w] =
ℓ∏

i=1
P⊆

q,µ (ui, wi) . (6.36)

On the other hand, when u = n− k ≥ w, we have

ϕµ(u,w) =
w∑

ϵ=w

Pr[Sϵ|u,w] =
ℓ∏

i=1
P⊆

q,µ (wi, ui) . (6.37)

Notably, choosing either u = 2ξ or u = n−k simplifies the expression for the success
probability, as the convolution in (6.34) reduces to a simple product over the blocks.
This simplification is advantageous for our analysis of the decoder’s performance.

When u = n − k, the success probability matches that of the fully generic decod-
ing algorithm, as the expressions in (6.36) and (6.3) are identical. In this case, the
bounds from [PRR22] apply directly, with the only difference being the per-iteration
complexity, which is replaced by that of the error-and-erasure decoder for LRS codes.
Therefore, setting u = n − k offers no improvement in success probability over the
fully generic approach.

When u = 2ξ and u ≤ w, the algorithms from [PRR22] require adjustments. We
present these modifications below, using the notation

ϕ′
µ(u,w) def=

ℓ∏
i=1

P⊆
q,µ (ui, wi) . (6.38)

From (6.37) follows the worst-case expected number of iterations of Algorithm 10

155

6 Support-Guessing Decoding Algorithms in the Sum-Rank Metric

for a given PMF of the guessing support, denoted as β̃u
def= Pr[u] by

max
w∈Tw,ℓ,µ

E[#iterations] = max
w∈Tw,ℓ,µ

 ∑
u∈Tu,ℓ,µ

β̃uϕ
′
µ(u,w)

−1

. (6.39)

The problem of minimizing the worst-case expected number of iterations over all
valid distributions β̃u on Tu,ℓ,µ can be formulated as a linear program. While this linear
program can be solved numerically using standard methods for small values of µ, ℓ,
and u, the number of unknowns, i.e., β̃u ∈ [0, 1], grows rapidly as these parameters
increase. Consequently, solving the linear program directly becomes computationally
prohibitive for larger problem instances.

To tackle this computational challenge, we use the approach described in [PRR22],
which introduces a randomized mapping

ucompµ : Tw,ℓ,µ × Z≥0 → Tu,ℓ,µ.

This mapping aims to maximize the probability

ϕ′
µ(ucompµ(w, u),w),

for a given rank profile w ∈ Tw,ℓ,µ by randomly selecting an output vector from mul-
tiple possible candidates for each input, providing a more computationally tractable
approach to the problem.

Rather than directly choosing a rank profile u ∈ Tu,ℓ,µ, we first select a rank profile
w ∈ Tw,ℓ,µ at random according to a designed distribution γw on Tw,ℓ,µ, and then set

u← ucompµ(w, u).

For a fixed error e, this allows us to bound the probability as follows

Pr(U ⊆ Ee) =
∑

u∈Tu,ℓ,µ

β̃u · ϕ′
µ(u,we) ≥ γwe · ϕ′

µ(ucompµ(we, u),we).

Using this bound, we can minimize the following upper bound on the worst-case
expected number of iterations, instead of directly minimizing (6.39)

max
w∈Tw,ℓ,µ

E[#iterations] ≤ max
w∈Tw,ℓ,µ

(
γw · ϕ′

µ(ucompµ(w, u),w)
)−1

,

over all valid probability mass functions β̃u on Tu,ℓ,µ.
The randomized mapping ucompµ is formally defined in Appendix B.2.1 and its

correctness is proofed in Lemma B.1.
We adapt the support-drawing algorithm from [PRR22] to handle cases where the

156

6.5 Randomized Decoding of Linearized Reed–Solomon Codes

sum dimension of the guessed support is smaller than that of the error support. The
modified version, shown in Algorithm 11, retains the structure of the original algorithm
but is adjusted to account for this dimension difference.

Algorithm 11: DrawRandomSupport(u,w, µ)
Input : Integers u, µ, w ∈ Z≥0 with u ≤ w

Output : U of sum dimension u

1 Draw w ∈ Tw,ℓ,µ according to the distribution γw defined in (6.40).
2 u← ucompµ(w, u)
3 U $← Ξµ,ζ(u)
4 return U

We define the probability distribution γw as follows

γw
def=
(
ϕ′

µ(ucompµ(w, u),w) · Q̃ℓ,w,µ

)−1
∀w ∈ Tw,ℓ,µ, (6.40)

where Q̃ℓ,w,µ is defined as

Q̃ℓ,w,µ
def=

∑
w∈Tw,ℓ,µ

ϕ′
µ(ucompµ(w, u),w)−1. (6.41)

The following proposition presents bounds on the expected number of iterations.

Proposition 6.3. Let e ∈ Fn
qm be an error of sum-rank weight w and let u be an

integer with u ≤ w. If U is a sub-support that is drawn by Algorithm 11 with input u
and w, then we have

|Tw,ℓ,µ|−1Q̃ℓ,w,µ ≤ Pr(U ⊆ Ee)−1 ≤ Q̃ℓ,w,µ,

where Q̃ℓ,w,µ is defined as in (6.41), and Ee denotes the error support corresponding to
the error vector e.

Proof. Denote by γw the distribution of w = ucompµ(Ee), where w is a random
variable with probability mass function γw as defined in (6.40). By the law of total
probability, we have

Pr(U ⊆ Ee) =
∑

w∈Tw,ℓ,µ

γw · ϕ′
µ(ucompµ(w, u),we)

≥ γwe · ϕ′
µ(ucompµ(we, u),we)

= Q̃−1
ℓ,w,µ,

157

6 Support-Guessing Decoding Algorithms in the Sum-Rank Metric

where the last equality follows from the definition of γw in (6.40). This proves the upper
bound on Pr(U ⊆ Ee)−1. For the lower bound, we observe that for all w ∈ Tw,ℓ,µ

ϕ′
µ(ucompµ(w, u),we) ≤ ϕ′

µ(ucompµ(w, u),w),

which yields

Pr(U ⊆ Ee) =
∑

w∈Tw,ℓ,µ

γw · ϕ′
µ(ucompµ(w, u),we)

≤
∑

w∈Tw,ℓ,µ

γw · ϕ′
µ(ucompµ(w, u),w)

=
∑

w∈Tw,ℓ,µ

Q̃−1
ℓ,w,µ = |Tw,ℓ,µ|Q̃−1

ℓ,w,µ,

where the last equality follows from the definitions of Q̃ℓ,w,µ in (6.41) and the design
distribution γw in (6.40), which proves the claim.

Using Proposition 6.3, we can formulate the following theorem about the expected
runtime of the genie-aided version of Algorithm 10.

Theorem 6.6. Consider a genie-aided version of Algorithm 10 for an LRS code
LRS[β, ξ, ℓ; n, k] of length n, dimension k, and length partition n with constant block
length ni = η for all i ∈ {1, . . . , ℓ}. Let e ∈ Fn

qm be an error of sum-rank weight
τ < w ≤ n− k, and let c ∈ LRS[β, ξ, ℓ; n, k] be a codeword. We consider the success
event of the algorithm returning the originally trasnmitted codeword c when given input
y = e + c and parameter u with u = 2ξ.

Each iteration of Algorithm 10 costs W (iter)
rand . By including also the expected number of

iterations, we can bound the overall expected runtime Wrand of the genie-aided version
of Algorithm 10 by

W
(LB)
rand ≤ Wrand ≤ W

(UB)
rand ,

where, for µ = min{η,m} and Q̃ℓ,w,µ as in (6.41), we define

W
(LB)
rand

def= |Tw,ℓ,µ|−1 · Q̃ℓ,w,µ,

W
(UB)
rand

def= W
(iter)
rand · Q̃ℓ,w,µ.

Proof. The bounds follow directly from Proposition 6.3 by multiplying the cost of a
single iteration Witer by the expected number of iterations:

W
(LB)
rand

def= |Tw,ℓ,µ|−1 · Q̃ℓ,w,µ ≤ Wrand

≤ Witer · Q̃ℓ,w,µ
def= W

(UB)
rand .

158

6.5 Randomized Decoding of Linearized Reed–Solomon Codes

Remark 6.2. The complexity of one iteration W
(iter)
rand in Theorem 6.6 is determined

by two main components. First, the support drawing algorithm from [PRR22] can be
easily adapted to our case, which yields a complexity of Õ(n3m2 log2(q)) bit operations.

Second, the overall complexity W (iter)
rand is then the sum of the complexity of the support

drawing algorithm and the complexity of the error and erasure decoder, which is of the
order of O(n2m2) operations over Fq (see (6.29)). Similar to the complexity analysis
for the worst-case scenario in the generic decoding algorithm, we approximate W (iter)

rand
with the two dominating terms in each of the complexities as W (iter)

rand ≈ n3m2 when we
plot or evaluate the complexities.

To evaluate the bounds from Theorem 6.6, we must compute Q̃ℓ,w,µ. Direct compu-
tation using (6.41) is infeasible, as the number of summands |Tw,ℓ,µ| can grow super-
polynomially with w, depending on ℓ and µ. In Appendix B.2.2, we show, following
[PRR22, Lemma 22], how to compute this efficiently in Õ(wun3µ3 log2(q)) bit opera-
tions.

6.5.4 Average Complexity
We analyze the average complexity of the randomized decoding algorithm over all
possible error vectors e with sum-rank weight w, similar to the analysis for the generic
decoder in Section 6.3.2. Although Algorithm 10 operates on an LRS code with signifi-
cant structure, we use random coding arguments akin to the generic decoding approach
to estimate the average success probability when decoding beyond the unique decoding
radius. This accounts for the additional codeword solutions that may appear in this
regime. Note that since LRS codes are not random codes, applying random coding
arguments only yields an approximation for the lower bound.

Adapting Theorem 6.4, we replace the expression for the success probability of one
iteration of the decoding loop to obtain bounds for our randomized decoder.
Corollary 6.4. Let C be a random Fqm-linear code of length n and dimension k over
Fqm, where each codeword is drawn uniformly at random from Fn

qm. Suppose the received
word y = c + e, where c ∈ C and e ∈ Fn

qm with wtΣR(e) = w. Assume we have an
error-and-erasure decoder that can correct combinations of errors and erasures up to
the condition in (6.28). Then, the success probability of Algorithm 10 to output at least
one solution satisfies

Pr[success] ≥ 1
|Eq,η,m,ℓ(w)|

vmax∑
u′=w

∑
w∈Tw,ℓ,µ

ϕq,µ,u′(w)
ℓ∏

i=1
NMq (m, η, wi),

and

Pr[success] ≤
(

1
|Eq,η,m,ℓ(w)|

+ qm(k−n)
)

vmax∑
u′=w

∑
w∈Tw,ℓ,µ

ϕq,µ,u′(w)
ℓ∏

i=1
NMq (m, η, wi).

159

6 Support-Guessing Decoding Algorithms in the Sum-Rank Metric

Proof. The proof follows the same steps as in Theorem 6.4, replacing φq,µ,v′(w) with
ϕq,µ,u′(w).

6.5.5 Optimizing the Support-Drawing Distribution

We propose a heuristic approach to optimize the support-drawing distribution used
in Algorithm 10. Inspired by the asymptotic analysis in Section 6.3.4, we aim at
maximizing the average intersection between the guessed support and the actual error
support, thereby increasing the probability of successful decoding.

To simplify the optimization, we consider an asymptotic setting where the number of
blocks ℓ tends to infinity. In this context, we approximate the rank weight distributions
of the error and the guessed support by their marginal distributions for a single block,
assuming they are independently and identically distributed across blocks.

Let β(m)
u

def= Pr[dim(U (i)) = u] denote the marginal distribution of the rank weight
of the guessed support U (i) for a single block i, where u ∈ {0, . . . , µ}. The joint
distribution of the guessing rank profile u is then

βu =
ℓ∏

i=1
β(m)

ui
. (6.42)

We introduce the random variable Z, representing the dimension of the intersection
between the guessed support and the error support for a single block. Our objective
is to maximize the expected value E[Z], as a larger average intersection increases the
probability of successful decoding with an error-and-erasure decoder, which requires
a sufficiently large intersection dimension (see (6.30)). The expectation E[Z] can be
computed as

E[Z] =
µ∑

ϵ=0

µ∑
w′=0

µ∑
u′=0

β
(m)
u′ · Pr[w′] · P∩

q,µ,w′,u′(ϵ),

where Pr[w′] is the marginal distribution of the error rank weight for a single block.
The distribution β(m) can be optimized using LP methods to maximize E[Z], similar

to the approach in Section 6.3.4.
The following theorem provides bounds on the expected runtime of the randomized

sum-rank decoder (Algorithm 10) based on the success probability bounds derived in
Corollary 6.4.

Theorem 6.7. Under the same assumptions as in Corollary 6.4, the overall expected
runtime Wrand,RCU of Algorithm 10 to output at least one solution is bounded as

W
(LB)
rand,RCU ≤ Wrand,RCU ≤ W

(UB)
rand,RCU,

160

6.5 Randomized Decoding of Linearized Reed–Solomon Codes

where the lower and upper bounds are given by

W
(LB)
rand,RCU

def= Wee−dec

((
1

|Eq,η,m,ℓ(w)|
+ qm(k−n)

)
vmax∑
u′=w

Cq,m,η(ℓ, w, u′)
)−1

,

and
W

(UB)
rand,RCU

def= Wee−dec

(
1

|Eq,η,m,ℓ(w)|

vmax∑
u′=w

Cq,m,η(ℓ, w, u′)
)−1

.

Here, Wee−dec ∈ O(n2m2) over Fq represents the complexity of the error-and-erasure
decoder from [HBP22], which is discussed in detail in Section 6.5.2. The term
Cq,m,η(ℓ, w, u) is defined as

Cq,m,η(ℓ, w, u) def=
min{u,w}∑

ε=ϵmin

∑
w∈Tw,ℓ,µ

∑
u∈Tu,ℓ,µ

∑
ϵ∈Tε,ℓ,µ

ℓ∏
i=1

β(m)
ui
· P∩

q,µ,wi,ui
(ϵi) · NMq (m, η, wi).

Proof. The proof follows similar arguments as in Theorem 6.5. The main difference
is that the bounds on the success probability are replaced by the expressions derived
in Corollary 6.4, which involve the definitions from (6.33), (6.34), (6.35), and (6.42).
The complexity of one iteration of Algorithm 10 is given by Wee−dec, which is the
complexity of the error and erasure decoder used in the randomized algorithm.

Remark 6.3. The function Cq,m,η(ℓ, w, u) plays a crucial role in determining the
complexity bounds of the randomized sum-rank syndrome decoder. It can be computed
efficiently using a dynamic programming routine similar to Algorithm 12 in polynomial
time.

6.5.6 Numerical Results
We compare the performance of the randomized decoding algorithm for LRS codes with
the generic decoder . Figure 6.8 and Figure 6.9 illustrate the expected complexities for
both algorithms under two different parameter sets, ensuring that the total number of
bits, calculated as m log2(q) = 144, remains constant.

In both figures, we set n = 48 and k = 24, resulting in a minimum sum-rank distance
dmin = 25, and a unique decoding radius τ =

⌊
n−k

2

⌋
= 12. We consider errors with

sum-rank weight w = τ + ξ = 13, where the error excess is ξ = 1.

161

6 Support-Guessing Decoding Algorithms in the Sum-Rank Metric

1 2 3 4 6

200

400

600

800

1,000

ℓ

lo
g 2

(C
om

pl
ex

ity
)

W
(LB)
gen,wc

W
(UB)
gen,wc

W
(UB)
gen,RCU

W
(LB)
gen,RCU

W
(LB)
rand

W
(UB)
rand

W
(UB)
rand,RCU

W
(LB)
rand,RCU

Figure 6.8: Complexity comparison of generic decoding vs. randomized decoding be-
yond the unique decoding radius for parameters: q = 23, m = 48, n = 48,
k = 24, w = 13, u = 2, v = 24.

2 3 4 6 8 12 16 24 48

200

400

600

800

1,000

ℓ

lo
g 2

(C
om

pl
ex

ity
)

W
(LB)
gen,wc

W
(UB)
gen,wc

W
(UB)
gen,RCU

W
(LB)
gen,RCU

W
(LB)
rand

W
(UB)
rand

W
(UB)
rand,RCU

W
(LB)
rand,RCU

WPrange16 24 48
0

20

40

60

80

100

120

140

ℓ

lo
g 2

(C
om

pl
ex

ity
)

Figure 6.9: Complexity comparison of generic decoding vs. randomized decoding be-
yond the unique decoding radius for parameters: q = 26, m = 24, n = 48,
k = 24, w = 13, u = 2, v = 24.

162

6.5 Randomized Decoding of Linearized Reed–Solomon Codes

The results show a significant reduction in complexity for the randomized decoding
algorithm compared to the generic decoder across both parameter sets. This improve-
ment highlights the advantage of leveraging the structural properties of LRS codes.
Although the relative gain decreases as the parameters approach those of the Ham-
ming metric, the randomized decoder still maintains a lower complexity in both the
worst-case and average-case settings.

6.5.7 Weak Keys in the Faure–Loidreau Cryptosystem
In 2006, Faure and Loidreau proposed a cryptosystem [FL06] based on the problem
of reconstructing linearized polynomials. The FL cryptosystem is the rank-metric
analogue of the Augot–Finiasz cryptosystem [AF03], offering very small public keys
(around 2KB for 80-bit security).

In 2018, Gaborit et al. demonstrated that the private key of the FL cryptosys-
tem could be recovered from the public key in polynomial time with high probabil-
ity [GOK18]. Later, it was shown in [WPR18] that this attack is equivalent to list
decoding interleaved Gabidulin codes [Loi06]. In this context, the private key corre-
sponds to a noisy codeword, with an error weight just beyond the unique decoding
radius. Such noisy codewords can often be recovered via probabilistic unique decoding,
as the list size returned by the decoder is typically one (as discussed in Section 2.4.2).

To repair the FL cryptosystem, Wachter-Zeh et al. [WPR18] proposed restricting
to error patterns that cause the probabilistic unique decoder for interleaved Gabidulin
codes to fail, mitigating the vulnerability exploited by Gaborit’s attack. However, the
system remains vulnerable if the decoding problem for Gabidulin codes can be solved
beyond the unique decoding radius as discussed in this section. For the original system
parameters, this vulnerability exists only slightly beyond the unique decoding radius.

In [JB19], we introduced an initial version of the randomized decoder, which served
as a precursor to the more generalized approach presented in this section. This earlier
decoder operates on a narrower notion of support and focused on identifying weak
keys, corresponding to specific subsets of error patterns in the FL cryptosystem. We
demonstrated that this decoder could solve the decoding problem for weak keys with
a significant reduction in complexity, lowering the security level to approximately 225

operations for 80-bit security. We also characterized these weak keys and showed that
a key-recovery attack is feasible for the parameters suggested in [FL06; WPR18].

It is worth noting that the modified FL system [WPR18] was adapted in [RPW18]
and later introduced as LIGA in [RPW21b]. RAMESSES [LLP19] is another FL-
based system, that also emerged as a variant. However, despite these developments,
both systems were ultimately compromised two years later by a message recovery
attack [BC21] that fully breaks the security of the systems. Our work [JB19] in 2019
predates this attack, and at the time, these systems were still viable cryptographic
contributions.

163

6 Support-Guessing Decoding Algorithms in the Sum-Rank Metric

6.6 Summary and Discussion
In this chapter, we developed and analyzed algorithms to address the general sum-rank
metric decoding problem, with a focus on both worst-case and average-case complex-
ities. We derived a tighter upper bound for the results in [PRR22] and extended
their work to the average-case scenario, with a particular focus on decoding beyond
the unique decoding radius. Additionally, we improved the randomized decoding al-
gorithm for LRS codes, building on our previous work [JBW23]. Furthermore, we
introduced a Prange-like algorithm for the sum-rank metric that effectively handles
larger error weights in the asymptotic setting, where ℓ→∞.

Future research could adapt techniques that improved Prange’s original ISD algo-
rithm in the Hamming metric [Ste89; BLP11; MMT11; BJMM12] to the generic and
randomized decoding algorithms in the sum-rank metric. Given the hybrid nature of
the sum-rank metric, these methods may particularly benefit the Hamming-like error
structure and reduce complexity, especially when ℓ is large.

Another direction is to apply improvements from generic decoding algorithms in the
rank metric, such as those in [AGHT17], or extend algebraic techniques like [BBC+20]
to the sum-rank metric.

These approaches could yield substantial complexity reductions for specific param-
eter regimes in the sum-rank metric.

A list decoding algorithm for Gabidulin codes based on Gröbner bases was intro-
duced in [HK17], enabling error correction beyond the unique decoding radius. This
approach can be easily adapted for LRS codes. However, as no upper bound on the list
size is known, it is difficult to assess the overall complexity of the algorithm, making
it challenging to compare with our approach. Establishing tighter complexity bounds
for this algorithm remains an open problem and could be a promising direction for
future research.

164

7
Concluding Remarks

This thesis has contributed to the field of decoding algorithms for codes in the sum-rank
metric, with an emphasis on improving decoding efficiency and analyzing complexities.

Chapter 3 revisited established decoding concepts for ILRS codes, presenting a fast
Skew Kötter–Nielsen–Høholdt interpolation algorithm that addresses interpolation-
based decoding of LRS codes. This is particularly relevant for the decryption process
of potential code-based cryptosystems using ILRS codes.

In Chapter 4, we focused on decoding rank metric errors in Gabidulin codes that
are space-symmetric. By relaxing the symmetry conditions, we demonstrated that
errors with rank up to 2(n−k)

3 can be decoded with high probability, thus extending the
decoding capabilities of Gabidulin codes for these error types.

Chapter 5 introduced a novel approach for decoding high-order interleaved sum-
rank-metric codes, generalizing the Metzner–Kapturowski algorithm to the sum-rank
metric. The proposed decoder operates efficiently across a variety of linear codes,
correcting errors of sum-rank weight up to dmin − 2.

Chapter 6 advanced the complexity analysis of sum-rank metric decoding problems
by transitioning from worst-case to average-case scenarios. We explored support-
guessing algorithms and proposed a randomized decoder for LRS codes. Additionally,
a new heuristic for optimizing the support-drawing distribution was introduced to
minimize the average-case decoding complexity.

At the end of each chapter, we have provided future research directions and outlined
open problems, offering valuable insights and potential paths for further exploration
in decoding and cryptographic applications.

165

A
Proofs

A.1 Proofs of Chapter 4

Define B
def= P A> and C

def= P >A>. Thus E = AB and E> = AC. The vector
representation e of E and its transposed ê of E> can therefore be written as

e = αE = αAB = aB,

ê = αE> = αAC = aC,

with a = αA.
From (4.4) and (4.5) follows for all j ∈ {1, . . . , n− k} that

s
(1)
j =

n∑
i=1

t∑
l=1

alCl,iα
[j]
i =

t∑
l=1

alĉ
[j]
l , (A.1)

s
(2)
j =

n∑
i=1

t∑
l=1

alBl,iα
[k+j−1]
i =

t∑
l=1

alb̂
[k+j−1]
l , (A.2)

with ĉl being the l-th entry of the vector ĉ = αC> and b̂l of b̂ = αB>, respectively.

A.1.1 Proof of the Key Equations

Proof. According to [Ore33a] the p-th coefficient of Ω(i) = Γ(s(i)(x)) for i ∈ {1, 2} can
be computed as

Ω(i)
p =

p∑
j=1

Γj

(
s

(i)
p−j+1

)[j−1]
,

with Γj = 0 for j > degq(Γ(x)) and s
(i)
j = 0 for j > degq(s(i)(x)).

167

A Proofs

From (A.1) and (A.2) it follows that

Ω(1)
p =

p∑
j=1

Γj

(
t∑

l=1
alĉ

[p−j+1]
l

)[j−1]

=
t∑

l=1
ĉ

[p]
l

p∑
j=1

Γja
[j−1]
l ,

and

Ω(2)
p =

p∑
j=1

Γj

(
t∑

l=1
alb̂

[k+p−j]
l

)[j−1]

=
t∑

l=1
b̂

[p+k−1]
l

p∑
j=1

Γja
[j−1]
l .

For any p ≥ t this gives Ω(i)
p = 0, since Γ(al) = ∑t

j=1 Γja
[j−1]
l = 0 by definition and

therefore degq

(
Ω(i)(x)

)
< degq (Γ(x)) = t for i ∈ {1, 2}.

A.1.2 Derivation of Equation 4.8 and Equation 4.9
Using (A.1) and (A.2) we can decompose (4.6) as

S(1) =


ĉ

[t+1]
1 ĉ

[t+1]
2 . . . ĉ

[t+1]
t

ĉ
[t+2]
1 ĉ

[t+2]
2 . . . ĉ

[t+2]
t

...
...

. . .
...

ĉ
[n−k]
1 ĉ

[n−k]
2 . . . ĉ

[n−k]
t

 ·Mt+1(a)>,

and

S(2) =


b̂

[t+k]
1 b̂

[t+k]
2 . . . b̂

[t+k]
t

b̂
[t+k+1]
1 b̂

[t+k+1]
2 . . . b̂

[t+k+1]
t

...
...

. . .
...

b̂
[n−1]
1 b̂

[n−1]
2 . . . b̂

[n−1]
t

 ·Mt+1(a)>.

The left-hand sides can be decomposed accordingly to the definition of ĉ and b̂ and
we have for S(1) and S(2)

S(1) =


α

[t+1]
1 α

[t+1]
2 . . . α[t+1]

n

α
[t+2]
1 α

[t+2]
2 . . . α[t+2]

n
...

...
. . .

...

α
[n−k]
1 α

[n−k]
2 . . . α[n−k]

n

 ·C
> ·Mt+1(a)>,

S(2) =


α

[t+k]
1 α

[t+k]
2 . . . α[t+k]

n

α
[t+k+1]
1 α

[t+k+1]
2 . . . α[t+k+1]

n
...

...
. . .

...

α
[n−1]
1 α

[n−1]
2 . . . α[n−1]

n

 ·B
> ·Mt+1(a)>.

168

A.2 Proofs of Chapter 5

Since C> = AP , B> = AP > and a = αA we obtain (4.8) and (4.9).

A.1.3 Recovering the Error Matrix
In the following, we describe the process of determining B such that e = aB.

Let us define dl
def= b̂

[k]
l . From equation (A.2), we have

s
(2)
j =

t∑
l=1

ald
[j−1]
l .

Given the vector a = [a1, a2, . . . , at], we can solve for d = [d1, d2, . . . , dt] using the
following linear system of equations

a
[0]
1 a

[0]
2 · · · a

[0]
t

a
[−1]
1 a

[−1]
2 · · · a

[−1]
t

...
...

. . .
...

a
[−v]
1 a

[−v]
2 · · · a

[−v]
t

 ·

d1
d2
...
dt

 =


(s(2)

1)[0]

(s(2)
2)[−1]

...

(s(2)
v+1)[−v]

 ,

with v = n− k − 1. It remains to find B such that dl = ∑n−1
j=0 Bl,jα

[k]
j .

A.2 Proofs of Chapter 5

A.2.1 Proof of Theorem 5.1
Proof. First, partition HS into blocks according to the length partition n, i.e.,

HS =
[
H

(1)
S | · · · |H(ℓ)

S

]
,

with H
(i)
S ∈ F(n−k−w)×ni

qm for all i ∈ {1, . . . , ℓ}.
We want to show that supp⊥

ΣR (HS) = suppΣR (E). By the definition of the support
for the sum-rank metric, this means that we need to show that

supp⊥
R (H(i)

S) = suppR (E(i)) = Rq

(
B(i)

)
∀i ∈ {1, . . . , ℓ}.

Define µi
def= rkq (H(i)

S) for all i ∈ {1, . . . , ℓ}. Then, H
(i)
S can be decomposed as

H
(i)
S = C

(i)
S D

(i)
S ,

with C
(i)
S ∈ F(n−k−w)×µi

qm , D
(i)
S ∈ Fµi×ni

q , and rkq(C(i)
S) = rkq(D(i)

S) = µi.

169

A Proofs

Recall from the definition of the sum-rank support (5.1) and its dual support (5.7)
that we have

supp⊥
ΣR (HS) = Rq

(
D

(1)
S

)⊥
× · · · × Rq

(
D

(ℓ)
S

)⊥
,

and
suppΣR (E) = Rq

(
B(1)

)
× · · · × Rq

(
B(ℓ)

)
,

respectively. The goal is to show that

Rq

(
D

(i)
S

)⊥
= Rq

(
B(i)

)
,

for all i ∈ {1, . . . , ℓ}, which is equivalent to proving

Rq

(
D

(i)
S

)
= Rq

(
B(i)

)⊥
.

This will be achieved in two steps:

1. Show that Rq

(
D

(i)
S

)
⊆ Rq

(
B(i)

)⊥
for all i ∈ {1, . . . , ℓ}.

2. Show that µi < dim (Rq

(
B(i)

)⊥
) = ni−wi is not possible for any i ∈ {1, . . . , ℓ},

implying µi = ni − wi and hence Rq

(
D

(i)
S

)
= Rq

(
B(i)

)⊥
for all i ∈ {1, . . . , ℓ}.

Step 1: Proving Rq

(
D

(i)
S

)
⊆ Rq

(
B(i)

)⊥
for all i ∈ {1, . . . , ℓ}.

To prove
Rq

(
D

(i)
S

)
⊆ Rq

(
B(i)

)⊥
,

we instead show that
Rq

(
B(i)

)
⊆ Rq

(
D

(i)
S

)⊥
.

By definition, HS is a parity-check matrix for S = E + C. Thus,

HSG>
E = 0 ⇔ HSB>A>

E = 0,

where GE is the generator matrix of the error code as defined in (5.3). Since AE ∈ Fw×w
qm

is non-singular, we have that

HSB> = 0⇔H
(i)
S B(i)> = 0 ∀i ∈ {1, . . . , ℓ}. (A.3)

This implies that all rows of B(i) are in the Fqm-right kernel of H
(i)
S , and since B(i) is

over Fq, we have that
Rq

(
B(i)

)
⊆ Rq

(
D

(i)
S

)⊥
.

Consequently,
Rq

(
D

(i)
S

)
⊆ Rq

(
B(i)

)⊥
.

170

A.2 Proofs of Chapter 5

Step 2: Showing that

µi < dim (Rq

(
B(i)

)⊥
) = ni − wi,

is impossible for any i ∈ {1, . . . , ℓ}. Since

Rq

(
D

(i)
S

)
⊆ Rq

(
B(i)

)⊥
,

with µi > ni − wi is not possible for any i ∈ {1, . . . , ℓ}. Assume that µi′ < ni′ − wi′

for at least one i′ ∈ {1, . . . , ℓ}, i.e., let µi′ = ni′ −wi′ − δ ∈ Z with δ > 0. Without loss
of generality, set i′ = ℓ.

Given that rkq (D(ℓ)
S) = nℓ − wℓ − δ, there exists a full-rank matrix Q(ℓ) ∈ Fnℓ×nℓ

q

that allows us to bring D
(ℓ)
S into column-echelon form. Hence,

D
(ℓ)
S Q(ℓ) =

[
0︸︷︷︸

∈F(nℓ−wℓ−δ)×(wℓ+δ)
q

D̃
(ℓ)
S

]
,

where D̃
(ℓ)
S ∈ F(nℓ−wℓ−δ)×(nℓ−wℓ−δ)

q with rkq (D̃(ℓ)
S) = nℓ − wℓ − δ.

Further, let
Q(ℓ) = [Q(ℓ)

1 | Q
(ℓ)
2],

with Q
(ℓ)
1 ∈ Fnℓ×(wℓ+δ)

q and Q
(ℓ)
2 ∈ Fnℓ×(nℓ−wℓ−δ)

q . Since Q(ℓ) is full-rank, we have that
Q

(ℓ)
1 is full-rank too, i.e., rkq (Q(ℓ)

1) = wℓ + δ. Thus,

D
(ℓ)
S Q

(ℓ)
1 = 0. (A.4)

That means we can multiply (A.4) from the right with some full-rank transformation
matrix T ∈ F(wℓ+δ)×(wℓ+δ)

q such that

D
(ℓ)
S

[
B(ℓ)> | B̃(ℓ)>

]
︸ ︷︷ ︸

=Q
(ℓ)
1 T

= 0. (A.5)

Define the following block-diagonal matrix

Q =



B(1) 0 · · · 0
0 B(2) · · · 0
...

...
. . .

...
0 0 · · · B(ℓ)

0 0 · · · B̃(ℓ)

 ∈ F(w+δ)×n
q .

171

A Proofs

Then we have that
DSQ> = 0, (A.6)

since
D

(i)
S B(i)> = 0,

for i ∈ {1, . . . , ℓ− 1} and by assumption (A.5),

D
(ℓ)
S

[
B(ℓ)> | B̃(ℓ)>

]
= 0.

Now, without loss of generality, let δ = 1. By the decoding condition (5.5), we have
that

rkqm

(
HQ>

)
= w + 1,

must hold. Thus, there exists a vector g ∈ Rqm(H) such that

gQ> =
[
0 . . . 0 gw+1

]
6=
[
0 . . . 0

]
∈ Fw+1

qm .

Since the first w leftmost positions of gQ> are zero, by (A.3) and the fact that the
matrix formed by the w leftmost columns in Q> forms a basis of all Rq

(
B(i)

)⊥
for all

i ∈ {1, . . . , ℓ}, which are also bases for Rqm

(
B(i)

)⊥
for all i ∈ {1, . . . , ℓ}, this implies

that g ∈ Rqm(B)⊥.
Also recall that HS fulfills the parity-check constraints for both codes simultane-

ously: the error code E and the component code C. That means that

S = C + E ⇔ S⊥ = C⊥ ∩ E⊥

⇔Rqm(HS) = Rqm(H) ∩Rqm(B)⊥ .

Since for this specific g we have that g ∈ Rqm(H) and also g ∈ Rqm(B)⊥, it follows
that g ∈ Rqm(HS). Expanding g over Fq also implies that there exists a vector
g′ ∈ Rq(HS) = Rq(DS) such that

g′Q> =
[
0 . . . 0 g′

w+1

]
6=
[
0 . . . 0

]
∈ Fw+1

q .

But by (A.6), for all g′ ∈ Rq(DS) we need to have that

g′Q> =
[
0 . . . 0 0

]
∈ Fw+1

q .

This constitutes a contradiction, and thus µℓ < nℓ−wℓ is not possible. This also holds
for any other i′ 6= ℓ, and therefore µi < ni − wi is not possible for any i ∈ {1, . . . , ℓ}.

When δ = 1, we obtain one additional zero column in g′Q>. Similarly, when δ = 2,
we get two additional zero columns. Since a contradiction arises for δ = 1, it follows

172

A.2 Proofs of Chapter 5

that the assumption cannot hold for any δ > 1 as well. For δ = 0, we do not get a
contradiction, and thus µi = ni − wi for all i ∈ {1, . . . , ℓ} is the only valid option.

This proves that
Rq

(
D

(i)
S

)
= Rq

(
B(i)

)⊥
,

for all i ∈ {1, . . . , ℓ}, and therefore

Rq

(
D

(i)
S

)⊥
= Rq

(
B(i)

)
,

for all i ∈ {1, . . . , ℓ}, hence

supp⊥
ΣR (HS) = suppΣR (E).

173

B
Appendix of Chapter 6

B.1 Efficient computation of Bq,m,η(w, v, ℓ)
The quantity Bq,m,η(w, v, ℓ) defined in (6.17) can also be computed recursively as
follows

Bq,m,η(w, v, ℓ) =



α(m)
v NMq (m, η, w)P⊆

q,µ (w, v) if ℓ = 1
min{µ,w}∑

w′=0

min{µ,v}∑
v′=w′

α
(m)
v′ NMq (m, η, w′)P⊆

q,µ (w′, v′)

·Bq,m,η(w − w′, v − v′, ℓ− 1)
else

.

This expression can be computed in polynomial time using dynamic programming; see
Algorithm 12.

175

B Appendix of Chapter 6

Algorithm 12: Compute Bq,m,η(w, v, ℓ) in the sum (6.18) for a given v.
Input : Parameters: q, m, n, k, ℓ, w and v with v ≥ 0
Output : Value of Bq,m,η(w, v, ℓ)
Initialize: N(v′, w′, ℓ′) = 0 ∀w′ ∈ {0, . . . , w}, v′ ∈ {0, . . . , v}, ℓ′ ∈ {0, . . . , ℓ}

1 if v < w then
2 return 0
3 for w′ ∈ {0, . . . , w} do
4 for v′ ∈ {w′, . . . , v} do
5 if v′ ≤ µ then
6 N(v′, w′, 1)← α

(m)
v′ NMq (m, η, w′)P⊆

q,µ (v′, w′)

7 for ℓ′ ∈ {2, . . . , ℓ} do
8 for w′ ∈ {0, . . . , w} do
9 for v′ ∈ {w′, . . . , v} do

10
N(v′, w′, ℓ′)←

min{µ,w′}∑
w′′=0

min{µ,v′}∑
v′′=w′′

N(v′ − v′′, w′ − w′′, ℓ′ − 1)

· α(m)
v′′ NMq (m, η, w′′)P⊆

q,µ (v′′, w′′)

11 return N(v, w, ℓ)

176

B.2 Appendix for Section 6.5

B.2 Appendix for Section 6.5

B.2.1 Definition of ucomp and Proof of Correctness
The computation of ucompµ(w, u) is described in Algorithm 13. and Lemma B.1
proofs its correctness. The randomization step in Line 6 of Algorithm 13 is crucial
to avoid bias towards specific positions, particularly when ℓ is large. This contrasts
with a deterministic choice, which may lead to suboptimal results. In the Hamming
case, where η = 1 and n = ℓ, such randomization is essential for the effectiveness of
Prange’s generic decoder. However, our analysis does not explicitly take this random-
ness property into account and instead relies on ϕ′

µ(ucompµ(w, u),w), which is not
randomized, despite ucompµ being a randomized function.

Algorithm 13: ucompµ(w, u)
Input : w ∈ Tw,ℓ,µ and u ∈ Z≥0 with u = 2ξ ≤ w

Output : u ∈ Tu,ℓ,µ such that u = arg maxu′∈Tu,ℓ,µ
ϕ′

µ(u′,w)

1 u = [u1, . . . , uℓ]← w

2 δ ← w − u
3 while δ > 0 do
4 J1 ← {i ∈ {1, . . . , n} : ui > 0}
5 J2 ← {i ∈ J1 : wi = minj∈J1{wj}}
6 J3 ← {i ∈ J2 : ui = maxj∈J2{uj}}
7 h

$← J3

8 uh ← uh − 1
9 δ ← δ − 1

10 return u

Lemma B.1. Let w ∈ Tw,ℓ,µ and let u ≤ w. Then, u = ucompµ(w, u), with ucompµ

as in Algorithm 13, maximizes ϕ′
µ(u,w), i.e.,

ϕ′
µ(ucompµ(w, u),w) = max

u∈Tu,ℓ,µ

ϕ′
µ(u,w).

Proof. By (6.38) we have that

ϕ′
µ(u,w) def=

ℓ∏
i=1

P⊆
q,µ (ui, wi) =

[
wi

ui

]
q[

µ
ui

]
q

.

177

B Appendix of Chapter 6

The factor by what this expression is increased if we decrease ui by 1 is[
wi

ui−1

]
q
/
[

µ
ui−1

]
q[

wi

ui

]
q
/
[

µ
ui

]
q

=
ui∏

j=1

qµ−ui+j − 1
qwi−ui+j − 1

·
u−1∏
j=1

qwi−ui+1+j − 1
qµ−ui+1+j − 1

= qµ − 1
qwi − 1

·
ui−1∏
i=j

(qwi−ui+1+j − 1)(qµ−ui+j − 1)
(qµ−ui+1+j − 1)(qwi−ui+j − 1)︸ ︷︷ ︸

= (qwi −1)(qµ+1−qui)
(qµ−1)(qwi+1−qui)

= qµ+1 − qui

qwi+1 − qui
.

This increase factor is monotonically increasing in ui for a fixed wi and µ, and decreas-
ing in wi for a fixed ui. Consequently, the maximum increase of (6.38) is obtained
by decreasing the largest ui among the smallest wi. By adopting a greedy approach
and incrementally adjusting such positions, a global maximum can be reached as this
strategy ensures optimal increase in subsequent steps. Thus, (6.38) is optimized by
incrementally decreasing ui by one while maintaining ui ≥ 0 and ensuring ∑ℓ

i=1 ui ≥ u.
This method aligns with the operations performed by ucompµ(w, u) as described in
Algorithm 13.

B.2.2 Efficient Computation of Q̃ℓ,w,µ

Fortunately, we can employ a similar approach to [PRR22, Lemma 22] and compute
Q̃ℓ,w,µ as

Q̃ℓ,w,µ = ℓ! ·M(w, ℓ, µ, u),

where M(w, ℓ, µ, u) can be computed using Algorithm 14. To do so, we first initialize a
global table {M(w′, ℓ′, µ′, u′)}µ′≤µ,u′≤u

w′≤w,ℓ′≤ℓ with M(w′, ℓ′, µ′, u′) = −1 for all entries. Then,
we call Algorithm 14 with input parameters w, ℓ, µ, and u.

By applying arguments similar to those in [PRR22, Proposition 23], we can show
that the complexity of computing Q̃ℓ,w,µ using this approach is Õ(wun3µ3 log2(q)) and
thus polynomially bounded.

178

B.2 Appendix for Section 6.5

Algorithm 14: Fill Table {M(w′, ℓ′, µ′, u′)}µ′≤µ,u′≤u
w′≤w,ℓ′≤ℓ

Input : Integers w′ ≤ w, ℓ′ ≤ ℓ, µ′ ≤ µ, u′ ≤ u

Global table {M(w′, ℓ′, µ′, u′)}µ′≤µ,u′≤u
w′≤w,ℓ′≤ℓ

Global parameters q and µ

Output : M(w′, ℓ′, µ′, u′)

1 if M(w′, ℓ′, µ′, u′) = −1 then
2 if ℓ′ = w′ = u′ = 0 then
3 x← 1
4 else
5 if ℓ′ ≥ 1 and 0 ≤ w′ ≤ ℓ′µ′ and 0 ≤ u′ ≤ min{ℓ′µ,w′} then
6 x← 0
7 for w1 ∈ {µ, . . . , bw/ℓc} do
8 δmin ← max{1, ℓ′(w1 + 1)− w)}
9 δmax ← max{i ∈ Z≥0 : 1 ≤ i ≤ ℓ′ + 1, w1i ≤ w}

10 for δ ∈ {δmin, . . . , δmax} do
11 u1 ← max{u′ − (w′ − δw1), 0}

u(1) ← ucompµ([w1, . . . , w1], u1)

12 ρ← 1
δ! ·

∏δ
i=1

([
µ

u
(1)
i

]
q
·
[

w1
u

(1)
i

]
q

−1
)

13 x← x+ ρ ·M(w′ − δw1, ℓ
′ − δ, w1 + 1, u′ − u1)

14 else
15 x← 0

16 return M(w′, ℓ′, µ′, u′)

179

C
Notations, Variables, and
Abbreviations

Below, we provide a comprehensive list of the notations, variables, and abbreviations
used throughout this dissertation. Note that notation and variables defined only in
specific contexts or chapters are not included here.

Abbreviations

AES Advanced Encryption Standard
AWGN additive white Gaussian noise
BCH Bose–Chaudhuri–Hocquenghem
BMD bounded minimum distance
BJMM Becker–Joux–May–Meurer algorithm
BSC binary symmetric channel
CA certificate authority
D&C divide-and-conquer
DES Data Encryption Standard
DS Digital Signature
ECC Elliptic Curve Cryptography
FL Faure–Loidreau
GPT Gabidulin–Paramonov–Tretjakov
GRS generalized Reed–Solomon
ILRS interleaved linearized Reed–Solomon
IRS interleaved Reed–Solomon
ISD information-set decoding

181

C Notations, Variables, and Abbreviations

KEM key-encapsulation mechanism
KNH Kötter–Nielsen–Høholdt
lclm least-common left multiple
LDPC low-density parity-check
LP linear program
LRS linearized Reed–Solomon
LRPC low-rank parity-check
ML maximum-likelihood
MMT May–Meurer–Thomae algorithm
MSRD maximum sum-rank distance
PKI public-key infrastructure
PMF probability mass function
REF row echelon form
RCU random-coding union
RS Reed–Solomon
RSA Rivest–Shamir–Adleman
SL security level
TOP term-over-position
WF work factor

Acronyms

BIKE Bit Flipping Key Encapsulation
HTTPS HyperText Transfer Protocol Secure
HQC Hamming Quasi-Cyclic
LIGA List-decoding and Interleaved Gabidulin Approach
ML-DSA Module-Lattice Digital Signature Algorithm
ML-KEM Module-Lattice Key Encapsulation Mechanism
NIST National Institute of Standards and Technology
PGP Pretty Good Privacy
RAMESSES Rank-Metric Encryption Scheme with Short Keys
RQC Rank Quasi-Cyclic
SIKE Supersingular Isogeny Key Encapsulation
SLH-DSA Stateless Hash-based Digital Signature Algorithm
SSL Secure Sockets Layer
TLS Transport Layer Security

182

Basics

Id Identity map
Z Set of all integers
Z≥0 Set of nonnegative integer Z≥0 = {0, 1, 2, . . .}
R Set of real numbers
a

$← A Indicates that a is sampled uniformly at random from
the set A

E[X] The expected value (or expectation) of the random vari-
able X

ζ Matrix multiplication exponent, the infimum of values
ζ0 ∈ [2, 3] for which an algorithm exists to multiply
n× n matrices over Fqm in O(nζ0) operations

p(n) Cost of multiplying two skew polynomials from
Fqm [x;σ] of degree n

Finite Fields, Matrices, Sets and Vector Spaces

A[e:f] Submatrix of A consisting of all rows and columns e to
f

A−> Inverse of the transpose of a square matrix A

q Power of a prime
Fq Finite field of order q
Fqm Finite extension field of Fq of degree m
m Degree of a finite extension field Fqm

F∗ Multiplicative group of a finite field F

Fm×n Set of all m× n matrices over a finite field F

F1×n Set of all row vectors of length n over a finite field F

ext(·) The expansion map, representing elements of Fqm as
column vectors over Fq

183

C Notations, Variables, and Abbreviations

rkq (A) The Fq-rank of a matrix A over the field Fqm after ex-
panding over Fq using ext(·)

rkqm (A) The Fqm-rank of a matrix A over the field Fqm

GLv(F) The general linear group consisting of all v×v invertible
matrices over a finite field F

Gk(Fv
q) The Grassmannian, representing the set of all k-

dimensional subspaces of the vector space Fv
q over the

finite field Fq[
a
b

]
q

Gaussian binomial coefficient

〈a1, . . . ,av〉q The Fq-linear vector space spanned by the vectors
a1, . . . ,av

V⊥ The dual space of the vector space V
dim The dimension of a vector space
dimq The dimension of an Fq-linear vector space, specifically

when expanding a vector space over Fqm as an Fq-linear
space

dimqm The dimension of an Fqm-linear vector space
ker (A)Fq

The right Fq-kernel of the matrix A

ker (A)Fqm
The right Fqm-kernel of the matrix A

Rq(A) The Fq-linear row space of the matrix A ∈ Fv×w
qm , ob-

tained by expanding each element of A over Fq and
considering the Fq-linear span of the resulting rows

Cq(A) The Fq-linear column space of the matrix A ∈ Fv×w
qm ,

obtained by expanding each element of A over Fq and
considering the Fq-linear span of the resulting columns

P∩
q,µ,a,b(j) The conditional probability that the intersection of two

subspaces of Fµ
q , with dimensions a and b, has dimension

exactly j (see (2.7))
P⊆

q,µ (a, b) The probability that a subspace of Fµ
q with dimension

a is contained within another subspace of dimension b,
where a ≤ b (see (2.8))

deg(f) The degree of a polynomial f (see (2.12))

184

Polynomials over Finite Fields

Fqm [x;σ, δ] The non-commutative ring of skew polynomials with
automorphism σ(·) and derivation δ(·), as defined in
Section 2.5.2

Fqm [x;σ, δ]<k The set of skew polynomials in Fqm [x;σ, δ] with degree
less than k (see (2.14))

Lqm[x] The linearized polynomial ring (see [Ore33a; Ore33b])
σFrob The Frobenius automorphism, defined as σFrob(x) = xq

Mz(x)a The generalized Moore matrix, defined as in (2.16)
Mz(x) The Moore matrix, a special case of the generalized

Moore matrix Mz(x)a (see (2.17))
Vz(x) The Vandermonde matrix (see (2.18))

Linear Codes

n Length of a code
k Dimension of a code
R Rate of a code R = k/n

dmin The minimum distance of a code, defined as the smallest
distance between any two distinct codewords. The ap-
plicable metric (Hamming, Rank, or Sum-Rank) varies
based on context

C[n, k, dmin] Linear code of length n, dimension k and minimum dis-
tance dmin over Fqm

IC[s;n, k, dmin] A vertically homogeneous s-interleaved code of length
n, dimension k, and minimum distance dmin (see Defi-
nition 2.4)

s Interleaving order
wtH (a) Hamming weight of vector a, representing the number

of non-zero elements in the vector
dH(a, b) Hamming distance between vectors a and b, defined

as the number of positions at which the corresponding
elements differ

185

C Notations, Variables, and Abbreviations

wtR (a) Rank weight of a vector a

w Error weight
τ Unique decoding radius
τL List decoding radius

Sum-Rank Metric

ℓ Number of blocks
η Length of a single block. Used for constant block length.

The overall length is then n = ℓη

µi Maximum rank of block i (see (2.21))
µ Maximum rank of a block in the case of constant block

length (see (2.22))
µ

(s)
i Minimum of ni and sm for block i (see (2.31))
µ(s) Minimum of η and sm for the case of constant block

lengths (see (2.32))
n Length profile n = [n1, n2, . . . , nℓ] ∈ Zℓ

≥0

ψ A map which assigns a vector x to its rank profile (see
(2.23))

Tw,ℓ,µ Set of rank profiles with block weights in {0, . . . , µ}
summing to w (see Definition 2.10)

NMq (m, η, wi) Number of m×η matrices of rank wi over Fq (see (2.26))
wt(n)

ΣR (a) Sum-rank weight of a vector a, defined as the sum of
the rank weights of its blocks with respect to a length
profile n (see (2.19))

d
(n)
ΣR(x,y) Sum-rank distance between vectors x and y (see (2.20))
CΣR[n, k, dmin] An Fqm-linear code in the sum-rank metric with length

profile n, dimension k, and minimum distance dmin

CΣR[n, k, dmin] An Fqm-linear code in the sum-rank metric with of
length n = ηℓ, dimension k, and minimum distance
dmin

186

ICΣR[s; n, k, dmin] Vertically interleaved code in the sum-rank metric with
interleaving order s, length profile n, dimension k, and
minimum distance dmin

LRS[β, ξ, ℓ; n, k] LRS code of length n = ∑ℓ
i=1 ni and dimension k with

conjugacy class representatives ξ and evaluation param-
eters β (see Definition 2.13)

ILRS[β, ξ, ℓ, s; n, k] ILRS code of length n = ∑ℓ
i=1 ni and dimension k, de-

fined with conjugacy class representatives ξ and evalu-
ation parameters β (see Definition 2.13)

Gabα[n, k] Gabidulin code with evaluation parameters α, of length
n and dimension k (see Definition 4.1)

supp(R)
R (E) Row rank support of E ∈ Fs×n

qm

supp(C)
R (E) Column rank support of E ∈ Fs×n

qm

supp(R)
ΣR(E) Sum-rank row support of E ∈ Fs×n

qm (see (2.33))
supp(C)

ΣR(E) Sum-rank column support of E ∈ Fs×n
qm (see (2.34))

dimΣ(E) Sum dimension of the support E
E1 ∩ E2 Intersection of two supports E1 and E2

Fn
q Notation for Fn1

q ×Fn2
q × · · ·×Fnℓ

q given a length profile
n = [n1, n2, . . . , nℓ] (see (2.35))

187

Related Publications by the Author

[BJPR19] H. Bartz, T. Jerkovits, S. Puchinger, and J. Rosenkilde. “Fast Root Find-
ing for Interpolation-Based Decoding of Interleaved Gabidulin Codes”.
In: 2019 IEEE Information Theory Workshop (ITW). IEEE Information
Theory Workshop. Visby, Sweden: IEEE, Aug. 2019, pp. 1–5. isbn: 978-
1-5386-6900-6. doi: 10.1109/ITW44776.2019.8989290.

[BJPR21] H. Bartz, T. Jerkovits, S. Puchinger, and J. Rosenkilde. “Fast Decod-
ing of Codes in the Rank, Subspace, and Sum-Rank Metric”. In: IEEE
Transactions on Information Theory 67.8 (2021). issn: 15579654. doi:
10.1109/TIT.2021.3067318.

[BJR22] H. Bartz, T. Jerkovits, and J. Rosenkilde. “Fast Kötter–Nielsen–Høholdt
Interpolation Over Skew Polynomial Rings”. In: IFAC-PapersOnLine
55.30 (2022), pp. 1–6. issn: 24058963. doi: 10.1016/j.ifacol.2022.11.019.

[BJR24] H. Bartz, T. Jerkovits, and J. Rosenkilde. “Fast Kötter–Nielsen–Høholdt
Interpolation over Skew Polynomial Rings and its Application in Coding
Theory”. In: Designs, Codes and Cryptography 92.2 (Feb. 2024), pp. 435–
465. issn: 0925-1022, 1573-7586. doi: 10.1007/s10623-023-01315-4.

[CJB24] H. S. Couvée, T. Jerkovits, and J. Bariffi. Bounds on Sphere Sizes in the
Sum-Rank Metric and Coordinate-Additive Metrics. Version Number: 2
Submitted to Designs, Codes and Cryptography, Special Issue WCC2024.
2024. doi: 10.48550/ARXIV.2404.10666.

[JB19] T. Jerkovits and H. Bartz. “Weak Keys in the Faure–Loidreau Cryptosys-
tem”. In: Code-Based Cryptography. Cham: Springer, 2019, pp. 102–114.
isbn: 978-3-030-25922-8.

[JBW23] T. Jerkovits, H. Bartz, and A. Wachter-Zeh. “Randomized Decoding of
Linearized Reed–Solomon Codes Beyond the Unique Decoding Radius”.
In: 2023 IEEE International Symposium on Information Theory (ISIT).
2023, pp. 820–825. doi: 10.1109/ISIT54713.2023.10206957.

[JBW24] T. Jerkovits, H. Bartz, and A. Wachter-Zeh. Support-Guessing Decoding
Algorithms in the Sum-Rank Metric. Submitted to IEEE Transactions on
Information Theory, Version Number: 1. 2024. doi: 10.48550/ARXIV.
2410.15806.

189

https://doi.org/10.1109/ITW44776.2019.8989290
https://doi.org/10.1109/TIT.2021.3067318
https://doi.org/10.1016/j.ifacol.2022.11.019
https://doi.org/10.1007/s10623-023-01315-4
https://doi.org/10.48550/ARXIV.2404.10666
https://doi.org/10.1109/ISIT54713.2023.10206957
https://doi.org/10.48550/ARXIV.2410.15806
https://doi.org/10.48550/ARXIV.2410.15806

Related Publications by the Author

[JGSK20] T. Jerkovits, O. Günlü, V. Sidorenko, and G. Kramer. “Nested Tailbiting
Convolutional Codes for Secrecy, Privacy, and Storage”. In: Proceedings
of the 2020 ACM Workshop on Information Hiding and Multimedia Se-
curity. IH&MMSEC ’20. New York, NY, USA: Association for Comput-
ing Machinery, 2020, pp. 79–89. isbn: 978-1-4503-7050-9. doi: 10.1145/
3369412.3395063.

[JHB23] T. Jerkovits, F. Hörmann, and H. Bartz. “On Decoding High-Order In-
terleaved Sum-Rank-Metric Codes”. In: Code-Based Cryptography. Cham:
Springer, 2023, pp. 90–109. isbn: 978-3-031-29689-5.

[JHB24] T. Jerkovits, F. Hörmann, and H. Bartz. An Error-Code Perspective on
Metzner–Kapturowski-Like Decoders. Submitted to IEEE Transactions on
Information Theory, Version Number: 1. 2024. doi: 10.48550/ARXIV.
2409.18488.

[JLG18] T. Jerkovits, G. Liva, and A. Graell i Amat. “Improving the Decoding
Threshold of Tailbiting Spatially Coupled LDPC Codes by Energy Shap-
ing”. In: IEEE Communications Letters 22.4 (2018). issn: 10897798. doi:
10.1109/LCOMM.2018.2802488.

[JSW21] T. Jerkovits, V. Sidorenko, and A. Wachter-Zeh. “Decoding of Space-
Symmetric Rank Errors”. In: IEEE International Symposium on Infor-
mation Theory - Proceedings. IEEE International Symposium on Infor-
mation Theory (ISIT). Vol. 2021-July. ISSN: 21578095. 2021. isbn: 978-
1-5386-8209-8. doi: 10.1109/ISIT45174.2021.9518115.

[RJB+20] J. Renner, T. Jerkovits, H. Bartz, S. Puchinger, P. Loidreau, and
A. Wachter-Zeh. “Randomized Decoding of Gabidulin Codes Beyond
the Unique Decoding Radius”. In: Post-Quantum Cryptography. Cham:
Springer, 2020, pp. 3–19. isbn: 978-3-030-44223-1.

[RJB19] J. Renner, T. Jerkovits, and H. Bartz. “Efficient Decoding of Inter-
leaved Low-Rank Parity-Check Codes”. In: 2019 16th International Sym-
posium ”Problems of Redundancy in Information and Control Systems”,
REDUNDANCY 2019. 2019. isbn: 978-1-72811-944-1. doi: 10 . 1109 /
REDUNDANCY48165.2019.9003356.

190

https://doi.org/10.1145/3369412.3395063
https://doi.org/10.1145/3369412.3395063
https://doi.org/10.48550/ARXIV.2409.18488
https://doi.org/10.48550/ARXIV.2409.18488
https://doi.org/10.1109/LCOMM.2018.2802488
https://doi.org/10.1109/ISIT45174.2021.9518115
https://doi.org/10.1109/REDUNDANCY48165.2019.9003356
https://doi.org/10.1109/REDUNDANCY48165.2019.9003356

Bibliography

[AAB+19] F. Arute et al. “Quantum Supremacy Using a Programmable Supercon-
ducting Processor”. In: Nature 574.7779 (Oct. 24, 2019), pp. 505–510.
issn: 0028-0836, 1476-4687. doi: 10.1038/s41586-019-1666-5.

[ABB+20] N. Aragon et al. BIKE: Bit Flipping Key Encapsulation. Submission to
NIST Post-Quantum Cryptography Standardization Process, Round 3.
2020.
url: https://bikesuite.org/ (accessed on 06/20/2024).

[AF03] D. Augot and M. Finiasz. “A Public Key Encryption Scheme Based on the
Polynomial Reconstruction Problem”. In: LNCS: Revised Selected Papers
of Eurocrypt 2003 2656 (2003), pp. 229–249.

[AGHT17] N. Aragon, P. Gaborit, A. Hauteville, and J.-P. Tillich. “Improvement of
Generic Attacks on the Rank Syndrome Decoding Problem”. Oct. 2017.
url: https : / / hal . archives - ouvertes . fr / hal - 01618464 (accessed on
02/29/2024).

[AL94] W. W. Adams and P. Loustaunau. An Introduction to Gröbner Bases.
Graduate studies in mathematics 3. Providence (R.I.): American mathe-
matical society, 1994. isbn: 978-0-8218-3804-4.

[Ale02] M. Alekhnovich. “Linear Diophantine Equations Over Polynomials and
Soft Decoding of Reed–Solomon Codes”. In: The 43rd Annual IEEESym-
posium on Foundations of Computer Science, 2002. Proceedings. IEEE,
2002, pp. 439–448.

[AW21] J. Alman and V. V. Williams. “A Refined Laser Method and Faster Ma-
trix Multiplication”. In: Proceedings of the Thirty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms. Soda ’21. USA: Society for
Industrial and Applied Mathematics, 2021, pp. 522–539. isbn: 978-1-
61197-646-5.

[Bar17] H. Bartz. “Algebraic Decoding of Subspace and Rank-Metric Codes”.
ISBN: 978-3-8439-3174-8 Series: Informationstechnik Publisher: Dr. Hut
Verlag. PhD thesis. Munich, Germany: Technical University of Munich,
2017.

191

https://doi.org/10.1038/s41586-019-1666-5
https://bikesuite.org/
https://hal.archives-ouvertes.fr/hal-01618464

Bibliography

[BBC+20] M. Bardet et al. “Improvements of Algebraic Attacks for Solving the
Rank Decoding and MinRank Problems”. In: Advances in cryptology –
ASIACRYPT 2020. Cham: Springer, 2020, pp. 507–536. isbn: 978-3-030-
64837-4.

[BC21] M. Bombar and A. Couvreur. “Decoding Supercodes of Gabidulin Codes
and Applications to Cryptanalysis”. In: Post-Quantum Cryptography.
Vol. 12841. Series Title: Lecture Notes in Computer Science. Cham:
Springer, 2021, pp. 3–22. isbn: 978-3-030-81292-8. doi: 10 .1007/978-
3-030-81293-5_1.

[BCG+03] M. Bossert, E. Costa, E. M. Gabidulin, E. Schulz, and M. Weckerle.
“Verfahren und Kommunikationsvorrichtung zum Dekodieren von mit
einem Rang-Code codierten Daten”. European pat. 20040104458. 2003.

[BCGO09] T. P. Berger, P.-L. Cayrel, P. Gaborit, and A. Otmani. “Reducing Key
Length of the McEliece Cryptosystem”. In: Progress in Cryptology –
AFRICACRYPT 2009. Lecture Notes in Computer Science. Berlin, Hei-
delberg: Springer, 2009, pp. 77–97. isbn: 978-3-642-02384-2. doi: 10 .
1007/978-3-642-02384-2_6.

[Ber84] E. R. Berlekamp. Algebraic Coding Theory. Revised. Paperback. Aegean
Park Press, June 1, 1984. isbn: 0-89412-063-8.

[BGR21] E. Byrne, H. Gluesing-Luerssen, and A. Ravagnani. “Fundamental Prop-
erties of Sum-Rank-Metric Codes”. In: IEEE Transactions on Information
Theory 67.10 (2021). issn: 15579654. doi: 10.1109/TIT.2021.3074190.

[BJMM12] A. Becker, A. Joux, A. May, and A. Meurer. “Decoding Random Binary
Linear Codes in 2^(n/20): How 1 + 1 = 0 Improves Information Set
Decoding”. In: Advances in Cryptology – EUROCRYPT 2012. Red. by
D. Hutchison et al. Vol. 7237. Series Title: Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2012, pp. 520–536. isbn: 978-3-642-
29010-7. doi: 10.1007/978-3-642-29011-4_31.

[BKY03] D. Bleichenbacher, A. Kiayias, and M. Yung. “Decoding of Interleaved
Reed Solomon Codes over Noisy Data”. In: Automata, Languages and
Programming. Red. by G. Goos, J. Hartmanis, and J. Van Leeuwen.
Vol. 2719. Series Title: Lecture Notes in Computer Science. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2003, pp. 97–108. isbn: 978-3-540-
40493-4. doi: 10.1007/3-540-45061-0_9.

[BL05] T. P. Berger and P. Loidreau. “How to Mask the Structure of Codes for
a Cryptographic Use”. In: Designs, Codes and Cryptography 35.1 (Apr. 1,
2005), pp. 63–79. issn: 1573-7586. doi: 10.1007/s10623-003-6151-2.

192

https://doi.org/10.1007/978-3-030-81293-5_1
https://doi.org/10.1007/978-3-030-81293-5_1
https://doi.org/10.1007/978-3-642-02384-2_6
https://doi.org/10.1007/978-3-642-02384-2_6
https://doi.org/10.1109/TIT.2021.3074190
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/3-540-45061-0_9
https://doi.org/10.1007/s10623-003-6151-2

Bibliography

[BLP11] D. J. Bernstein, T. Lange, and C. Peters. “Smaller Decoding Exponents:
Ball-Collision Decoding”. In: Advances in Cryptology – CRYPTO 2011.
Red. by D. Hutchison et al. Vol. 6841. Series Title: Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2011, pp. 743–760. isbn:
978-3-642-22791-2. doi: 10.1007/978-3-642-22792-9_42.

[BMN+21] R. Babbush, J. R. McClean, M. Newman, C. Gidney, S. Boixo, and H.
Neven. “Focus Beyond Quadratic Speedups for Error-Corrected Quantum
Advantage”. In: PRX Quantum 2.1 (Mar. 29, 2021). Publisher: American
Physical Society, p. 010103. doi: 10.1103/PRXQuantum.2.010103.

[BMS04] A. Brown, L. Minder, and A. Shokrollahi. “Probabilistic Decoding of
Interleaved Rs-Codes on the Q-Ary Symmetric Channel”. In: Interna-
tional Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.
International Symposium onInformation Theory, 2004. ISIT 2004. Pro-
ceedings. Chicago, Illinois, USA: IEEE, 2004, pp. 326–326. isbn: 978-0-
7803-8280-0. doi: 10.1109/ISIT.2004.1365363.

[BMV78] E. Berlekamp, R. McEliece, and H. Van Tilborg. “On the Inherent In-
tractability of Certain Coding Problems (corresp.)” In: IEEE Transac-
tions on Information Theory 24.3 (May 1978), pp. 384–386. issn: 0018-
9448. doi: 10.1109/TIT.1978.1055873.

[Bou20] D. Boucher. “An Algorithm for Decoding Skew Reed–Solomon Codes
with Respect to the Skew Metric”. In: Designs, Codes and Cryptography
88.9 (Sept. 2020), pp. 1991–2005. issn: 0925-1022, 1573-7586. doi: 10.
1007/s10623-020-00789-w.

[BP22] H. Bartz and S. Puchinger. Fast Decoding of Interleaved Linearized Reed-
Solomon Codes and Variants. Version Number: 3, Submitted to Ad-
vances in Mathematics of Communications (AMC). 2022. doi: 10.48550/
ARXIV.2201.01339.

[Car19] X. Caruso. “Residues of Skew Rational Functions and Linearized Goppa
Codes”. tex.hal_id: hal-02268790 tex.hal_version: v1. Aug. 2019.
url: https://hal.science/hal-02268790 (accessed on 10/18/2024).

[CL09] J.-M. Couveignes and R. Lercier. “Elliptic Periods for Finite Fields”. In:
Finite Fields and Their Applications 15.1 (2009), pp. 1–22. doi: 10.1016/
j.ffa.2008.07.004.

[CL17a] X. Caruso and J. Le Borgne. “A New Faster Algorithm for Factoring Skew
Polynomials Over Finite Fields”. In: Journal of Symbolic Computation 79
(Mar. 2017), pp. 411–443. issn: 07477171. doi: 10.1016/j.jsc.2016.02.016.

193

https://doi.org/10.1007/978-3-642-22792-9_42
https://doi.org/10.1103/PRXQuantum.2.010103
https://doi.org/10.1109/ISIT.2004.1365363
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1007/s10623-020-00789-w
https://doi.org/10.1007/s10623-020-00789-w
https://doi.org/10.48550/ARXIV.2201.01339
https://doi.org/10.48550/ARXIV.2201.01339
https://hal.science/hal-02268790
https://doi.org/10.1016/j.ffa.2008.07.004
https://doi.org/10.1016/j.ffa.2008.07.004
https://doi.org/10.1016/j.jsc.2016.02.016

Bibliography

[CL17b] X. Caruso and J. Le Borgne. “Fast Multiplication for Skew Polynomi-
als”. In: Proceedings of the 2017 ACM International Symposium on Sym-
bolic and Algebraic Computation. ISSAC ’17: International Symposium on
Symbolic and Algebraic Computation. Kaiserslautern Germany: ACM,
July 23, 2017, pp. 77–84. isbn: 978-1-4503-5064-8. doi: 10.1145/3087604.
3087617.

[CLO92] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Red.
by J. H. Ewing, F. W. Gehring, and P. R. Halmos. Undergraduate Texts
in Mathematics. New York, NY: Springer, 1992. isbn: 978-1-4757-2181-2.
doi: 10.1007/978-1-4757-2181-2.

[CLT19] A. Couvreur, M. Lequesne, and J.-P. Tillich. “Recovering Short Secret
Keys of RLCE in Polynomial Time”. In: Post-Quantum Cryptography.
Vol. 11505. Series Title: Lecture Notes in Computer Science. Cham:
Springer, 2019, pp. 133–152. isbn: 978-3-030-25510-7. doi: 10.1007/978-
3-030-25510-7_8.

[CMP15] A. Couvreur, I. Márquez-Corbella, and R. Pellikaan. “Cryptanalysis of
Public-Key Cryptosystems That Use Subcodes of Algebraic Geometry
Codes”. In: Coding Theory and Applications. Vol. 3. Series Title: CIM Se-
ries in Mathematical Sciences. Cham: Springer, 2015, pp. 133–140. isbn:
978-3-319-17296-5. doi: 10.1007/978-3-319-17296-5_13.

[CS03] D. Coppersmith and M. Sudan. “Reconstructing Curves in Three (and
Higher) Dimensional Space from Noisy Data”. In: Proceedings of the
thirty-fifth annual ACM symposium on Theory of computing. STOC03:
The 35th Annual ACM Symposium on Theory of Computing. San Diego
CA USA: ACM, June 9, 2003, pp. 136–142. isbn: 978-1-58113-674-6. doi:
10.1145/780542.780563.

[CS96] F. Chabaud and J. Stern. “The Cryptographic Security of the Syndrome
Decoding Problem for Rank Distance Codes”. In: Advances in Cryptology
— ASIACRYPT ’96. Berlin, Heidelberg: Springer, 1996, pp. 368–381.
isbn: 978-3-540-70707-3.

[Del78] P. Delsarte. “Bilinear Forms Over a Finite Field with Applications to
Coding Theory”. In: J. Comb. Theory Ser. A 25.3 (Nov. 1978), pp. 226–
241.

[DST19] T. Debris-Alazard, N. Sendrier, and J.-P. Tillich. “Wave: A New Family
of Trapdoor One-Way Preimage Sampleable Functions Based on Codes”.
In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 11921
LNCS. ISSN: 16113349. 2019. doi: 10.1007/978-3-030-34578-5_2.

194

https://doi.org/10.1145/3087604.3087617
https://doi.org/10.1145/3087604.3087617
https://doi.org/10.1007/978-1-4757-2181-2
https://doi.org/10.1007/978-3-030-25510-7_8
https://doi.org/10.1007/978-3-030-25510-7_8
https://doi.org/10.1007/978-3-319-17296-5_13
https://doi.org/10.1145/780542.780563
https://doi.org/10.1007/978-3-030-34578-5_2

Bibliography

[Eli57] P. Elias. List Decoding for Noisy Channels. 335. Research Laboratory of
Electronics, Massachusetts Institute of Technology, 1957.
url: http://hdl.handle.net/1721.1/4484 (accessed on 10/28/2024).

[EV11] T. Etzion and A. Vardy. “Error-Correcting Codes in Projective Space”.
In: IEEE Transactions on Information Theory 57.2 (Feb. 2011), pp. 1165–
1173. issn: 0018-9448, 1557-9654. doi: 10.1109/TIT.2010.2095232.

[EWZ18] M. Elleuch, A. Wachter-Zeh, and A. Zeh. A Public-Key Cryptosystem
from Interleaved Goppa Codes. Version Number: 1. 2018. doi: 10.48550/
ARXIV.1809.03024.

[Fed24] Federal Office for Information Security. BSI TR-02102-1: Cryptographic
Mechanisms: Recommendations and Key Lengths. Version: 2024-1. Feb. 2,
2024.
url: https : //www.bsi . bund .de/SharedDocs/Downloads/EN/BSI/
Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf (accessed
on 10/25/2024).

[Fit95] P. Fitzpatrick. “On the Key Equation”. In: IEEE Transactions on Infor-
mation Theory 41.5 (1995). Publisher: IEEE, pp. 1290–1302.

[FL06] C. Faure and P. Loidreau. “A New Public-Key Cryptosystem Based on
the Problem of Reconstructing p-Polynomials”. In: Coding and Cryptog-
raphy. Springer, 2006, pp. 304–315.

[FOP+16] J.-C. Faugère, A. Otmani, L. Perret, F. De Portzamparc, and J.-P. Tillich.
“Structural Cryptanalysis of Mceliece Schemes with Compact Keys”. In:
Designs, Codes and Cryptography 79.1 (Apr. 2016), pp. 87–112. issn:
0925-1022, 1573-7586. doi: 10.1007/s10623-015-0036-z.

[For66] G. Forney. “Generalized Minimum Distance Decoding”. In: IEEE Trans-
actions on Information Theory 12.2 (Apr. 1966), pp. 125–131. issn: 0018-
9448. doi: 10.1109/TIT.1966.1053873.

[Gab08] E. M. Gabidulin. “Attacks and Counter-Attacks on the GPT Public Key
Cryptosystem”. In: Designs, Codes and Cryptography 48.2 (Aug. 2008),
pp. 171–177. issn: 0925-1022, 1573-7586. doi: 10.1007/s10623-007-9160-
8.

[Gab85] E. M. Gabidulin. “Theory of Codes with Maximum Rank Distance”. In:
Problems of Information Transmission 21.1 (1985), pp. 3–16.

[Gab92] E. M. Gabidulin. “A Fast Matrix Decoding Algorithm for Rank-Error-
Correcting Codes”. In: Algebraic Coding. Vol. 573. Series Title: Lecture
Notes in Computer Science. Berlin/Heidelberg: Springer, 1992, pp. 126–
133. isbn: 978-3-540-55130-0. doi: 10.1007/BFb0034349.

195

http://hdl.handle.net/1721.1/4484
https://doi.org/10.1109/TIT.2010.2095232
https://doi.org/10.48550/ARXIV.1809.03024
https://doi.org/10.48550/ARXIV.1809.03024
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf
https://doi.org/10.1007/s10623-015-0036-z
https://doi.org/10.1109/TIT.1966.1053873
https://doi.org/10.1007/s10623-007-9160-8
https://doi.org/10.1007/s10623-007-9160-8
https://doi.org/10.1007/BFb0034349

Bibliography

[Gao03] S. Gao. “A New Algorithm for Decoding Reed–Solomon Codes”. In: Com-
munications, Information and Network Security. Springer, 2003, pp. 55–
68.

[Gib95] J. K. Gibson. “Severely Denting the Gabidulin Version of the Mceliece
Public Key Cryptosystem”. In: Designs, Codes and Cryptography 6.1
(July 1995), pp. 37–45. issn: 0925-1022, 1573-7586. doi: 10 . 1007 /
BF01390769.

[Gib96] K. Gibson. “The Security of the Gabidulin Public Key Cryptosystem”.
In: Advances in Cryptology — EUROCRYPT ’96. Red. by G. Goos, J.
Hartmanis, and J. Van Leeuwen. Vol. 1070. Series Title: Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 1996, pp. 212–223. isbn:
978-3-540-68339-1. doi: 10.1007/3-540-68339-9_19.

[GJV03] P. Giorgi, C.-P. Jeannerod, and G. Villard. “On the Complexity of Poly-
nomial Matrix Computations”. In: Proceedings of the 2003 international
symposium on symbolic and algebraic computation. 2003, pp. 135–142.

[GO01] E. M. Gabidulin and A. Ourivski. “Modified GPT PKC with Right
Scrambler”. In: Electronic Notes in Discrete Mathematics 6 (Apr. 2001),
pp. 168–177. issn: 15710653. doi: 10.1016/S1571-0653(04)00168-4.

[GOHA03] E. M. Gabidulin, A. Ourivski, B. Honary, and B. Ammar. “Reducible
Rank Codes and Their Applications to Cryptography”. In: IEEE Trans-
actions on Information Theory 49.12 (Dec. 2003), pp. 3289–3293. issn:
0018-9448. doi: 10.1109/TIT.2003.820038.

[GOK18] P. Gaborit, A. Otmani, and H. T. Kalachi. “Polynomial-Time Key Recov-
ery Attack on the Faure–Loidreau Scheme Based on Gabidulin Codes”.
In: Designs, Codes and Cryptography 86.7 (July 2018), pp. 1391–1403.
issn: 0925-1022, 1573-7586. doi: 10.1007/s10623-017-0402-0.

[Gos96] D. Goss. Basic Structures of Function Field Arithmetic. Ergebnisse der
Mathematik und ihrer Grenzgebiete Folge 3, Bd. 35. Berlin Heidelberg:
Springer, 1996. 422 pp. isbn: 978-3-540-61087-8.

[GP04] E. M. Gabidulin and N. Pilipchuk. “Symmetric Rank Codes”. In: Prob-
lems of Information Transmission 40 (Apr. 2004), pp. 103–117. doi:
10.1023/B:PRIT.0000043925.67309.c6.

[GP06] E. M. Gabidulin and N. I. Pilipchuk. “Symmetric Matrices and Codes
Correcting Rank Errors Beyond the �(d-1)/2� Bound”. In: Discrete Applied
Mathematics 154.2 (2006), pp. 305–312. issn: 0166-218X. doi: 10.1016/
j.dam.2005.03.012.

196

https://doi.org/10.1007/BF01390769
https://doi.org/10.1007/BF01390769
https://doi.org/10.1007/3-540-68339-9_19
https://doi.org/10.1016/S1571-0653(04)00168-4
https://doi.org/10.1109/TIT.2003.820038
https://doi.org/10.1007/s10623-017-0402-0
https://doi.org/10.1023/B:PRIT.0000043925.67309.c6
https://doi.org/10.1016/j.dam.2005.03.012
https://doi.org/10.1016/j.dam.2005.03.012

Bibliography

[GPT91a] E. M. Gabidulin, A. V. Paramonov, and O. V. Tretjakov. “Ideals Over
a Non-Commutative Ring and Their Application in Cryptology”. In: Ad-
vances in Cryptology — EUROCRYPT ’91. Vol. 547. Series Title: Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 1991, pp. 482–
489. isbn: 978-3-540-54620-7. doi: 10.1007/3-540-46416-6_41.

[GPT91b] E. M. Gabidulin, A. V. Paramonov, and O. V. Tretjakov. “Ideals Over a
Non-Commutative Ring and Their Application in Cryptology”. In: Work-
shop on the Theory and Application of of Cryptographic Techniques.
Springer, 1991, pp. 482–489.

[GRH09] E. M. Gabidulin, H. Rashwan, and B. Honary. “On Improving Security
of GPT Cryptosystems”. In: 2009 IEEE International Symposium on In-
formation Theory. 2009 IEEE International Symposium on Information
Theory - ISIT. Seoul, South Korea: IEEE, June 2009, pp. 1110–1114.
isbn: 978-1-4244-4312-3. doi: 10.1109/ISIT.2009.5206029.

[Gro96] L. K. Grover. “A Fast Quantum Mechanical Algorithm for Database
Search”. In: Proceedings of the Twenty-Eighth Annual ACM Sympo-
sium on Theory of Computing - STOC ’96. the twenty-eighth an-
nual ACM symposium. Philadelphia, Pennsylvania, United States: ACM
Press, 1996, pp. 212–219. isbn: 978-0-89791-785-8. doi: 10.1145/237814.
237866.

[GRS16] P. Gaborit, O. Ruatta, and J. Schrek. “On the Complexity of the Rank
Syndrome Decoding Problem”. In: IEEE Trans. Inform. Theory 62.2
(2016), pp. 1006–1019. issn: 0018-9448. doi: 10.1109/TIT.2015.2511786.

[HB23] F. Hörmann and H. Bartz. “Fast Gao-Like Decoding of Horizontally In-
terleaved Linearized Reed–Solomon Codes”. In: Code-Based Cryptogra-
phy. Vol. 14311. Series Title: Lecture Notes in Computer Science. Cham:
Springer, 2023, pp. 14–34. isbn: 978-3-031-46494-2. doi: 10.1007/978-3-
031-46495-9_2.

[HBH23] F. Hörmann, H. Bartz, and A.-L. Horlemann. “Distinguishing and Re-
covering Generalized Linearized Reed–Solomon Codes”. In: Code-Based
Cryptography. Vol. 13839. Series Title: Lecture Notes in Computer Sci-
ence. Cham: Springer, 2023, pp. 1–20. isbn: 978-3-031-29689-5. doi: 10.
1007/978-3-031-29689-5_1.

[HBP22] F. Hörmann, H. Bartz, and S. Puchinger. “Error-Erasure Decoding of
Linearized Reed–Solomon Codes in the Sum-Rank Metric”. In: 2022 IEEE
International Symposium on Information Theory (ISIT). 2022, pp. 7–12.
doi: 10.1109/ISIT50566.2022.9834742.

197

https://doi.org/10.1007/3-540-46416-6_41
https://doi.org/10.1109/ISIT.2009.5206029
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1109/TIT.2015.2511786
https://doi.org/10.1007/978-3-031-46495-9_2
https://doi.org/10.1007/978-3-031-46495-9_2
https://doi.org/10.1007/978-3-031-29689-5_1
https://doi.org/10.1007/978-3-031-29689-5_1
https://doi.org/10.1109/ISIT50566.2022.9834742

Bibliography

[HHT23] T. Hoefler, T. Häner, and M. Troyer. “Disentangling Hype from Practical-
ity: On Realistically Achieving Quantum Advantage”. In: Commun. ACM
66.5 (Apr. 21, 2023), pp. 82–87. issn: 0001-0782. doi: 10.1145/3571725.

[HJ17] T. Høholdt and J. Justesen. A Course in Error-Correcting Codes: Second
Edition. 2nd ed. EMS Textbooks in Mathematics. EMS Press, July 11,
2017. isbn: 978-3-03719-679-3. doi: 10.4171/179.

[HK17] A.-L. Horlemann and M. Kuijper. “A Module Minimization Approach to
Gabidulin Decoding Via Interpolation”. In: Journal of Algebra Combina-
torics Discrete Structures and Applications 5 (Dec. 2017), pp. 29–43. doi:
10.13069/jacodesmath.369863.

[HLPW19] L. Holzbaur, H. Liu, S. Puchinger, and A. Wachter-Zeh. “On Decoding
and Applications of Interleaved Goppa Codes”. In: 2019 IEEE Interna-
tional Symposium on Information Theory (ISIT). 2019, pp. 1887–1891.

[HMR16] A.-L. Horlemann-Trautmann, K. Marshall, and J. Rosenthal. “Consid-
erations for Rank-Based Cryptosystems”. In: IEEE International Sym-
posium on Information Theory (ISIT). Barcelona, Spain: IEEE, July
2016, pp. 2544–2548. isbn: 978-1-5090-1806-2. doi: 10.1109/ISIT.2016.
7541758.

[HMR18] A.-L. Horlemann-Trautmann, K. Marshall, and J. Rosenthal. “Extension
of Overbeck’s Attack for Gabidulin-Based Cryptosystems”. In: Designs,
Codes and Cryptography 86.2 (Feb. 2018), pp. 319–340. issn: 0925-1022,
1573-7586. doi: 10.1007/s10623-017-0343-7.

[HPR+22] A.-L. Horlemann, S. Puchinger, J. Renner, T. Schamberger, and A.
Wachter-Zeh. “Information-Set Decoding with Hints”. In: Code-Based
Cryptography. Cham: Springer, 2022, pp. 60–83. isbn: 978-3-030-98365-9.

[JM96] H. Janwa and O. Moreno. “McEliece Public Key Cryptosystems Using
Algebraic-Geometric Codes”. In: Designs, Codes and Cryptography 8.3
(1996), pp. 293–307. issn: 1573-7586. doi: 10.1023/A:1027351723034.

[JNSV17] C.-P. Jeannerod, V. Neiger, É. Schost, and G. Villard. “Computing Mini-
mal Interpolation Bases”. In: Journal of Symbolic Computation 83 (2017).
Publisher: Elsevier, pp. 272–314.

[KK08] R. Kötter and F. R. Kschischang. “Coding for Errors and Erasures in
Random Network Coding”. In: IEEE Transactions on Information Theory
54.8 (2008). Publisher: IEEE, pp. 3579–3591.

[KL97] V. Y. Krachkovsky and Y. X. Lee. “Decoding for Iterative Reed–Solomon
Coding Schemes”. In: IEEE Transactions on Magnetics 33.5 (1997),
pp. 2740–2742.

198

https://doi.org/10.1145/3571725
https://doi.org/10.4171/179
https://doi.org/10.13069/jacodesmath.369863
https://doi.org/10.1109/ISIT.2016.7541758
https://doi.org/10.1109/ISIT.2016.7541758
https://doi.org/10.1007/s10623-017-0343-7
https://doi.org/10.1023/A:1027351723034

Bibliography

[Knu82] D. E. Knuth. The Art of Computer Programming. 1: Fundamental Al-
gorithms. 2. ed., 7. print. Reading, Mass: Addison-Wesley, 1982. 634 pp.
isbn: 978-0-201-03801-9.

[KRT07] C. Kojima, P. Rapisarda, and K. Takaba. “Canonical Forms for Polyno-
mial and Quadratic Differential Operators”. In: Systems & Control Letters
56.11 (Nov. 2007), pp. 678–684. issn: 01676911. doi: 10.1016/j.sysconle.
2007.06.004.

[KY98] V. Y. Krachkovsky and Yuan Xing Lee. “Decoding of Parallel Reed–
Solomon Codes with Applications to Product and Concatenated Codes”.
In: Proceedings. 1998 IEEE International Symposium on Information
Theory (Cat. No.98CH36252). 1998 IEEE International Symposium on
Information Theory. Cambridge, MA, USA: IEEE, 1998, p. 55. isbn:
978-0-7803-5000-7. doi: 10.1109/ISIT.1998.708636.

[LCG19] P. Lefèvre, P. Carré, and P. Gaborit. “Application of Rank Metric Codes
in Digital Image Watermarking”. In: Signal Processing: Image Commu-
nication 74 (2019). Publisher: Elsevier, pp. 119–128.

[Lee58] C. Lee. “Some Properties of Nonbinary Error-Correcting Codes”. In:
IEEE Transactions on Information Theory 4.2 (June 1958), pp. 77–82.
issn: 0018-9448. doi: 10.1109/TIT.1958.1057446.

[Ler95] A. Leroy. “Pseudolinear Transformations and Evaluation in Ore Exten-
sions”. In: Bulletin of the Belgian Mathematical Society-Simon Stevin 2.3
(1995). Publisher: The Belgian Mathematic Society, pp. 321–347.

[LGB03] P. Lusina, E. M. Gabidulin, and M. Bossert. “Maximum Rank Distance
Codes as Space-Time Codes”. In: Institute of Electrical and Electronics
Engineers 49.10 (Oct. 2003). Publisher: Dept. for Telecommun. & Appl.
Inf. Theor., Univ. of Ulm, Germany Publisher: IEEE tex.posted-at: 2013-
03-01 16:03:44 tex.priority: 2, pp. 2757–2760. issn: 0018-9448.

[Liu16] S. Liu. “Generalized Skew Reed-Solomon Codes and Other Applica-
tions of Skew Polynomial Evaluation”. PhD thesis. University of Toronto
(Canada), 2016.

[LK05] H. F. Lu and P. V. Kumar. “A Unified Construction of Space-Time Codes
with Optimal Rate-Diversity Tradeoff”. In: IEEE Transactions on Infor-
mation Theory 51.5 (2005). issn: 00189448. doi: 10 . 1109/TIT .2005 .
846403.

[LL88a] T.-Y. Lam and A. Leroy. “Algebraic Conjugacy Classes and Skew Poly-
nomial Rings”. In: Perspectives in Ring Theory. Springer, 1988, pp. 153–
203.

199

https://doi.org/10.1016/j.sysconle.2007.06.004
https://doi.org/10.1016/j.sysconle.2007.06.004
https://doi.org/10.1109/ISIT.1998.708636
https://doi.org/10.1109/TIT.1958.1057446
https://doi.org/10.1109/TIT.2005.846403
https://doi.org/10.1109/TIT.2005.846403

Bibliography

[LL88b] T.-Y. Lam and A. Leroy. “Vandermonde and Wronskian Matrices Over
Division Rings”. In: Journal of Algebra 119.2 (1988). Publisher: Academic
Press, pp. 308–336.

[LL94] T.-Y. Lam and A. Leroy. “Hilbert 90 Theorems Over Divison Rings”. In:
Transactions of the American Mathematical Society 345.2 (Oct. 1994),
p. 595. issn: 00029947. doi: 10.2307/2154989.

[LLP19] J. Lavauzelle, P. Loidreau, and B.-D. Pham. RAMESSES a Rank Metric
Encryption Scheme with Short Keys. Version Number: 1. 2019. doi: 10.
48550/ARXIV.1911.13119.

[LMK14] S. Liu, F. Manganiello, and F. R. Kschischang. “Kötter Interpolation
in Skew Polynomial Rings”. In: Designs, Codes and Cryptography 72.3
(2014). Publisher: Springer, pp. 593–608.

[LN96] R. Lidl and H. Niederreiter. Finite Fields. Encyclopedia of Mathematics
and its Applications. Published: Hardcover. Cambridge University Press,
Oct. 1996. isbn: 0-521-39231-4.

[Loi06] P. Loidreau. “Decoding Rank Errors Beyond the Error Correcting Capa-
bility”. In: Tenth International Workshop on Algebraic and Combinatorial
Coding Theory,(ACCT). Zvenigorod, Russia, Sept. 2006, pp. 186–190.

[Loi10] P. Loidreau. “Designing a Rank Metric Based McEliece Cryptosystem”.
In: Post-Quantum Cryptography. Red. by D. Hutchison et al. Vol. 6061.
Series Title: Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2010, pp. 142–152. isbn: 978-3-642-12929-2. doi: 10.1007/978-
3-642-12929-2_11.

[Loi16] P. Loidreau. “An Evolution of GPT Cryptosystem”. In: International
Workshop on Algebraic and Combinatorial Coding Theory (ACCT).
2016.

[Loi17] P. Loidreau. “A New Rank Metric Codes Based Encryption Scheme”.
In: Post-Quantum Cryptography. Vol. 10346. Series Title: Lecture Notes
in Computer Science. Cham: Springer, 2017, pp. 3–17. isbn: 978-3-319-
59879-6. doi: 10.1007/978-3-319-59879-6_1.

[MAB+20] C. A. Melchor et al. Rank Quasi-Cyclic (RQC). Submission to NIST Post-
Quantum Cryptography Standardization Process, Second Round version
- update for April 21st, 2020. 2020.
url: https://pqc-rqc.org (accessed on 10/09/2024).

[MAB+24] C. A. Melchor et al. Hamming Quasi-Cyclic (HQC). Submission to NIST
Post-Quantum Cryptography Standardization Process, Fourth round ver-
sion. 2024.
url: https://pqc-hqc.org (accessed on 10/09/2024).

200

https://doi.org/10.2307/2154989
https://doi.org/10.48550/ARXIV.1911.13119
https://doi.org/10.48550/ARXIV.1911.13119
https://doi.org/10.1007/978-3-642-12929-2_11
https://doi.org/10.1007/978-3-642-12929-2_11
https://doi.org/10.1007/978-3-319-59879-6_1
https://pqc-rqc.org
https://pqc-hqc.org

Bibliography

[Mar18] U. Martínez-Peñas. “Skew and Linearized Reed–Solomon Codes and
Maximum Sum Rank Distance Codes Over Any Division Ring”. In: Jour-
nal of Algebra 504 (2018). Publisher: Elsevier, pp. 587–612.

[Mas69] J. Massey. “Shift-Register Synthesis and BCH Decoding”. In: IEEE
Transactions on Information Theory 15.1 (Jan. 1969), pp. 122–127. issn:
0018-9448. doi: 10.1109/TIT.1969.1054260.

[MB93] A. J. Menezes and I. F. Blake, eds. Applications of Finite Fields. The
Kluwer International Series in Engineering and Computer Science; Com-
munications and Information Theory SECS199. Boston: Kluwer Aca-
demic Publishers, 1993. 218 pp. isbn: 978-0-7923-9282-8.

[McE78] R. J. McEliece. “A Public-Key Cryptosystem Based On Algebraic Cod-
ing Theory”. In: The Deep Space Network Progress Report 42-44 (1978).
Publisher: Jet Propulsion Laboratory, pp. 114–116.

[Mid12] J. Middeke. “A Computational View on Normal Forms of Matrices of
Ore Polynomials”. In: ACM Communications in Computer Algebra 45.3
(Jan. 23, 2012), pp. 190–191. issn: 1932-2240. doi: 10.1145/2110170.
2110182.

[MK19a] U. Martínez-Peñas and F. R. Kschischang. “Reliable and Secure Mul-
tishot Network Coding Using Linearized Reed–Solomon Codes”. In:
IEEE Transactions on Information Theory 65.8 (2019). Publisher: IEEE,
pp. 4785–4803.

[MK19b] U. Martínez-Peñas and F. R. Kschischang. “Universal and Dynamic
Locally Repairable Codes With Maximal Recoverability via Sum-Rank
Codes”. In: IEEE Transactions on Information Theory 65.12 (2019),
pp. 7790–7805. doi: 10.1109/TIT.2019.2924888.

[MK90] J. J. Metzner and E. J. Kapturowski. “A General Decoding Technique
Applicable to Replicated File Disagreement Location and Concatenated
Code Decoding”. In: IEEE Transactions on Information Theory 36.4
(1990). Publisher: IEEE, pp. 911–917.

[MMO04] T. Migler, K. E. Morrison, and M. Ogle. “Weight and Rank of Matrices
Over Finite Fields”. In: (2004). Publisher: arXiv. doi: 10.48550/ARXIV.
MATH/0403314.

[MMT11] A. May, A. Meurer, and E. Thomae. “Decoding Random Linear Codes in
O~(2^0.054n)”. In: Advances in Cryptology – ASIACRYPT 2011. Red. by
D. Hutchison et al. Vol. 7073. Series Title: Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2011, pp. 107–124. isbn: 978-3-642-
25384-3. doi: 10.1007/978-3-642-25385-0_6.

201

https://doi.org/10.1109/TIT.1969.1054260
https://doi.org/10.1145/2110170.2110182
https://doi.org/10.1145/2110170.2110182
https://doi.org/10.1109/TIT.2019.2924888
https://doi.org/10.48550/ARXIV.MATH/0403314
https://doi.org/10.48550/ARXIV.MATH/0403314
https://doi.org/10.1007/978-3-642-25385-0_6

Bibliography

[Moo05] T. K. Moon. Error Correction Coding: Mathematical Methods and Al-
gorithms. 1st ed. Wiley, May 13, 2005. isbn: 978-0-471-73921-0. doi:
10.1002/0471739219.

[Moo16] D. Moody. Post Quantum Cryptography Team, National Institute of Stan-
dards and Technology (NIST). 2016.
url: https ://csrc .nist . gov/CSRC/media/Projects/Post - Quantum-
Cryptography/documents/pqcrypto-2016-presentation.pdf (accessed on
10/09/2024).

[Moo96] E. H. Moore. “A Two-Fold Generalization of Fermat’s Theorem”. In: Bul-
letin of the American Mathematical Society 2 (1896), pp. 189–199.

[MP74] G. Matsaglia and G. P. H. Styan. “Equalities and Inequalities for Ranks of
Matrices †”. In: Linear and Multilinear Algebra 2.3 (Jan. 1974), pp. 269–
292. issn: 0308-1087, 1563-5139. doi: 10.1080/03081087408817070.

[MS03] T. Mulders and A. Storjohann. “On Lattice Reduction for Polyno-
mial Matrices”. In: Journal of Symbolic Computation 35.4 (Apr. 2003),
pp. 377–401. issn: 07477171. doi: 10.1016/S0747-7171(02)00139-6.

[MS07] L. Minder and A. Shokrollahi. “Cryptanalysis of the Sidelnikov Cryp-
tosystem”. In: Advances in Cryptology - EUROCRYPT 2007. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2007, pp. 347–
360. isbn: 978-3-540-72540-4. doi: 10.1007/978-3-540-72540-4_20.

[MS77] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting
Codes. Published: Hardcover. North Holland Publishing Co., 1977. isbn:
0-444-85193-3.

[MSK22] U. Martínez-Peñas, M. Shehadeh, and F. R. Kschischang. “Codes in the
Sum-Rank Metric: Fundamentals and Applications”. In: Foundations and
Trends in Communications and Information Theory 19.5 (2022), pp. 814–
1031. issn: 1567-2190, 1567-2328. doi: 10.1561/0100000120.

[MW18] D. Micciancio and M. Walter. “On the Bit Security of Cryptographic
Primitives”. In: Advances in Cryptology – EUROCRYPT 2018. Vol. 10820.
Series Title: Lecture Notes in Computer Science. Cham: Springer, 2018,
pp. 3–28. isbn: 978-3-319-78380-2. doi: 10.1007/978-3-319-78381-9_1.

[Nat22] National Institute of Standards and Technology. PQC Standardization
Process: Announcing Four Candidates to be Standardized, Plus Fourth
Round Candidates. CSRC | NIST. Mar. 24, 2022.
url: https : / / csrc . nist . gov / News / 2022 / pqc - candidates - to - be -
standardized-and-round-4 (accessed on 10/16/2024).

202

https://doi.org/10.1002/0471739219
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/pqcrypto-2016-presentation.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/pqcrypto-2016-presentation.pdf
https://doi.org/10.1080/03081087408817070
https://doi.org/10.1016/S0747-7171(02)00139-6
https://doi.org/10.1007/978-3-540-72540-4_20
https://doi.org/10.1561/0100000120
https://doi.org/10.1007/978-3-319-78381-9_1
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4

Bibliography

[Nat24a] National Institute of Standards and Technology. Announcing Approval
of Three Federal Information Processing Standards (FIPS) for Post-
Quantum Cryptography. CSRC | NIST. Aug. 6, 2024.
url: https://csrc.nist.gov/News/2024/postquantum-cryptography-fips-
approved (accessed on 10/16/2024).

[Nat24b] National Institute of Standards and Technology. Module-Lattice-Based
Digital Signature Standard. FIPS 204. Gaithersburg, MD: National In-
stitute of Standards and Technology, Aug. 13, 2024, FIPS 204. doi:
10.6028/NIST.FIPS.204.
url: https : //nvlpubs .nist . gov/nistpubs/FIPS/NIST.FIPS .204 .pdf
(accessed on 10/18/2024).

[Nat24c] National Institute of Standards and Technology. Module-Lattice-Based
Key-Encapsulation Mechanism Standard. FIPS 203. Gaithersburg, MD:
National Institute of Standards and Technology, Aug. 13, 2024, FIPS 203.
doi: 10.6028/NIST.FIPS.203.
url: https : //nvlpubs .nist . gov/nistpubs/FIPS/NIST.FIPS .203 .pdf
(accessed on 10/18/2024).

[Nat24d] National Institute of Standards and Technology. Stateless Hash-Based
Digital Signature Standard. FIPS 205. Gaithersburg, MD: National In-
stitute of Standards and Technology, Aug. 13, 2024, FIPS 205. doi:
10.6028/NIST.FIPS.205.
url: https : //nvlpubs .nist . gov/nistpubs/FIPS/NIST.FIPS .205 .pdf
(accessed on 10/18/2024).

[Nei16] Neiger, Vincent. “Bases of Relations in One or Several Variables: Fast
Algorithms and Applications”. PhD thesis. École Normale Supérieure de
Lyon - University of Waterloo, 2016.

[Nie13] J. S. R. Nielsen. “List Decoding of Algebraic Codes”. Number: 309 Series:
DTU compute PHD-2013. PhD thesis. Technical University of Denmark,
2013.

[Nie14] J. S. Nielsen. “Fast Kötter-Nielsen-Høholdt Interpolation in the
Guruswami-Sudan Algorithm”. In: 14th International Workshop on Al-
gebraic and Combinatorial Coding Theory (ACCT). Svetlogorsk , Russia,
2014.

[Nie86] H. Niederreiter. “Knapsack-Type Cryptosystems and Algebraic Coding
Theory”. In: Problems of Control and Information Theory / Problemy
Upravleniya i Teorii Informatsii 15.2 (1986), pp. 159–166.

203

https://csrc.nist.gov/News/2024/postquantum-cryptography-fips-approved
https://csrc.nist.gov/News/2024/postquantum-cryptography-fips-approved
https://doi.org/10.6028/NIST.FIPS.204
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.204.pdf
https://doi.org/10.6028/NIST.FIPS.203
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.pdf
https://doi.org/10.6028/NIST.FIPS.205
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.205.pdf

Bibliography

[NPRV17] D. Napp, R. Pinto, J. Rosenthal, and P. Vettori. “MRD Rank Metric
Convolutional Codes”. In: 2017 IEEE International Symposium on Infor-
mation Theory (ISIT). 2017 IEEE International Symposium on Informa-
tion Theory (ISIT). Aachen, Germany: IEEE, June 2017, pp. 2766–2770.
isbn: 978-1-5090-4096-4. doi: 10.1109/ISIT.2017.8007033.

[NU10] R. W. Nóbrega and B. F. Uchôa-Filho. “Multishot Codes for Network
Coding Using Rank-Metric Codes”. In: 2010 Third IEEE International
Workshop on Wireless Network Coding. IEEE, 2010, pp. 1–6.

[OKN18] A. Otmani, H. T. Kalachi, and S. Ndjeya. “Improved Cryptanalysis of
Rank Metric Schemes Based on Gabidulin Codes”. In: Designs, Codes and
Cryptography 86.9 (Sept. 2018), pp. 1983–1996. issn: 0925-1022, 1573-
7586. doi: 10.1007/s10623-017-0434-5.

[OLW22] C. Ott, H. Liu, and A. Wachter-Zeh. “Covering Properties of Sum-Rank
Metric Codes”. In: 2022 58th Annual Allerton Conference on Commu-
nication, Control, and Computing, Allerton 2022. 2022. doi: 10.1109/
Allerton49937.2022.9929421.

[OPB21] C. Ott, S. Puchinger, and M. Bossert. “Bounds and Genericity of Sum-
Rank-Metric Codes”. In: 2021 17th International Symposium Problems of
Redundancy in Information and Control Systems, REDUNDANCY 2021.
2021. doi: 10.1109/REDUNDANCY52534.2021.9606442.

[Ore33a] Ø. Ore. “On a Special Class of Polynomials”. In: Transactions of
the American Mathematical Society 35 (1933). tex.citeulike-article-id:
8303181 tex.posted-at: 2010-11-24 11:13:56 tex.priority: 2, pp. 559–584.

[Ore33b] Ø. Ore. “Theory of Non-Commutative Polynomials”. In: Annals of Math-
ematics (1933). Publisher: JSTOR, pp. 480–508.

[Ove05] R. Overbeck. “A New Structural Attack for GPT and Variants”. In:
Progress in Cryptology – Mycrypt 2005. Red. by D. Hutchison et al.
Vol. 3715. Series Title: Lecture Notes in Computer Science. Berlin, Heidel-
berg: Springer, 2005, pp. 50–63. isbn: 978-3-540-32066-1. doi: 10.1007/
11554868_5.

[Ove06] R. Overbeck. “Extending Gibson’s Attacks on the GPT Cryptosystem”.
In: Coding and Cryptography. Vol. 3969. Series Title: Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2006, pp. 178–188. isbn:
978-3-540-35482-6. doi: 10.1007/11779360_15.

[Ove08] R. Overbeck. “Structural Attacks for Public Key Cryptosystems Based
on Gabidulin Codes”. In: Journal of Cryptology 21.2 (Apr. 2008), pp. 280–
301. issn: 0933-2790, 1432-1378. doi: 10.1007/s00145-007-9003-9.

204

https://doi.org/10.1109/ISIT.2017.8007033
https://doi.org/10.1007/s10623-017-0434-5
https://doi.org/10.1109/Allerton49937.2022.9929421
https://doi.org/10.1109/Allerton49937.2022.9929421
https://doi.org/10.1109/REDUNDANCY52534.2021.9606442
https://doi.org/10.1007/11554868_5
https://doi.org/10.1007/11554868_5
https://doi.org/10.1007/11779360_15
https://doi.org/10.1007/s00145-007-9003-9

Bibliography

[PG06] N. I. Pilipchuk and E. M. Gabidulin. “On Codes Correcting Symmetric
Rank Errors”. In: Coding and cryptography. Berlin, Heidelberg: Springer,
2006, pp. 14–21. isbn: 978-3-540-35482-6.

[PMM+17] S. Puchinger, S. Müelich, D. Mödinger, J. Rosenkilde Né Nielsen, and
M. Bossert. “Decoding Interleaved Gabidulin Codes Using Alekhnovich’s
Algorithm”. In: Electronic Notes in Discrete Mathematics 57 (Mar. 2017),
pp. 175–180. issn: 15710653. doi: 10.1016/j.endm.2017.02.029.

[PR17] S. Puchinger and J. Rosenkilde Ne Nielsen. “Decoding of Interleaved
Reed-Solomon Codes Using Improved Power Decoding”. In: 2017 IEEE
International Symposium on Information Theory (ISIT). 2017 IEEE
International Symposium on Information Theory (ISIT). Aachen, Ger-
many: IEEE, June 2017, pp. 356–360. isbn: 978-1-5090-4096-4. doi: 10.
1109/ISIT.2017.8006549.

[PR21] S. Puchinger and J. Rosenkilde. “Bounds on List Decoding of Linearized
Reed–Solomon Codes”. In: 2021 IEEE International Symposium on In-
formation Theory (ISIT). 2021, pp. 154–159. doi: 10.1109/ISIT45174.
2021.9517777.

[Pra62] E. Prange. “The Use of Information Sets in Decoding Cyclic Codes”. In:
IEEE Transactions on Information Theory 8.5 (Sept. 1962), pp. 5–9.
issn: 0018-9448. doi: 10.1109/TIT.1962.1057777.

[PRLS17] S. Puchinger, J. Rosenkilde né Nielsen, W. Li, and V. Sidorenko. “Row
Reduction Applied to Decoding of Rank-Metric and Subspace Codes”. In:
Designs, Codes and Cryptography 82.1 (Jan. 2017), pp. 389–409. issn:
0925-1022, 1573-7586. doi: 10.1007/s10623-016-0257-9.

[PRR20] S. Puchinger, J. Renner, and J. Rosenkilde. “Generic Decoding in the
Sum-Rank Metric”. In: 2020 IEEE International Symposium on Infor-
mation Theory (ISIT). Vol. 2020-June. ISSN: 21578095. 2020. doi: 10.
1109/ISIT44484.2020.9174497.

[PRR22] S. Puchinger, J. Renner, and J. Rosenkilde. “Generic Decoding in the
Sum-Rank Metric”. In: IEEE Transactions on Information Theory 68.8
(2022). issn: 15579654. doi: 10.1109/TIT.2022.3167629.

[PRW19] S. Puchinger, J. Renner, and A. Wachter-Zeh. Decoding High-Order In-
terleaved Rank-Metric Codes. Version Number: 1. 2019. doi: 10.48550/
ARXIV.1904.08774.

[PT91] A. V. Paramonov and O. V. Tretjakov. “An Analogue of Berlekamp-
Massey Algorithm for Decoding Codes in Rank Metric”. In: Moscow inst.
Physics and technology (MIPT). Proceedings MIPT. tex.citeulike-article-
id: 6188113 tex.posted-at: 2009-11-22 13:59:12 tex.priority: 2. 1991.

205

https://doi.org/10.1016/j.endm.2017.02.029
https://doi.org/10.1109/ISIT.2017.8006549
https://doi.org/10.1109/ISIT.2017.8006549
https://doi.org/10.1109/ISIT45174.2021.9517777
https://doi.org/10.1109/ISIT45174.2021.9517777
https://doi.org/10.1109/TIT.1962.1057777
https://doi.org/10.1007/s10623-016-0257-9
https://doi.org/10.1109/ISIT44484.2020.9174497
https://doi.org/10.1109/ISIT44484.2020.9174497
https://doi.org/10.1109/TIT.2022.3167629
https://doi.org/10.48550/ARXIV.1904.08774
https://doi.org/10.48550/ARXIV.1904.08774

Bibliography

[PW08] W. W. Peterson and E. J. Weldon. Error-Correcting Codes. 2. ed., 16.
print. Cambridge, Mass.: MIT Press, 2008. 560 pp. isbn: 978-0-262-16039-
1.

[PW16] S. Puchinger and A. Wachter-Zeh. “Sub-Quadratic Decoding of Gabidulin
Codes”. In: IEEE Int. Symp. Inf. Theory (ISIT). Place: Barcelona, Spain.
July 2016, pp. 2554–2558.

[PW18] S. Puchinger and A. Wachter-Zeh. “Fast Operations on Linearized Poly-
nomials and Their Applications in Coding Theory”. In: Journal of Sym-
bolic Computation 89 (Nov. 2018), pp. 194–215. issn: 07477171. doi:
10.1016/j.jsc.2017.11.012.

[PZ03] J. Proos and C. Zalka. “Shor’s Discrete Logarithm Quantum Algorithm
for Elliptic Curves”. In: Quantum Information & Computation 3 (Feb.
2003). doi: 10.26421/QIC3.4-3.

[RGH10] H. Rashwan, E. M. Gabidulin, and B. Honary. “A Smart Approach
for GPT Cryptosystem Based on Rank Codes”. In: 2010 IEEE Inter-
national Symposium on Information Theory. 2010 IEEE International
Symposium on Information Theory - ISIT. Austin, TX, USA: IEEE, June
2010, pp. 2463–2467. isbn: 978-1-4244-7891-0. doi: 10.1109/ISIT.2010.
5513549.

[RGH11] H. Rashwan, E. M. Gabidulin, and B. Honary. “Security of the GPT
Cryptosystem and Its Applications to Cryptography”. In: Security and
Communication Networks 4.8 (Aug. 2011), pp. 937–946. issn: 1939-0114,
1939-0122. doi: 10.1002/sec.228.

[Ros02] M. I. Rosen. Number Theory in Function Fields. Graduate texts in math-
ematics 210. New York: Springer, 2002. isbn: 978-0-387-95335-9.

[Rot06] R. M. Roth. Introduction to Coding Theory. OCLC: ocm61757112. Cam-
bridge, UK ; New York: Cambridge University Press, 2006. 566 pp. isbn:
978-0-521-84504-5.

[Rot91] R. M. Roth. “Maximum-Rank Array Codes and Their Application to
Crisscross Error Correction”. In: IEEE Trans. Inform. Theory 37.2 (Mar.
1991), pp. 328–336.

[RP04a] G. Richter and S. Plass. “Fast Decoding of Rank-Codes with Rank Errors
and Column Erasures”. In: IEEE int. Symp. Inf. Theory (ISIT). Inter-
national Symposium on Information Theory 2004. Place: Chicago, IL,
USA tex.citeulike-article-id: 3744725 tex.posted-at: 2009-11-04 20:28:11
tex.priority: 2. 2004, p. 398. doi: 10.1109/ISIT.2004.1365435.

[RP04b] G. Richter and S. Plass. “Error and Erasure Decoding of Rank-Codes
with a Modified Berlekamp-Massey Algorithm”. In: ITG-Fachbericht.
Jan. 2004.

206

https://doi.org/10.1016/j.jsc.2017.11.012
https://doi.org/10.26421/QIC3.4-3
https://doi.org/10.1109/ISIT.2010.5513549
https://doi.org/10.1109/ISIT.2010.5513549
https://doi.org/10.1002/sec.228
https://doi.org/10.1109/ISIT.2004.1365435

Bibliography

[RPW18] J. Renner, S. Puchinger, and A. Wachter-Zeh. “On a Rank-Metric
Code-Based Cryptosystem with Small Key Size”. In: arXiv preprint
arXiv:1812.04892 (2018).

[RPW19] J. Renner, S. Puchinger, and A. Wachter-Zeh. “Interleaving Loidreau’s
Rank-Metric Cryptosystem”. In: 2019 XVI International Symposium
”Problems of Redundancy in Information and Control Systems” (RE-
DUNDANCY). IEEE, 2019, pp. 127–132.

[RPW21a] J. Renner, S. Puchinger, and A. Wachter-Zeh. “Decoding High-Order
Interleaved Rank-Metric Codes”. In: 2021 IEEE International Symposium
on Information Theory (ISIT). IEEE, 2021, pp. 19–24.

[RPW21b] J. Renner, S. Puchinger, and A. Wachter-Zeh. “LIGA: A Cryptosystem
Based on the Hardness of Rank-Metric List and Interleaved Decoding”.
In: Designs, Codes and Cryptography 89.6 (June 2021), pp. 1279–1319.
issn: 0925-1022, 1573-7586. doi: 10.1007/s10623-021-00861-z.

[SB10] V. Sidorenko and M. Bossert. “Decoding Interleaved Gabidulin Codes
and Multisequence Linearized Shift-Register Synthesis”. In: 2010 Ieee In-
ternational Symposium on Information Theory. 2010, pp. 1148–1152. doi:
10.1109/ISIT.2010.5513676.

[Sha48] C. E. Shannon. “A Mathematical Theory of Communication”. In: The
Bell System Technical Journal 27.3 (1948), pp. 379–423. doi: 10.1002/j.
1538-7305.1948.tb01338.x.

[Sho97] P. W. Shor. “Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer”. In: SIAM Journal on
Computing 26.5 (Oct. 1997), pp. 1484–1509. issn: 0097-5397, 1095-7111.
doi: 10.1137/S0097539795293172.

[Sid94] V. M. Sidelnikov. “A Public-Key Cryptosystem Based on Binary Reed-
Muller Codes”. In: 4.3 (Jan. 1, 1994). Publisher: De Gruyter Section:
Discrete Mathematics and Applications, pp. 191–208. issn: 1569-3929.
doi: 10.1515/dma.1994.4.3.191.

[SJB11] V. Sidorenko, L. Jiang, and M. Bossert. “Skew-Feedback Shift-Register
Synthesis and Decoding Interleaved Gabidulin Codes”. In: IEEE Trans.
Inform. Theory 57.2 (Feb. 2011). Backup Publisher: Inst. of Telecommun.
& Appl. Inf. Theor., Ulm Univ., Ulm, Germany Publisher: IEEE, pp. 621–
632. issn: 0018-9448.

[SK20] M. Shehadeh and F. R. Kschischang. “Rate-Diversity Optimal Multi-
block Space-Time Codes via Sum-Rank Codes”. In: 2020 IEEE Inter-
national Symposium on Information Theory (ISIT). 2020 IEEE Inter-
national Symposium on Information Theory (ISIT). Los Angeles, CA,

207

https://doi.org/10.1007/s10623-021-00861-z
https://doi.org/10.1109/ISIT.2010.5513676
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1515/dma.1994.4.3.191

Bibliography

USA: IEEE, June 2020, pp. 3055–3060. isbn: 978-1-72816-432-8. doi:
10.1109/ISIT44484.2020.9174329.

[SKK08] D. Silva, F. R. Kschischang, and R. Kötter. “A Rank-Metric Approach
to Error Control in Random Network Coding”. In: IEEE Transactions on
Information Theory 54.9 (Sept. 2008), pp. 3951–3967.

[SRB11] V. Sidorenko, G. Richter, and M. Bossert. “Linearized Shift-Register
Synthesis”. In: IEEE Transactions on Information Theory 57.9 (2011),
pp. 6025–6032. doi: 10.1109/TIT.2011.2162173.

[SRV12] N. Silberstein, A. S. Rawat, and S. Vishwanath. “Error Resilience in Dis-
tributed Storage Via Rank-Metric Codes”. In: 2012 50th annual allerton
conference on communication, control, and computing (allerton). 2012,
pp. 1150–1157. doi: 10.1109/Allerton.2012.6483348.

[SS92] V. M. Sidelnikov and S. O. Shestakov. “On Insecurity of Cryptosystems
based on Generalized Reed–Solomon Codes”. In: Discrete Mathematics
and Applications 2.4 (1992). Publisher: Walter de Gruyter GmbH.

[SSB07] G. Schmidt, V. Sidorenko, and M. Bossert. “Enhancing the Correcting
Radius of Interleaved Reed-Solomon Decoding Using Syndrome Exten-
sion Techniques”. In: 2007 IEEE International Symposium on Informa-
tion Theory. 2007 IEEE International Symposium on Information The-
ory. Nice: IEEE, June 2007, pp. 1341–1345. isbn: 978-1-4244-1397-3. doi:
10.1109/ISIT.2007.4557409.

[ST21] U. Skosana and M. Tame. “Demonstration of Shor’s Factoring Algorithm
for N = 21 on Ibm Quantum Processors”. In: Scientific Reports 11.1
(Aug. 16, 2021), p. 16599. issn: 2045-2322. doi: 10.1038/s41598-021-
95973-w.

[Ste89] J. Stern. “A Method for Finding Codewords of Small Weight”. In: Cod-
ing Theory and Applications. Vol. 388. Series Title: Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 1989, pp. 106–113. isbn:
978-3-540-51643-9. doi: 10.1007/BFb0019850.

[Stu05] B. Sturmfels. “What is ... a Gröbner Basis”. In: Notices of the American
Mathematical Society 52.10 (2005), pp. 1199–1200.

[SWC12] V. Sidorenko, A. Wachter-Zeh, and D. Chen. “On Fast Decoding of Inter-
leaved Gabidulin Codes”. In: Int. Symp. Probl. Redundancy Inf. Control
Systems. St. Petersburg, Russia, Sept. 2012, pp. 78–83.

[The23] The Sage Developers. SageMath, the Sage Mathematics Software System
(version 9.8). manual. tex.key: SageMath. 2023.

208

https://doi.org/10.1109/ISIT44484.2020.9174329
https://doi.org/10.1109/TIT.2011.2162173
https://doi.org/10.1109/Allerton.2012.6483348
https://doi.org/10.1109/ISIT.2007.4557409
https://doi.org/10.1038/s41598-021-95973-w
https://doi.org/10.1038/s41598-021-95973-w
https://doi.org/10.1007/BFb0019850

Bibliography

[Wac16] A. Wachter-Zeh. “Decoding of Block and Convolutional Codes in Rank
Metric”. PhD thesis. Universität Ulm, 2016. doi: 10.18725/OPARU-2515.
url: https://oparu.uni-ulm.de/xmlui/handle/123456789/2542 (accessed
on 10/18/2024).

[Wan16] Y. Wang. “Quantum Resistant Random Linear Code Based Public Key
Encryption Scheme RLCE”. In: 2016 IEEE International Symposium on
Information Theory (ISIT). Barcelona, Spain: IEEE, July 2016, pp. 2519–
2523. isbn: 978-1-5090-1806-2. doi: 10.1109/ISIT.2016.7541753.

[Wie10] C. Wieschebrink. “Cryptanalysis of the Niederreiter Public Key Scheme
Based on GRS Subcodes”. In: Post-Quantum Cryptography. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2010, pp. 61–72. isbn:
978-3-642-12929-2. doi: 10.1007/978-3-642-12929-2_5.

[WMW05] B. Wang, R. J. McEliece, and K. Watanabe. “Kötter Interpolation Over
Free Modules”. In: Proceedings of. 2005, pp. 2197–2206.

[Woz58] J. M. Wozencraft. List Decoding. Quarterly Progress Report 48. Research
Laboratory of Electronics, Massachusetts Institute of Technology, Jan.
1958, pp. 90–95.

[WPR18] A. Wachter-Zeh, S. Puchinger, and J. Renner. “Repairing the Faure-
Loidreau Public-Key Cryptosystem”. In: IEEE International Symposium
on Information Theory (ISIT). Place: Vail, Colorado, USA. June 2018,
pp. 2426–2430.

[WS12] A. Wachter-Zeh and V. Sidorenko. “Rank Metric Convolutional Codes
for Random Linear Network Coding”. In: 2012 International Symposium
on Network Coding (NetCod). 2012 International Symposium on Network
Coding (NetCod). Cambridge, MA, USA: IEEE, June 2012, pp. 1–6. isbn:
978-1-4673-1892-1. doi: 10.1109/NETCOD.2012.6261875.

[WSBZ11] A. Wachter, V. Sidorenko, M. Bossert, and V. V. Zyablov. “On (Partial)
Unit Memory Codes Based on Gabidulin Codes”. In: Problems of Infor-
mation Transmission 47.2 (June 1, 2011), pp. 117–129. issn: 1608-3253.
doi: 10.1134/S0032946011020049.

[WSS15] A. Wachter-Zeh, M. Stinner, and V. Sidorenko. “Convolutional Codes in
Rank Metric With Application to Random Network Coding”. In: IEEE
Transactions on Information Theory 61.6 (June 2015), pp. 3199–3213.
issn: 0018-9448, 1557-9654. doi: 10.1109/TIT.2015.2424930.

[WZ14] A. Wachter-Zeh and A. Zeh. “List and Unique Error-Erasure Decoding of
Interleaved Gabidulin Codes with Interpolation Techniques”. In: Designs,
Codes and Cryptography 73.2 (Nov. 1, 2014), pp. 547–570. issn: 1573-
7586. doi: 10.1007/s10623-014-9953-5.

209

https://doi.org/10.18725/OPARU-2515
https://oparu.uni-ulm.de/xmlui/handle/123456789/2542
https://doi.org/10.1109/ISIT.2016.7541753
https://doi.org/10.1007/978-3-642-12929-2_5
https://doi.org/10.1109/NETCOD.2012.6261875
https://doi.org/10.1134/S0032946011020049
https://doi.org/10.1109/TIT.2015.2424930
https://doi.org/10.1007/s10623-014-9953-5

Bibliography

[WZB14] A. Wachter-Zeh, A. Zeh, and M. Bossert. “Decoding Interleaved Reed–
Solomon Codes Beyond Their Joint Error-Correcting Capability”. In: De-
signs, Codes and Cryptography 71.2 (May 2014), pp. 261–281. issn: 0925-
1022, 1573-7586. doi: 10.1007/s10623-012-9728-9.

[XYS11] H. Xie, Z. Yan, and B. W. Suter. “General Linearized Polynomial In-
terpolation and Its Applications”. In: 2011 International Symposium on
Networking Coding. 2011 International Symposium on Network Coding
(NetCod). Beijing, China: IEEE, July 2011, pp. 1–4. isbn: 978-1-61284-
138-0. doi: 10.1109/ISNETCOD.2011.5978942.

[XZL+12] N. Xu, J. Zhu, D. Lu, X. Zhou, X. Peng, and J. Du. “Quantum Factoriza-
tion of 143 on a Dipolar-Coupling Nuclear Magnetic Resonance System”.
In: Physical Review Letters 108.13 (Mar. 30, 2012). Publisher: American
Physical Society, p. 130501. doi: 10.1103/PhysRevLett.108.130501.

[YL18] J.-H. Yu and H.-A. Loeliger. “Simultaneous Partial Inverses and Decoding
Interleaved Reed–Solomon Codes”. In: IEEE Transactions on Information
Theory 64.12 (Dec. 2018), pp. 7511–7528. issn: 0018-9448, 1557-9654.
doi: 10.1109/TIT.2018.2868701.

[YTW+22] B. Yan et al. Factoring Integers with Sublinear Resources on a Supercon-
ducting Quantum Processor. Version Number: 1. 2022. doi: 10.48550/
ARXIV.2212.12372.

210

https://doi.org/10.1007/s10623-012-9728-9
https://doi.org/10.1109/ISNETCOD.2011.5978942
https://doi.org/10.1103/PhysRevLett.108.130501
https://doi.org/10.1109/TIT.2018.2868701
https://doi.org/10.48550/ARXIV.2212.12372
https://doi.org/10.48550/ARXIV.2212.12372

	Introduction
	Preliminaries
	Efficient Decoding of Interleaved Linearized Reed–Solomon Codes
	Decoding of Space-Symmetric Rank Errors
	Decoding of High-Order Interleaved Sum-Rank-Metric Codes
	Support-Guessing Decoding Algorithms in the Sum-Rank Metric
	Concluding Remarks
	Proofs
	Appendix of Chapter 6
	Notations, Variables, and Abbreviations
	Related Publications by the Author
	Bibliography

