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 A B S T R A C T

Soils play a pivotal role in supporting ecosystems, human health, food security, and climate regulation. Since 
several years, temporal composites of bare soil reflectances derived from multispectral satellite data are used 
as input for soil property modeling. Due to the importance of these model inputs, the quality of the surface 
reflectance composites (SRC) is essential. The quality depends on the precise selection of  pixels that are free 
of green and dry vegetation, cloud contamination and other atmospheric disturbances.

However, there is a lack of suitable concepts and tools to evaluate the impact of the diverse processing 
parameters for the generation of SRC, especially for large areas such as continents. This study presents a novel 
approach to evaluate the process of computing bare SRCs across large geographical areas. It can estimate the 
theoretical limit achievable with defined processing parameters (spectral indices, thresholds, specific filtering, 
etc.) and it is also suitable to compare the performance of different SRC concepts from the literature. The 
performance is derived from the angular spectral distance between reference spectra derived from the LUCAS 
survey and the SRC spectra. It is demonstrated that a linear combination of two spectral indices complemented 
with a regional threshold dataset keep the complexity of threshold data sets low while performing well across 
Europe.  The results also show that regionalization is as crucial as the choice of the index itself. The additional 
outlier removal focusing on clouds and haze marginally improved the SRC at the continental scale but can 
be very effective for areas with more frequent clouds. The proposed method offers two main advantages. 
First, it allows for parameter customization tailored to the region of interest, or, at minimum, to areas well 
represented by the reference data. Second, it facilitates the systematic evaluation of successive adaptations in 
the SRC generation process, eliminating the labor-intensive and error-prone task of visually comparing images 
to assess improvements in the SRC final product. The final bare surface reflectance composite for Europe and 
adjacent regions provids a robust foundation for future large-scale soil and bare surface monitoring.
1. Introduction

The properties of bare soils play a pivotal role in supporting ecosys-
tems, human health, food security, and climate regulation
(Montanarella et al., 2015). Earth Observation can be used to directly 
model bare soil characteristics based on their spectral reflectance char-
acteristics (Chabrillat et al., 2002; Ben-Dor et al., 2009; Gerighausen 
et al., 2012; Ward et al., 2020) or based on environmental covari-
ates (Mulder et al., 2011; Minasny and McBratney, 2016; Poggio et al., 
2021). Recently, temporal composites of bare soil reflectances derived 
from space-borne satellite data over  multiple seasons are used as 
input for soil property mapping (Dvorakova et al., 2021; Zepp et al., 
2021; Broeg et al., 2024; Tziolas et al., 2024). The advantage of this 
technique is to overcome the temporal coverage of soils with vegetation 
by selecting only bare soil reflectance pixels from the multispectral 
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time stack (Diek et al., 2017; Rogge et al., 2018; Demattê et al., 2018; 
Roberts et al., 2019; Heiden et al., 2022). This way, the area for which 
soil properties can be mapped is increased.

The quality of bare surface reflectance composites (SRC) depends on 
the selection of mostly undisturbed pixels representing bare soils and 
non-vegetated surfaces. Disturbances may arise from partial coverage of 
the soil by photosynthetically active and non-active vegetation (Rogge 
et al., 2018; Demattê et al., 2018) and by soil roughness and mois-
ture (Dvorakova et al., 2023; Vaudour et al., 2021). The majority of 
studies use one or more spectral indices to disentangle such distur-
bances (Heiden et al., 2022) with the choice of indices and associated 
thresholds tailored to the local or regional conditions of the area of 
interest (Castaldi et al., 2023; Dvorakova et al., 2023; Broeg et al., 
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2024). Studies aiming at larger extents, such as continental (Safanelli 
et al., 2020) to global scales (Rizzo et al., 2023) are rare due to the 
complexity of capturing the nuanced variations of soil properties across 
different regions (Gallo et al., 2018) and the computational complexity.

Regionalization of data models has been shown to improve results in 
various global environmental studies, and it is a key component of the 
framework presented in this work. Notable examples include the map-
ping of forest canopy height (Ku et al., 2021), biodiversity (Coops et al., 
2018), bare ground gain (Ying et al., 2017) and streamflow of river 
basins (Odusanya et al., 2022). To the best of the authors’ knowledge, 
this has not yet been tested for the European-wide or continent-scale 
SRC generation. The reason might be the lack of concepts that rigor-
ously evaluate the performance of various spectral indices paired with 
a regionalized set of thresholds derived from local characteristics in the 
reflectance data.

Another significant factor affecting SRC  quality is cloud cover. 
Most temporal compositing approaches use the cloud masks produced 
during conversion from radiance values (Level 1) to reflectance values 
(Level 2) or additional software such as FMask  (Baetens et al., 2019). 
Cloud masks, while effective in detecting highly affected pixels, must be 
conservative by design to avoid excessive data exclusion. While thick 
clouds can be detected with low uncertainties, the flagging of thin and 
semi-transparent clouds remains difficult (Skakun et al., 2022). Studies 
also reported spectral confusion between clouds and high reflectance 
built-up areas (Corbane et al., 2020) as well as in areas with low 
vegetation and high albedo characteristics, typical for Mediterranean 
soils (Ben-Dor, 1994). Kempeneers and Soille (2017) reduce the cloud 
contamination by selecting images based on quicklook RGB informa-
tion and a minimum index value for the Sentinel-2 blue band. Other 
methods typically address this by taking the median of reflectance 
values along the time axis, assuming that cloudy observations are 
outliers (Simonetti et al., 2021).

As an alternative to the median for the temporal averaging, the 
mean along the temporal axis of the reflectance values can be taken 
(Gasmi et al., 2021). A fundamental advantage is the greater asymptotic 
efficiency of the mean over the median in statistically consistent and 
normally distributed data. For instance, given 10 samples (samples 
being bare surface pixels), the relative efficiency of the median is only 
approximately 80% that of the mean (Serfling, 2011). The observed 
phenomenon is assumed to be relatively stable in time; however, 
the dynamics in the atmosphere (e.g. haze) and surface (e.g. surface 
moisture) lead to a high variance in the observed reflectance data and 
therefore a tail-heavy distribution. The mean is inherently more biased 
towards outliers and, therefore, it has to be combined with robust 
outlier detection to specifically remove pixels affected by residual 
clouds. In addition to its better convergence to the true mean of the 
distribution, the mean enables the derivation of statistical products 
centered around it, such as the standard deviation or the confidence in-
terval, which allows to characterizes the spectral variability uncertainty 
of the SRC pixels.

All of the issues described above influence the quality of SRC and 
thus affect the subsequent derivation of soil properties. To develop and 
test new concepts to improve the SRC at large scales such as continents, 
a robust and efficient evaluation concept is necessary. In many studies, 
the quality of different SRC versions are indirectly evaluated using the 
prediction accuracy of the derived soil properties such as described 
in Vaudour et al. (2021), Žížala et al. (2019) and Tziolas et al. (2020a). 
However, this strategy introduces additional uncertainty related to the 
machine learning models. For local studies, the resulting SRC spectra 
have been directly compared with laboratory spectra using the soil line 
and spectral dispersion using principle component analysis (Demattê 
et al., 2018). Heiden et al. (2022) use spectral distance measures be-
tween the SRC and laboratory spectra of the Copernicus Land Use-Land 
Cover Area Frame Survey (LUCAS) for Bavaria in Germany .

The evaluation of SRC at large scale such as the European continent 
is still unsolved due to missing reference data that represent aver-
aged spectral information across different seasons and years. However, 
2 
Nocita et al. (2015) proved the statistical relation between spectral 
reflectance measurements of soils and their chemical properties. As a 
consequence, many of the soil parameter mapping approaches have 
used the spectral and chemical analysis collected in local laboratory 
and field surveys (Castaldi et al., 2018; Tziolas et al., 2020b; Mzid 
et al., 2022) or in the LUCAS survey (Ward et al., 2020; Castaldi et al., 
2019; Safanelli et al., 2020) as a reference. Thus, for an European-
wide evaluation of SRCs, the LUCAS survey seems to be a suitable 
reference that contains chemical and spectral measurements of the 
soil following the same protocol (Orgiazzi et al., 2017). The challenge 
is the different measurement method between the SRC and LUCAS 
spectra. In particular, the spectral measurements of the LUCAS survey 
are derived from dried and sieved soil samples at high radiometric 
resolution, making direct comparisons with space-borne soil reflectance 
under natural field conditions challenging. To allow comparison with 
Sentinel-2-based surface reflectance, the high-resolution LUCAS soil 
spectra are often resampled to match the multi-spectral resolution of 
Sentinel-2 (Castaldi et al., 2019). This resampling process smooths out 
the distinctive narrow spectral absorption features, effectively filtering 
out high-frequency information. However, the remaining broad spectral 
shape — like convexity and overall curvature can be used to compare 
SRC and LUCAS spectra.

This study aims to introduce a systematic evaluation framework 
designed to quantify improvements in SRC generation methods, moving 
beyond traditional visual assessments. By optimizing key processing 
parameters (e.g. spectral indices and cloud-filtering) through an iter-
ative process that maximizes concordance between SRC spectra and 
resampled LUCAS spectra at corresponding pixel locations, we aim to 
identify good processing settings with reasonable computational effort. 
We hypothesize that this framework can determine the choice of the 
spectral index and its corresponding thresholds (regional or global) and 
quantify the benefit of further subroutines in the SRC generation. This 
framework is applied to (1) evaluate SRC generation enhancements 
introduced in this work, while building upon developments from the 
Soil Composite Mapping Processor (SCMaP) as described in previous 
studies (Rogge et al., 2018; Heiden et al., 2022) and (2) it is used to 
compare other SRC generation concepts that have been published. The 
developed framework can provide quantitative and objective means to 
define the best SRC processing parameter for a specific area. 

2. Material and methods

This section outlines the methodological foundation of the evalua-
tion framework designed to quantify the influence of processing param-
eters on the quality of bare surface reflectance composites (SRCs).

A schematic overview of the evaluation framework is provided by 
Fig.  1. The main idea is to search for the optimal set of processing 
parameters (blue box in Fig.  1) identified by minimizing the angular 
distance between the derived SRC spectra and the reference spectra 
through an iterative refinement of those parameters. The processing 
parameters are generic and can be defined as proposed in this study 
or taken from the literature such as provided by Diek et al. (2017), De-
mattê et al. (2018) and Broeg et al. (2024). In this study, the proposed 
parameters include the selection of spectral indices and additional bare 
surface detection routines suitable to minimize the influence of green 
and dry vegetation and to filter out cloudy and hazy pixels.

A common temporal stack of Sentinel-2 L2A data (Section 2.1.1) 
is used ensuring consistency across all optimization runs and enabling 
a fair comparison of the performance of the spectral indices. The 
reference spectra are obtained from the European LUCAS 2015 survey 
(Section 2.1.3).

The SRC generation itself remains intentionally generic within this 
framework, with its key components determined during the optimiza-
tion process (Section 2.2). Fig.  2 illustrates the generation of a SRC 
image, where the parameters found in the optimization loop are used 
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Fig. 1. The evaluation framework: The spectral reference data is taken from the LUCAS survey. The temporal stack of the Sentinel-2 L2A data is identical for any SRC, that is 
being generated in this study. Processing parameters are iteratively optimized via gradient descent until the spectral angular distance between reference and SRC spectra no longer 
decreases, providing an estimate of the performance of the chosen parameters.
Fig. 2. SRC generation enhancements: Pixel-based surface thresholds are derived using HISET and a refined landcover data set, that is based on ESA Worldcover. The resulting 
surface thresholds are then used in combination with the entire S2 temporal stack and the processing parameters found prior (blue), to generate the SRC.
(blue). Instead of limiting the evaluation to LUCAS points, this ap-
proach enables the generation of a spatially continuous SRC image. A 
key component in this process is the HISET algorithm (Section 2.2.1), 
which is employed to construct surface thresholds essential for an area-
wide SRC derivation. This procedure relies on cropland and grassland 
masks, initially based on the ESA WorldCover dataset (Section 2.1.2) 
and subsequently refined to align with the specific requirements of this 
study (Section 2.2.2).

This approach contrasts with existing studies, where the indices 
and thresholds are predefined. The proposed method offers two main 
advantages. First, it allows for parameter customization tailored to 
the region of interest, or, at minimum, to areas well represented by 
the reference data. Second, it facilitates the systematic evaluation of 
successive adaptations in the SRC generation process, eliminating the 
labor-intensive and error-prone task of visually comparing  images to 
assess improvements in the final product (Section 2.3).

In this work, the term ‘‘bare surface’’ encompasses non-vegetated 
terrestrial surfaces including soils, barren rock, and sandy surfaces. 
Artificial and urban surfaces, snow and water bodies are excluded.
3 
2.1. Data preparation

2.1.1. Sentinel-2
The foundation of the SRC is a temporal stack of Sentinel-2 multi-

spectral imagery. This archive is well-suited for the analysis due to 
the Sentinel-2 constellation’s ability to consistently capture data with a 
five-day revisit period (European Space Agency (ESA), 2015), providing 
a dense temporal resolution critical for capturing the rare observation 
opportunities of non-vegetated, bare surfaces.

The selection process for the input data used to generate all tested 
SRCs in this paper is filtered based on several criteria:

• Metadata Filtering:  Images with a maximum cloud coverage of 
80 percent are considered. This value is strategically chosen to 
maximize the density of the temporal stack, acknowledging that 
high cloud cover could still yield valuable data. Furthermore, the 
sun has to be elevated more than 20 degrees between the senor 
and the horizontal plane.

• Temporal Range: The study period spans from January 2018 to 
December 2022.
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Table 1
Sentinel 2 bands used in this work. (Copernicus, 2020).
 Band Central wavelength (S2A) Central wavelength (S2B) 
 B02 (blue) 492 nm 492 nm  
 B03 (green) 560 nm 559 nm  
 B04 (red) 664 nm 665 nm  
 B05 (red edge 1) 704 nm 704 nm  
 B06 (red edge 2) 741 nm 739 nm  
 B07 (red edge 3) 783 nm 780 nm  
 B08 (NIR) 833 nm 833 nm  
 B8A (red edge 4) 865 nm 864 nm  
 B11 (SWIR 1) 1614 nm 1610 nm  
 B12 (SWIR 2) 2202 nm 2186 nm  

• Spectral Band Selection: Only bands with a spatial resolution at 
ground level of 20 m or better are included (see Table  1).

The spatial organization of the input images adheres to the Mili-
tary Grid Reference System (MGRS) (Meyers, 2015), which facilitates 
systematic processing and analysis. The data were pre-processing to 
Level-2A (L2A) reflectances using the MAJA Atmospheric Correction 
processor (Hagolle et al., 2010). This step adjusts for atmospheric 
effects and cloud identification and ensures radiometric consistency 
across the image stack. The used scenes are corrected for adjacency and 
topographic effects (denoted by the suffix FRE) (Hagolle et al., 2018, 
2021).

For this study, the analysis is confined to pixels classified as ‘0’ by 
the geophysical mask (*_MG2_R2), effectively excluding areas repre-
sented as open water, clouds, snow, and those obscured by topographic 
shadows or unsuitable sun elevation angles. This selection criterion 
ensures that the focus remains on the surfaces that are most relevant 
to the SRC.

In total, a 1145 MGRS tiles and a total of 445806 individual 
Sentinel-2 scenes (each comprised of 10 bands) contributed to the 
computation.

2.1.2. Landcover mask
The integration of land cover data, specifically the ESA World-

Cover map (Zanaga et al., 2022), serves as an input for the estimation 
of surface thresholds and is therefore only part of HISET (Section 2.2.1). 
Therefore,  it functions as an indirect input for the final composite 
rather than as a direct masking layer. Designed for the year 2020,
ESA WorldCover is centrally positioned within the temporal stack 
of Sentinel-2 data. With a spatial resolution of 10 m and precise classi-
fication of critical land-cover types, such as grasslands and croplands, it 
is - with refinement - a central input to the threshold derivation, which 
is detailed in Section 2.2.1.

2.1.3. LUCAS spectral library
The LUCAS topsoil spectral database (2015) is used as reference 

for the general shape of soil spectra at their respective sample sites. 
Important for this work are the more than 22,000 topsoil spectra from 
European soil samples. To increase the likelihood of bare soil visibility 
for optical remote sensing, our analysis focuses specifically on the 8823 
data points located within agricultural fields (labeled as ‘‘Cropland’’). 
Another 149 points have been removed from the set due to low spectral 
variability in time (according to Eq.  (6)) in their local vicinity, in an 
effort to exclude sites which have turned into inactive cropland since 
2025. On such fields, their might be permanent vegetation with no 
option to observe the bare surface.

To allow for comparison between the LUCAS spectra, 𝑠𝑙𝑢𝑐𝑎𝑠 and the 
Sentinel-2 spectra, the LUCAS spectra are projected into Sentinel-2 data 
space using the spectral response function 𝑠𝑟𝐴 and 𝑠𝑟𝐵 for Sentinel-2 A 
and B, respectively: 

𝑞 =
𝑠𝑟𝐴 + 𝑠𝑟𝐵 𝑠 (1)
2 𝑙𝑢𝑐𝑎𝑠

4 
Using Eq.  (1), the high-resolution LUCAS spectra 𝑠𝑙𝑢𝑐𝑎𝑠 are resampled 
to match the spectral resolution of Sentinel-2 by the average of the 
spectral response functions of Sentinel-2 A and B (Castaldi et al., 2019; 
Okujeni et al., 2024).

Due to the radiometric resampling to ten bands, only the general 
shape of the LUCAS spectra is preserved, while detailed absorption 
features are eliminated. This, combined with an angular distance metric 
that is invariant to the scaling of the spectral vector, ensures that the 
primary characteristic compared between composite spectra and 𝑞 is 
their overall shape of the spectra.

2.2. Procedure to generate bare surface reflectance composites

Starting from the foundational element, a single observation, its 
multi-spectral cube is 𝑂 ∈ R𝑢×𝑣×𝑏 for an image of spatial dimension 
𝑢 × 𝑣 and 𝑏 spectral bands.

Given that observations are geometrically co-registered and mapped 
onto the Sentinel-2 tile grid, thus, each image sharing uniform dimen-
sions, the tensor can be directly extended by a temporal component 
𝑆 = (𝑂0, 𝑂1,… , 𝑂𝑛) over 𝑛 observations within a tile.

The synthesis of a SRC 𝐶 from 𝑆 is executed through two pivotal 
functions. Firstly, the classifier 𝑓𝑏𝑎𝑟𝑒(𝑆) → {0|1}𝑢×𝑣×𝑏×𝑛, discriminates 
each element within 𝑆 whether it is representative of undisturbed bare 
surface (1) or not (0). Using the mask will result in the set 
𝑆𝑏𝑎𝑟𝑒 ∶= {𝑠 ∈ 𝑆|𝑓𝑏𝑎𝑟𝑒(𝑠) > 0}. (2)

In our case, 𝑓𝑏𝑎𝑟𝑒 is primarily based on a spectral index, 𝑧, thus: 

𝑓𝑏𝑎𝑟𝑒 ∶=

{

1, if 𝑡0,(𝑖,𝑗) < 𝑧(𝑠𝑖,𝑗,∶,𝑚) < 𝑡1,(𝑖,𝑗), 𝑖 ∈ {1..𝑢}, 𝑗 ∈ {1..𝑣}, 𝑚 ∈ {1..𝑛}

0, otherwise
(3)

Eq.  (3) masks all pixels indexed by the coordinates 𝑖 and 𝑗 that are not 
in between their local set of thresholds 𝑡0,(𝑖,𝑗) and 𝑡1,(𝑖,𝑗) for index 𝑧. It is 
extended by an outlier detection and removal which is detailed in the 
next chapter.

Secondly, the aggregation 𝐶(𝑆) → R𝑢×𝑣×𝑏 condenses the temporal 
dimension to a single multi-spectral image using the definition of 𝑆𝑏𝑎𝑟𝑒
(Eq.  (2)) 

𝐶(𝑆𝑏𝑎𝑟𝑒) =
1

|𝑆bare|
∑

𝑟∈𝑆bare

𝑟. (4)

In this work, we deliberately chose the mean over the median for its 
greater asymptotic relative efficiency; thus, its tendency to converge 
faster to the true mean of the distribution (Serfling, 2011).

The delineation of bare surfaces from vegetated areas in our analysis 
hinges on the precise determination of thresholds applied to a carefully 
chosen spectral index, crucial for identifying natural bare surfaces. 
These thresholds, 𝑡0 and 𝑡1, are defined within the bounds of a spectral 
vegetation index 𝑧 calculated only from a reflectance vector 𝑠, which is 
composed from the spectral band values 𝑠 = (𝑠𝐵2, 𝑠𝐵3, 𝑠𝐵4, 𝑠𝐵5, 𝑠𝐵6, 𝑠𝐵7,
𝑠𝐵8, 𝑠𝐵8𝐴, 𝑠𝐵11, 𝑠𝐵12)𝑇 : 

𝑡0 < 𝑧(𝑠) < 𝑡1 (5)

The spectral index 𝑧 ∶ R10 → R serves as the basis for this clas-
sification, with higher index values indicating an increased presence 
of vegetation. The selection of 𝑡1 is particularly critical as it delimits 
the transition from bare to vegetated surfaces. We hypothesize that 
these thresholds require careful calibration with respect to the local 
characteristics of soil and crops.

Within the scope of this work, spectral indices commonly found 
in the literature are investigated (Table  2). Single and multi-staged 
indices are tested, like NDVI/NBR2, NDVI/NBR, BCC/NDVI/NBR2, 
VNSIR/NDVI/NBR2, where the indices are applied to a spectrum con-
secutively, each with its own threshold. VNSIR and BCC are only tested 
as proposed by the authors staged with filtering by NDVI and NBR2, 
first. The BSI has been inverted so lower values correspond to bare 
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Table 2
Spectral indices tested in this work for their suitability to generate bare surface composites. Abbreviations of the 
indices and their original source (column 1), their respective formulas in terms of Sentinel-2 bands (column 2) and 
their full names and usage (column3) are shown.
 Index Formula Usage  
 NDVI 
(Rouse et al., 1974)

(

𝐵8−𝐵4
𝐵8+𝐵4

)

Normalized Differences 
Vegetation Index used by 
Urbina-Salazar et al. (2021)

 

 NBR2 
(Deventer et al., 1997)

(

𝐵11−𝐵12
𝐵11+𝐵12

)

Normalized Burn Ratio 2 
used by Vaudour et al. (2021)

 

 NBR 
(García and Caselles, 1991)

(

𝐵8−𝐵12
𝐵8+𝐵12

)

Normalized Burn Ratio  

 BSI 
(Rikimaru et al., 2002)

−
(

𝐵12+𝐵4−𝐵8𝐴−𝐵2
𝐵12+𝐵4+𝐵8𝐴+𝐵2

)

Bare soil index (inverted) 
used by Diek et al. (2017)

 

 NDVI+NBR
(

𝐵8−𝐵4
𝐵8+𝐵4

+ 𝐵8−𝐵12
𝐵8+𝐵12

)

Linear combination of NDVI and NBR 
used by Heiden et al. (2022)

 

 NDVI/NBR2
((

𝐵8−𝐵4
𝐵8+𝐵4

)

,
(

𝐵11−𝐵12
𝐵11+𝐵12

))

Staged NDVI and NBR2 
with 2 separate sets of thresholds 
used in Dvorakova et al. (2021)

 

 NDVI/NBR
((

𝐵8−𝐵4
𝐵8+𝐵4

)

,
(

𝐵8−𝐵12
𝐵8+𝐵12

))

Staged NDVI and NBR 
with 2 separate sets of thresholds

 

 VNSIR 
(Demattê et al., 2020)

1 − ((2 ∗ 𝐵4 − 𝐵3 − 𝐵2)
+3 (𝐵12 − 𝐵8))∕10 000

Visible to Shortwave Infrared Tendency Index 
staged with NDVI/NBR2 
3 sets of thresholds, used by 
Demattê et al. (2020)

 

 BCC 
(Gillespie et al., 1987)

(

𝐵2
𝐵4+𝐵3+𝐵2

)

Blue Chromatic Coordinate 
staged with NDVI/NBR2 
3 sets of thresholds, used by 
Broeg et al. (2024)

 

surfaces (similar to NDVI, NBR2 etc.). Linear combinations are also 
possible, where two indices are combined and hence can be treated 
with a single threshold (like NDVI+NBR).

2.2.1. Surface thresholds (HISET)
This study employs two distinct strategies for deriving thresholds. 

The first strategy involves an optimization process, as detailed in 
Section 2.3, which computes a set of thresholds at each reference point 
(LUCAS sample site). 

The second strategy derives thresholds for SRC generation using 
an extended version of the Histogram Separation Threshold (HISET) 
algorithm, introduced by Heiden et al. (2022). These thresholds, termed 
surface thresholds, are applicable to entire areas rather than singular 
points. Ultimately, the surface thresholds are utilized for the SRC 
generation, as the thresholds computed at the LUCAS points are specific 
to the sparse grid of reference points and are only used to determine 
the best spectral index.

The general principles of HISET, along with the modifications re-
quired to ensure its applicability across diverse conditions, are elabo-
rated in this section.

The surface thresholds adhere to the Sentinel-2 tile-grid. It is chosen 
to be the spatial skeleton, where thresholds are determined for each tile 
in the grid. The granularity of roughly 100 km2 ensures a balance in 
scale that avoids both the over-generalization of large regions and the 
over-fitting risks of excessively small ones. To refine spatial continuity 
and minimize edge effects within the resulting data, these thresholds 
were smoothed employing a radial basis function centered on the 
centroid of each tile, see result in Fig.  6. This allows for a seamless 
integration of tiles into the final composite. Heiden et al. (2022) details 
the HISET algorithm in the general case. It is basically designed to 
account for the spectral similarity for the non-photosynthetically active 
vegetation (NPV) and bare soil  (Daughtry and Hunt, 2008; Dennison 
et al., 2019, 2023). Since Sentinel-2 only has two spectral bands in the 
SWIR, the usage of spectral absorption features to detect NPV is not 
an option. . Therefore, HISET measures the spectral overlap between 
bare soils and NPV and defines a threshold that minimizes the spectral 
overlap. HISET encompasses four primary steps:
5 
1. Spectral Index Calculation: Compute the spectral vegetation 
index for each image and pixel in the temporal Sentinel-2 series

2. Minimum Index Selection: Selecting the minimum spectral 
index value across the temporal sequence per pixel ensures rep-
resentation in its least vegetated state, typically indicating bare 
surfaces and non-photosynthetic vegetation (NPV) for croplands 
and grasslands, respectively.

3. Histogram Aggregation: All pixels that belong to cropland or 
grassland according to the land-cover map (Zanaga et al., 2022) 
are compiled into two separate histograms. Each histogram is 
normalized to an area of 1, effectively transforming it to a 
discrete probably density function.

4. Threshold Identification: The threshold is chosen to be the 
center of the histogram bin that minimizes the larger of both 
areas, that is intersected, at either side (see Fig.  4).

In addition to the value for the threshold, the area that has been 
minimized in step 4, gives an indication to the degree of separation of 
both histograms. Due to normalization, this value is between 0 for two 
disjointed histograms and 0.5 when one is entirely contained within the 
other. Multiplied by 100, this value is the quality score of the threshold. 
It serves as an indicator for the effectiveness of the surface threshold.

2.2.2. Enhancements to the surface threshold derivation
The initial methodology (HISET) for threshold derivation, as out-

lined in the previous Section 2.2.1, was further refined to address the 
challenges posed by the complexity of bare surfaces in Europe.

A notable concern was the presence of mixed pixels, that embody 
areas where agricultural land intersects with non-agricultural elements, 
such as roads or cart tracks, within the same pixel. These elements 
interfere with the spectrum and consequently the spectral index, in-
troducing variance to the histograms. This effect leads to blurred 
histograms and consequently elevated scores of the threshold, that 
indicate a degraded or inaccurate thresholds. To reduce the effect of 
mixed pixels, we introduce a measure of spectral variability: 

𝑣 ∶= 1
𝑛−1
∑

|

|

|

|

𝑧(𝐻𝑖+1) − 𝑧(𝐻𝑖) ||
|

|

(6)

𝑛 − 1 𝑖=0 | 𝑑𝑖+1 − 𝑑𝑖

|
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Fig. 3. The high-resolution google earth image of an agricultural area in southern Germany (a) shows the overestimation of cropland pixels by the ESA Worldcover landcover map 
(b). By excluding pixels with low spectral variability in the vegetation index (darker areas in the (c)), the land-cover map is refined (d). Some fields without active management 
are excluded by this process as well as many small roads.
Here, 𝐻 = (�̄�0, �̄�1,… , �̄�𝑛) is a sequence of averaged spectra over two 
months in time with 𝑑 indicating the respective central dates. The ini-
tial temporal averaging of two months of the reflectance data eliminates 
signals at a higher frequency, that are not related to the crop lifetime 
cycle.

The spectral variability 𝑣 estimates the frequency and intensity of 
changes to agricultural surfaces per pixel and therefore the likelihood 
that a bare state is exposed at some point in time. It is comparable 
only at local scale, as climatic and seasonal effect or land management 
policies do impact it. Greater spectral variability translates to actively 
manged croplands, that are less likely to intersect a stable surface. Thus, 
the land-cover map for cropland is refined by this additional criterion. 
Depending on the overall abundance of cropland pixels, a percentile 
(up to the 20th-percentile) of less active pixels is removed or the pixel’s 
contribution to the histogram is weighted according to its variability.

Beyond considering spectral variability, pixels that contribute to 
expansive, contiguous areas are prioritized. In contrast, isolated pixels 
and small patches — regardless of classification — are excluded from 
contributing to the histograms. They are found through a parallel 
flood-fill algorithm (van der Walt et al., 2014).

The resulting land-cover map can be seen in Fig.  3. It gives an 
example of the identification of both mixed pixels at field edges and 
fields with comparatively low variability in the vegetation index (red 
circle). Both are excluded, so the surface threshold estimation is based 
on more pixels, which actually represent the bare surface.

While the HISET methodology shows robust performance across the 
majority of Europe, challenges arise in tiles with limited cropland or 
grassland coverage, leading to imbalanced or erratic density functions 
6 
and ultimately, poor surface thresholds. Such cases are notably preva-
lent in coastal regions and islands where a large portion of the tile is 
water, as well as northern regions with inherently sparse cropland.

Various tests indicated, that both land-cover classes should be rep-
resented by at least two percent of all pixels in the tile, (at least 2𝑒5), 
thereby a tile is classified as fit. In instances where this criterion is not 
met, alternative approaches are employed to estimate thresholds:

• Proximity Interpolation: For tiles adjacent to one or more ‘fit’ 
tiles, thresholds are linearly interpolated, utilizing the centroid 
of each tile as a basis for distance calculation. This method is 
particularly relevant for coastal regions.

• Histogram Aggregation: In the absence of nearby ‘fit’ tiles, as 
often found with islands, pixel data from multiple adjacent tiles 
are combined into a singular histogram. The resulting threshold 
is used for all participating tiles.

• Bio-geographic Aggregation: In the case of northern Scandi-
navia, the system of multiple climatic zones led to an increased 
variance in the combined histograms. Here, pixels are aggregated 
by bio-geographic zone (EEA, 2016). Thresholds are then calcu-
lated for each zone and applied proportionately across the tiles 
based on the area of each bio-geographic zone.

These tailored approaches ensure the methodology’s effectiveness, even 
in regions where traditional threshold derivation faced significant chal-
lenges.
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2.2.3. Detection of residual clouds and haze
Eq.  (3) can be extended by a set of cloud filters, integrated to 

specifically address the simpler challenge of separating cloudy and hazy 
pixels from those representing a bare surface. This excludes pixels that 
are affected by haze or clouds. Given the high brightness of clouds in 
contrast to most soils, this is important.

The first filter exploits the distinct spectral characteristics between 
soil and cloud pixels particularly in the SWIR. While soil spectra have 
generally higher values in the short-waved infrared (SWIR) compared 
to the visible to near-infrared (VNIR) (true for more than 99% of LUCAS 
soil spectra), the opposite is true for clouds.  Therefore the condition 
can be formulated as 

𝑠𝐵12 − 𝑠𝐵8
!
> 0, 𝑠 ∈ 𝑆𝑏𝑎𝑟𝑒, (7)

where the subscript denotes the selected Sentinel-2 band.
The second filter within 𝑓𝑏𝑎𝑟𝑒 focuses on the removal of pixels 

affected by haze or thin clouds. The influence is very prominent in the 
blue band (Band B02), which is consequently used for detection (B02 
is also extensively used in ESA (2021)). Given the challenge that the 
reflectance in the B02 band of the underlying soil is unknown, this filter 
detects outliers along the temporal axis in relation to the median of 
the dataset in the blue band. The normalized mean absolute deviation 
(NMAD) for in the blue band 𝑆𝑠𝑜𝑖𝑙,𝐵2 = {𝑠𝐵2,∀𝑠 ∈ 𝑆𝑏𝑎𝑟𝑒} is given by:

�̃�𝑠𝑜𝑖𝑙,𝐵2 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑡(𝑆𝑠𝑜𝑖𝑙,𝐵2)

Absolute Deviations = {|𝑥 − �̃�𝑠𝑜𝑖𝑙,𝐵2| ∶ 𝑥 ∈ 𝑆𝑠𝑜𝑖𝑙,𝐵2}

NMAD = 𝑘 ⋅ 𝑚𝑒𝑑𝑖𝑎𝑛(Absolute Deviations) (8)

where 𝑘 = 1.4826, a constant scaling factor for data adhering to a 
normal distribution and 𝑚𝑒𝑑𝑖𝑎𝑛𝑡 denotes the median along the temporal 
axis. Eventually, reflectance values are considered only if they fulfill the 
condition: 

𝑠𝐵2 − �̃�𝑠𝑜𝑖𝑙,𝐵2
!
< 𝜎 ⋅ NMAD, 𝑠 ∈ 𝑆𝑏𝑎𝑟𝑒 (9)

Typically, 𝜎 is set to 3.
The conditions (7) and (9) serve to adapt the scope of cloud exclu-

sion of the MAJA processor to a stricter set of rules. Consequently, only 
pixels that satisfy these criteria are selected for inclusion in the SRC, 
contributing to a more accurate reflection of the spectral signature of 
the actual surface.

2.3. SRC evaluation

Determining the optimal spectral vegetation index, 𝑧(𝑠), is critical 
for the 𝑓𝑏𝑎𝑟𝑒 classifier, ensuring it accurately distinguishes bare soil 
and surface pixels from other pixels using only the Sentinel-2 spectral 
bands’ reflectance vector, 𝑠. The index 𝑧 is parameterized by a set of 
thresholds, so it is able to adapt to the diverse climatic and surface 
conditions. By finding the optimal set of thresholds for various choices 
of 𝑧 at each evaluation pixel, one can draw conclusions about the 
suitability of the chosen spectral index. Ultimately, this performance 
estimation can serve as a baseline for testing the whole SRC generation 
and therefore can quantify improvements made to the processor. 

To evaluate 𝑧, we measure the congruence between the SRCs gen-
erated using a particular 𝑧 and its associated thresholds, and data 
measured on the surface. These reference spectra 𝑞 are derived from 
the LUCAS topsoil database (2015) (Orgiazzi et al., 2018), which was 
resampled according to Section 2.1.3.

To quantify the difference between a single composite spectrum 𝑐
and 𝑞, literature proposes the spectral angle, which is derived from the 
cosine similarity: 

𝛼(𝑐, ⃗𝑠𝑠2) = 𝑐𝑜𝑠−1
(

𝑐 ⋅ 𝑞
‖𝑐‖ ‖𝑞‖

)

. (10)

The measure is invariant to global changes in brightness, e.g. the 
length of the vector in its vector-space (van der Meer, 2006), which 
7 
is important since the reference spectra are scaled differently to the 
remote sensing spectra.

The establishment of a reference dataset, alongside a mechanism for 
its comparison against Sentinel-2 data sets the stage for an optimization 
problem. Our objective is to find, for a choice of 𝑧 at each LUCAS point 
an ideal set of thresholds, that ensure maximum concordance with the 
shape of the LUCAS reference.

For the 𝑗th LUCAS point, a set of thresholds that are used to compute 
the composite 𝐶(𝑧, 𝑔) are required.

The dimension of this set depend on the form of 𝑧 (for example 𝑧
can be a set of multiple spectral indices). The set of (𝑡0, 𝑡1) pairs is called 
𝜏 to avoid confusing subscripts.

The task then becomes identifying the optimal 𝜏𝑗 = (𝜏(𝑗,(1)), 𝜏(𝑗,(2))..)𝑇

for each point that minimizes the angular distance between the SRC 
and the ground truth: 
𝜙𝑗 (𝑧) = 𝑚𝑖𝑛

𝑗

(

𝛼
(

𝐶(𝑧, 𝜏𝑗 ), 𝑞𝑗
))

. (11)

𝐶(𝑧, 𝜏) and in result Eq.  (11) are not smooth nor differentiable. How-
ever, for the optimization, this is necessary. Therefore, the set notation 
of Eq.  (2) is replaced by a soft exclusion using the sigmoid 𝜎(𝑥) = 1

1+𝑒−𝛽𝑥 . 
The soft exclusion is based on the distance between the current guess 
of the thresholds of 𝜏 to the actual value of the spectral index for all 
𝑠 ∈ 𝑆. 

�̂�(𝑧, 𝜏) =
∑𝑖 𝜎(𝑧(𝑋𝑖) − 𝜏)𝑠
∑𝑖 𝜎(𝑧(𝑋𝑖) − 𝜏)

,∀𝑠 ∈ 𝑆 (12)

The parameter 𝛽 is the sharpness of the soft exclusion. It is set to 15 in 
this case.

The performance 𝑝 of 𝑧 using its optimal set of thresholds 𝜏𝑜𝑝𝑡 is the 
average angular distance over all 𝑚 LUCAS points 

𝑝(𝑧) = 1
𝑚

𝑚
∑

𝑗=1
𝜙𝑗 (𝑧). (13)

This is the central measure to evaluate the SRC.
The 𝜏𝑜𝑝𝑡𝑗  that minimizes Eq.  (11) is found iteratively at each LUCAS 

point, using gradient descent: 
𝜏𝑛+1𝑗 = 𝜏𝑛𝑗 − 𝛾∇𝛼

(

𝐶(𝑧, 𝜏𝑛𝑗 ), 𝑞𝑗
)

, (14)

with ∇ =
(

𝜕
𝜕𝜏𝑗,(1)

, 𝜕
𝜕𝜏𝑗,(2)

,…
)

 and a learning rate 𝛾 > 0. The partial 
derivatives are approximated numerically using finite differences. In 
addition to Eq.  (11), there is an additional condition that the number 
of spectra composing the final composite must be at least five for 
each pixel. This requirement reduces the likelihood of overfitting the 
thresholds 𝜏𝑜𝑝𝑡.

For normalized spectral indices that are used in this work, 𝛾 is set 
to 
𝛾 =

𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛
200

, 𝑧 ←←→ [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥]. (15)

Assuming that Eq.  (11) is locally convex, the search described in Eq. 
(14) is terminated upon reaching a local minimum. By restarting the 
algorithm with different initial guesses that converge to the similar 𝜏𝑜𝑝𝑡, 
we assume that Eq.  (11) is indeed convex in the vicinity of its minimum.

2.4. Software and tools

The computations related to the optimization were performed on 
the high-performance data analytics platform terrabyte hosted at 
the Leibniz Supercomputing Center. The source code is mostly written 
in Python and leverages the power of vectorized computations imple-
mented in numpy and scipy for calculations, as well as gdal to 
handle IO. A spectral library of all Sentinel-2 observations in time at 
all LUCAS points allows to generate single pixel SRCs quickly, crucial 
for quick convergence during the gradient descent method.

The final SRC at continental scale was computed using the Soil 
Composite Mapping Processor (SCMaP) from DLR.
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Table 3
Performance 𝑝 according to Eq.  (13), computed from a bare surface discriminator 𝑓𝑏𝑎𝑟𝑒 that is based on the spectral index 𝑧. Lower values of 
𝑝 indicate greater spectral similarity. For readability, 𝑝 was normalized to the performance of NDVI+NBR.
 Spectral index 𝑧 [𝑡𝑚𝑖𝑛 , 𝑡𝑚𝑎𝑥] Initial guess 𝜏0 𝑝(𝑧) normal. 
 NDVI 

(

𝐵8−𝐵4
𝐵8+𝐵4

)

[−1, +1] (−0.25, 0.25)𝑇 1.55  
 NBR2 

(

𝐵11−𝐵12
𝐵11+𝐵12

)

[−1, +1] (−0.3, 0.1)𝑇 1.26  
 NDVI/NBR2 [−1, +1] ((−0.25, 0.25), (−0.3, 0.1))𝑇 1.11  
 BSI −

(

𝐵12+𝐵4−𝐵8𝐴−𝐵2
𝐵12+𝐵4+𝐵8𝐴+𝐵2

)

[−1, +1] (−0.1, 0.1)𝑇 1.09  
 NBR 

(

𝐵8−𝐵12
𝐵8+𝐵12

)

[−1, +1] (−0.3, 0.1)𝑇 1.05  
 NDVI/NBR2/VNSIR [−1,+1]2, R ((−0.25, 0.25), (−0.3, 0.1), (0, 1))𝑇 1.04  
 NDVI+NBR 

(

𝐵8−𝐵4
𝐵8+𝐵4

+ 𝐵8−𝐵12
𝐵8+𝐵12

)

[−2, +2] (−0.6, 0.25)𝑇 1  
 NDVI/NBR 

(

𝐵8−𝐵4
𝐵8+𝐵4

, 𝐵8−𝐵12
𝐵8+𝐵12

)

[−1,+1]2 ((−0.6, 0.25), (−0.5, 0.1))𝑇 0.98  
 NDVI/NBR2/BCC [−1,+1]2, R ((−0.25, 0.25), (−0.3, 0.1), (0, 0.3))𝑇 0.96  
3. Results

3.1. Selection of the spectral index

First,  common choices for a spectral vegetation index 𝑧 from 
publications are investigated (Heiden et al., 2022; Broeg et al., 2024; 
Demattê et al., 2020; Diek et al., 2017). Using the method outlined in 
Section 2.3 to obtain the best set of thresholds for each index at each 
LUCAS point, the Table  3 shows the performance 𝑝(𝑧) of these indices in 
calculating an accurate SRC spectrum at these points. The performance 
is measured according to Eq.  (13), thus, lower values signify greater 
spectral similarity. For readability, the last column is normalized to the 
value of NDVI+NBR.

Table  3 illustrates that NDVI (1.55 times worse than NDVI+NBR) 
and NBR2 (1.26 times worse than NDVI+NBR) on their own are poor 
choices for the classification of bare surfaces.  Combining them into 
a two-stage spectral index with separate, independent thresholds im-
proves their performance to 1.11 times performance of NDVI+NBR. 

Demattê et al. (2020) proposed to add a third stage to the classifier 
called VNSIR: 1 − ((2 ∗ 𝐵4 − 𝐵3 − 𝐵2) + 3 (𝐵12 − 𝐵8)) ∕10000 (see Table 
2).  This improves the combined index substantially to just 1.04 time 
less accurate compared to the NDVI+NBR index.

The BSI (Rikimaru et al., 2002; Diek et al., 2017) manages to pro-
duce SRC spectra about 1.09 times less accurate than the NDVI+NBR 
index and the NBR index performs better, at just 1.05 times worse 
compared to NDVI+NBR. Eventually, by adding the NBR and the NDVI 
(NDVI+NBR), such as proposed by Heiden et al. (2022) , we obtain the 
most effective, single-stage index combination of this list in selecting 
bare surface pixels at the LUCAS sites.

The two-staged NDVI/NBR index with distinct thresholds for both 
components or the three staged NDVI/NBR2/BCC (Broeg et al., 2024) 
improve performance (factors 0.98 and 0.96, respectively). However, 
further analysis will be based on the NDVI+NBR index. It has the 
highest performance of all indices that have only a one-dimensional set 
of thresholds (see column 2), which substantially reduces complexity 
and robustness in the actual SRC generation implementation.

3.2. Validating enhancements to the soil detection and threshold derivation

The thresholds 𝜏𝑜𝑝𝑡 computed in the previous section reflect for 
the NDVI+NBR index the optimal threshold set at each LUCAS site. 
These thresholds are tuned to individual pixels and potentially biased 
to the selection of the LUCAS points; therefore, they cannot be applied 
at broader scales, such as that of Sentinel-2 tiles. Nevertheless, we 
can use the 𝜏𝑜𝑝𝑡 to compare them to the performance 𝑝 of the SRC 
generation. Incorporating successive refinements into 𝑓𝑠𝑜𝑖𝑙, including 
additional cloud filter and land cover adjustments for threshold deriva-
tion, has quantifiably enhanced the accuracy of SRCs.Table  4 shows the 
8 
Table 4
Gradual improvement of the performance of the SRCs built by surface thresholds. Values 
are normalized to the limit of the index. Lower values correspond to greater spectral 
similarity (via lower angular distance) and in result, a better SRC.
 Optimizations for SRC creation Performance 𝑝 of 

surface thresholds
 

 Basic threshold database (HISET) 
Section 2.2.1

1.16  

 + additional cloud filters for SRC 
creation 
Section 2.2.3

1.13  

 + land-cover optimization 
Section 2.2.2

1.07  

 Theoretical limit of the index 
NDVI+NBR

1  

reduction in the angular distance from 116% to 107% of the theoretical 
limit achievable with the NDVI+NBR index at pixel level.

Fig.  4 illustrates  the effect of the optimization of the land cover map 
to estimate the thresholds.  Using the vegetation variability defined 
in Eq.  (6), areas with little change are excluded from HISET.  The 
variability mask reveals that most often the removed areas are mixed 
pixels covering unmanaged fields, which consequently have less chance 
in exposing the bare surface. Removing these pixels (magenta region) 
from the threshold estimation allows for a cleaner separation of the two 
histograms (smaller score) and in result, stricter thresholds (solid line 
compared to dashed line).

Table  4 confirms that throughout Europe the addition of cloud 
filters and a sharper determination of thresholds result in SRCs closer 
to the reference data.

3.3. Performance of regional thresholds

The difference for the computed SRC at the LUCAS points between 
a set of regional thresholds versus a common, global threshold is 
illustrated in Fig.  5. This figure plots the performance of all existing 
composite spectra using the specified threshold versus the percentage of 
valid pixels in the bare surface composites.  An invalid pixel means that 
less than five pixels in the temporal stack are labeled as bare surface, 
which is deemed insufficient for the composition (Dvorakova et al., 
2023).

Ideally, a high performance (low angular distance between the 
LUCAS and the SRC spectra), close to the LUCAS reference data, and 
a high percentage of valid pixels, are desired (upper left corner). As 
shown in Fig.  5, the HISET surface thresholds (+) manage to compute 
composite spectra for over >82% of LUCAS points, while maintaining a 
high performance (an average angular distance of 0.058).

In contrast, all choices for a global threshold (x) either result in 
sparse SRCs (thresholds are excessively strict and exclude too many 



P. Karlshoefer et al. Geoderma 459 (2025) 117340 
Fig. 4. Histograms of the spectral vegetation index NDVI+NBR in the Sentinel-2 tiles 30TYQ and 34UED for grassland (green) and croplands (orange) pixels (both normalized to 
an area of 1). The magenta region marks the pixels that have been removed by a refined landcover mask using the vegetation variability 𝑣, resulting in a sharper separation.
Fig. 5. Performance 𝑝 of composite spectra using the regionalized surface HISET 
(marked with a plus (+)) versus a static global threshold (marked with an (x)) for 
the NDVI+NBR index. The star (*) indicates the theoretical upper limit, constrained 
by the condition to maintain at least 5 bare surface observations per SRC pixel. The 
fraction on the y-axis cannot exceed 1 (indicated by the horizontal dashed line). The 
dashed line connecting the (x) marker indicates that any choice for a global 𝑡1 is further 
away from (*) than (+).

observations) or exhibit a low performance (larger values) to the refer-
ence, thus being less accurate.

The SRC using the pixel-based (optimal) thresholds, that are com-
puted at each LUCAS point, are located at the star, representing the 
theoretical performance limit of the NDVI+NBR index. The star is closer 
to the HISET surface thresholds than any choice for a global threshold, 
indicating that HISET surface thresholds is always a better compromise 
than any globally fixed threshold.

In practice, comparing the performance of the regional HISET sur-
face thresholds for the NDVI+NBR index with global thresholds found 
in the literature reveals a more significant improvement in quality 
9 
than initially suggested by Fig.  5. Table  5 illustrates, that soil spectra 
produced by our surface thresholds are substantially closer to the 
reference data, compared to the method proposed by Demattê et al. 
(2020) in row three.

This demonstrates that even with a well-chosen combination of 
indices, such as the case of the approach used in row three (the index 
performs only slightly worse than the NDVI+NBR, see Table  3), a global 
threshold can significantly impair results.

Broeg et al. (2024) (fourth line of Table  5) use a fixed, global 
threshold initially that is refined on a pixel-level in a second stage. 
While this work is designed for Germany, it was applied in this study at 
the European scale.  Here, the performance is by a factor of 1.14 times 
lower for the European continent.

3.4. Threshold distribution for NDVI+NBR

Fig.  7 presents the resulting SRC from Sentinel-2 data between 2018 
to 2022 displayed in true color  (blue: B02, green: B03, red: B04). 
Pixels shown in white indicate areas with no data, where soil was not 
sufficiently often exposed during the observation period.

The interpolation process to display this large dataset may give the 
impression of a dense map at larger scales in some places like central 
Europe. However, upon zooming in, as highlighted in the window on 
the right, it becomes evident that the map is fragmented. This fragmen-
tation is expected, as many surfaces, such as permanently vegetated 
areas or urban developments, do not expose bare, natural surfaces. Fig. 
6 shows the distribution of HISET surface thresholds for the NDVI+NBR 
index in Europe. The map reveals a diverse and structured distribution 
of thresholds, spanning from −0.12 to 0.6.

4. Discussion

4.1. SRC evaluation method

The framework enables an automatic estimation of the perfor-
mance of various processing parameters involved in the SRC generation 
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Table 5
Comparison of our bare surface reflectance composite generated from the HISET surface thresholds and NDVI+NBR index (second line) to two 
other choices found in literature: A global threshold (third line, Demattê et al., 2020) and a adapted threshold at pixel level (forth line, Broeg 
et al., 2024). The performance between the SRC created by the respective approach and the LUCAS reference is given in absolute figures (where 
lower distance is better) and relative to the SRC created by optimized NDVI+NBR thresholds.
 Approach 𝑡 scope Performance 𝑝
 Absolute Relative 
 NDVI+NBR, optimal thresholds at LUCAS points Pixel-level 0.055 1  
 NDVI+NBR, regional surface thresholds using HISET Regional 0.058 1.07  
 −0.25 < NDVI < 0.25, −0.3 < NBR2 < 0.1, VNSIR < 0.9 Global 0.191 3.58  
 NDVI < 0.45, NBR2 < 0.16, BCC < 0.3; 0.4 percentile NBR2, median Pixel-level 0.063 1.14  
Fig. 6. HISET surface thresholds 𝑡1 for the spectral vegetation index NDVI+NBR that separate bare surfaces and soils from surfaces covered by vegetation in Europe. Values range 
between +0.6 in England to −0.12 in Ukraine.
Fig. 7. SRC in true color (RGB: B04, B03, B02) with equal scaling (5002000). The zoomed-in cutout highlights the local structure. It visually shows the diversity in spectral 
reflectance in Europe, ranging from dark carbon rich soils in Ukraine to soils rich in calcite in central France.
10 
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at reference points, such as the choice of the spectral index, addi-
tional subroutines like cloud detection and filtering, and concepts of 
thresholds (regional vs. global).

To the knowledge of the authors, such a systematic framework 
is novel. It is objective in nature and allows evaluating the choice 
of processing parameters at reference points before the actual large-
scale computation that generates the entire SRC map. The framework 
provides a theoretical upper limit to the achievable performance based 
on the chosen spectral index, thus offering an estimate of the expected 
product quality and facilitating a comparison between successive re-
leases or SRCs developed using different methods.

The optimization approach employed in this study is based on a 
guided descent along partial gradients, chosen for its simplicity and 
decent performance for low-dimensional problems. In theory, gradient-
based methods yield robust solutions when the objective function is 
smooth (differentiable) and convex (Schmidt and Roux, 2013). How-
ever, the SRC generation problem presents challenges in this regard: 
it is inherently non-smooth due to the binary decision of including 
or excluding spectral observations. To mitigate this, a soft exclusion 
strategy was implemented, weighing the contribution of each spectrum 
(Eq.  (12)). However, this complicates an analytic solution of the partial 
derivatives, which, in result, have to be estimated numerically by finite 
differences.

While global convexity cannot be guaranteed, empirical tests sug-
gest that the problem is locally convex in the vicinity of optimal 
solutions. This was confirmed by initializing the algorithm with mul-
tiple perturbed initial guesses that converge to similar solutions (Table 
3).

Here, an alternative implementation using adaptively refined sparse 
grids was considered, that would not require a smooth, differentiable 
problem. But, this would come at the cost of slower convergence (and 
more evaluations of the object function) and; thus, was not used in the 
final version (Bungartz and Griebel, 2004).

Nevertheless, the method is sensitive to tuning of meta-parameters 
of the object function to archive convergence such as step size, ter-
mination criteria and the finite difference distances (Eq.  (15)). For 
instance, the smoothing factor 𝛽 has to maintain smooth transition 
with a monotonous derivative (convexity) while preserving the general 
shape of the object function.

Multiple restarts of the optimization loop and the large volume of 
Sentinel-2 L2A data at the LUCAS points, make the problem computa-
tionally expensive. To address this, data was structured in a relational 
database with parallel I/O and deployed on a high-performance parallel 
file system. Furthermore, the computation can be easily run in parallel, 
as individual pixels are spatially independent, enabling the distribution 
of tasks on multiple processing nodes.

A fundamental requirement for applying the method is the availabil-
ity of a reference dataset that adequately represents the spectral vari-
ability of bare surfaces. Ideally, the reference data should be temporally 
aligned with the remote sensing observations to minimize discrepancies 
caused by changes in land management or surface evolution. The used 
LUCAS samples were collected in 2015, while the Sentinel-2 time series 
spans 2018–2022. Although this is not ideal, the study by Fernández-
Ugalde et al. (2020) has indicated that observable soil property changes 
typically require periods of at least six years. Moreover, no alternative 
harmonized topsoil dataset of comparable scale is currently available. 
Despite the temporal offset, the LUCAS dataset remains a robust choice 
due to its demonstrated ability to represent spatial variability in Eu-
ropean surfaces. For instance, Ballabio et al. (2016) and de Brogniez 
et al. (2015) successfully used LUCAS data to model topsoil physical 
properties and organic carbon maps, respectively.

A second key requirement is the availability of a sufficiently long 
temporal archive of remote sensing observations to increase the likeli-
hood of capturing bare surface conditions and to stabilize SRC spectra 
and to have meaningful gradients. This is relevant for the optimization 
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technique, as the gradual changes towards the reference spectra re-
quires a large pool of observations. In practice, the five-year S2 archive 
used in this study is sufficient, where LUCAS sites have at least 50, 
oftentimes more than 100 spectra. 

The method presumes that cosine similarity is a suitable,
monotonous measure for spectral similarity, particularly for largely 
similar spectra. Despite the widespread use of the spectral angle or 
cosine similarity for clustering spectra in the literature, it might not 
be the optimal choice to find nuanced differences in largely similar 
spectra. An alternative approach worth exploring might involve mea-
suring the distance from the entire distribution 𝑆𝑏𝑎𝑟𝑒 to the LUCAS 
ground reference. This method would consider information otherwise 
lost during the stage of the temporal averaging, potentially offering a 
more comprehensive measure.

4.2. Quality of the bare surface reflectance composites

The impact of a defined processing parameter set on the quality of 
the generated composite spectra was evaluated based on the average 
angular spectral distance (performance). It could be shown that, in 
general, four main aspects impact the quality of an SRC, (1) the 
chosen spectral index, (2) the usage of a well-calibrated regional set 
of threshold as opposed to a single, globally used threshold, (3) the 
trade-off between spatial coverage to spectral fidelity, and (4) a cloud 
filter, specific to bare surface.

Table  3 summarizes the optimal performance of each spectral index 
at all LUCAS points. It highlights the important role of the selec-
tion of spectral index. The NDVI that separates photosynthetically 
active from photosynthetically non-active surfaces is very important 
but shows limited performance when taken alone. Incorporating short-
wave infrared information (e.g., NBR, NBR2) significantly enhances 
performance. Therefore, other authors have used these indices in se-
quence. The best results are achieved using either multiple indices 
(e.g., NDVI/NBR2/VNSIR, NDVI/NBR2/BCC, NDVI/NBR) or combined 
indices (e.g. NDVI+NBR). Among these, NDVI+NBR stands out as both 
effective and practical, while offering strong performance with a simple 
one-dimensional threshold set. This is especially an advantage for 
operational processing because it reduces the effort to define additional 
thresholds. 

Secondly, complementing the index with a regional threshold
dataset significantly improved the accuracy of the SRC, as demon-
strated in Fig.  5. This enhancement is as critical as the choice of the 
index itself. This is evident from the comparison in Table  5, where a 
well-suited index (NDVI/NBR2/VNSIR) combined with a globally static 
threshold was outperformed by NDVI+NBR in conjunction with the 
HISET surface thresholds.

Third, for the effective application of SRCs in spectral soil analysis, a 
trade-off must be maintained between threshold stringency and spatial 
coverage. As shown in Table  4 and Fig.  4, lower threshold values 
refine pixel selection but reduce coverage, affecting both the overall 
SRC extent (Fig.  5) and the number of valid bare surface observations 
per SRC pixel. Using HISET surface thresholds, the SRC bare surface 
pixels over Europe are composed by on average 10.2 distinct S2 ob-
servations. For spectral reliability, at least 7–10 contributing pixels 
are recommended (Dvorakova et al., 2023; Heiden et al., 2022). This 
limitation is particularly relevant in Mediterranean regions, where the 
pixels are often characterized by a spectral mixture between green and 
dry vegetation and soils (e.g. tree crops). When thresholds are too strict, 
this reduces the bare surface coverage substantially.

Fourth, although the overall impact on SRC quality was minor, the 
treatment of cloud contamination warrants discussion. The SRC genera-
tion process includes several steps to ensure cloud-free spectral compos-
ites, beginning with input selection (scenes with less than 80% cloud 
cover) and application of the L2A MAJA cloud mask (MG2). Baetens 
et al. (2019) has shown that MAJA detects clouds with slightly higher 
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Fig. 8. Illustration of the benefit of an outlier-based cloud filter (here in central Iceland). Left: SRC without the filter, showing sharp edges from MAJA cloud masks in the 
composite. Right: With the filter applied, these artifacts are removed.
accuracy compared to Sen2Cor and Fmask (90%). While the quanti-
tative impact of the additional cloud filters specific to bare surface at 
the European scale was limited (Table  4) — likely due to the localized 
nature of cloud artifacts — it proved effective in reducing visually 
disruptive contamination (Fig.  8) without being overly restrictive.

Finally, the HISET method for deriving surface thresholds could 
be compared to other threshold derivation concepts. The HISET sur-
face thresholds demonstrated performance at least equal to the other 
method highlighted in Table  5. The HISET surface thresholds have 
an advantage over methods that fix thresholds to a defined percentile 
(Broeg et al., 2024) because it performs well regardless of the actual 
fraction of bare surface observations in the temporal stack of a pixel. 
For instance, in a stack composed solely of bare pixels, choosing a fixed 
percentile would result in an excessively strict threshold, ultimately 
excluding many valid observations. On the other hand, HISET relies on 
an external land cover (ESA WorldCover) data set that may introduce 
additional uncertainties and dependencies. In this study it was neces-
sary to refine it to yield good performance of spectra generated using 
the HISET surface thresholds (Table  4).

Based on the pixel-specific surface NDVI+NBR thresholds (Fig.  6) 
and the soil-specific cloud handling, a European SRC has been gener-
ated based on the mean of all valid bare surface pixels (Fig.  7). It shows 
a diversity of bare surface reflectance spectra across the continent and 
illuminates the European continent from a novel perspective, offering 
valuable insights into soil characteristics. It is already used as the 
foundation for future research within the domain (van Wesemael et al., 
2024).

5. Conclusion and outlook

The work developed and tested a novel strategy to evaluate the 
process of generating bare surface reflectance composites at large scale 
— in this case for the European continent. The evaluation method was 
specifically designed to overcome the common yet problematic practice 
of assessing the quality of large-scale maps based on small, selectively 
chosen, and potentially biased highlight areas. By replacing subjective 
human judgment with a systematic and reproducible evaluation frame-
work, the approach ensures a more objective and robust assessment 
of the SRC generation process and, thereby significantly increasing 
confidence in the processor’s performance. 

By using guided optimization, it was demonstrated that the spectral 
index NDVI+NBR, complemented with a regional threshold dataset, 
performs well in Europe. Additionally, they showed that it is beneficial 
to build upon available cloud masks by using additional soil-specific 
filters to reduce the effects of residual clouds and haze. HISET to derive 
surface thresholds is a suitable and effective method, when the input 
data is cleaned and cases of too few grassland or cropland pixels are 
dealt with.
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Although the NDVI+NBR index has been validated for its current 
utility, it may not represent the ideal choice for other regions than 
Europe. Expanding the optimization problem to include a search for 
other spectral indices could potentially uncover more adept indices for 
specific regions that may increase the performance.

Future SRC generating methods will leverage hyperspectral data to 
enable a more refined selection of bare surface pixels. While current 
hyperspectral archives lack the temporal density required to generate a 
SRC directly for large-scale applications (Chabrillat et al., 2024), other 
options are feasible. In particular, current research explores training 
machine learning models on paired Sentinel-2 multi-spectral data and 
fractional vegetation cover vectors (photosynthetic, non-photosynthetic 
vegetation, bare surfaces and soils) derived from near-coincident En-
MAP acquisitions. Initial results, as presented by Schwind et al. (2024) 
are promising.

This framework may serve as important instruments to determine 
the quality of bare surface composites as input to soil property mapping 
tasks. Therefore, they could contribute to the monitoring of the soil 
health using satellite data to support the ambitious goal of achieving 
healthy soils in Europe by 2050 (Pieper et al., 2023).

CRediT authorship contribution statement

Paul Karlshoefer: Writing – original draft, Visualization, Valida-
tion, Software, Resources, Methodology, Formal analysis, Data cura-
tion, Conceptualization. Pablo d’Angelo: Writing – review & editing, 
Validation, Supervision, Software, Resources, Methodology, Investiga-
tion, Formal analysis, Data curation, Conceptualization. Jonas Eberle: 
Software, Data curation. Uta Heiden: Writing – review & editing, 
Writing – original draft, Validation, Supervision, Project administra-
tion, Methodology, Investigation, Funding acquisition, Formal analysis, 
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgments

This research received funding from the ESA WORLDSOILS project 
(Contract No. 400131273/20/I-NB) and from the CUP4SOIL project 
with the action No. 2020-2-14. CUP4SOIL belongs to the FPCUP frame-
work, which is financed by the European Commission,  under the 
FPA no.: 275/G/GRO/COPE/17/10042. The authors are grateful to the 
editors and reviewers for their constructive comments and suggestions, 
which helped improve the manuscript.



P. Karlshoefer et al. Geoderma 459 (2025) 117340 
Data availability

The final SRC and other derived products (e.g. standard deviation 
of bare surface pixels per pixel, count of valid and bare surface obser-
vations) named SoilSuite have been made publicly available under 
the license CC-BY-4.0 (SoilSuite, 2024).

References

Baetens, L., Desjardins, C., Hagolle, O., 2019. Validation of copernicus sentinel-2 
cloud masks obtained from MAJA, Sen2Cor, and FMask processors using reference 
cloud masks generated with a supervised active learning procedure. Remote. 
Sens. (ISSN: 2072-4292) 11 (4), http://dx.doi.org/10.3390/rs11040433, URL https:
//www.mdpi.com/2072-4292/11/4/433.

Ballabio, C., Panagos, P., Monatanarella, L., 2016. Mapping topsoil physical properties 
at European scale using the LUCAS database. Geoderma (ISSN: 0016-7061) 261, 
110–123. http://dx.doi.org/10.1016/j.geoderma.2015.07.006, URL https://www.
sciencedirect.com/science/article/pii/S0016706115300173.

Ben-Dor, E., 1994. A precaution regarding cirrus cloud detection from airborne imaging 
spectrometer data using the 1.38 ym water vapor band. Remote Sens. Environ. 50, 
346–350.

Ben-Dor, E., Chabrillat, S., Demattê, J., Taylor, G., Hill, J., Whiting, M., Sommer, S., 
2009. Using imaging spectroscopy to study soil properties. Remote Sens. Env-
iron. (ISSN: 0034-4257) 113, S38–S55. http://dx.doi.org/10.1016/j.rse.2008.09.
019, URL https://www.sciencedirect.com/science/article/pii/S0034425709000753. 
Imaging Spectroscopy Special Issue.

Broeg, T., Don, A., Gocht, A., Scholten, T., Taghizadeh-Mehrjardi, R., Erasmi, S., 
2024. Using local ensemble models and landsat bare soil composites for large-
scale soil organic carbon maps in cropland. Geoderma (ISSN: 0016-7061) 444, 
116850. http://dx.doi.org/10.1016/j.geoderma.2024.116850, URL https://www.
sciencedirect.com/science/article/pii/S001670612400079X.

Bungartz, H.-J., Griebel, M., 2004. Sparse grids. Acta Numer. 13, 147–269. http:
//dx.doi.org/10.1017/S0962492904000182.

Castaldi, F., Chabrillat, S., Chartin, C., Genot, V., Jones, A.R., van Wesemael, B., 2018. 
Estimation of soil organic carbon in arable soil in Belgium and Luxembourg with 
the LUCAS topsoil database. Eur. J. Soil Sci. (ISSN: 1365-2389) 69 (4), 592–603. 
http://dx.doi.org/10.1111/ejss.12553.

Castaldi, F., Chabrillat, S., Don, A., van Wesemael, B., 2019. Soil organic carbon 
mapping using LUCAS topsoil database and sentinel-2 data: An approach to reduce 
soil moisture and crop residue effects. Remote. Sens. (ISSN: 2072-4292) 11 (18), 
2121. http://dx.doi.org/10.3390/rs11182121.

Castaldi, F., Halil Koparan, M., Wetterlind, J., Žydelis, R., Vinci, I., Özge Savaş, A., 
Kıvrak, C., Tunçay, T., Volungevičius, J., Obber, S., Ragazzi, F., Malo, D., 
Vaudour, E., 2023. Assessing the capability of sentinel-2 time-series to estimate 
soil organic carbon and clay content at local scale in croplands. ISPRS J. 
Photogramm. Remote Sens. (ISSN: 0924-2716) 199, 40–60. http://dx.doi.org/10.
1016/j.isprsjprs.2023.03.016, URL https://www.sciencedirect.com/science/article/
pii/S0924271623000771.

Chabrillat, S., Foerster, S., Segl, K., Beamish, A., Brell, M., Asadzadeh, S., Milewski, R., 
Ward, K.J., Brosinsky, A., Koch, K., Scheffler, D., Guillaso, S., Kokhanovsky, A., 
Roessner, S., Guanter, L., Kaufmann, H., Pinnel, N., Carmona, E., Storch, T., 
Hank, T., Berger, K., Wocher, M., Hostert, P., van der Linden, S., Okujeni, A., 
Janz, A., Jakimow, B., Bracher, A., Soppa, M.A., Alvarado, L.M., Buddenbaum, H., 
Heim, B., Heiden, U., Moreno, J., Ong, C., Bohn, N., Green, R.O., Bach-
mann, M., Kokaly, R., Schodlok, M., Painter, T.H., Gascon, F., Buongiorno, F., 
Mottus, M., Brando, V.E., Feilhauer, H., Betz, M., Baur, S., Feckl, R., Schickling, A., 
Krieger, V., Bock, M., La Porta, L., Fischer, S., 2024. The EnMAP spaceborne 
imaging spectroscopy mission: Initial scientific results two years after launch. 
Remote Sens. Environ. (ISSN: 0034-4257) 315, 114379. http://dx.doi.org/10.
1016/j.rse.2024.114379, URL https://www.sciencedirect.com/science/article/pii/
S003442572400405X.

Chabrillat, S., Goetz, A.F., Krosley, L., Olsen, H.W., 2002. Use of hyperspectral images 
in the identification and mapping of expansive clay soils and the role of spatial 
resolution. Remote Sens. Environ. (ISSN: 0034-4257) 82 (2), 431–445. http://
dx.doi.org/10.1016/S0034-4257(02)00060-3, URL https://www.sciencedirect.com/
science/article/pii/S0034425702000603.

Coops, N.C., Kearney, S.P., Bolton, D.K., Radeloff, V.C., 2018. Remotely-sensed produc-
tivity clusters capture global biodiversity patterns. Sci. Rep. (ISSN: 2045-2322) 8 
(1), http://dx.doi.org/10.1038/s41598-018-34162-8.

Copernicus, E., 2020. MultiSpectral instrument (MSI) overview. https://web.
archive.org/web/20201017053209/https://earth.esa.int/web/sentinel/technical-
guides/sentinel-2-msi/msi-instrument. (Accessed 15 April 2025).

Corbane, C., Politis, P., Kempeneers, P., Simonetti, D., Soille, P., Burger, A., Pesaresi, M., 
Sabo, F., Syrris, V., Kemper, T., 2020. A global cloud free pixel- based image com-
posite from sentinel-2 data. Data Brief (ISSN: 2352-3409) 31, 105737. http://dx.
doi.org/10.1016/j.dib.2020.105737, URL https://www.sciencedirect.com/science/
article/pii/S2352340920306314.
13 
Daughtry, C., Hunt, E., 2008. Mitigating the effects of soil and residue water contents 
on remotely sensed estimates of crop residue cover. Remote Sens. Environ. (ISSN: 
0034-4257) 112 (4), 1647–1657. http://dx.doi.org/10.1016/j.rse.2007.08.006.

de Brogniez, D., Ballabio, C., Stevens, A., Jones, R.J.A., Montanarella, L., van Wese-
mael, B., 2015. A map of the topsoil organic carbon content of europe generated 
by a generalized additive model. Eur. J. Soil Sci. 66 (1), 121–134. http://dx.doi.
org/10.1111/ejss.12193, URL https://bsssjournals.onlinelibrary.wiley.com/doi/abs/
10.1111/ejss.12193. arXiv:https://bsssjournals.onlinelibrary.wiley.com/doi/pdf/10.
1111/ejss.12193.

Demattê, J.A.M., Fongaro, C.T., Rizzo, R., Safanelli, J.L., 2018. Geospatial soil 
sensing system (GEOS3): A powerful data mining procedure to retrieve soil 
spectral reflectance from satellite images. Remote Sens. Environ. (ISSN: 0034-
4257) 212, 161–175. http://dx.doi.org/10.1016/j.rse.2018.04.047, URL https://
www.sciencedirect.com/science/article/pii/S0034425718302049.

Demattê, J.A., Safanelli, J.L., Poppiel, R.R., Rizzo, R., Silvero, N.E.Q., Mendes, W.d., 
Bonfatti, B.R., Dotto, A.C., Salazar, D.F.U., Mello, F.A.d., da Silveira Paiva, A.F., 
Souza, A.B., dos Santos, N.V., Nascimento, C.M., de Mello, D.C., Bellinaso, H., 
Neto, L.G., Amorim, M.T.A., de Resende, M.E.B., da Souza Vieira, J., de 
Queiroz, L.G., Gallo, B.C., Sayão, V.M., da Silva Lisboa, C.J., 2020. Bare earth’s 
surface spectra as a proxy for soil resource monitoring. Sci. Rep. (ISSN: 2045-2322) 
10, http://dx.doi.org/10.1038/s41598-020-61408-1.

Dennison, P.E., Lamb, B.T., Campbell, M.J., Kokaly, R.F., Hively, W.D., Vermote, E., 
Dabney, P., Serbin, G., Quemada, M., Daughtry, C.S., Masek, J., Wu, Z., 2023. 
Modeling global indices for estimating non-photosynthetic vegetation cover. Remote 
Sens. Environ. (ISSN: 0034-4257) 295, 113715. http://dx.doi.org/10.1016/j.rse.
2023.113715.

Dennison, P.E., Qi, Y., Meerdink, S.K., Kokaly, R.F., Thompson, D.R., Daughtry, C.S.T., 
Quemada, M., Roberts, D.A., Gader, P.D., Wetherley, E.B., Numata, I., Roth, K.L., 
2019. Comparison of methods for modeling fractional cover using simulated 
satellite hyperspectral imager spectra. Remote. Sens. (ISSN: 2072-4292) 11 (18), 
2072. http://dx.doi.org/10.3390/rs11182072.

Deventer, v., Ward, A., Gowda, P., Lyon, J., 1997. Using thematic mapper data to 
identify contrasting soil plains and tillage practices. Photogramm. Eng. Remote 
Sens. 63, 87–93.

Diek, S., Fornallaz, F., Schaepman, M.E., De Jong, R., 2017. Barest pixel composite 
for agricultural areas using landsat time series. Remote. Sens. (ISSN: 2072-4292) 
9 (12), http://dx.doi.org/10.3390/rs9121245, URL https://www.mdpi.com/2072-
4292/9/12/1245.

Dvorakova, K., Heiden, U., Pepers, K., Staats, G., van Os, G., van Wesemael, B., 
2023. Improving soil organic carbon predictions from a sentinel-2 soil composite 
by assessing surface conditions and uncertainties. Geoderma (ISSN: 0016-7061) 
429, 116128. http://dx.doi.org/10.1016/j.geoderma.2022.116128, URL https://
www.sciencedirect.com/science/article/pii/S0016706122004359.

Dvorakova, K., Heiden, U., van Wesemael, B., 2021. Sentinel-2 exposed soil composite 
for soil organic carbon prediction. Remote. Sens. (ISSN: 2072-4292) 13 (9), http:
//dx.doi.org/10.3390/rs13091791, URL https://www.mdpi.com/2072-4292/13/9/
1791.

EEA, 2016. Biogeographical regions Europe. URL https://www.eea.europa.eu/en/
datahub/datahubitem-view/11db8d14-f167-4cd5-9205-95638dfd9618.

ESA, 2021. Level-2A algorithm theoretical basis document. X.
European Space Agency (ESA), 2015. Sentinel-2 user handbook. URL https://sentinels.

copernicus.eu/documents/247904/685211/Sentinel-2_User_Handbook.
Fernández-Ugalde, O., Ballabio, C., Lugato, E., Scarpa, S., Jones, A., 2020. Assessment 

of changes in topsoil properties in LUCAS samples between 2009/2012 and 2015 
surveys. Publ. Off. Eur. Union http://dx.doi.org/10.2760/5503.

Gallo, B.C., Demattê, J.A.M., Rizzo, R., Safanelli, J.L., Mendes, W.D.S., Lepsch, I.F., 
Sato, M.V., Romero, D.J., Lacerda, M.P.C., 2018. Multi-temporal satellite images on 
topsoil attribute quantification and the relationship with soil classes and geology. 
Remote. Sens. (ISSN: 2072-4292) 10 (10), http://dx.doi.org/10.3390/rs10101571, 
URL https://www.mdpi.com/2072-4292/10/10/1571.

García, M.L., Caselles, V., 1991. Mapping burns and natural reforestation using 
thematic mapper data. Geocarto Int. 6 (1), 31–37. http://dx.doi.org/10.1080/
10106049109354290.

Gasmi, A., Gomez, C., Lagacherie, P., Zouari, H., Laamrani, A., Chehbouni, A., 
2021. Mean spectral reflectance from bare soil pixels along a landsat-TM time 
series to increase both the prediction accuracy of soil clay content and mapping 
coverage. Geoderma (ISSN: 0016-7061) 388, 114864. http://dx.doi.org/10.1016/
j.geoderma.2020.114864, URL https://www.sciencedirect.com/science/article/pii/
S0016706120326197.

Gerighausen, H., Menz, G., Kaufmann, H., 2012. Spatially explicit estimation of 
clay and organic carbon content in agricultural soils using multi-annual imaging 
spectroscopy data. Appl. Environ. Soil Sci. 2012, 868090. http://dx.doi.org/10.
1155/2012/868090, URL https://www.hindawi.com/journals/aess/2012/868090/.

Gillespie, A.R., Kahle, A.B., Walker, R.E., 1987. Color enhancement of highly cor-
related images. II. Channel ratio and ‘‘chromaticity’’ transformation techniques. 
Remote Sens. Environ. (ISSN: 0034-4257) 22 (3), 343–365. http://dx.doi.org/10.
1016/0034-4257(87)90088-5, URL https://www.sciencedirect.com/science/article/
pii/0034425787900885.

http://dx.doi.org/10.3390/rs11040433
https://www.mdpi.com/2072-4292/11/4/433
https://www.mdpi.com/2072-4292/11/4/433
https://www.mdpi.com/2072-4292/11/4/433
http://dx.doi.org/10.1016/j.geoderma.2015.07.006
https://www.sciencedirect.com/science/article/pii/S0016706115300173
https://www.sciencedirect.com/science/article/pii/S0016706115300173
https://www.sciencedirect.com/science/article/pii/S0016706115300173
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb3
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb3
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb3
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb3
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb3
http://dx.doi.org/10.1016/j.rse.2008.09.019
http://dx.doi.org/10.1016/j.rse.2008.09.019
http://dx.doi.org/10.1016/j.rse.2008.09.019
https://www.sciencedirect.com/science/article/pii/S0034425709000753
http://dx.doi.org/10.1016/j.geoderma.2024.116850
https://www.sciencedirect.com/science/article/pii/S001670612400079X
https://www.sciencedirect.com/science/article/pii/S001670612400079X
https://www.sciencedirect.com/science/article/pii/S001670612400079X
http://dx.doi.org/10.1017/S0962492904000182
http://dx.doi.org/10.1017/S0962492904000182
http://dx.doi.org/10.1017/S0962492904000182
http://dx.doi.org/10.1111/ejss.12553
http://dx.doi.org/10.3390/rs11182121
http://dx.doi.org/10.1016/j.isprsjprs.2023.03.016
http://dx.doi.org/10.1016/j.isprsjprs.2023.03.016
http://dx.doi.org/10.1016/j.isprsjprs.2023.03.016
https://www.sciencedirect.com/science/article/pii/S0924271623000771
https://www.sciencedirect.com/science/article/pii/S0924271623000771
https://www.sciencedirect.com/science/article/pii/S0924271623000771
http://dx.doi.org/10.1016/j.rse.2024.114379
http://dx.doi.org/10.1016/j.rse.2024.114379
http://dx.doi.org/10.1016/j.rse.2024.114379
https://www.sciencedirect.com/science/article/pii/S003442572400405X
https://www.sciencedirect.com/science/article/pii/S003442572400405X
https://www.sciencedirect.com/science/article/pii/S003442572400405X
http://dx.doi.org/10.1016/S0034-4257(02)00060-3
http://dx.doi.org/10.1016/S0034-4257(02)00060-3
http://dx.doi.org/10.1016/S0034-4257(02)00060-3
https://www.sciencedirect.com/science/article/pii/S0034425702000603
https://www.sciencedirect.com/science/article/pii/S0034425702000603
https://www.sciencedirect.com/science/article/pii/S0034425702000603
http://dx.doi.org/10.1038/s41598-018-34162-8
https://web.archive.org/web/20201017053209/https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/msi-instrument
https://web.archive.org/web/20201017053209/https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/msi-instrument
https://web.archive.org/web/20201017053209/https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/msi-instrument
https://web.archive.org/web/20201017053209/https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/msi-instrument
https://web.archive.org/web/20201017053209/https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/msi-instrument
http://dx.doi.org/10.1016/j.dib.2020.105737
http://dx.doi.org/10.1016/j.dib.2020.105737
http://dx.doi.org/10.1016/j.dib.2020.105737
https://www.sciencedirect.com/science/article/pii/S2352340920306314
https://www.sciencedirect.com/science/article/pii/S2352340920306314
https://www.sciencedirect.com/science/article/pii/S2352340920306314
http://dx.doi.org/10.1016/j.rse.2007.08.006
http://dx.doi.org/10.1111/ejss.12193
http://dx.doi.org/10.1111/ejss.12193
http://dx.doi.org/10.1111/ejss.12193
https://bsssjournals.onlinelibrary.wiley.com/doi/abs/10.1111/ejss.12193
https://bsssjournals.onlinelibrary.wiley.com/doi/abs/10.1111/ejss.12193
https://bsssjournals.onlinelibrary.wiley.com/doi/abs/10.1111/ejss.12193
https://bsssjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/ejss.12193
https://bsssjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/ejss.12193
https://bsssjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/ejss.12193
http://dx.doi.org/10.1016/j.rse.2018.04.047
https://www.sciencedirect.com/science/article/pii/S0034425718302049
https://www.sciencedirect.com/science/article/pii/S0034425718302049
https://www.sciencedirect.com/science/article/pii/S0034425718302049
http://dx.doi.org/10.1038/s41598-020-61408-1
http://dx.doi.org/10.1016/j.rse.2023.113715
http://dx.doi.org/10.1016/j.rse.2023.113715
http://dx.doi.org/10.1016/j.rse.2023.113715
http://dx.doi.org/10.3390/rs11182072
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb21
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb21
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb21
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb21
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb21
http://dx.doi.org/10.3390/rs9121245
https://www.mdpi.com/2072-4292/9/12/1245
https://www.mdpi.com/2072-4292/9/12/1245
https://www.mdpi.com/2072-4292/9/12/1245
http://dx.doi.org/10.1016/j.geoderma.2022.116128
https://www.sciencedirect.com/science/article/pii/S0016706122004359
https://www.sciencedirect.com/science/article/pii/S0016706122004359
https://www.sciencedirect.com/science/article/pii/S0016706122004359
http://dx.doi.org/10.3390/rs13091791
http://dx.doi.org/10.3390/rs13091791
http://dx.doi.org/10.3390/rs13091791
https://www.mdpi.com/2072-4292/13/9/1791
https://www.mdpi.com/2072-4292/13/9/1791
https://www.mdpi.com/2072-4292/13/9/1791
https://www.eea.europa.eu/en/datahub/datahubitem-view/11db8d14-f167-4cd5-9205-95638dfd9618
https://www.eea.europa.eu/en/datahub/datahubitem-view/11db8d14-f167-4cd5-9205-95638dfd9618
https://www.eea.europa.eu/en/datahub/datahubitem-view/11db8d14-f167-4cd5-9205-95638dfd9618
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb26
https://sentinels.copernicus.eu/documents/247904/685211/Sentinel-2_User_Handbook
https://sentinels.copernicus.eu/documents/247904/685211/Sentinel-2_User_Handbook
https://sentinels.copernicus.eu/documents/247904/685211/Sentinel-2_User_Handbook
http://dx.doi.org/10.2760/5503
http://dx.doi.org/10.3390/rs10101571
https://www.mdpi.com/2072-4292/10/10/1571
http://dx.doi.org/10.1080/10106049109354290
http://dx.doi.org/10.1080/10106049109354290
http://dx.doi.org/10.1080/10106049109354290
http://dx.doi.org/10.1016/j.geoderma.2020.114864
http://dx.doi.org/10.1016/j.geoderma.2020.114864
http://dx.doi.org/10.1016/j.geoderma.2020.114864
https://www.sciencedirect.com/science/article/pii/S0016706120326197
https://www.sciencedirect.com/science/article/pii/S0016706120326197
https://www.sciencedirect.com/science/article/pii/S0016706120326197
http://dx.doi.org/10.1155/2012/868090
http://dx.doi.org/10.1155/2012/868090
http://dx.doi.org/10.1155/2012/868090
https://www.hindawi.com/journals/aess/2012/868090/
http://dx.doi.org/10.1016/0034-4257(87)90088-5
http://dx.doi.org/10.1016/0034-4257(87)90088-5
http://dx.doi.org/10.1016/0034-4257(87)90088-5
https://www.sciencedirect.com/science/article/pii/0034425787900885
https://www.sciencedirect.com/science/article/pii/0034425787900885
https://www.sciencedirect.com/science/article/pii/0034425787900885


P. Karlshoefer et al. Geoderma 459 (2025) 117340 
Hagolle, O., Colin, J., Coustance, S., Kettig, P., D’Angelo, P., Auer, S., Doxani, G., 
Desjardins, C., 2021. Sentinel-2 surface reflectance products generated by CNES and 
DLR: Methods, validation and applications. ISPRS Ann. Photogramm. Remote. Sens. 
Spat. Inf. Sci. V-1-2021, 9–15. http://dx.doi.org/10.5194/isprs-annals-V-1-2021-9-
2021, URL https://isprs-annals.copernicus.org/articles/V-1-2021/9/2021/.

Hagolle, O., Huc, M., Desjardins, C., Auer, S., Richter, R., 2018. MAJA algorithm 
theoretical basis document. http://dx.doi.org/10.5281/zenodo.1209633.

Hagolle, O., Huc, M., Pascual, D.V., Dedieu, G., 2010. A multi-temporal method 
for cloud detection, applied to FORMOSAT-2, venus, LANDSAT and SENTINEL-
2 images. Remote Sens. Environ. (ISSN: 0034-4257) 114 (8), 1747–1755. http:
//dx.doi.org/10.1016/j.rse.2010.03.002.

Heiden, U., d’Angelo, P., Schwind, P., Karlshöfer, P., Müller, R., Zepp, S., Wiesmeier, M., 
Reinartz, P., 2022. Soil reflectance composites—Improved thresholding and perfor-
mance evaluation. Remote. Sens. (ISSN: 2072-4292) 14, http://dx.doi.org/10.3390/
rs14184526.

Kempeneers, P., Soille, P., 2017. Optimizing sentinel-2 image selection in a big data 
context. Big Earth Data 1 (1–2), 145–158. http://dx.doi.org/10.1080/20964471.
2017.1407489, arXiv:https://doi.org/10.1080/20964471.2017.1407489.

Ku, N.-W., Popescu, S., Eriksson, M., 2021. Regionalization of an existing global 
forest canopy height model for forests of the southern United States. Remote. 
Sens. (ISSN: 2072-4292) 13 (9), http://dx.doi.org/10.3390/rs13091722, URL https:
//www.mdpi.com/2072-4292/13/9/1722.

Meyers, J., 2015. Sentinel-2 UTM tiling grid (ESA). https://github.com/
justinelliotmeyers/Sentinel-2-Shapefile-Index.

Minasny, B., McBratney, A., 2016. Digital soil mapping: A brief history and some 
lessons. Geoderma (ISSN: 0016-7061) 264, 301–311. http://dx.doi.org/10.1016/
j.geoderma.2015.07.017, URL https://www.sciencedirect.com/science/article/pii/
S0016706115300276. Soil mapping, classification, and modelling: history and 
future directions.

Montanarella, L., Badraoui, M., Chude, V., Baptista, I., Mamo, T., Yemefack, M., 
Aulakh, M., Yagi, K., Hong, S.-Y., Vijarnsorn, P., Zhang, G.-L., Arrouays, D., 
Black, H., Krasilnikov, P., Sobocká, J., Alegre, J., Henríquez, C., Mendonça San-
tos, M., Taboada, M., McKenzie, N., 2015. The Status of the World’s Soil Resources 
(Main Report). UN, URL http://www.fao.org/3/a-i5199e.pdf.

Mulder, V., de Bruin, S., Schaepman, M., Mayr, T., 2011. The use of remote sensing 
in soil and terrain mapping - A review. Geoderma (ISSN: 0016-7061) 162 
(1), 1–19. http://dx.doi.org/10.1016/j.geoderma.2010.12.018, URL https://www.
sciencedirect.com/science/article/pii/S0016706110003976.

Mzid, N., Castaldi, F., Tolomio, M., Pascucci, S., Casa, R., Pignatti, S., 2022. Evaluation 
of agricultural bare soil properties retrieval from landsat 8, sentinel-2 and PRISMA 
satellite data. Remote. Sens. (ISSN: 2072-4292) 14 (3), 714. http://dx.doi.org/10.
3390/rs14030714.

Nocita, M., Stevens, A., van Wesemael, B., Aitkenhead, M., Bachmann, M., Barthès, B., 
Ben Dor, E., Brown, D.J., Clairotte, M., Csorba, A., Dardenne, P., Demattê, J.A., 
Genot, V., Guerrero, C., Knadel, M., Montanarella, L., Noon, C., Ramirez-
Lopez, L., Robertson, J., Sakai, H., Soriano-Disla, J.M., Shepherd, K.D., Stenberg, B., 
Towett, E.K., Vargas, R., Wetterlind, J., 2015. Soil spectroscopy: An alternative 
to wet chemistry for soil monitoring. In: Advances in Agronomy. Elsevier, pp. 
139–159. http://dx.doi.org/10.1016/bs.agron.2015.02.002.

Odusanya, A.E., Schulz, K., Mehdi-Schulz, B., 2022. Using a regionalisation approach 
to evaluate streamflow simulated by an ecohydrological model calibrated with 
global land surface evaporation from remote sensing. J. Hydrol.: Reg. Stud. (ISSN: 
2214-5818) 40, 101042. http://dx.doi.org/10.1016/j.ejrh.2022.101042, URL https:
//www.sciencedirect.com/science/article/pii/S2214581822000556.

Okujeni, A., Kowalski, K., Lewińska, K.E., Schneidereit, S., Hostert, P., 2024. Mul-
tidecadal grassland fractional cover time series retrieval for Germany from 
the landsat and sentinel-2 archives. Remote Sens. Environ. (ISSN: 0034-4257) 
302, 113980. http://dx.doi.org/10.1016/j.rse.2023.113980, URL https://www.
sciencedirect.com/science/article/pii/S0034425723005321.

Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A., Fernández-Ugalde, O., 2017. LUCAS 
soil, the largest expandable soil dataset for Europe: a review. Eur. J. Soil Sci. (ISSN: 
1365-2389) 69 (1), 140–153. http://dx.doi.org/10.1111/ejss.12499.

Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A., Fernandez-Ugalde, O., 2018. 
LUCAS soil, the largest expandable soil dataset for Europe: a review. Eur. 
J. Soil Sci. 69 (1), 140–153. http://dx.doi.org/10.1111/ejss.12499, URL https:
//bsssjournals.onlinelibrary.wiley.com/doi/abs/10.1111/ejss.12499. arXiv:https://
bsssjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/ejss.12499.

Pieper, S., Frauenstein, J., Ginsky, H., Glante, F., Grimski, D., Kotschik, P., Marx, K., 
2023. The upcoming European soil health law -chances and challenges for an 
effective soil protection. Umweltbundesamt.

Poggio, L., de Sousa, L.M., Batjes, N.H., Heuvelink, G.B.M., Kempen, B., Ribeiro, E., 
Rossiter, D., 2021. SoilGrids 2.0: producing soil information for the globe with 
quantified spatial uncertainty. SOIL 7 (1), 217–240. http://dx.doi.org/10.5194/soil-
7-217-2021, URL https://soil.copernicus.org/articles/7/217/2021/.

Rikimaru, A., Roy, P., Miyatake, S., et al., 2002. Tropical forest cover density mapping. 
Trop. Ecol. 43 (1), 39–47.

Rizzo, R., Wadoux, A.M.-C., Demattê, J.A., Minasny, B., Barrãn, V., Ben-Dor, E., 
Francos, N., Savin, I., Poppiel, R., Silvero, N.E., da Silva Terra, F., Rosin, N.A., 
Rosas, J.T.F., Greschuk, L.T., Ballester, M.V., Gãmez, A.M.R., Belllinaso, H., 
Safanelli, J.L., Chabrillat, S., Fiorio, P.R., Das, B.S., Malone, B.P., Zalidis, G., 
14 
Tziolas, N., Tsakiridis, N., Karyotis, K., Samarinas, N., Kalopesa, E., Gholizadeh, A., 
Shepherd, K.D., Milewski, R., Vaudour, E., Wang, C., Salama, E.S.M., 2023. Remote 
sensing of the earth’s soil color in space and time. Remote Sens. Environ. (ISSN: 
0034-4257) 299, 113845. http://dx.doi.org/10.1016/j.rse.2023.113845, URL https:
//www.sciencedirect.com/science/article/pii/S0034425723003966.

Roberts, D., Wilford, J., Ghattas, O., 2019. Exposed soil and mineral map of the Aus-
tralian continent revealing the land at its barest. Nat. Commun. (ISSN: 2041-1723) 
10 (1), http://dx.doi.org/10.1038/s41467-019-13276-1.

Rogge, D., Bauer, A., Zeidler, J., Mueller, A., Esch, T., Heiden, U., 2018. Building 
an exposed soil composite processor (SCMaP) for mapping spatial and temporal 
characteristics of soils with landsat imagery (1984–2014). Remote Sens. Environ. 
(ISSN: 0034-4257) 205, 1–17. http://dx.doi.org/10.1016/j.rse.2017.11.004, URL 
https://www.sciencedirect.com/science/article/pii/S003442571730514X.

Rouse, J., Haas, R., Schell, J., Deering, D., 1974. Monitoring vegetation systems in 
the great plains with ERTS. In: Freden, S.C., Mercanti, E.P., Becker, M. (Eds.), 
Third Earth Resources Technology Satellite–1 Syposium. Volume I: Technical 
Presentations. NASASP-351, NASA, Washington, D.C., pp. 309–317.

Safanelli, J.L., Chabrillat, S., Ben-Dor, E., Demattê, J.A.M., 2020. Multispectral models 
from bare soil composites for mapping topsoil properties over europe. Remote. 
Sens. (ISSN: 2072-4292) 12 (9), 102277. http://dx.doi.org/10.3390/rs12091369, 
URL https://www.mdpi.com/2072-4292/12/9/1369.

Schmidt, M., Roux, N.L., 2013. Fast convergence of stochastic gradient descent under a 
strong growth condition. arXiv:1308.6370. URL https://arxiv.org/abs/1308.6370.

Schwind, P., Kühl, K., Marshall Ingram, D., Bachmann, M., Heiden, U., 2024. Using 
deep learning to generate fractional vegetation cover from multispectral data. In: 
13th EARSeL Workshop on Imaging Spectroscopy.

Serfling, R., 2011. Asymptotic relative efficiency in estimation. In: Encyclo-
pedia of Statistical Sciences. Springer, p. 1. http://dx.doi.org/10.1007/978-
3-642-04898-2_126, URL https://www.researchgate.net/publication/260387595_
Asymptotic_Relative_Efficiency_in_Estimation.

Simonetti, D., Pimple, U., Langner, A., Marelli, A., 2021. Pan-tropical 
sentinel-2 cloud-free annual composite datasets. Data Brief (ISSN: 2352-
3409) 39, 107488. http://dx.doi.org/10.1016/j.dib.2021.107488, URL 
https://www.sciencedirect.com/science/article/pii/S2352340921007691.

Skakun, S., Wevers, J., Brockmann, C., Doxani, G., Aleksandrov, M., Batič, M., 
Frantz, D., Gascon, F., Gómez-Chova, L., Hagolle, O., López-Puigdollers, D., 
Louis, J., Lubej, M., Mateo-García, G., Osman, J., Peressutti, D., Pflug, B., Puc, J., 
Richter, R., Roger, J.-C., Scaramuzza, P., Vermote, E., Vesel, N., Zupanc, A., 
Žust, L., 2022. Cloud mask intercomparison exercise (CMIX): An evaluation of 
cloud masking algorithms for landsat 8 and sentinel-2. Remote Sens. Environ. 
(ISSN: 0034-4257) 274, 112990. http://dx.doi.org/10.1016/j.rse.2022.112990, URL 
https://www.sciencedirect.com/science/article/pii/S0034425722001043.

SoilSuite, 2024. Entinel-2 5-year (2018–2022) composites at European scale. http://
dx.doi.org/10.15489/qkud8cudg596, URL https://geoservice.dlr.de/web/datasets/
soilsuite_eur_5y.

Tziolas, N., Tsakiridis, N., Ben-Dor, E., Theocharis, J., Zalidis, G., 2020a. Employing 
a multi-input deep convolutional neural network to derive soil clay content 
from a synergy of multi-temporal optical and radar imagery data. Remote. Sens. 
(ISSN: 2072-4292) 12 (9), http://dx.doi.org/10.3390/rs12091389, URL https://
www.mdpi.com/2072-4292/12/9/1389.

Tziolas, N., Tsakiridis, N., Heiden, U., van Wesemael, B., 2024. Soil organic carbon 
mapping utilizing convolutional neural networks and earth observation data, a case 
study in Bavaria state Germany. Geoderma (ISSN: 0016-7061) 444, 116867. http://
dx.doi.org/10.1016/j.geoderma.2024.116867, URL https://www.sciencedirect.com/
science/article/pii/S001670612400096X.

Tziolas, N., Tsakiridis, N., Ogen, Y., Kalopesa, E., Ben-Dor, E., Theocharis, J., Zalidis, G., 
2020b. An integrated methodology using open soil spectral libraries and earth 
observation data for soil organic carbon estimations in support of soil-related SDGs. 
Remote Sens. Environ. (ISSN: 0034-4257) 244, 111793. http://dx.doi.org/10.1016/
j.rse.2020.111793.

Urbina-Salazar, D., Vaudour, E., Baghdadi, N., Ceschia, E., Richer-de Forges, A.C., 
Lehmann, S., Arrouays, D., 2021. Using sentinel-2 images for soil organic car-
bon content mapping in croplands of southwestern France. The usefulness of 
sentinel-1/2 derived moisture maps and mismatches between sentinel images and 
sampling dates. Remote. Sens. (ISSN: 2072-4292) 13 (24), http://dx.doi.org/10.
3390/rs13245115, URL https://www.mdpi.com/2072-4292/13/24/5115.

van der Meer, F., 2006. The effectiveness of spectral similarity measures for the analysis 
of hyperspectral imagery. Int. J. Appl. Earth Obs. Geoinf. (ISSN: 1872826X) 8, 3–17. 
http://dx.doi.org/10.1016/j.jag.2005.06.001.

van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., 
Yager, N., Gouillart, E., Yu, T., the scikit-image contributors, 2014. Scikit-image: 
image processing in python. PeerJ (ISSN: 2167-8359) 2, e453. http://dx.doi.org/
10.7717/peerj.453.

van Wesemael, B., Abdelbaki, A., Ben-Dor, E., Chabrillat, S., d’Angelo, P., Demattê, J.A., 
Genova, G., Gholizadeh, A., Heiden, U., Karlshoefer, P., Milewski, R., Poggio, L., 
Sabetizade, M., Sanz, A., Schwind, P., Tsakiridis, N., Tziolas, N., Yagüe, J., 
Žížala, D., 2024. A European soil organic carbon monitoring system leveraging 
sentinel 2 imagery and the LUCAS soil data base. Geoderma (ISSN: 0016-7061) 
452, 117113. http://dx.doi.org/10.1016/j.geoderma.2024.117113, URL https://
www.sciencedirect.com/science/article/pii/S0016706124003422.

http://dx.doi.org/10.5194/isprs-annals-V-1-2021-9-2021
http://dx.doi.org/10.5194/isprs-annals-V-1-2021-9-2021
http://dx.doi.org/10.5194/isprs-annals-V-1-2021-9-2021
https://isprs-annals.copernicus.org/articles/V-1-2021/9/2021/
http://dx.doi.org/10.5281/zenodo.1209633
http://dx.doi.org/10.1016/j.rse.2010.03.002
http://dx.doi.org/10.1016/j.rse.2010.03.002
http://dx.doi.org/10.1016/j.rse.2010.03.002
http://dx.doi.org/10.3390/rs14184526
http://dx.doi.org/10.3390/rs14184526
http://dx.doi.org/10.3390/rs14184526
http://dx.doi.org/10.1080/20964471.2017.1407489
http://dx.doi.org/10.1080/20964471.2017.1407489
http://dx.doi.org/10.1080/20964471.2017.1407489
https://doi.org/10.1080/20964471.2017.1407489
http://dx.doi.org/10.3390/rs13091722
https://www.mdpi.com/2072-4292/13/9/1722
https://www.mdpi.com/2072-4292/13/9/1722
https://www.mdpi.com/2072-4292/13/9/1722
https://github.com/justinelliotmeyers/Sentinel-2-Shapefile-Index
https://github.com/justinelliotmeyers/Sentinel-2-Shapefile-Index
https://github.com/justinelliotmeyers/Sentinel-2-Shapefile-Index
http://dx.doi.org/10.1016/j.geoderma.2015.07.017
http://dx.doi.org/10.1016/j.geoderma.2015.07.017
http://dx.doi.org/10.1016/j.geoderma.2015.07.017
https://www.sciencedirect.com/science/article/pii/S0016706115300276
https://www.sciencedirect.com/science/article/pii/S0016706115300276
https://www.sciencedirect.com/science/article/pii/S0016706115300276
http://www.fao.org/3/a-i5199e.pdf
http://dx.doi.org/10.1016/j.geoderma.2010.12.018
https://www.sciencedirect.com/science/article/pii/S0016706110003976
https://www.sciencedirect.com/science/article/pii/S0016706110003976
https://www.sciencedirect.com/science/article/pii/S0016706110003976
http://dx.doi.org/10.3390/rs14030714
http://dx.doi.org/10.3390/rs14030714
http://dx.doi.org/10.3390/rs14030714
http://dx.doi.org/10.1016/bs.agron.2015.02.002
http://dx.doi.org/10.1016/j.ejrh.2022.101042
https://www.sciencedirect.com/science/article/pii/S2214581822000556
https://www.sciencedirect.com/science/article/pii/S2214581822000556
https://www.sciencedirect.com/science/article/pii/S2214581822000556
http://dx.doi.org/10.1016/j.rse.2023.113980
https://www.sciencedirect.com/science/article/pii/S0034425723005321
https://www.sciencedirect.com/science/article/pii/S0034425723005321
https://www.sciencedirect.com/science/article/pii/S0034425723005321
http://dx.doi.org/10.1111/ejss.12499
http://dx.doi.org/10.1111/ejss.12499
https://bsssjournals.onlinelibrary.wiley.com/doi/abs/10.1111/ejss.12499
https://bsssjournals.onlinelibrary.wiley.com/doi/abs/10.1111/ejss.12499
https://bsssjournals.onlinelibrary.wiley.com/doi/abs/10.1111/ejss.12499
https://bsssjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/ejss.12499
https://bsssjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/ejss.12499
https://bsssjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/ejss.12499
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb50
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb50
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb50
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb50
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb50
http://dx.doi.org/10.5194/soil-7-217-2021
http://dx.doi.org/10.5194/soil-7-217-2021
http://dx.doi.org/10.5194/soil-7-217-2021
https://soil.copernicus.org/articles/7/217/2021/
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb52
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb52
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb52
http://dx.doi.org/10.1016/j.rse.2023.113845
https://www.sciencedirect.com/science/article/pii/S0034425723003966
https://www.sciencedirect.com/science/article/pii/S0034425723003966
https://www.sciencedirect.com/science/article/pii/S0034425723003966
http://dx.doi.org/10.1038/s41467-019-13276-1
http://dx.doi.org/10.1016/j.rse.2017.11.004
https://www.sciencedirect.com/science/article/pii/S003442571730514X
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb56
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb56
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb56
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb56
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb56
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb56
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb56
http://dx.doi.org/10.3390/rs12091369
https://www.mdpi.com/2072-4292/12/9/1369
http://arxiv.org/abs/1308.6370
https://arxiv.org/abs/1308.6370
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb59
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb59
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb59
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb59
http://refhub.elsevier.com/S0016-7061(25)00178-8/sb59
http://dx.doi.org/10.1007/978-3-642-04898-2_126
http://dx.doi.org/10.1007/978-3-642-04898-2_126
http://dx.doi.org/10.1007/978-3-642-04898-2_126
https://www.researchgate.net/publication/260387595_Asymptotic_Relative_Efficiency_in_Estimation
https://www.researchgate.net/publication/260387595_Asymptotic_Relative_Efficiency_in_Estimation
https://www.researchgate.net/publication/260387595_Asymptotic_Relative_Efficiency_in_Estimation
http://dx.doi.org/10.1016/j.dib.2021.107488
https://www.sciencedirect.com/science/article/pii/S2352340921007691
http://dx.doi.org/10.1016/j.rse.2022.112990
https://www.sciencedirect.com/science/article/pii/S0034425722001043
http://dx.doi.org/10.15489/qkud8cudg596
http://dx.doi.org/10.15489/qkud8cudg596
http://dx.doi.org/10.15489/qkud8cudg596
https://geoservice.dlr.de/web/datasets/soilsuite_eur_5y
https://geoservice.dlr.de/web/datasets/soilsuite_eur_5y
https://geoservice.dlr.de/web/datasets/soilsuite_eur_5y
http://dx.doi.org/10.3390/rs12091389
https://www.mdpi.com/2072-4292/12/9/1389
https://www.mdpi.com/2072-4292/12/9/1389
https://www.mdpi.com/2072-4292/12/9/1389
http://dx.doi.org/10.1016/j.geoderma.2024.116867
http://dx.doi.org/10.1016/j.geoderma.2024.116867
http://dx.doi.org/10.1016/j.geoderma.2024.116867
https://www.sciencedirect.com/science/article/pii/S001670612400096X
https://www.sciencedirect.com/science/article/pii/S001670612400096X
https://www.sciencedirect.com/science/article/pii/S001670612400096X
http://dx.doi.org/10.1016/j.rse.2020.111793
http://dx.doi.org/10.1016/j.rse.2020.111793
http://dx.doi.org/10.1016/j.rse.2020.111793
http://dx.doi.org/10.3390/rs13245115
http://dx.doi.org/10.3390/rs13245115
http://dx.doi.org/10.3390/rs13245115
https://www.mdpi.com/2072-4292/13/24/5115
http://dx.doi.org/10.1016/j.jag.2005.06.001
http://dx.doi.org/10.7717/peerj.453
http://dx.doi.org/10.7717/peerj.453
http://dx.doi.org/10.7717/peerj.453
http://dx.doi.org/10.1016/j.geoderma.2024.117113
https://www.sciencedirect.com/science/article/pii/S0016706124003422
https://www.sciencedirect.com/science/article/pii/S0016706124003422
https://www.sciencedirect.com/science/article/pii/S0016706124003422


P. Karlshoefer et al. Geoderma 459 (2025) 117340 
Vaudour, E., Gomez, C., Lagacherie, P., Loiseau, T., Baghdadi, N., Urbina-Salazar, D., 
Loubet, B., Arrouays, D., 2021. Temporal mosaicking approaches of sentinel-2 
images for extending topsoil organic carbon content mapping in croplands. Int. 
J. Appl. Earth Obs. Geoinf. (ISSN: 1569-8432) 96, 102277. http://dx.doi.org/10.
1016/j.jag.2020.102277, URL https://www.sciencedirect.com/science/article/pii/
S030324342030920X.

Ward, K.J., Chabrillat, S., Brell, M., Castaldi, F., Spengler, D., Foerster, S., 2020. 
Mapping soil organic carbon for airborne and simulated EnMAP imagery using 
the LUCAS soil database and a local PLSR. Remote. Sens. (ISSN: 2072-4292) 12 
(20), http://dx.doi.org/10.3390/rs12203451, URL https://www.mdpi.com/2072-
4292/12/20/3451.
15 
Ying, Q., Hansen, M.C., Potapov, P.V., Tyukavina, A., Wang, L., Stehman, S.V., 
Moore, R., Hancher, M., 2017. Global bare ground gain from 2000 to 2012 
using landsat imagery. Remote Sens. Environ. (ISSN: 0034-4257) 194, 161–176. 
http://dx.doi.org/10.1016/j.rse.2017.03.022, URL https://www.sciencedirect.com/
science/article/pii/S0034425717301244.

Zanaga, D., Van De Kerchove, R., Daems, D., De Keersmaecker, W., Brockmann, C., 
Kirches, G., Wevers, J., Cartus, O., Santoro, M., Fritz, S., Lesiv, M., Herold, M., 
Tsendbazar, N.-E., Xu, P., Ramoino, F., Arino, O., 2022. ESA WorldCover 10 m 
2021 v200. http://dx.doi.org/10.5281/zenodo.7254221.

Zepp, S., Heiden, U., Bachmann, M., Wiesmeier, M., Steininger, M., van Wesemael, B., 
2021. Estimation of soil organic carbon contents in croplands of bavaria from 
SCMaP soil reflectance composites. Remote. Sens. (ISSN: 2072-4292) 13 (16), 
http://dx.doi.org/10.3390/rs13163141, URL https://www.mdpi.com/2072-4292/
13/16/3141.

Žížala, D., Minařík, R., Zádorová, T., 2019. Soil organic carbon mapping using 
multispectral remote sensing data: Prediction ability of data with different spatial 
and spectral resolutions. Remote. Sens. (ISSN: 2072-4292) 11 (24), http://dx.doi.
org/10.3390/rs11242947, URL https://www.mdpi.com/2072-4292/11/24/2947.

http://dx.doi.org/10.1016/j.jag.2020.102277
http://dx.doi.org/10.1016/j.jag.2020.102277
http://dx.doi.org/10.1016/j.jag.2020.102277
https://www.sciencedirect.com/science/article/pii/S030324342030920X
https://www.sciencedirect.com/science/article/pii/S030324342030920X
https://www.sciencedirect.com/science/article/pii/S030324342030920X
http://dx.doi.org/10.3390/rs12203451
https://www.mdpi.com/2072-4292/12/20/3451
https://www.mdpi.com/2072-4292/12/20/3451
https://www.mdpi.com/2072-4292/12/20/3451
http://dx.doi.org/10.1016/j.rse.2017.03.022
https://www.sciencedirect.com/science/article/pii/S0034425717301244
https://www.sciencedirect.com/science/article/pii/S0034425717301244
https://www.sciencedirect.com/science/article/pii/S0034425717301244
http://dx.doi.org/10.5281/zenodo.7254221
http://dx.doi.org/10.3390/rs13163141
https://www.mdpi.com/2072-4292/13/16/3141
https://www.mdpi.com/2072-4292/13/16/3141
https://www.mdpi.com/2072-4292/13/16/3141
http://dx.doi.org/10.3390/rs11242947
http://dx.doi.org/10.3390/rs11242947
http://dx.doi.org/10.3390/rs11242947
https://www.mdpi.com/2072-4292/11/24/2947

	Evaluation framework for the generation of continental bare surface reflectance composites
	Introduction
	Material and methods
	Data preparation
	Sentinel-2
	Landcover mask
	LUCAS spectral library

	Procedure to generate bare surface reflectance composites
	Surface Thresholds (HISET)
	Enhancements to the surface threshold derivation
	Detection of residual clouds and haze

	SRC Evaluation
	Software and Tools

	Results
	Selection of the spectral index
	Validating enhancements to the soil detection and threshold derivation
	Performance of regional thresholds
	Threshold Distribution for NDVI+NBR

	Discussion
	SRC evaluation method
	Quality of the bare surface reflectance composites

	Conclusion and Outlook
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


