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Motivation and Relevance of the Problem 
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➢ Personalized and low cost

➢ Enabler of multi-modal travel

➢ Support economic development and 

social incusion (especially VRUs)

DRT services should be adaptable mode 

of transportation which can adjust routes 

and schedules based on user requests.

 (Krell & Hunkin, 2024)

Demand Responsive Transport (DRT) in a nutshell



Motivation and Relevance of the Problem 
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• Door-to-door services: Highly flexible, providing direct 

point-to-point transportation anywhere within a 

designated zone, allowing passengers to be picked up 

and dropped off at their preferred locations.

• Virtual bus stops: Predefined pick-up and drop-off 

points, usually within a short walking distance, offering 

less flexibility compared to door-to-door services.

• Hub-to-hub services: Operate between fixed points of 

interest (e.g., transport stations or city centers), with 

potential flexibility for point-to-hub or hub-to-point routes 

in specific areas.

• Hybrid fixed-flex routes: Combine fixed routes with set 

schedules during peak hours and flexible on-demand 

service during off-peak times, providing a balance 

between fixed and flexible transportation.

• Deviated fixed routes: Follow a set path but allow small 

deviations for picking up or dropping off passengers 

beyond the usual bus stops, offering limited flexibility. 

(EIT Mobility, 2024)

CHALLENGES/

OPPORTUNITIES



Related Works: Harmann et al. (2022, 2023)
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Related Works: Tamleh et al. (2024)
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Related Works: Tcheumadjeu & Rummel (2024)
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Related Works
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Study Methodology Findings

Tamleh et al. (2024) Agent-based simulation using 

MATSim in Berlin; tested grid, 

intersection, and clustering virtual 

stop designs; analyzed system 

performance metrics like vehicle 

kilometers traveled (VKT), pooling 

ratio, walking distance.

Intersection-based stops reduced 

VKT by 18%, improved pooling; 

increased walking distances to 

~250m; virtual stops enable better 

efficiency than door-to-door service.

Harmann et al. (2022, 2023) Utility-based evaluation of stop 

placement strategies (grid, 

streetlamp, intersection); considered 

user comfort and provider efficiency 

in a mid-sized German city 

(Braunschweig).

Streetlamp stops best for user safety 

and visibility; intersection stops best 

for routing; grid method least 

effective overall; stop strategy must 

balance user and operator needs.

Tcheumadjeu & Rummel (2024) Criteria-based design framework 

developed; defined legal, technical, 

and user-centered requirements for 

placing and selecting virtual stops;

Various roadside elements (e.g., 

parking bays, intersections) can act 

as virtual stops if criteria are met; 

legal and accessibility criteria 

significantly affect stop usability; 

framework enables context-aware 

deployment.



How can virtual stops be dynamically placed 

and coordinated in real-time, using the 

underlying structure of mobility demand?

Identified Gaps and Research Questions

▪ All previous works treat virtual stops as preselected, 

fixed spatial candidates. These are optimized or 

filtered using performance metrics, but the stop 

locations themselves are not dynamically generated.

▪ Most prior studies use graph-based models, which 

only capture pairwise relationships, such as rider-

to-stop or vehicle-to-rider. This limits the system’s 

ability to represent shared rides, group flows, or 

pooling dynamics.

▪ Routing metrics are aggregate: vehicle kilometers, 

detours, occupancy. They don’t explain why 

inefficiencies occur or how flows interact structurally 

in the network.

▪ Once virtual stops are generated or selected, they 

remain fixed or slowly adaptive. There is no 

support for continuous, demand-responsive 

reconfiguration of the stop network.
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To what extent emergent virtual stops adapt 

to real-time demand changes and what is 

their impact on operational performance?

Which placement criteria support equitable 

access for vulnerable and underserved 

populations to these locations?



Mathematical Formulation: Simplicial Complex

1. We model the city as a directed, weighted multigraph

𝐺 = 𝑉, 𝐸, 𝑤 , where 𝑤: 𝐸 → ℝ>0

▪ Nodes 𝑉: street intersections or geospatial anchors;

▪ Edges 𝐸: directed roads, possibly multiple per node-pair

▪ Weights 𝑤(𝑒): road lengths or travel times.

2. Then, user demand is observed over time: 𝐺(𝑡) =
𝑉(𝑡), 𝐸(𝑡) , with 𝑉 𝑡 = 𝑣 ∈ 𝑉  user active at 𝑡 .

3. From 𝐺(𝑡)​, we construct a simplicial complex 𝒦𝑡, where:

▪ 0-simplices 𝜎0(𝑡) = 𝑉(𝑡)

▪ 1-simplices 𝜎1(𝑡) = 𝐸 𝑡

▪ 2-simplices 𝜎2 𝑡 = directed triangles (𝑖 → 𝑗 → 𝑘 → 𝑖)

This complex captures connectivity, flows, and local 

cyclicity: How?

10



Mathematical Formulation: Forman-Ricci Curvature

4. For each edge 𝑒 ∈ 𝜎1, we define Forman-Ricci curvature (Sreejith et al., 2016; Samal et al.,2018) as: 

Ric𝐹 𝑒 = 𝑤 𝑒
𝑤(𝑢)

𝑤(𝑒)
+

𝑤(𝑣)

𝑤(𝑒)
− ෍

𝑒´→𝑢

𝑤(𝑢)

𝑤 𝑒 𝑤(𝑒´)
− ෍

𝑣→𝑒´´

𝑤(𝑣)

𝑤 𝑒 𝑤(𝑒´)

11

Where:

• 𝑤 𝑢 = deg𝑖𝑛 𝑢 + deg𝑜𝑢𝑡 𝑢

The sums run over incoming edges to 𝑢 and 

outgoing edges from 𝑣. This captures 

asymmetry and cost in routing flows.

Edges with high positive curvature may signal 

clustering of demand or routing bottlenecks, 

useful for virtual stop detection.



Mathematical Formulation: Hodge Theory

5. We define boundary operators on this complex:

▪ 𝑑0: 𝐶0 → 𝐶1 (node-to-edge incidence matrix)

▪ 𝑑1: 𝐶1 → 𝐶2 (edge-to-face incidence matrix)

6. Then we build Laplace-type operators, letting us measure 

divergence, curl, and topological holes.

∆0= 𝑑0
𝑇𝑑0 , ∆1= 𝑑0 𝑑0

𝑇 + 𝑑1
𝑇𝑑1

7. Let 𝜔 𝑡 ∈ 𝐶1 be an edge-signal (flow induced by user 

demand), then we can apply the Hodge Decomposition:

𝜔 𝑡 = 𝑑0
𝑇𝑓 + 𝑑1 𝑔 + ℎ

▪ 𝑑0
𝑇𝑓: gradient field (potential-driven motion)

▪ 𝑑1 𝑔: curl field (circular flows, loops of inefficiency)

▪ ℎ ∈ ker 𝑑0 ∩ ker 𝑑1
𝑇: harmonic (global imbalance)
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Mathematical Formulation: Final Steps

At each time 𝑡 define:

▪ High-curvature subgraph 𝐻𝑡 ⊆ 𝐺𝑡 as:

𝐻𝑡 = 𝑒 ∈ 𝐸: Ric𝐹 𝑒 > 𝜃

▪ Then extract connected components

▪ Compute convex hulls 𝒞𝑡 ∈ ℝ2 of node positions in each component

▪ Define virtual stops as centroids of these hulls.
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Preliminary Results
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Next Steps

▪ Deploy the framework on real-world datasets such as ride-hailing traces or public transport logs to test its 
scalability and robustness.

▪ Validate inferred virtual stops by comparing them to actual boarding/alighting data when available.

▪ Track the temporal evolution of topological features such as the number of connected components and 
cycles to assess network dynamics.

▪ Combine the methodology with predictive transport-demand models (e.g., agent-based simulations) to 
forecast virtual stop configurations under different urban scenarios.

▪ Analyze how emergent simplicial complexes evolve in response to simulated changes in user behavior, 
time-of-day variations, or policy interventions. 

▪ Adapt stop detection logic to prioritize the needs of vulnerable users, such as individuals with reduced 
mobility or those in underserved neighborhoods.

▪ Use curvature and density metrics to identify areas of spatial inequality and ensure equitable service 
coverage.

▪ Incorporate user-centric thresholds for accessibility, walking distance, and service frequency.

▪ Optimize virtual stop placement with respect to operational goals like reducing fleet size, minimizing detours, 
or maximizing coverage. detected virtual stops.
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Thank you for listening!

Questions?
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