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Abstract

I n large cities around the world, city centres are often densely built-up. Due to
the dense development, it is difficult to distinguish the buildings on the basis of

satellite and aerial images and to reconstruct them in 3D. However, this is essential
for applications such as urban planning, disaster management, solar energy potential
assessment, flow simulation, and many others. Therefore, the goal of this dissertation is
to provide methods for retrieving building information and reconstructing buildings in
3D. For this purpose, three methods are introduced.

The first method segments building sections on satellite and aerial images, as well as
associated digital surface models (DSMs), by segmenting the separation lines between
them using a fully convolutional neural network (FCN). In addition, the remaining pixels
assigned to the building are segmented. The building and separation line segments
are then used to obtain seamless building sections using the watershed transformation.
In addition, morphology is used to close existing gaps in separation lines. To further
improve the separation line and building segments, a loss function is used, which results
in the FCN already producing fewer gaps before morphology is applied and building
segments have straighter edges and sharper corners. The resulting building sections are
then further processed into polygons and level of detail (LoD)-1 models. The method
is robust and works on both aerial and satellite data. In addition, it can segment
building sections in complex scenarios more accurately than the compared approach.
The method manages to accurately segment even in highly complex scenarios with very
small building sections and informal settlement after the FCN has been re-trained with
data from different cities with dense buildings. This is particularly important for crisis
management and humanitarian aid. Moreover, a method is introduced which vectorizes
building footprints and regularizes their outlines in two steps. In the first step, a deep
neural network predicts the primary orientation angle of the building polygon. In the
second step, all vertices are adjusted, such that their inside angles are either 90° or 180°
with respect to the primary orientation.

The second method, PLANES4LOD2, generates LoD-2 models based on aerial images
and DSMs, as well as digital terrain models (DTMs). Similar to the first method, it
starts with segmenting separation lines between building sections and but also extending
them to roof planes. Each building is thus divided into sections and each section is
divided into roof planes. This process is performed end-to-end by an FCN, which uses a
novel depth attention module (DAM) to utilize DSM features effectively and efficiently.
The roof surfaces are then converted to polygons. To obtain a 3D model, the height
values from the DSM within each roof plane are passed to random sample consensus
(RANSAC), which estimates robust plane parameters. The plane parameters are used
to calculate the height values at the corners of the roof plane polygons. The experimental
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evaluation shows that PLANES4LOD2 generates geometrically accurate, topologically
consistent and semantically correct LoD-2 models. In comparison with SAT2LOD2,
PLANES4LOD2 shows a significantly higher accuracy of 1.06 m in mean absolute error
(MAE), especially in complex scenarios in densely built-up city centres. The baseline
method only achieves 2.18 m in MAE.

The third method presented in this dissertation is called SAT2BUILDING. It is a
method for LoD-2 reconstruction based on image data and DSMs, but focuses on satellite
rather than aerial image data and does not require an external DTM. Alternatively, an
FCN generates the building heights as an additional output. Instead of focusing on the
segmentation of separation lines, like PLANES4LOD2, SAT2BUILDING clusters pixels
to roof planes by calculating spatial embeddings related to the centre of the roof planes.
This is more effective for satellite data with ground sampling distances (GSDs) ranging
from 0.5 m to 0.7 m, as the separation lines are difficult to recognise. SAT2BUILDING
is evaluated on a more rural scenario with simple roof shapes and distances between the
buildings and an urban scenario with dense development and complex roof shapes. The
metrics show the significantly higher accuracy of SAT2BUILDING compared to three
baseline methods in both scenarios.

The three newly introduced methods as well as their detailed experimental evaluation
and discussion represent a significant contribution to the retrieval of building information
and 3D reconstruction of buildings, and enable their future use for a wide range of
applications.
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Zusammenfassung

I n großen Städten weltweit sind Stadtzentren oftmals dicht bebaut. Aufgrund der
dichten Bebauung ist es schwierig, die Gebäude auf Basis von Satelliten- und Luft-

bildern auseinander zu halten, sowie sie in 3D zu rekonstruieren. Dies ist jedoch für
Anwendungen wie Stadtplanung, Disastermanagement, Solarenergiepotenzialerhebung,
sowie Strömungssimulation unerlässlich. Daher widmet sich diese Dissertation der Seg-
mentierung von Abschnitten und level of detail (LoD)-2 Rekonstruktion von komplexen
und einfachen Gebäuden. Dazu werden drei Methoden eingeführt. Desweiteren, wird in
einer Fallstudie in Medellín, Kolumbien die Wirksamkeit einer Methode zur Erkennung
informeller Bebauung analysiert.

Die erste Methode segmentiert Gebäudeabschnitte auf Satelliten- und Luftbildern,
sowie zugehörigen Digitalen Oberflächen Modellen (DOMs), indem sie die Trennlinien
zwischen diesen mithilfe eines fully convolutional neural network (FCN) segmentiert.
Zusätzlich werden die restlichen Pixel, welche dem Gebäude zugeordnet sind, segmen-
tiert. Die Gebäude- und Trennliniensegmente werden dann verwendet, um mittels der
Watershed-Transformation nahtlose Gebäudeabschnitte zu erhalten. Darüber hinaus
wird Morphologie verwendet, um existierende Lücken in Trennlinien zu schließen. Um
die Trennlinien- und Gebäudesegmente weiter zu verbesseren, wird eine Loss-Funktion
eingesetzt, die dazu führt, dass das FCN bereits vor dem Einsatz von Morphologie
weniger Lücken produziert und Gebäudeabschnitte geradere Kanten und spitzere Ecken
haben. Die erhaltenen Gebäudeabschnitte werden dann noch zu Polygonen und LoD-1
Modellen weiterverarbeitet. Die Methode ist robust und funktioniert sowohl auf Luft-
und Satellitendaten. Darüberhinaus kann sie Gebäudeabschnitte in komplexen Szenarien
akurater segmentieren als der mit ihr verglichene Ansatz. Die Methode schafft es, nach-
dem das FCN mit Daten aus verschiedenen Städten mit dichter Bebauung neu traniert
wurde, auch in hoch-komplexen Szenarien mit sehr kleinen Gebäudeabschnitten und
informeller Bebauung diese akurat zu segmentieren. Dies ist Besonders für Krisenman-
agement, sowie humanitäre Hilfe von großer Wichtigkeit. Desweiteren wird eine Meth-
ode vorgestellt, welche Gebäudesegmente vektorisiert und deren Umrisse in zwei Schrit-
ten regularisiert. Der erste Schritt ist die Vorhersage eines Hauptorientierungswinkels
des Gebäude Polygons. Im zweiten Schritt werden dann alle Verticees im Polygon so
angepasst, dass sie entweder einen Innenwinkel von 90° oder 180° im Verhältnis zum
vorhergesagten Winkel haben.

Die zweite Methode, PLANES4LOD2, erzeugt LoD-2 Modelle auf Basis von Luft-
bildern und DOMs, sowie Digitalen Gelände Modellen (DGMs). Dabei baut sie, ähnlich
wie die erste Methode, auf der Segmentierung von Trennlinien zwischen Gebäudeab-
schnitten und Dachflächen auf. Jedes Gebäude wird somit in Abschnitte und jeder
Abschnitt in Dachflächen unterteilt. Dieser Prozess wird Ende-zu-Ende durch ein FCN
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durchgeführt, welches ein neuartiges depth attention module (DAM) verwendet, um
DOM features effektiv und effizient zu nutzen. Anschließend werden die Dachflächen
zu Polygonen konvertiert. Um ein 3D Modell zu erhalten, werden die Höhenwerte
aus dem DOM innerhalb jeder Dachfläche an random sample consensus (RANSAC)
übergeben, womit robuste Ebenenparameter geschätzt werden. Die Ebenenparameter
dienen der Berechnung der Höhenwerte an den Ecken der Dachflächenpolygonen. Die
experimentelle Auswertung zeigt, dass PLANES4LOD2 geometrisch genaue, topologisch
konsistente und semantisch korrekte LoD-2 Modelle erzeugt. Im Vergleich mit beste-
hender Software zeigt sich, das PLANES4LOD2 insbesondere in komplexen Szenarien in
dicht-bebauten Stadtzentren eine deutlich höhere Genauigkeit von 1.06 m mean absolute
error (MAE), im Vergleich zu 2.18 m MAE der Vergleichsmethode, erzielt.

Die dritte in dieser Dissertation vorgestellte Methode nennt sich SAT2BUILDING.
SAT2BUILDING ist eine weitere Methode für die LoD-2 Rekonstruktion auf Basis von
Bilddaten und DOMs, konzentriert sich jedoch auf Satelliten- anstatt Luftbilddaten
und benötigt kein externes DGM. Stattdessen erzeugt ein FCN die Gebäudehöhen als
zusätzlichen Ausgabewert. Anstatt sich, wie PLANES4LOD2, auf die Segmentierung
von Trennlinien zu konzentrieren, clustert SAT2BUILDING Pixel zu Dachflächen, indem
es räumliche Einbettungen berechnet, welche sich auf den Mittelpunkt der Dachflächen
beziehen. Dies ist bei Satellitendaten mit ground sampling distances (GSDs) von 0.5 m
bis 0.7 m effektiver, da dort die Trennlinien nur noch schwer erkennbar sind. Durch die
Auswertung von SAT2BUILDING auf zwei Testgebieten, ein eher ländliches Szenario
mit einfachen Dachformen und Abständen zwischen den Gebäuden und ein urbanes
Szenario mit dicher Bebauung und komplexen Dachformen, zeigt sich die wesentlich
höhere Genauigkeit von SAT2BUILDING im Vergleich zu drei Vergleichsmethoden in
beiden Testgebieten.

Die drei neu eingeführten Methoden sowie deren ausführliche experimentelle Auswer-
tung und Diskusion stellen einen erheblichen Fortschritt in der Extraktion von Gebäude-
information sowie 3D Rekonstruktion von Gebäuden dar und ermöglichen deren zukün-
ftigen Einsatz für vielfältige Anwendungen.

vi



Acknowledgments

I would like to express my deepest gratitude to my Doktorvater, Prof. Dr. Peter
Reinartz, for his unwavering support, invaluable guidance, and encouragement through-
out my doctoral journey. His mentorship has been instrumental in shaping both my
research and personal growth.

I am indebted to Prof. Dr. techn. Friedrich Fraundorfer for his insightful ideas and
perspectives, which have enriched my research and broadened my horizons in ways I
could not have imagined.

Special thanks are due to Dr. Ksenia Bittner, my main technical supervisor, whose
dedication, expertise, and encouragement propelled me forward during the challenging
phases of my dissertation. Her unwavering support and belief in my abilities were truly
motivating.

I am profoundly grateful to my wife, Elisabeth, for her unwavering support, patience,
and understanding throughout this journey. Her love and encouragement sustained me
during the long hours of research and writing.

I extend my gratitude to my mother, Angelika, and my father, Werner, for their
boundless love, encouragement, and unwavering belief in my capabilities. Their constant
support has been a source of strength and inspiration.

My heartfelt appreciation goes to my siblings—Ben, Paula, and Karla—for their un-
wavering belief in my abilities, their encouragement, and their understanding. Their
support has been a cornerstone of my journey, providing both motivation and solace
during challenging times.

Lastly, I am grateful to all colleagues and mentors who have provided support, en-
couragement, and valuable insights along the way. Your contributions have played a
significant role in shaping my academic journey.

Philipp Schuegraf
Oberpfaffenhofen, November 2024

vii



Contents

Abstract ii

Zusammenfassung v

Acknowledge vii

1 Introduction 1
1.1 Scope of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Guildeline for Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Papers Related to the Dissertation . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Very High-Resolution Remote Sensing Imagery . . . . . . . . . . . . . . . 5

2.1.1 Light Detection and Ranging . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Optical Stereo Imagery . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Image Processing in Remote Sensing . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Polygonization of Segments . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Image Re-Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Fully Convolutional Neural Network . . . . . . . . . . . . . . . . . 14
2.3.3 Training Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Data Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.5 Model Regularization . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.6 Multi-Modal Networks . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 State of the Art 21
3.1 Neural Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Building Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Building Footprint Extraction . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Deep Learning-based Building Instance Segmentation . . . . . . . 24
3.2.3 Building Outline Regularization . . . . . . . . . . . . . . . . . . . 26

3.3 3D Building Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 LoD-1 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 27

viii



Contents

3.3.2 LoD-2 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Attention in Building Segmentation . . . . . . . . . . . . . . . . . . . . . 28
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Building Section Instance Segmentation 31
4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Deep Learning for the Automatic Division of Building Constructions into

Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Informal Building Instance Segmentation . . . . . . . . . . . . . . . . . . 53
4.3.1 Application Description . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.2 Study area and data . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Building Footprint Regularization . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Level of Detail-2 Reconstruction 69
5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 PLANES4LOD2: Reconstruction of LoD-2 Building Models using a Depth

Attention-based Fully Convolutional Neural Network . . . . . . . . . . . . 70
5.2.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 SAT2BUILDING: LoD-2 Building Reconstruction from Satellite Imagery
using Spatial Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Conclusion 103
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

ix



Contents

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Acronyms 107

A Related Publications 119
A.1 Journals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.2 Conferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Bibliography 121

x



1 Introduction

W e live in the era of big data. There exist many sources of data, be it from
industrial sensors or social networks. One large source of data is coming from

earth observation. Every day, the Earth is orbited by many sensors mounted on satel-
lites. Data acquisition campagnes from aerial vehicles like helicopters, aeroplanes and
unmanned aerial vehicles (UAVs) are carried out. These sensors include synthetic ap-
perture radar (SAR), light detection and ranging (LiDAR), thermal and optical sensors.

Optical sensors can produce stereo imagery, allowing the large-scale 3D reconstruction
of the surface of the earth. Furthermore, they are, similar to SAR, relatively cheap. Yet,
optical sensors provide easily interpretable and highly detailed images, whereas SAR
delivers highly noisy data. On one hand, aerial imagery has high spatial resolution and
is less prone to atmospheric occlusion than satellite imagery. On the other hand, obtain-
ing satellite imagery is more energy efficient than obtaining aerial imagery from flight
campagnes. Moreover, satellite imagery cover larger regions by each single acquisition.
Overall, airborne and spaceborne imagery complement each other.

One of the most prominent features on aerial and satellite imagery in urban scenes
are buildings. Next to roads, they form the built environment of cities. Detecting their
outlines in imagery is a highly relevant task in urban planing and development, disaster
management, environmental monitoring, crisis response and humanitarian aid. More-
over, the 3D reconstruction of buildings is crucial for applications like flow simulation of
5G waves, flood, or wind and solar panel recommendation.

Manual delineation of buildings on satellite or aerial imagery is a difficult and time-
consuming task. Building boundaries can be occluded by high vegetation or shadows
from taller objects and highly-trained human experts are necessary to annotate buildings
in complex scenarios like densely built neighborhoods. Acquiring 3D models of buildings
manually is even more expensive, since terrestrial laser-scanning requires a person that
can handle the necessary devices and drives from house to house. This becomes infeasible
for updating the 3D models of whole cities and even impossible for historic data, where
only the overhead image exists and the built environment has changed over time.

Lately, advances in deep artificial neural networks allow to automatically learn features
from data, given a large training dataset and sufficient computational power. Thanks
to the large quantities of existing imagery as well as open cadastre data and 3D city
models, as well as improved computer hardware, deep learning has become a valuable
tool to automate the process of building information extraction and reconstruction. Yet,
learning-free methods are still reliable approaches beyond feature extraction, making
them ideal to be combined with deep learning methods.
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CHAPTER 1. INTRODUCTION

1.1 Scope of the Dissertation
This thesis tackles two problems in the field of building information retrieval and recon-
struction:

• Objective 1: Building Section Instance Segmentation
In typical cities, houses are built next to each other, with no space in between them.
This makes the detection of individual houses a challenging problem. Furthermore,
instance segmentation methods like Mask-RCNN [1] struggle to correctly segment
building sections without gaps or overlaps [2]. Yet, remote sensing imagery shows
the separation line between building sections. Segmenting it together as a separate
class with the remaining building section enables the usage of the watershed trans-
formation [3], leading to seamlessly connected building sections. Another chal-
lenge in building segmentation is the confusion of buildings with road, which can
have similar shape features (rectangular) and color (grey). Digital surface models
(DSMs) enhances the distinction of buildings from road, leading to improved seg-
mentation. The resulting segments are memory and computation intensive from
the perspective of applications. And simple vectorization does not remove unnec-
essary vertices and can lead to loss of seamless connection. Hence, we vectorize
building sections by tracing their boundaries and simplify the separation lines and
the remainders of the polygons independently. For simple buildings, we propose
a regularization method that makes each angle of the polygons rectangular. The
resulting building polygons are limited to 2D applications. We tackle this by us-
ing the DSM together with the building sections to derive level of detail (LoD)-1
models (according to the city geography markup language (CityGML) standard
[4]). Informal settlements are often sparsely mapped, which is due to low acces-
sibility and high construction dynamics. We also show that our building section
segmentation approach can support mapping in informal settlements.

• Objective 2: Level of Detail-2 Reconstruction
Reconstructing buildings in LoD-2 requires more detailed elements than building
sections. Yet, conventional methods can not detect roof planes in a robust way,
because they rely on hand-crafted features [5, 6]. We employ a deep learning ap-
proach, PLANES4LOD2, that separates roof planes and building sections in the
same style, by segmenting separation lines for each using a deep neural network.
After we vectorized the roof planes, we want to project the polygons to the 3D
space to obtain LoD-2 models using a DSM. Simply inserting the height values
from the DSM as the z-coordinate of each vertex in the polygon will lead to highly
irregular 3D polygons, since the roof plane polygon will usually not completely
coincide with the building edge in the DSM. Hence, we utilize random sample con-
sensus (RANSAC), an approach that is more robust to outliers, to obtain planar
roof planes. Due to atmospheric effects and high ground sampling distance (GSD),
separation lines become less visible in satellite imagery. Hence, we introduce an-
other approach, SAT2BUILDING, for LoD-2 reconstruction that uses spatial em-
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CHAPTER 1. INTRODUCTION

beddings, which focus on the center of roof planes instances to segment them.
Furthermore, applications require 3D building models with height relative to the
ground. But normalizing heights from DSM using a digital terrain model (DTM) is
a challenging task, where conventional methods fail [7]. Hence, SAT2BUILDING
predicts the normalized digital surface model (nDSM) as an additional output.

1.2 Guildeline for Reading

This is a cumulative dissertation, which is organized as follows. Chapter 2 introduces
fundamental knowledge related to this thesis. Chapter 3 introduces the related work,
Chapter 4 presents a new method for building section instance segmentation, based on
the publication

[8]: P. Schuegraf, S. Zorzi, F. Fraundorfer, and K. Bittner, “Deep learning for the
automatic division of building constructions into sections on remote sensing images,”
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 16, pp. 7186–7200, 2023,

and shows its applicability to formal and informal building segmentation in endangered
areas based on the publication

[9]: P. Schuegraf, D. Stiller, J. Tian, T. Stark, M. Wurm, H. Taubenböck, K.
Bittner, “Ai-based building instance segmentation in formal and informal settlements,”
IEEE International Geoscience and Remote Sensing Symposium, 2024.

Additionally, a method to regularize building footprints effectively and time-efficient
is presented, which is based on the publication

[10]: P. Schuegraf, Z. Li, J. Tian, J. Shan, and K. Bittner, “Rectilinear building
footprint regularization using deep learning,” ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, 2024.

Chapter 5 introduces one method for LoD-2 reconstruction from aerial imagery based
on the publication

[11]: P. Schuegraf, S. Shan, and K. Bittner, "Planes4lod2: Reconstruction of LoD-2
Building Models using a Depth Attention-Based Fully Convolutional Neural Network,"
ISPRS Journal of Photogrammetry and Remote Sensing, vol. 211, pp. 425-437, 2024

and one for LoD-2 reconstruction from satellite imagery based on the publication
[12]: P. Schuegraf, S. Gui, R. Qin, F. Fraundorfer, and K. Bittner, “Sat2building:

Lod-2 Building Reconstruction from Satellite Imagery using Spatial Embeddings,” Sub-
mitted to ISPRS Journal of Photogrammetry and Remote Sensing, 2024.

Chapter 6 concludes this thesis.

1.3 Papers Related to the Dissertation

This section briefly describes contributions that where done while working on the dis-
sertation and they are relevant for the content of the dissertation. These papers where
either written by the author of the dissertation as the primary author or as a co-author.
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CHAPTER 1. INTRODUCTION

The content in Chapter 4 is based on, but not limited to the work done in Schuegraf
et al. [2]. There, the concept of building section segmentation based on touching borders
was originally introduced and tested against Mask-RCNN. Chapter 4 extends Schuegraf
et al. [2] by showing that the UNet-3+ [13] is more suitable than the classical UNet [14]
for building section segmentation. Furthermore, the topology loss [15] is leveraged and
the evaluation is extended in terms of generalization, multiple data sources and advanced
baselines.

In Schuegraf et al. [16], a dataset called Roof3D for building section and roof plane
segmentation is introduced together with a baseline method. This method is tested in
various configurations in terms of handling multi-modal inputs, namely RGB data and
photogrammetric DSM. Roof3D and the baseline method are used as the basis for the
experimental part in Chapter 5.

Gui et al. [17] builds on SAT2LOD2 [18], the LoD-2 reconstruction pipeline from ortho
imagery and nDSM. SAT2LOD2 reconstructs whole buildings, without separating them
into sections. Contrastingly, Gui et al. [17] rely on the building sections predicted by the
method presented in Chapter 4, to obtain refined LoD-2 models. This method is then
used as a baseline in the experimental evaluation in Chapter 5.
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2 Background

T his chapter introduces basic concepts, that form the foundation for the methods
analysed and utilized in this thesis.

2.1 Very High-Resolution Remote Sensing Imagery
Very high resolution (VHR) remote sensing imagery is acquired by sensors mounted on
satellites or aerial vehicles. It includes ground sampling distance (GSD) of lower than
1 m. The GSD is the spatial extent of a single pixel of a remote sensing image. Low
GSDs allow to detect objects like buildings, their components, roads, and cars. Special
challenges of VHR remote sensing imagery are its high data volume due to the low GSD,
and its high price in comparison to low-resolution imagery.

2.1.1 Light Detection and Ranging

Light detection and ranging (LiDAR) sensors are active remote sensing sensors (see
Figure 2.3 (a)). Many of them belong to the VHR realm. They emit pulses and measure
the time that the pulse takes to be reflected off the terrain or surface objects to the sensor.
This allows to obtain a detailed height profile. A LiDAR sensor consists of a laser scanner
that emits the pulse, a receiver to measure the time the pulse takes to be reflected back to
the sensor and global positioning system (GPS). It is used exclusively from air. Among
the advantages of LiDAR are the high geometrical accuracy of the obtained height-
profile, the insensitivity to noise, and the fact that it can penetrate through clouds and
vegetation, allowing operation in every weather scenario. Its downsides are the high cost
of data acquisition, the limited penetration in certain surface materials, and that special
software and expertise are required to derive meaningful information from LiDAR data.

2.1.2 Optical Stereo Imagery

Optical sensors are relatively cheap and allow easy interpretation of the data with less
pre-processing than LiDAR. Furthermore, they include spectral information in the visible
range of the electromagnetic spectrum, which is illustrated in Figure 2.1. The light
that they receive was originally emitted by the sun and reflected by the surface of the
earth, which makes them a passive sensor (see Figure 2.3 (b)). Night-time imagery
also includes light from terrestrial sources. Optical sensors combined with GPS and the
camera parameters allow the acquisition of geo-referenced imagery. If multiple images
of the same scene are acquired it is called stereo imagery. Multiple images are usually
acquired in short time intervals.
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Figure 2.1: Illustration of the electromagnetic spectrum and the visible range.

Low Resolution RGB High Resolution PAN High Resolution RGB

Figure 2.2: Illustration of pan-sharpening. PAN is short for panchromatic image and RGB is short for
RGB image.

2.1.2.1 Pan-Sharpening

Commonly, cameras have multiple bands that have different advantages. The pancro-
matic band captures light at a broad sub-range of the visible range, which means it has
low spectral resolution. On the other hand, the panchromatic band has a high spatial
resolution (see middle in Figure 2.2), for example 0.31 m GSD in the WorldView-4 satel-
lite. In the same satellite, there exist four spectral bands (infrared, red, green, and blue),
which means a high spectral resolution. Other satellite have even more spectral bands.
Yet, the spectral bands in WorldView-4 only have a spatial resolution of 1.24 m GSD
(see left in Figure 2.2). This trade-off stems from the dedication of limited resources
like data storage and transmission. Pan-sharpening is commonly used to combine the
high spatial resolution of the panchromatic band with the high spectral resolution of
the multi-spectral bands, as it is illustrated in Figure 2.2. In this thesis, color or multi-
spectral bands are always pan-sharpened before further processing them.

2.1.2.2 Ortho-Rectification

On remote sensing imagery there is a shift of pixels that do not lie directly below the
camera position. Furthermore, uneven terrain and camera tilt lead to more geomet-
ric inaccuracies. Such distortions lead to inconsistencies between imagery and other
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(a) Active Sensor (b) Passive Sensor

Figure 2.3: Illustration of active and passive sensors in remote sensing.

Figure 2.4: Illustration artifacts due to ortho-rectification. The building roof is mirrored at the areas
of steep gradients in the digital surface model (DSM).

geo-information like building positions. Hence, ortho-rectification is used to obtain ge-
ographically accurate images. This process can lead to artifacts, especially on objects
with sharp gradients like building facades (see Figure 2.4) and mountains. This makes
the task of building information retrieval and reconstruction more challenging.

2.1.2.3 Aerial Imagery

Imagery that is acquired by aircrafts like helicopters, aeroplanes or unmanned aerial
vehicles (UAVs) is called aerial imagery. Aircrafts usually operate inside the atmosphere
of the earth at a height of up to 18 km. Aerial flight campaigns are limited by weather
conditions and the cost of the pilot, the operator of the camera system, fuel and vehicle
rent are relatively high. Yet, aerial imagery is an important source of information. It is
uniquely valuable for tasks that require GSDs of smaller than 0.3 m like pedestrian de-
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tection, car detection, and road condition assessment. In 3D reconstruction of buildings,
small GSDs like 0.1 m allow a highly detailed insight into the roof geometry.

2.1.2.4 Satellite Imagery

Satellites are devices that operate above the Kármán line at 100 km above ground. Mod-
ern commercial satellites have a GSD of as small as 0.3 m (e.g. Pleiades Neo, WorldView-
3, WorldView-4) and often times 0.5 m (e.g. Pleiades, WorldView-1, WorldView-2) in
the panchromatic band. Satellites acquire imagery at lower cost than aerial imagery,
since they need neither fuel nor pilots and operators. Their main costs are satellite
design and construction, the sensor and the data transmission and processing on the
ground. Satellite imagery is used in applications such as building detection, building
damage assessment, 3D reconstruction, road detection, and land-cover classification.

2.1.2.5 Photogrammetric Digital Surface Models

The enhanced maneuverability of contemporary VHR satellites, such as WorldView-1, 2,
3, and 4, enables the capture of multiple images of a specific area from multiple different
viewing angles within a single orbit. By merging DSMs derived from multiple image pairs
using semi-global matching (SGM) algorithms [19–21], which circumvent the necessity
for matching windows, it is possible to achieve a superior-quality DSM characterized
by fewer outliers and more distinct object delineations. The DSM generation process
involves two primary stages: 1) computation of stereo imagery orientation considering
provided rational polynomial coefficientss (RPCs), and 2) dense image matching. Ob-
taining precise stereo matching is of utmost importance, as the density and accuracy of
the resultant matching points directly impact the quality of DSMs (see visualization of
example DSM in Figure 2.5).

Multi-View Image Orientation: Obtaining elevation models from multi-view VHR
satellite imagery necessitates precise calculation of RPC camera parameters for each
image. While the initial RPCs, derived from orbit and altitude information, serve as
a foundation, they often fail to adequately align multiple images. Thus, refining the
RPCs becomes imperative, as inaccuracies in satellite position and orientation can lead
to systematic errors during dense image matching for DSM generation.

To rectify errors in sensor position and orientation, a bundle adjustment process is
employed. This process ensures that observations of a single ground point across multi-
ple images are consistent within a unified geodetic framework [22]. Various studies [21,
23, 24] have already utilized RPC bundle adjustment refinement procedures to establish
satisfactory relative orientation between images. Correcting RPCs begins with identify-
ing accurate tie points between stereo images. Initially located with one-pixel accuracy
by scanning the search region, these tie points are then refined to sub-pixel precision
using local least squares matching (LSM) [25].

For absolute orientation correction, optimal ground control points (GCPs) at sub-pixel
accuracy are indispensable. GCPs represent known 3D points acquired from GPS obser-
vations or existing DSMs and high-resolution ortho-rectified images. However, acquiring
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Figure 2.5: Illustration of a DSM showing Hamburg, Germany.

the necessary GCPs can be arduous or even infeasible, particularly in scenarios requir-
ing rapid response, such as large-scale processing or crises. In such cases, where GCP
information may not be readily available, contemporary research relies on automatic
image-based techniques to extract and correct GCPs [26].

Dense Image Matching: To produce a detailed DSM from multi-view stereo images,
the approach relies on employing the dense stereo matching technique SGM [19, 20].
SGM facilitates pixel-wise matching of mutual information and approximates global 2D
smoothness constraints by extending 1D constraints in multiple directions across the
image [20]. The core principles of SGM revolve around matching and generating a
disparity map.

Following the establishment of robust relative orientation, matching occurs for all
potentially corresponding pixels in the stereo pair using epipolar geometry. Unlike tra-
ditional window-based matching techniques, SGM does not employ window matching
[19, 20], thereby ensuring reliable reconstruction of object edges. To circumvent strong
local assumptions about surface shape, the matching process is formulated as an energy
minimization problem, wherein aggregation costs are optimized from 16 directions to
derive a disparity image D with minimal energy [20]

ε(D) =
∑

p

{
C(p, Dp) +

∑
q∈Np

P1T [|Dp − Dq| = 1] +
∑

q∈Np

P2T [|Dp − Dq| > 1]
}

. (2.1)

The energy function in Equation (2.1) comprises three terms: a data term C which
defines the pixel-wise matching cost between image pixels p and corresponding pixels
in the disparity map Dp; and two regularization terms that promote similar disparities
for neighboring pixels Np while permitting large jumps in high-contrast areas. These
regularization terms introduce constant penalties P1 and P2 for small and large disparity
changes, respectively, ensuring the stability of the matching process. The detailed cost
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Figure 2.6: Illustration of vectorizing a building blob.

aggregation methodology is elucidated by Hirschmüller [20].
In the matching process image pairs are matched bidirectionally, allowing for the

retention of consistent disparities while avoiding the fusion of highly mismatched regions.
Small isolated regions, indicative of irregularities, are discarded. The resulting separate
disparity maps from each image pair are then reprojected to the desired projection and
merged to generate a unified DSM, typically employing a median filter [21].

2.2 Image Processing in Remote Sensing

Image processing is a key to remote sensing. Without suitable methods to process image
data, satellite and aerial imagery could not be leveraged for applications.

2.2.1 Polygonization of Segments

For a computer to process visual data it is often advantageous to have it in vector
format. Vector formats consist of geometric elements such as points, lines, polygons
and collections of these primitives. Fully convolutional neural networks (FCNs) usually
produce raster output which is computationally heavy to process and does not allow easy
editing. In remote sensing, this means that pixel-blobs of buildings, roads, vegetation,
and other objects have to be converted to vector format which is called vectorization.
The way this is achieved depends on the object type. As an example, building blobs are
vectorized by a two step procedure. The first step is to apply an edge filter like Sobel or
Canny and to use morphology to obtain a single pixel-wide line which is called skeleton.
The second step consists of first establishing a graph from the skeleton that contains
pixel locations as nodes and edges between direct 8-neighbors. Finally, a random node
is selected and used as initial vertex. While moving along the graph, visited nodes are
regarded as vertices and added to the final polygon. The skeleton is completed when
the initial node is visited for the second time.

2.2.2 Image Re-Sampling

In some cases, operations require or prefer a certain GSD. But the available data might
be in higher or lower GSD, where a low GSD corresponds to a high resolution image
and a high GSD corresponds to a low resolution image. Sometimes, the GSDs across
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Figure 2.7: Illustration of resampling an image in an urban scenario in Medellín, Columbia.

a large dataset with minor resolution difference, needs to be close. Even though a
large difference in available GSD and required GSD causes an included information gap
that can not be closed, especially if higher resolution imagery is required, re-sampling
is a technique that comes to help. There are mainly two types of image re-sampling,
which are up-sampling (increasing the resolution) and down-sampling (decreasing the
resolution). Both principles are illustrated for satellite color image in Figure 2.7.

Down-sampling an image is achieved by merging several pixels into one by a certain
pattern. Up-sampling an image is accomplished by first adding pixels equally spread
around existing pixels. Secondly, the newly inserted pixels are filled according to some
schemes. One popular scheme or pattern for image re-sampling is nearest neighbor,
where the value of the new pixel is the same as the pixel with the least distance. This
kind of re-sampling is suitable if there is only a small number of allowed pixel values,
like in semantic maps. Nearest-neighbor re-sampling causes block-patterns, which are
unwanted in many image types like multi-spectral imagery or DSMs. In those cases, for
each new pixel, multiple neighboring pixels of the original image are taken into account.
Bilinear re-sampling uses a linear mixture of neighboring pixel values, depending on
the distance to each of the neighboring pixels. Bicubic re-sampling uses a third order
polynomial and not only direct neighbors, resulting in a more accurate but less efficient
re-sampling.

2.3 Deep Learning
Deep learning is the discipline of training deep neural networks. Deep neural networks
are functions fθ(x) = f (n−1)(f (n−2)...(f (0)(x))...)) that parameterize a high-dimensional,
non-linear mapping with θ. They can be used for classification and regression tasks.
Deep neural networks consist of multiple stacked layers f (i)(x) = σ(i)(l(i)(x)), which
usually have non-linear activation functions σ(i) at layer i. The non-linearity allows
modelling real-world input-output-relations. Layer l(i)(x) = n(i)(c(i)(x)) commonly use
normalization layers n(i), which makes information passed to the next layer f (i+1) more
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Figure 2.8: Illustration of the convolution operation using a 3x3 filter. The scenario shows the compu-
tation of a single cell in the output grid, based on a spatial window in the input grid. To
compute a full output grid, the spatial window is shifted over the input, but the weights
and bias remain the same everywhere.

predictable and hence simplifies learning in deep neural network architectures. The main
component of neural networks are the neural layers c(i). They are linear transformations
of their input, where the connectivity between input and output depends on the layer
type. The parameters θ = (w, b) of c(i) are called weights and biases because they scale
components of their input vectors and add on them.

2.3.1 Convolutional Neural Network

In convolutional neural networks (CNNs) weights are shared across different locations in
the input and each output component only interacts with input elements in a window
which is usually squared. The main modules of typical CNNs are convolutional layers
for 2D input

c(i)(x)p = conv
(i)
θ (x)p = b(i)

p0,p1 +
W1∑

s=−W1

W2∑
t=−W2

w
(i)
s,txp0−s,p1−t, (2.2)

where p = (p0, p1) is the location of the output component, s ∈ {−W1, ..., W1} and
t ∈ {−W2, ..., W2} are discrete weight indices. The convolution operation is visualized
in Figure 2.8.

Batch normalization, layer normalization and instance normalization are common as
normalization layers. Data is usually passed to neural networks in batches, meaning that
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Figure 2.9: Illustration of different activation functions.

multiple inputs are processed in parallel. Furthermore, the number of channels varies
in CNN layers. Batch normalization normalizes across the spatial and batch dimension
of the feature maps, layer normalization across the spatial and channel dimension, and
instance normalization only across the spatial dimension. Normalization in these layers
means that the mean is subtracted and the result is divided by the standard deviation.
To allow flexibility of these layers, new mean and standard deviation are used, which
are treated as learnable parameters of the network.

Typical choices for non-linearities are tanh, sigmoid, and rectified linear unit (ReLU),
as visualized in Figure 2.9. Tanh

tanh(x) = ex − e−x

ex + e−x
(2.3)

and sigmoid
sigmoid(x) = 1

e−x + 1 (2.4)

are smooth functions in their entire domain and are converging towards their maximum
value for increasing x and their minimum value for decreasing x. These properties can
lead to very small gradients, which is a problem in training CNNs. On the other hand,
ReLU

ReLU(x) =
{

x if x ≥ 0
0 else

(2.5)

is a piece-wise linear function with zero gradient below zero and fixed gradient above
zero.

In common CNN architectures, the number of channels steadily increases layer per
layer. Since this would lead to an infeasible memory consumption, pooling layers are
utilized. Pooling layers aggregate information across the spatial dimension. One type
of pooling, which is usually employed in intermediate layers to steadily decrease the
spatial resolution, is strided, windowed max-pooling. It takes the maximum value inside
a window of the input and moves the window by a stride that is usually equal to its
side-length. Another type of pooling, which is used as output layer by some CNNs, is
global average pooling. It computes the average over the complete spatial dimension,
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Figure 2.10: Illustration of a Unet architecture with N outputs at the same resolution as the input.
The black arrows represent skip-connections. The blue blocks consist of convolution,
normalization, activation, and pooling layers, whereas the brown blocks consist of up-
sampling and convolution or transposed convolution, normalization, and activation layers.

leaving the result with only a single value per channel. This value is then interpreted as
the class-score or regression value.

But many times, the class-score or regression value is obtained by flattening the spa-
tial and channel dimensions. Afterwards these vectors are passed to fully connected
layers, where each output element is a linear transformation of all input elements. Fully
connected layers serve to generate a vector of class-scores or regression values. In the
case of classification, it is a usual choice to use the class with the highest score as the
predicted class. For regression, a suitable activation function can be used to bring the
values to a certain range, for example [−1, 1] using tanh.

2.3.2 Fully Convolutional Neural Network

CNNs produce outputs independent of spatial location. But tasks like building seg-
mentation in satellite imagery or normalized digital surface model (nDSM) regression
require outputs of high spatial resolution. FCNs [27] can produce outputs of high spatial
resolution. They have no fully connected layers, to preserve spatial location of features
throughout the entire network. Due to memory restrictions, it is advantageous to keep
the intermediate pooling layers from the CNNs. But this leads to low resolution outputs.
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Figure 2.11: Illustration of different loss functions for regression tasks.

Hence, up-sampling and transposed convolution layers are utilized. Transposed convolu-
tional layers expand single pixels in the input by multiplying them with various learnable
parameters in an expanding window and adding bias. Alternatively, up-sampling can
be used to increase the spatial resolution and be followed by convolutional layers that
allow a learnable increase of resolution.

The shrinking part of the network is called the encoder, which is followed by the de-
coder, the expanding part of the network (see Figure 2.10). When the original FCN was
introduced by Long et al. [27], the encoder and decoder had only a small number of con-
nections. These connections were close to the transition between encoder and decoder,
called the bottleneck. But such a low-connectivity scheme has two main downsides. The
first is that few high resolution information from the encoder is used to recover spatial
detail. The second is that long paths between a layer and the input can lead to vanish-
ing gradients. To avoid these pitfalls, skip-connections from each encoder level to each
decoder level were introduced by Ronneberger et al. [14].

2.3.3 Training Neural Networks

We have defined typical types of neural networks and their layers. Training them re-
quires a task-dependent loss function. Regression tasks use loss functions (illustrated in
Figure 2.11) such as L1

LL1(ŷ, y) = 1
|P |

∑
p∈P

|yp − ŷp| (2.6)

and L2
LL2(ŷ, y) = 1

|P |
∑
p∈P

∥yp − ŷp∥2
2, (2.7)

where y is the ground truth, ŷ is the prediction, and p ∈ P is a pixel position. Since L2
causes steep gradients if the difference between y and ŷ is large and L1 is not smooth
near zero, the Huber-Loss is often used:

LHuber(ŷ, y) = 1
|P |

∑
p∈P

{
|y − ŷ| − 1

2 if |y − ŷ| > 1
1
2∥y − ŷ∥2

2 else.
(2.8)
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For segmentation tasks, the loss function is often the multi-class cross-entropy

LCE(ŷ, y) = 1
|C||P |

∑
p∈P

∑
c∈C

−yc
p × log(softmax(ŷp)c), (2.9)

where c ∈ C is the semantic class label, yc
p ∈ {0, 1} is a binary ground truth label that

determines whether pixel p belongs to class c, ŷp is the predicted class score vector at
pixel p, and

softmax(x)c = exc∑
i∈C exi

(2.10)

converts arbitrary real-valued class-score vector x into a probability score for class c.

Training neural networks requires optimization techniques, such as evolutionary al-
gorithms [28], simmulated annealing [29] and stochastic gradient descent [30]. Since
stochastic gradient descent is flexible and efficient, it is the most common optimization
algorithm for training neural networks. Stochastic gradient descent works by sampling a
mini-batch (x, y) from the training data, where x is the input to the neural network f̂θ,
which has parameters θi ∈ θ, and y is the ground truth. After computing the forward
pass ŷ = f̂θ(x), the network parameters get updated by

θ′
i = θi − α(∇θL(ŷ, y))i, (2.11)

where θ′
i is the updated parameter and α is the learning rate, controlling the step-length

of the optimization step. Usually, the data x gets sampled without replacement. After
each sample has been processed once, which is often called an epoch or iteration, the
procedure is repeated. The gradient computation is done by backpropagation [31], which
is based on the chain-rule of calculus

δf(g(x))
δx

= δf(g(x))
δg(x)

δg(x)
δx

. (2.12)

A common variant of stochastic gradient descent is Adam [32]. Adam includes informa-
tion of past gradients in the parameter update, which leads to a more direct way to a
minimum in the loss function with respect to the parameters. Let g

(t)
i = (∇θL(ŷ, y))(t) be

the gradient of the loss function with respect to the parameter vector θ at optimization
step t. Then,

m(t) = β1m(t−1) + (1 − β1)g(t) (2.13)

and
v(t) = β2v(t−1) + (1 − β2)(g(t))2, (2.14)

are the first and second order momenta and β1, β2 ∈ [0, 1[ are hyperparameters control-
ling the balance between current and past gradients in both momenta. The momenta
m(t) and v(t) are usually initialized with 0, which makes them tend to be small, espes-
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Figure 2.12: Illustration of training and validation error.

cially for β1 and β2 close to 1. This bias-corrected momenta are

m̂(t) = m(t)

1 − βt
1

(2.15)

and
v̂(t) = v(t)

1 − βt
2
, (2.16)

for t ≥ 1. The parameter update is then computed by

θ(t+1) = θ(t) − α

v̂(t) + ϵ
m̂(t), (2.17)

where ϵ is a small number that avoids division by 0.

2.3.4 Data Splitting

The data that is used to compute parameter updates during training is called training
data. Its primary purpose is to expose the neural network to samples of a function it
shall approximate. Yet, the training data alone is not a good indicator to judge the
success of the training process. How much a model fits the training data is called the
capacity of the model. The capacity of a deep neural network grows with the number
of layers and the number of parallel convolution operators at each layer. Furthermore,
the capacity also increases with training time. Even though it is the goal of the training
to increase the model capacity, this is only true to a certain point. If the model fits the
training data too much, it has also learned the noise and irrelevant details instead of
generalizable patterns. Hence, the generalization performance is usually measured by a
second dataset, called the validation dataset. This dataset is entirely distinct from the
training data and is not used in the parameter updates. In this way, it allows to observe
the generalization performance of the model. In Figure 2.12, a typical relation between
capacity, training error, and validation error is illustrated. Moreover, the generalization
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Figure 2.13: Example of splitting training-, validation-, and testdata in remote sensing using an RGB
image in Dresden, Germany.

Figure 2.14: Example of cropping a large image into patches, which are overlapping by 50 % in vertical
and horizontal directions.

gap indicates how much worse the model fits the validation data than the training data.
Since the validation data is utilized to measure the generalization performance and also
restrict the capacity, an additional dataset is needed to quantify the final generalization
error of the model. This dataset is separate from training and validation data and is
called test data.

When splitting the dataset, it is important that all three parts are diverse. The train-
ing dataset usually is the largest of the three, since it directly influences the performance
of the model. The validation dataset is commonly a smaller dataset than the training
dataset, as is the test dataset. When training a deep neural network with VHR imagery,
there exist usually several large images. In Figure 2.13, it is visualized how each of these
images can contribute to the three datasets. Due to memory restrictions, the large areas
are not a direct input to the network, but are split in patches. This is illustrated in
Figure 2.14, where each of the dotted boxes of different colors indicate one patch.
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2.3.5 Model Regularization

Regarding the validation error of the trained model, it should be as small as possible.
This can be achieved by restricting the capacity of the model. The model capacity is
influenced, for example, by the number of epochs, the model size, and the range of the
parameters. The more epochs the model is trained, the better it fits the training data.
Yet, at some point, the validation error starts to increase. To find the ideal number of
epochs, the model is trained for a large number of epochs, and the model with the lowest
validation error is usually selected as the final model. This is called early stopping, and
was introduced by Morgan et al. [33]. The model size can be restricted in multiple ways.
One possibility is to train and validate on models of several sizes, like the EfficientNet
[34] or ResNet [35] model families, and then select the model with the lowest validation
error. These model families include models of varying size, making it easy to scale it to
the optimal capacity. Another effective way to limit the effective size of the model is
Dropout [36]. Dropout is a layer that can be arbitrarily stacked on top of convolutional
or fully connected layers. It makes the subsequent layer use only a subset of the features
computed by the convolutional layer. Hence, the model is forced to learn robust features,
that are less dependent on each other. Since not all of the features are used, the capacity
of the model is limited, which functions as a regularization. Another way of controlling
the capacity of the model is to restrict the range of the parameters. This can be achieved
by adding a norm of the parameters, for example the L2-Norm to the loss

Lwd(ŷ, y) = L(ŷ, y) + η
1
|θ|

∑
θi∈θ

θ2
i , (2.18)

where η controls how strong weight decay influences the loss function. By using Lwd

instead of L, the parameters are forced to be small, which restricts the capacity of the
model.

The above-mentioned regularizers or a subset of them are often used in deep learning
applications. Whether or not to use them depends on the quantitative evaluation. If
adding a regularization strategy leads to a lower validation error, it is worth including
it.

2.3.6 Multi-Modal Networks

VHR remote sensing imagery often includes uncertainty about objects of interest. In
such cases, using multiple modalities that complement each other comes to help. One
example for this is road detection on orthorectified imagery. A bridge can make the road
below it invisible, which introduces uncertainty about the road, lanemarks and cars on
it. In Henry et al. [37], aerial imagery is utilized together with a spatially corresponding
patch of open street map (OSM) data. The network utilized in their work is called a
Skip-Fuse architecture, having two encoders and a single decoder. One of the encoders
is dedicated to aerial imagery, the other one to OSM data. Their feature maps are fused
at the skip-connections. This architecture makes the layers dedicated to each of the
modalities independent. A sketch of this architecture is presented in Figure 2.15.
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Figure 2.15: Illustration of multiple different multi-modal fusion architectures.

Bittner et al. [38] and Schuegraf et al. [39] have tackled the task of automatic building
footprint generation from VHR satellite imagery and photogrammetric DSM. Both works
found, that it is beneficial to have two separate decoders and a fusion module of the
features of both decoders. Specifically, this kind of multi-modal network was compared
against early fusion, which means that the RGB patch and the DSM patch are fused
before passing them to the network. Find the early, middle, and late fusion visualized
in Figure 2.15.

2.4 Summary
Modern advancements in technology offer extensive possibilities for analyzing and mon-
itoring Earth’s transformations. One effective method for swiftly acquiring comprehen-
sive Earth-related data is through the exploration of global satellite imagery. This data
provides detailed insights into the structures and landscapes of numerous cities, essential
for various remote sensing applications. Utilizing the current high spatial and spectral
resolutions, alongside height information derived from multi-view stereo satellite images,
enables the extraction of building outlines and their 3D representations. However, these
tasks pose challenges due to the diverse shapes and complexities of buildings. Recent ad-
vancements in methodologies, capable of automatically extracting task-specific features,
hold promise for achieving precise results. Consequently, this dissertation delves into two
issues concerning the automatic extraction and reconstruction of building information,
employing deep learning-based approaches.
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3 State of the Art

I n this chapter, the area of research that the thesis is targetting is thoroughly exam-
ined in the subsequent sections. The disciplines included here are neural network

architecture, building footprint extraction, building instance segmentation, level of de-
tail (LoD)-2 reconstruction, and attention in building segmentation. The contents in
this chapter are mostly taken from, but not limited to the papers Schuegraf et al. [8],
Schuegraf et al. [11], Schuegraf et al. [12], and Schuegraf et al. [10].

3.1 Neural Network Architecture
The architecture of most common state-of-the-art (SOTA) semantic segmentation neural
networks is fully convolutional, meaning that only convolutional layers carry automati-
cally adaptable parameters. Such networks are called fully convolutional neural networks
(FCNs). Furthermore, Ronneberger et al. [14] introduced the U-form to FCNs. The left
half of the U-shaped network is called the encoder, deriving features of increasing depth
and decreasing resolution. The right half of the U-shaped network is named decoder,
which regains spatial resolution step-wise, taking into account feature maps from the
encoder on multiple levels of resolution.

Even though the many skip-connections make the original U-Net a popular architec-
ture, it is limited in the structure of its convolutional layers. In the original U-Net, the
convolutional layers are purely sequential, meaning that each convolutional layer has
as an input the output of the previous, potentially down-sampled convolutional layer.
There are several modifications to this style of stacking convolutions. For instance, He
et al. [35] have introduced ResNet, which applies shortcuts to the convolutions. In such
blocks, called residual blocks, the input follows two paths. One path forwards the input
and the other one applies convolutions to the input. Both paths are then merged by
summation. This makes it easy for the network to learn the identity function in a resid-
ual block, which reduces overfitting. Different to ResNet, DenseNet [40] has a far higher
re-use of feature maps and therefore requires less parameters. This is accomplished by
stacked dense blocks, which propagate each feature map to all subsequent layers in-
side a block. The strategy presented by Henry et al. [37] not only takes advantage of
DenseNet121 (DenseNet with 121 layers), as the backbone, but also uses its blocks in
the decoder, mirroring the number of feature maps, feature maps’ height and width as
well as the number of layers on each level of resolution. This architecture is designed for
road center line segmentation from aerial RGB imagery. Hence, it does not facilitate the
injection of auxiliary information. This problem was solved by Henry et al. [37], where
a fusion technique called SkipFuse is introduced to enhance the DenseNet121-U-Net by
injecting open street map (OSM) information. In the architecture, the fusion of OSM
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and RGB is achieved by summation of the feature maps at each level of resolution in
the encoder. The sum is not propagated to any other layer in the encoder, but serves as
the input to the skip-connections. Thus, both the RGB and OSM each have a separate
backbone network that specializes solely on one of the two modalities. Since building
segmentation profits from knowledge about height [2, 39, 41], this architecture is also
suitable for building information extraction.

3.2 Building Segmentation

3.2.1 Building Footprint Extraction

Most of the work dedicated to dense pixel labeling of buildings in remote sensing imagery
is in the realm of binary building footprint extraction using FCNs.

3.2.1.1 Footprint Extraction using Classical Methods

Traditional methods for building footprint extraction rely on geometrical models and
analysis of building properties by experts. For instance, Huertas et al. [42] base their
approach on the assumption that buildings are characterized by rectangular shapes and
the presence of shadows, which help differentiate building outlines from non-building
ones. This technique often produces building polygons with jagged lines. To create more
precise footprint boundaries, Guercke et al. [43] employ the Hough Transformation to de-
tect lines within an initial building footprint. They then use lines corresponding to peaks
in the Hough space to construct a refined polygon. To enhance accuracy and robustness
against variations in building appearance, some methods utilize datasets containing both
depth and spectral images. Rottensteiner et al. [44] leverage Dempster-Shafer theory to
fuse multiple features derived from light detection and ranging (LiDAR) digital surface
model (DSM) and multispectral aerial imagery for building detection. These features in-
clude the normalized difference vegetation index (NDVI), the normalized digital surface
model (nDSM), and measures of object roughness. The nDSM helps identify objects
that rise from the ground, distinguishing them from buildings, while the roughness mea-
sure and NDVI primarily differentiate trees from buildings. Ekhtari et al. [45] also use a
LiDAR nDSM to generate an initial building mask, which is refined using WorldView im-
agery. Initially, a rough building mask is created from the nDSM, which is then reduced
to its rough edges. Subsequently, edges are detected in the spectral image, but these
edges are often discontinuous and not limited to buildings. To filter out non-building
edges, edges from the spectral image are masked by those from the depth-based build-
ing edges. Finally, polygons are fitted to the masked edges to eliminate discontinuities.
Turlapaty et al. [46] compute depth information by fusing space-borne multi-angular
imagery and utilize both multispectral and PAN images, which are combined through
pansharpening. From the pansharpened image, the NDVI is calculated, and statistical
properties of these data sources are input into a support vector machine, which classifies
each pixel as either building or non-building.
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Although these methods can be effective for certain areas and building types, a sig-
nificant limitation is that models that rely on hand-crafted features often fail to handle
complex building structures. Moreover, they depend heavily on the manual identification
of relevant features by human experts.

3.2.1.2 Footprint Extraction using Deep Learning

Lately, deep learning has become the SOTA in building footprint extraction. Li et al.
[47] leveraged an attraction field map (AFM) to make a U-Net [14] recognize building
footprints more accurately. The authors cascade the U-Net with another FCN. The U-
Net learns an alternative representation for building boundaries that is based on a limited
set of pixels per building boundary pixel and the distance of a pixel to the boundary.
Although, this method improves the shapes of the building boundaries, it does not prove
that it works in dense, urban scenarios and the results showed visual irregularities like
rounded corners and blob-like building shapes. One work that tackles these problems is
presented by Zhang et al. [48], where authors adapt the topology loss [15] to be aware of
building boundaries. Instead of using an ImageNet pre-trained VGG-network as in [15],
the authors opt for a cyclic training scheme of the loss network. The resulted building
mask is passed to the cyclic loss network to compute features of the intermediate layers.
The authors do the same with the ground truth building footprint and then compute
a regression loss between the features of the prediction and the features of the ground
truth.

Liu et al. [49] introduce spatial residual inception, a module that successively fuses
multi-level features to aggregate multi-scale information. Their proposed SRI-Net is
especially accurate in detecting large buildings. Another method that targets multi-
scale information is that of Zhu et al. [50], called MAP-Net, addresses the challenges of
accurately extracting multiscale building footprints and precise boundaries from remote
sensed imagery. Unlike traditional multi-scale feature extraction strategies, MAP-Net
maintains spatial localization by using a multi-parallel path architecture. Each stage
of this architecture is designed to gradually generate high-level semantic features while
preserving fixed resolution. An attention module is then employed to adaptively squeeze
the channel-wise features extracted from each path, optimizing multiscale feature fusion.
Additionally, a pyramid spatial pooling module captures global dependencies, refining
discontinuous building footprints. This approach ensures accurate extraction of building
footprints across different scales, with improved precision in the boundaries.

Abdollahi et al. [51] perform building footprint segmentation based on aerial imagery.
Their approach contains two main components. The first is a SegNet [52] with bi-
directional long short term memory (LSTM). This kind of network allows to use both
features with high spatial and high semantic resolution in two directions, which improves
the performance in existence of noisy backgrounds. The second is a generative adversarial
network (GAN) setting which helps in creating a long-range context between objects,
also reducing the influence of background noise on the segmentation result.

The feature representation plays an important role in all building segmentation meth-
ods. Hence, several works have been dedicated to the investigation of utilizing height
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information as an input. Bittner et al. [38] use the fact that spectral and depth features
are complementing each other by merging a pansharpened RGB, a nDSM and a PAN
in a convolutional network after passing each of the modalities through an FCN with
skip-connections. Schuegraf et al. [39] even use an 8-channel multi-spectral image in
its original resolution, pass it to a deconvolutional layer and merge it with the PAN in
a residual block. The residual block’s output is passed to a U-shaped network and in
parallel, a DSM patch is also passed through a similar network. The outputs of the two
streams are concatenated and passed through more convolutional layers to produce the
building footprints as the final output.

3.2.2 Deep Learning-based Building Instance Segmentation

More recently, the research community is pushing the bar higher by moving from se-
mantic segmentation of buildings to instance level segmentation of whole buildings and
even building sections. In general, every method that extracts building footprints can
be combined with the extraction of connected building-blobs to obtain instances. But
this conventional approach does not take into account the complexity of some build-
ings, consisting of multiple simple sections. Hence, we consider the deep learning-based
methods, that can separate sections, in this subsection.

3.2.2.1 Mask-RCNN-based

Most of works on building instance segmentation were carried out by utilizing Mask-
RCNN [1]. Mask-RCNN uses a set of anchor bounding boxes, which it classifies as
instance or not instance and refines their position. Finally, it segments the object inside
the predicted bounding box on a pixel level. For example, Amo-Boateng et al. [53] have
trained Mask-RCNN to segment wide-spread, low-density buildings in aerial imagery of
rural Africa. The challenges in rural areas in Africa are the visibility of houses and the
various roof-structures. But besides that, it is not hard to distinguish between buildings,
since they are largely detached, which is much different in dense urban settlements. Fur-
thermore, the shapes of the resulting masks of Mask-RCNN are irregular and therefore
not suitable for many engineering applications. In work Zhao et al. [54], the authors
propose a post-processing refinement of the resulting building masks to obtain regular-
ized building polygons in vector format. They use Mask-RCNN to get initial building
polygons, from which they produce a set of polygons by local manipulation of corners
using neighboring vertices. To choose from the resulting polygon solutions, the authors
use minimum description length (MDL) optimization. The resulting polygons are indeed
regularized, but the experimental evaluation does not include building junctions and the
resulting building polygons can not include inner-yards, since multi-polygons are not
allowed. Wen et al. [55] extend classical Mask-RCNN in two ways. They use rotated
bounding boxes instead of horizontal bounding boxes to better obtain a tightly defined
region around each building. Furthermore, they integrate atrous convolutions [56] and
an inception block [57] into the segmentation branch of Mask-RCNN, which improves
segmentation performance. Chen et al. [58] perform a multi-step procedure to obtain
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improved building instances. In the pre-processing step, they perform super-resolution.
Using the up-sampled image data, they apply Mask-RCNN based on a vision transformer
backbone [59].

3.2.2.2 Not Mask-RCNN-based

Much work has been done to segment buildings by representing them as polygons. One
example is presented by Zhao et al. [60], where a graph neural network (GNN) called
RSGNN is utilized to vectorize building roof-lines. This approach produces perfectly
straight lines and sharp corners by design but also shows many failure cases. RSGNN
could not capture curved roof-lines and relied on instance-level input. Another work
that uses keypoints to detect building instances from remote sensing imagery is that of
Li et al. [61]. There, a convolutional neural network (CNN) extracts features from an
aerial image before a region proposal network (RPN) provides bounding boxes that likely
correspond to locations of building instances. The features of the CNN in the proposed
bounding boxes are extracted by regions of interest (RoI) align and an FCN generates a
density map for keypoints. In a learning-free post-processing step, this keypoint density
map is converted to a building instance polygon. The method produces regular building
polygons and achieves high metric values on a publicly available dataset, but the study
does not contain enough information to see how the method performs in densely built
urban city centers.

The PolyMapper approach [62] directly forecasts buildings and road networks in vec-
tor form, but its efficacy on the CrowdAI dataset [63] is not satisfactory. Conversely,
approximating shapes in images with polygons (ASIP) [64] surpasses the performance
of PolyMapper. ASIP initiates polygons by segmenting the image into convex cells,
followed by polygon refinement through an energy function. This function minimizes
disparities between the fidelity of each polygon to the input image and its complexity.

A further approach to polygonize buildings presented by Girard et al. [65], where a
frame field is learned as one output and a segmentation map of building interior and
building boundary as another one. The frame field is a field of two vectors per pixel,
containing the direction of the tangent and normal vectors of building boundaries. The
frame field is used (a) to regularize the segmentation result and (b) in a polygonization
post-processing step. This procedure is able to separate buildings with common borders,
but relies on the right choice of thresholds to not either over- or undersegment building
sections. While the method of Girard et al. [65] has only the RGB image as the input,
the study of Sun et al. [66] concatenates the nDSM with the RGB before feeding it to
the FCN. The integration of depth information leads to higher metric values and more
regular polygons.

Zorzi et al. [67] present PolyWorld, which is a method for extracting regular building
polygons that are suitable to produce vectorized buildings for many geoinformation sys-
tem (GIS) applications that have a building layer. It has a fully convolutional feature
extraction network, a self-attention GNN and an optimal connection network. Despite
the good performance of PolyWorld, [68] presents the improved Re:PolyWorld method,
which outperforms PolyWorld. Even though PolyWord produces regular building poly-
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gons with superior metric values on CrowdAI [63], they do not separate neighboring
building sections elegantly, because the permutation matrix, that encodes edge informa-
tion, can not deal with buildings with shared vertices. Moreover, Re:PolyWorld does
not utilize DSM information.

Furthermore, there are multiple works on building section instance segmentation which
first segment the building sections and some representation of their borders and then
instantiate building objects in a second step. For example, the methodology of Bai
et al. [69] predicts the energy landscape of an image by a deep neural network with a
discrete number of energy levels. Building section instances are obtained by cutting lower
energy levels and setting them to background values and then extracting the connected
components. Afterwards, the instances are expanded to close the resulting gaps between
them. Wagner et al. [70] chose a slightly different approach. They use a tailored network
architecture of three connected U-Nets to segment the building border, footprint and
inner segment. The prediction of borders, which are exaggerated building borders, helps
to separate the building well enough. In the post-processing step, the inner segments,
which do not overlap, are labeled as instances and are buffered by a number of pixels
to represent their original size. In contrast, Iglovikov et al. [71] predict the background,
building and separation line between nearby buildings in a single network. This leaves
the task of separating adjacent building sections open ended.

3.2.3 Building Outline Regularization

Building footprints and sections often have irregular outlines. To solve this problem,
there has been significant research on building instance regularization. For instance, Li
et al. [72] propose using the primary orientation angle along with a straightforward yet
effective rectilinearization algorithm. However, their method for computing the primary
orientation angle is not robust, as it depends on the minimal point density along the x and
y axes after rotating the initial polygon by a candidate angle. The primary orientation
direction might have an arbitrary number of vertices, depending on the roughness of the
initial polygon.

Other notable work in this area includes Zebedin et al. [73], who regularize building
outlines by filtering initial lines through a histogram of orientations and removing out-
liers. The remaining line directions are then used to reconstruct buildings with a regular
appearance. This approach is flexible, as it is not limited to right angles. Similarly, Cui
et al. [74] employ the Hough transform to group an initial set of line segments into two
perpendicular sets of parallel lines representing the building boundary. They construct
an initial graph with these lines, remove edges in low-contrast regions, and determine
the final building boundary by searching for cycles in the graph. This method, however,
relies on the completeness of the initial line detection and is restricted to rectangular
buildings. Tian et al. [75] also use the Hough transform and line segment intersections
to form building boundaries, allowing for two arbitrary main orientation directions.

More recent advancements involve end-to-end deep learning approaches for building
outline regularization. Marcos et al. [76] propose learning the parameterizations of ac-
tive contour models to refine initial building blobs into regular polygons. Gur et al.
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[77] develop an end-to-end trainable pipeline that iteratively updates an initial set of
points similar to active contour models, although the predicted polygon is not neces-
sarily regularized. Similar to Marcos et al. [76] and Gur et al. [77], Hatamizadeh et al.
[78] propose an end-to-end trainable active contour model-based building boundary ex-
traction method that extends capabilities to various buildings within a patch, as initial
contours are predicted by a CNN. Additionally, Zhao et al. [79] enhance PolyMapper,
which uses an recurrent neural network (RNN) to recursively predict vertices.

3.3 3D Building Reconstruction

The 3D reconstruction of buildings has gained increasing attention in the last years. One
main criterion to distinguish work in 3D reconstruction of building is the LoD according
to the CityGML standard. Since the dissertation focuses on LoD-1 and -2, this section
includes both of them.

3.3.1 LoD-1 Reconstruction

Reconstructing buildings in LoD-1 is a well-studied field. Dukai et al. [80] argue that
LoD-1 models are sufficient or even advantageous for some applications. They provide
a flexible service for LoD-1 model generation, where different approaches for base- and
extrusion-height are provided for all approximately 10 million buildings of the Nether-
lands, which has good data coverage. Peters et al. [81] also provide nation-wide LoD-1
models in the Netherlands. Their method relies on 2D polygons and LiDAR point cloud
and is highly sensitive to the inputs. Hence, they provide a software to review the
quality of the input at different processing steps. Bagheri et al. [82] fuse OSM data
with height information from either dense stereo matching or synthetic apperture radar
(SAR). None of the above methods rely on deep learning. On the opposite, Yu et al.
[83] propose a three stage approach that relies heavily on deep learning. First, the DSM
is reconstructed using a CNN. Next, building edges are robustly extracted by another
CNN. The building edges are vectorized and regularized. Finally, the building height is
extracted from the generated DSM.

3.3.2 LoD-2 Reconstruction

LoD-1 reconstruction is not suffcicient for applications that require detailed informa-
tion about roof structure. Hence, LoD-2 reconstruction is a highly pertinent task. The
derivation of roof planes from imagery and/or height information is often tightly con-
nected to the reconstruction of buildings in LoD-2. Hence, roof plane segmentation is
studied in terms of a secondary task for LoD-2 reconstruction. Therefore, we do not
distinguish the works dedicated to LoD-2 reconstruction from those dedicated to roof
plane segmentation. The LoD-2 reconstruction has received relatively limited attention
in remote sensing research. Nex et al. [5] presented a study that doesn’t involve machine
learning but depends on manually designed features to recreate 3D building rooftops.
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This approach relies on utilizing the near-infrared channel, which may not be univer-
sally available. Additionally, the method struggles to accurately handle highly complex
building structures. Arefi et al. [6] also employ a learning-free technique to create LoD-2
building reconstructions by utilizing both the DSM and the orthorectified image. De-
spite generating improved regular reconstructed buildings, this learning-free approach
depends on manually designed features and consequently lacks robustness when encoun-
tering significant variations in the input data. Peters et al. [81] proposed a method for
the reconstruction of buildings in LoD-2 with building sections and LiDAR point clouds
as input. They use a region growing algorithm to partition the footprints into roof planes
and detect their intersection lines. Another work that relies on normalized point clouds
for LoD-2 reconstruction is that of Li et al. [84], where building primitives from a list of
rooftypes are optimized given the point cloud at hand.

In the study conducted by Alidoost et al. [85], a single aerial image is employed to
create LoD-2 building models. Their methodology involves initially training two dis-
tinct neural networks: one for estimating building heights and the other for extracting
roof features such as eaves, ridges, and hips. Subsequently, a model-based technique
is utilized to generate 3D building models. Recently, LoD-2 reconstruction was per-
formed using deep learning methods by Lussange et al. [86], that use two consecutive
Mask-RCNNs, called keypoint inference by segmentation (KIBS). The first Mask-RCNN
performs roof plane segmentation, while the second detects roof plane corners and their
respective heights in a categorical manner. Although the LoD-2 reconstruction results
look promising, the resulting 3D geometries are not necessarily connected to individ-
ual buildings. Furthermore, KIBS is dependent on the oblique view image and hence
doesn’t generalize to dissimilar viewing angles than those in the training set. Even
though learning-based approaches can achieve consistent city models, it is worth noting
that the accuracy of the predicted heights solely from an image remains to be a po-
tential limitation. Therefore, there is a need to use heights directly from or estimated
based on a DSM. In Gui et al. [18], buildings are segmented by a semantic segmentation
neural network. LoD-2 models are derived using learning-free methods and allowing the
integration of OSM data. Their method is based on an ortho image and an nDSM as
input.

3.4 Attention in Building Segmentation

In recent years, different flavors of attention have been implemented for building seg-
mentation. One such work is Chen et al. [87], where the authors use self-attention for
the semantic segmentation of buildings in optical remote sensing imagery. In Dai et al.
[88], the authors use a location channel attention module to improve the segmentation
of building edges in building and water segmentation. Another work that uses a com-
bination of spatial and channel attention is Pan et al. [89]. Besides these cases of using
attention in CNNs modules, Sun et al. [90] use a multi-resolution transformer that heav-
ily depends on the attention mechanism for building and road segmentation. In Wang
et al. [91], a hybrid model combines hierarchical feature extraction of CNNs with global
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context modeling of transformers for urban scene semantic segmentation. Yet, all works
introduced here use only spectral features for attention computations.

3.5 Summary
Building information extraction and reconstruction is widely studied. The methods
used to segment buildings in image focus mainly on footprint segmentation. In this
dissertation, the aim is to segment buildings on a section instance-level in a way that is
tailored to building. For example, in this thesis, the building sections are not segmented
by using bounding boxes, but separation lines, which allows seamless connection of
neighboring building sections. The named methods for 3D reconstruction of buildings
mostly rely on hand-crafted features, which are not robust to large variations in the
input, whereas the dissertation proposes deep learning-based approaches, which are more
robust. Furthermore, in the above-mentioned domains, the fusion of spectral imagery
and photogrammetric DSM are yet to be improved. On the other hand, the dissertation
proposed multiple ways to introduce height information into the pipeline of building
segmentation and 3D reconstruction.
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4 Building Section Instance Segmentation

I n this chapter, a novel methodology for segmenting building sections based on aerial
and satellite imagery, and photogrammetric digital surface model (DSM) is pre-

sented. It is mainly based on the peer-reviewed journal paper:
[8]: P. Schuegraf, S. Zorzi, F. Fraundorfer, and K. Bittner, “Deep learning for the

automatic division of building constructions into sections on remote sensing images,”
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 16, pp. 7186–7200, 2023.

Furthermore, an application study is included in Section 4.3. There, the aforemen-
tioned methodology [8] is combined with additional training data and evaluated on
highly dense and complex informal and formal built areas. Section 4.3 is based on the
peer-reviewed conference paper:

[9]: P. Schuegraf, D. Stiller, J. Tian, T. Stark, M. Wurm, H. Taubenböck, K.
Bittner, “Ai-based building instance segmentation in formal and informal settlements,”
IEEE International Geoscience and Remote Sensing Symposium, 2024.

Moreover, a method to regularize footprint, using a deep neural network for orientation
prediction is proposed in Section 4.4. Section 4.4 is based on the peer-reviewed conference
paper:

[10]: P. Schuegraf, Z. Li, J. Tian, J. Shan, and K. Bittner, “Rectilinear building
footprint regularization using deep learning,” ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, 2024.

4.1 Problem Statement

Modern urban settlements are densely built, driven by urbanization. Mixed with differ-
ent architectural styles and building requirements, densely built up cities show a variety
of geometric and spectral building appearances. Most often, complex buildings are as-
sembled of smaller, more manageable constructions, as can be seen in Figure 4.1. It
turns out, that for endeavours to systematize the building inventories of cities, for ex-
ample, to reconstruct building models in a level of detail (LoD) of higher than zero, it is
rudimentary to be able to locate the outlines of the building primitives. We define these
building primitives as parts of larger building constructions as provided by federal cadas-
tre data, where the individual building is defined by a house number. The assignment
of house numbers to buildings depends on societal factors, which are not always visible.
Hence, the separation between buildings by house numbers is not always visible in the
top-down view, which is a source of ambiguity in the judgement of the success of our
method. On the other hand, if the touching border between two differently numbered
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Figure 4.1: Overlay of our method’s building section instance segmentation predictions over a panchro-
matic image in our test area showing Berlin, Germany.

houses is not visible, the two parts can safely be regarded as a single building for appli-
cations that require building outlines as a primary feature. Those applications include
building 3D reconstruction, flow simulation (e.g. water, wind or 5G-waves), solar panel
recommendation and natural crisis intervention. For those applications, a correct and
detailed information of each building section is essential. For example, roof forms of the
individual sections need to be distinguished to recommend the solar panel assembly side.

In applications such as building reconstruction, disaster monitoring, city planning and
environment modelling for autonomous driving, building footprints are crucial. Most
works on building footprint extraction produce raster outputs, whereas applications
require them in vector format. A robust approach to obtain buildings in vector format is
to first predict raster buildings using a neural network and then applying postprocessing
that outputs polygons. The results achieved by conventional methods are either limited
in terms of generalization capacity [73–75] or are not restricted sufficiently to prior
knowledge of regularity [68, 76–79].

A manual delineation of the sections’ outlines is very time consuming and expensive,
owing to the fact that cities experience rapid growth and infrastructure advances. Ac-
cordingly, an automatic extraction of building sections is a highly pertinent task. But
currently, segmenting multiple gapless buildings as one large building is set as a standard
[6, 38, 39]. But remotely sensed images show much more beneficial features for building
segmentation, since they are equipped with cameras with increasingly high spatial res-
olution with a ground sampling distance (GSD) as small as 0.3 m. We already showed
in our previous work [2], that these features are appropriate to discern building sections
visually. Even though building section instance segmentation based on separation lines
outperforms the Mask-RCNN, it lacks regularity of the predicted sections. Zhang et al.
[48] use the perceptual loss term, originally introduced in [15] for thin structure segmen-
tation, to regularize building footprints. To complement optical data, pixel-wise height
features like DSM can be used in building segmentation. Many optical satellites deliver
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multi-view data, which is used to compute DSMs. Furthermore, spectral and height
information have been leveraged jointly to detect buildings [6, 38, 39]. In our previous
method [2], we leveraged the DSM to detect junctions of neighboring buildings.

4.2 Deep Learning for the Automatic Division of Building
Constructions into Sections

4.2.1 Contributions
In this section, we extend our findings from Schuegraf et al. [2] by the following contri-
butions:

• Our main contribution is the in-depth description of a method which uses the
separation line between building instances instead of the whole borders [65] to
obtain building sections. Furthermore, our method can handle an arbitrary number
of instances as opposed to bounding-box based methods [1].

• We introduce a framework consisting of a deep learning network and a post-
processing that extracts building footprints and building section separation lines
from very high resolution (VHR) satellite images and DSMs. The framework is
designed to produce sharp building edges, as well as complete and straight separa-
tion lines. Our framework utilizes the watershed transform together with multiple
post-processing steps. The whole workflow is depicted in Figure 5.1.

• We fuse spectral and depth features by fusing them by summation at the skip-
connections and the full scale aggregated skip-connections (FSA) from the U-Net-
3+ in our proposed SkipFuse-U-Net-3+ architecture.

• We leverage an additional, feature-extraction-based loss-term that not only im-
proves the regularity of separation lines at building junctions, but also regularizes
building section shapes.

• We show the generalization capability of our method by evaluating our model,
that was previously trained on data from Berlin, Germany, on an additional test
area in Lyon, France, which includes different architectural styles and topographies
and was acquired by a different sensor than the training data. The corresponding
ground truth is provided by the municipality of Lyon.

• We evaluate our method on an open-source dataset consisting of aerial images,
aerial-based DSMs and dense pixel-wise building section instance masks in the area
of the German federal state of North-Rhine-Westphalia. Our benchmark dataset
focuses on areas with highly complex urban building structures.

• Our results are suitable for vectorization and rendering them into LoD 1 models.

Regarding our previous publication [2], we highlight the following differences to this
section:
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Semantic
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U-shape FCN

Post-Processing
and Watershed

Dilation
Watershed transf.

PAN

DSM

3-Class Map Section Map

Figure 4.2: The overall workflow of our proposed methodology. First, a fully convolutional neural
network (FCN) extracts a map of the three classes background, building and separation
line. In the second step, the separation line is dilated and the watershed transform is used
to obtain building section instances.

• We add a regularization term to our loss function to enhance building section
shapes and improve the separation line.

• We evaluate our method on two additional datasets, where one originates from a
satellite and the other one is aerial.

• We evaluate our trained model on satellite imagery of the city of Lyon, France to
show the models generalization capability.

• After comparing our model to the Mask-RCNN in the previous work, now we
compare with the more advanced framefield learning model.

• We provide more detailed descriptions of the presented method.

4.2.2 Methodology

4.2.2.1 Network Architecture

The network architecture is one of the most important parts of a deep learning based
method. The SkipFuse-DenseNet121-U-Net was successfully used for building section
instance segmentation in [2], but its skip-connections have access to only a single scale
of the encoder. In work [13], FSAs are introduced to overcome this limitation by merging
feature maps from all higher scale feature maps at each skip-connection. We propose to
use the U-Net-3+ architecture from [13] for building section instance segmentation, with
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(a) SkipFuse-DenseNet121-U-Net

(b) SkipFuse-U-Net-3+

Skip-Conn. Bottleneck

Skip-Conn. Bottleneck

Encoder PAN
DenseNet121

Encoder DSM
DenseNet121

Decoder
DenseNet121

Encoder PAN

Encoder DSM
Decoder

Dec.Enc.

Connectivity

Figure 4.3: Visualization of the SkipFuse-DenseNet121-U-Net and the SkipFuse-U-Net-3+. Both take
as the input a patch of a spectral, i.e. panchromatic or RGB image and a patch of the
corresponding DSM. The two modalities are summed at the skip-connections in both ar-
chitectures. At the bottleneck, the features from both modalities are also summed for both
architectures, but the SkipFuse-U-Net-3+ uses full scale aggregation.

a second encoder for DSM information integration. One encoder receives the panchro-
matic patch and the other receives DSM patch as in the SkipFuse-DenseNet121-U-Net.
The feature maps at four different scales are summed from the two encoders and used
as the input to the FSAs. We call the resulting architecture SkipFuse-U-Net-3+ (see
Figure 4.18 (b)).

4.2.2.2 Loss Function

We train our proposed model on a combination of segmentation and regularization terms

LT OT AL = LCE + LGD + λBM · (LT OP )BM

+ λT B · (LT OP )T B,
, (4.1)

where λ regulates the contribution of the topological term towards the overall training
process. In the following paragraphs, we provide details about the other components of
LT OT AL. Note that for a compact notation, we do not note the parameter list for each

35



CHAPTER 4. BUILDING SECTION INSTANCE SEGMENTATION

(a) (b)
Section Map

Watershed Transform

Seed FootprintSegm. Map

Segmentation Map
0: Background (black)
1: Building (grey)
2: Separation Line (white)

Separation Line Dilated Sep. Line

Footprint Seed

Figure 4.4: A visualization of the workflow of building section creation from 3-class maps by using
the watershed transform and morphological processing. First, a seed is generated from
the dilated separation line and the building footprints (see Figure 4.4a). Then, the 3-class
maps together with the seed and the footprint as a mask is sent to the watershed transform
to produce building section instances.

of the losses, which is (x, y, p) for (LT OP )C and LGD and (x, y, p, w) for LCE .
A common loss function for semantic tasks is the weighted cross-entropy loss

LCE(x, y, p, w) = −
∑

i

yiwi · log(p(xi)), (4.2)

where x is the input tensor, y is the ground truth and p(.) denotes the softmax-output
of the neural network model, i denotes the respective class and w is a vector of manually
chosen loss balancing factors, which we set to [1, 1, 4]. The cross-entropy loss is used to
maximize the predicted probability of the desired class at a certain pixel which often
leads to rounded or blurry object boundaries. In contrary, the generalized dice loss [92]

LGD(x, y, p) = 1 − 2 ·
∑

i vi
∑

n yin · p(xi)n∑
i vi

∑
n yin + p(xi)n

, (4.3)

where vi is the inverse frequency of the class i, is designed for crisp boundary detec-
tion. Even though LCE and LGD guide the training process towards confident and
comprehensive predictions, they do not include spatial context beyond pixel level to the
optimization target. But in remote sensing, the final result is demanded to be of spatial
coherence. Hence, we aim to use an additional loss term which enforces local regularity
with regards to the structure in the ground truth.

This loss-term is called topological loss [15]

(LT OP )C(x, y, p) =
N∑

n=1

Mn∑
m=1

||lmn (yC) − lmn (p(x)C)||22, (4.4)

where lmn denotes feature map m of layer n of a pre-trained convolutional neural network
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(a) PAN (b) DSM

(c) GT Footprint (d) GT section instances

Figure 4.5: Excerpt from our WorldView-1 building section instance segmentation dataset. We use
this dataset for experimental evaluation of our method and ablation.

(CNN) and C is the class on which to apply the term. For the sake of simplicity, we
omit C if we mention the version of the topology loss for binary segmentation tasks as
in work [15]. The topological loss penalizes structural irregularities like over-rounded
corners and bumpy edges by comparing geometrical features of the segmentation patch
with those of the ground truth patch. Hence, it serves as regularization with regard to
typical building shapes and their separation lines. In the work of Mosinska et al. [15], the
networks output is concatenated three times with itself to obtain three input channels,
since the feature extracting CNN is pre-trained on RGB images and therefore, a single
input is not enough. We follow that strategy too. But different to Mosinska et al. [15],
we not only use LT OP to improve the thin line, in our case the separation line, but also
the building section mask. Hence, we evaluate LT OP once on the building section output
channel and once on the separation line output channel of our network. We set lmn to all
channels of the feature maps after each of the five max pooling operations of the VGG19
feature extraction network, which was pretrained on the imagenet dataset.

4.2.2.3 Post-Processing

Our FCN architecture produces a 2-dimensional map of three classes, which can not
directly be interpreted as a map of building sections instances. Instead, we use the
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(a) PAN (b) DSM

(c) GT Footprint (d) GT section instances

Figure 4.6: Excerpt from our test set in Lyon, France. We use this dataset to test the generalization
capability of our model.

watershed transform [3] to use the network’s output for building section instance seg-
mentation. The watershed transform takes a single channel intensity image together
with a seed image and a mask as its input and interprets the intensities as a topological
surface. Then, a flooding of the surface is simulated, where water starts flooding from
the seeds and is caught in basins which are separated by watershed lines that correspond
to high image intensities. The mask restricts the virtual water to flow in specific regions.
The areas enclosed by watershed lines are then interpreted as the objects. As depicted in
Figure 4.4, for building section instance segmentation, the intensity image is replaced by
the 3-class map of background, building and separation line. We obtain the seed image
by subtraction of the dilated binary separation line mask from the binary building mask
in the foreground regions of the binary building mask.

The dilation, which is carried out using a disk-shaped structuring element helps to
fill holes in the separation lines, leading to better separation between sections but also
badly influences the sections by deforming the seed. With the watershed transform, two
predicted, neighboring building sections will have no gap between them. This facilitates
regularity of the building sections’ separation.

38



CHAPTER 4. BUILDING SECTION INSTANCE SEGMENTATION

City Split Region of Interest (EPSG:32632) Area km2

Bonn, Germany Training 363675.0:372281.0,5614866.5:5629411.5 125
Cologne, Germany Training 1 352000.25:354777.25,5638999.75:5649999.75 31
Cologne, Germany Training 2 355277.25:361000.25,5638999.75:5649999.75 34
Cologne, Germany Training 3 354777.25:355277.25,5638999.75:5646999.75 4
Cologne, Germany Validation 354777.25:355277.25,5646999.75:5648999.75 1
Cologne, Germany Test 354777.25:355277.25,5648999.75:5649999.75 0.5

Table 4.1: Geographic coordinates of the Aer50-NRW dataset. The provided format is xmin :
xmax, ymin : ymax.

4.2.2.4 Vectorized LoD-1 Generation

After producing a map of building sections in raster format, we aim to generate building
polygons and LoD-1 models to demonstrate the possible usage in remote sensing and
geoinformation system (GIS) applications. We achieve this by extracting the coordinates
of the boundary polygons of each building section by a simple tree search and the removal
of redundant corners if they do not lead to a change of direction in the boundary polygon.
To integrate height information, we mask the input DSM with the binary map for the
corresponding building section. Then, we remove the lowest two percents of height values
to reduce the influence of pixels which are mistakenly segmented as building pixels, but
belong to the background. The remaining height values are averaged to obtain the mean
building height. For our visualization, we model the ground by removing above terrain
objects with morphological filters as in the work of Qin et al. [93].

4.2.3 Experiments

4.2.3.1 Data

We use three different experimental datasets. Sat50-Berlin consists of a panchromatic
and a DSM images as inputs, paired with a building mask image as a ground truth
(GT) with values in {0, 1, 2}. By stereo matching of multiple different views over the
same scene [19], the DSM was computed. A building instance is defined by the coordi-
nates of houses with individual addresses, provided by the German Federal Agency for
Cartography and Geodesy 1.

The ground truth raster is converted to the same resolution and size as the input.
The raster values are 0 for background and integer values for each individual building,
thus every pixel is linked to an individual building instance. Then, the touching borders
between buildings are initially calculated by searching for neighbors for each instance.
In a refinement step, morphology is applied to remove gaps between building sections.
Afterwards, these borders are merged with a binary image of the building mask, so the
result is a raster image with three values: 0 for background, 1 for building mask and 2
for touching borders. See an excerpt of Sat50-Berlin in Figure 4.5.

Panchromatic images and DSMs of our satellite dataset Sat50-Berlin originate from
1http://www.businesslocationcenter.de/downloadportal
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(a) RGB (b) DSM

(c) GT Footprint (d) GT section instances

Figure 4.7: Excerpt from our aerial building section instance segmentation dataset Aer50-NRW. We
use this dataset to provide a public benchmark for the evaluation of building section in-
stance segmentation methods that rely not only on spectral information, but also on depth
information like from a DSM.

high resolution WorldView-1 data with a GSD of 0.5 m and shows the city of Berlin,
Germany. The selected training area covers an area of 387 km2. Two non-overlapping
tiles, that are separate from the training data, are cropped from the WorldView-1 image
for each of validation and test. The validation and test tile cover an area of 7 km2 and
2 km2 respectively. Additionally, to test the generalization capability of our method, we
use a WorldView-2 panchromatic image and DSM of the city of Lyon, France. See an
overview of the selected area in Figure 4.6.

As the second dataset, we use Sat30-Berlin with GSD of 30 cm as in our previous
work [2] to serve as a basis for comparison. In work [2], the ground truth was shifted more
with respect to the image in the training, validation and test set, which we corrected and
hence in this work, and, as a result, got slightly different metric values. Apart from the
shifting, the ground truth was generated in the same ways as for Sat50-Berlin. The
training, validation and test set cover an area of 81 km2, 13 km2 and 2 km2, respectively.
Furthermore, the test set of Sat30-Berlin matches geographically with the test set of
Sat50-Berlin.

Our last dataset, Aer50-NRW (see Figure 4.7) is an open source dataset consisting
of aerial RGB imagery and an aerial DSM showing the cities of Cologne and Bonn,
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Germany, with a ground sampling distance of 0.5 m. The original GSD of the RGB
images is 0.1 m. Hence, we apply cubic interpolation in the downsampling step to
acquire high quality RGB images in 0.5 m GSD. The ground truth is arranged in the
same way as in Sat50-Berlin. The utilized RGB, DSM and ground truth data are
freely available, supplied by the government of the federal state North-Rhine-Westphalia,
Germany 2. To allow comparison of different methods that utilize depth and spectral
information for building instance segmentation, we provide the geographic coordinates
in Table 4.1. Furthermore, we manually corrected some parts of the test area to obtain
more meaningful metric values 3.

The final step of preparing the three datasets is to normalize all input data before
training. Since generalization is an important factor of the quality of the final model’s
prediction, we leverage a normalization scheme that is robust to variations in input
images. We compute the 2nd and 98th percentile of the whole panchromatic or RGB
image and set all pixels with values below the 2nd percentile to the 2nd percentile
and all pixels with values above the 98th percentile to the 98th percentile. Then, we
normalize each patch to the range [−1, 1], where −1 represents the 2nd percentile and
1 represents the 98th percentile. Note that, for the RGB data, we do percentile cutting
and normalization for each band individually. Since we do not rely on absolute height
information, we normalize the DSM to range [−1, 1], where −1 represents the minimum
height of the patch and 1 represents the maximum height of the patch.

4.2.3.2 Training Process

In this subsection, we point out the elements of the training that are similar for all
experiments if not stated otherwise. For optimization, we used the Adam [32] optimizer
with beta1 = 0.9, beta2 = 0.99 and an initial learning rate of 0.001. To increase the speed
of the training, an exponential learning rate decay of 0.9 per epoch is used if not stated
otherwise. The training is done in a mini-batch procedure for 50 epochs with validation
after each epoch. For some experiments, the number of epochs deviates from 50, if either
a different model or a different data augmentation strategy is chosen. To increase the
variety of training samples, we do augmentation by random shifting of the patches, that
are cut out from the remote sensing image. The shift is uniformly randomly distributed
in between 0 and half of the patch height or with for both the vertical or horizontal
direction.

4.2.3.3 Metrics

To evaluate the performance of experiments, several metrics are calculated for each class
separately. For each class, a binary mask is computed for the ground truth and class
predictions and the corresponding number of true positive (TP), true negative (TN),
false positive (FP) and false negative (FN) are calculated.

2https://www.opengeodata.nrw.de/produkte/geobasis
3https://github.com/dlrPHS/Aer50-NRW
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The precision

Prec = TP

TP + FP
(4.5)

is a measure for how good the segmentation method does not predict the negatives as
positives for a particular class, the recall

Recc = TP

TP + FN
(4.6)

gives insight into how complete the pixels of a certain class are segmented, the F1

F1c = 2 × Prec ∗ Recc

Prec + Recc
(4.7)

is a metric which combines precision and recall, such that the F1 is drawn stronger
towards the lower of the two and the intersection over union (IoU)

IoUc = TP

TP + FP + FN
(4.8)

is the ratio of overlapping pixels of the prediction and ground truth over their union.
Next to the background, there are the classes building mask (BM) and touching bor-

ders (TB). All the previous metrics are listed for the class c ∈ {BM, TB}. Since in this
work we focus on instance segmentation, the common instance metrics mean average
precision (mAP) and mean average recall (mAR) are used to evaluate the models on
an instance level. Both these metrics rely on computing the IoU of predicted instance
masks and ground truth masks, where the mAP tends to punish predicted masks, which
cannot reach a certain threshold and the mAR has a reciprocal relation with the num-
ber of ground truth instances that are not matched by any of the predicted instances
in terms of a threshold. To get a balanced metric, the F1IS is computed similar as in
Equation 4.8, but with the mAP and mAR instead of precision and recall.

4.2.3.4 Inference Process

After training the models, we test them on unseen data to evaluate their performance.
We pre-selected a single tile as the test area for each of the data set in the same city as
the training data, except one experiment, where the cross-city generalization capacity
is evaluated by predicting building section instances in a different city. The tile is
split in patches of size 512 × 512 pixels. The patches are overlapping by 256 pixels
in horizontal and vertical dimension each. The resulting masks are averaged at the
overlapping regions. After the computation of the prediction scores for the three different
classes background, building model and touching borders, the argmax classifier is applied
to obtain a class label at each pixel. Next, dilation and watershed are applied to complete
separation lines and obtain instances from the semantic output. To obtain quantitative
evaluation, we use the same metrics as in work [2]. Note that the subscript IS denotes
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instance segmentation and is evaluated per instance, whereas the corresponding semantic
segmentation metric is evaluated per pixel. In addition to the quantitative view, we aim
for a more comprehensive presentation and discussion of the experiment’s results by
visualizing them.

4.2.3.5 Experiment Descriptions

The Mask-RCNN [1] is a common instance segmentation network. In our previous work
[2], we already showed that our usage of a separation line is superior to the bounding-
box based approach of the Mask-RCNN. On the Sat30-Berlin dataset, it achieves an
mAP of 0.27, leveraging only the RGB as the input image and a U-Net-ResNet50 as
the backbone network, as compared to 0.33 mAP of an RGB-based U-Net-ResNet50
utilized in the touching borders setting with watershed post-processing. Hence, we omit
the Mask-RCNN experiment here to focus on the following experiments.

First, we describe the experiments that where carried out on our WorldView-1 based
satellite dataset Sat50-Berlin. We use this dataset, since a larger area is covered and
hence, more diversity is included by this dataset than by our Sat30-Berlin dataset.

We evaluate the SkipFuse-DenseNet121-U-Net trained with several different loss func-
tions, enhance its performance by stronger data augmentation and then change the
architecture to demonstrate the effectiveness of our proposed SkipFuse-U-Net-3+ archi-
tecture for building section instance segmentation.

In the first experiment, we train the SkipFuse-DenseNet121-U-Net architecture using
LCE (Equation (4.2)) and LGD (Equation (4.3)) as the optimization target. We regard
this experiment as our baseline and to test that our method not only works with RGB
and DSM modalities as in our previous work [2] but also with PAN and DSM modalities.

To show that the (LT OP )T B (see Equation (4.4)) regularizes separation line segmen-
tation at building junctions, we add it to the loss function with which we train the
SkipFuse-DenseNet121-U-Net. We set λT B = 0.2 to bring the regularizing term to a
similar scale as the pixel wise term.

The topology loss was originally developed to improve the segmentation of thin struc-
tures. But since it uses not only the thin features of its pretrained feature extractor,
we argue that it is also useful for the regularization of building section segmentation.
Therefore, we add the topology loss terms (LT OP )T B and (LT OP )BM (Equation (4.4))
to LCE (Equation (4.2)) and LGD (Equation (4.3)) for the building class with weight
λBM = 0.1 and the separation line class with weight λT B = 0.2.

To further enhance the performance of our SkipFuse-DenseNet121-U-Net, we add data
augmentation. Additionally, to the already enabled random patching, we rotate all input
and ground truth patches by a random angle between 0 and 360 degrees, to increase the
variety of training samples. Due to more variety in the training dataset, we increase
the learning rate decay rate of the exponential scheduler from 0.9 to 0.99, which helps
exposing the model to a greater diversity of training samples in a tight range of learning
rate values. In Table 4.2 and Table 4.3, the additional augmentation along with the
adapted training schedule is noted with "+Aug". We select the model after 212 epochs
of training for testing, since it has high evaluation metrics on the validation set.
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As the next experiment, we change the architecture of our segmentation model.
The inputs and outputs are structured similar as in the SkipFuse-DenseNet121, but
the SkipFuse-U-Net-3+ uses FSA to aggregate more scale information at the skip-
connections. To leverage FSA for building section instance segmentation, we train the
SkipFuse-U-Net-3+ with the same schedule and augmentation strategy as in the previous
paragraph.

Automatic building section instance segmentation methods need to generalize not
only to previously unseen inputs with similar roof-structures, but also to total different
roof styles. Therefore, we evaluate the trained SkipFuse-U-Net-3+ as described in the
previous paragraph on panchromatic WorldView-2 imagery and DSM from the city of
Lyon, France. While carrying out this experiment, we noticed that the model gives
weaker responses in the touching borders channel of its output. Therefore, in addition
to the argmax classifier, we add all pixels to the touching borders class that achieve a
softmax score of higher than 0.25. Hence, during inference, we compute the output of
four versions of each patch. In detail, the three applied transformations are horizontal
flipping, vertical flipping and both horizontal and vertical flipping. The network’s output
scores are averaged over the four resulting outputs.

Since we want to demonstrate that our proposed architecture and training scheme is
also applicable to pansharpened satellite imagery, we carry out two experiments.

To have a baseline, we retrain our model from [2] on the Sat30-Berlin dataset as
described in [2].

Next, we demonstrate how our model, trained similar as on Sat50-Berlin but on the
Sat30-Berlin dataset, is capable to predict high quality building section instances from
pansharpened RGB imagery together with the DSM.

Model Dataset Loss F1BM IoUBM F1T B IoUT B meanIoU

SkipFuse-DenseNet121-U-Net Sat50-Berlin LCE + LGD 0.9061 0.8284 0.5239 0.3549 0.7067
SkipFuse-DenseNet121-U-Net Sat50-Berlin LCE + LGD + (LT OP )BLD 0.9059 0.828 0.5247 0.3557 0.7067
SkipFuse-DenseNet121-U-Net Sat50-Berlin LCE+LGD+(LT OP )T B+(LT OP )BM 0.9107 0.836 0.4914 0.3257 0.7007
SkipFuse-DenseNet121-U-Net Sat50-Berlin + Aug LCE+LGD+(LT OP )T B+(LT OP )BM 0.9136 0.8409 0.5444 0.3740 0.7186
SkipFuse-U-Net-3+ Sat50-Berlin + Aug LCE+LGD+(LT OP )T B+(LT OP )BM 0.9142 0.8420 0.5618 0.3906 0.7246

Table 4.2: Semantic segmentation metric results on Sat50-Berlin.

Model Dataset R Loss F1IS mAP mAR

SkipFuse-DenseNet121-U-Net Sat50-Berlin 6 LCE + LGD 0.3916 0.3453 0.4523
SkipFuse-DenseNet121-U-Net Sat50-Berlin 6 LCE + LGD + (LT OP )BLD 0.4089 0.3664 0.4626
SkipFuse-DenseNet121-U-Net Sat50-Berlin 5 LCE+LGD+(LT OP )T B+(LT OP )BM 0.4144 0.3672 0.4756
SkipFuse-DenseNet121-U-Net Sat50-Berlin + Aug 5 LCE+LGD+(LT OP )T B+(LT OP )BM 0.4551 0.4066 0.5167
SkipFuse-U-Net-3+ Sat50-Berlin + Aug 5 LCE+LGD+(LT OP )T B+(LT OP )BM 0.4568 0.4124 0.5120

Table 4.3: Instance segmentation metric results on Sat50-Berlin. R denotes the size of the structuring
element of the dilation of the separation line in the post-processing.

As a means to compare our proposed approach with current state-of-the-art method-
ology, we perform an additional experiment on the open source aerial dataset Aer50-
NRW. Aer50-Nrw includes building instance maps, which are, unlike in existing public
datasets like CrowdAI [63], separated at section borders.
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Model Dataset Loss F1BM IoUBM F1T B IoUT B meanIoU

SkipFuse-DenseNet121-U-Net Sat30-Berlin LCE 0.918 0.8484 0.4377 0.2802 0.6904
SkipFuse-U-Net-3+ Sat30-Berlin + Aug LCE+LGD+(LT OP )T B+(LT OP )BM 0.9214 0.8542 0.3956 0.2466 0.6817

Table 4.4: Semantic segmentation metric results on Sat30-Berlin.

Model Dataset R Loss meanIoU F1IS mAP mAR

SkipFuse-DenseNet121-U-Net Sat30-Berlin 4 LCE 0.6904 0.4546 0.4104 0.5109
SkipFuse-U-Net-3+ Sat30-Berlin + Aug 9 LCE+LGD+(LT OP )T B+(LT OP )BM 0.6817 0.4874 0.4497 0.5320

Table 4.5: Instance segmentation metric results on Sat30-Berlin. R denotes the size of the structuring
element of the dilation of the separation line in the post-processing.

To compare the method proposed in this chapter with the method introduced by
Girard et al. [65], we train a U-Net-ResNet50 with the frame field learning method
on our aerial dataset Aer50-NRW. For this training, we use the public code from
[ff_code]. We set the number of epochs to 500 and select the model after 86 epochs,
which has the lowest validation loss. The learning rate is set to 0.001 and the batch
size is chosen to be 8. As the polygonization procedure, we select the active skeleton
model. The active skeleton model consists of (a) skeleton initialization and (b) skeleton
refinement. In difference to [65], which uses only a single threshold to obtain the initial
building interior and exterior segmentations, we use two different thresholds. First, the
building interior segmentation is thresholded by 0.9. From the resulting footprints, the
initial building polygon skeleton is computed. The initial interior edge, which allows
the splitting of adjoining buildings, is obtained by thresholding the edge segmentation
at 0.45. Both the interior and the exterior edges are joined to build the initial skeleton
that is passed to the refinement step. After producing the polygons, we rasterize them,
giving each polygon and its interior an ID, to allow us to compare the method to our
ground truth as in all other experiments. Since the frame field learning method does
not explicitly produce the touching borders class, we do not provide metric values for
the semantic segmentation, but only for the instance segmentation results. We use the
same backbone network as in [65]. Note, that the frame field learning method does not
leverage a DSM, which is one of the key-features of our method.

To demonstrate how our SkipFuse-U-Net-3+ performs on a dataset that is fully public
available, we re-train it on the Aer50-NRW dataset.

4.2.3.6 Vectorization and LoD-1 DSM

To show how our building section instances can be used for further applications, we have
rendered an LoD-1 DSM as described in Section 4.2.2.4. The resulting LoD-1 DSM is
visualized. We do not perform metric computation for the LoD-1 DSM, since we do not
have suitable ground truth.
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(a) PAN (b) DSM (c) GT

(d) Without LT OP (e) (LT OP )T B (f) (LT OP )T B + (LT OP )BM

Figure 4.8: A visual comparison of the panchromatic image in (a), the DSM in (b), the three class
map in (c) and the results of the SkipFuse-DenseNet121-U-Net trained with different losses.
Adding (LT OP )T B removes holes of touching borders (green, yellow and purple ovals). Also
adding (LT OP )BM leads to sharper edges of the building sections (blue box) and thinner
touching borders (green, yellow and purple ovals).

(a) PAN (b) GT (c) PAN Less Shadow

(d) SkipFuse-DenseNet121-U-Net (e) DSM (f) SkipFuse-DenseNet121-U-Net
Extra Augmentation

Figure 4.9: In (a) the PAN, in (c) the PAN cut off at the 0- and 20−percentiles and in (e) the DSM are
visualized. In (b), (d) and (f), the ground truth, prediction from SkipFuse-DenseNet121-
U-Net and prediction from SkipFuse-DenseNet121-U-Net with additional data augmenta-
tion are given.
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(a) RGB (b) DSM (c) GT

(d) SkipFuse-DenseNet121-U-Net (e) SkipFuse-U-Net-3+,
WorldView-4

(f) SkipFuse-U-Net-3+,
WorldView-1

Figure 4.10: Visualization of the results of two different models on two different datasets.

(a) PAN with GSD 0.5 m (b) PAN with GSD 0.3 m

(c) SkipFuse-U-Net-3+ on WorldView-1 data (d) SkipFuse-U-Net-3+ on WorldView-4 data

Figure 4.11: A visualization of the results of the SkipFuse-U-Net-3+ on WorldView-1 and WorldView-
4 data. In (a) and (b), a junction of two buildings as seen from WorldView-1 and
WorldView-4 is shown. In (c) and (d) the respective results of the SkipFuse-U-Net-3+ is
visualized.
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(a) DSM visualized in 3 dimensions, colorized according to predicted sections

(b) PAN (c) DSM

(d) GT section instances (e) SkipFuse-U-Net-3+

Figure 4.12: Results from our generalization experiment. The SkipFuse-U-Net-3+ can disentangle
neighboring roofs in this example. The predicted instances contains more detailed sections
than the ground truth.
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(a) PAN
WorldView-1

(b) DSM
WorldView-1

(c) RGB
WorldView-4

(d) DSM
WorldView-4

(e) GT Footprint

(f) GT Instances (g) SkipFuse-
DenseNet121-
U-Net Foot-
print

(h) SkipFuse-
DenseNet121-
U-Net In-
stances

(i) SkipFuse-
U-Net-3+
Footprint

(j) SkipFuse-
U-Net-3+
Instances

(k) PAN
WorldView-1

(l) DSM
WorldView-1

(m) PAN
WorldView-4

(n) DSM
WorldView-4

(o) GT Footprint

(p) GT Instances (q) SkipFuse-
DenseNet121-
U-Net Foot-
print

(r) SkipFuse-
DenseNet121-
U-Net In-
stances

(s) SkipFuse-
U-Net-3+
Footprint

(t) SkipFuse-
U-Net-3+
Instances

Figure 4.13: Two examples ((a) - (j) and (k) - (t)). The result of the SkipFuse-U-Net-3+ is more
accurate in two ambiguous cases than the SkipFuse-DenseNet121-U-Net. In the colored
boxes in (a), (b), (k) and (l), it is hard to distinguish between building instances. Higher
resolution World-View-4 imagery and DSM in (c), (d), (m) and (o) shows that the
prediction of the SkipFuse-U-Net-3+ has split the two buildings correctly, whereas the
SkipFuse-DenseNet121-U-Net fails to capture the fine contrast. Note, that none of the
two networks used the World-View-4 data for prediction.

4.2.4 Results & Discussion

First we report our findings of the experiments on Sat50-Berlin. Find the quantita-
tive results for the semantic segmentation task and the instance segmentation task in
Table 4.2 and Table 4.3, respectively.

As the baseline model, we trained the SkipFuse-DenseNet121-U-Net with the segmen-
tation losses LCE and LGD. The model scores an mAP of 0.3453, which is much smaller
than 0.4104 of the model trained on the dataset of our previous paper [2]. It is no-
table, that in [2], we used RGB imagery, which is not available for some satellites like
WorldView-1. Also, both metric values can not directly be compared, since the imagery
was acquired at different GSDs. The effect of different GSDs on separation line visibility
can be recognized in Figure 4.11.
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(a) RGB (b) DSM (c) GT Instances (d) Frame Field
Learning

(e) Ours

Figure 4.14: Comparison of the results of our SkipFuse-U-Net-3+, trained with the perceptual loss
for both the touching borders class and the building class, against a ResNet101-U-Net,
trained with the frame field learning method [65].

Since the quality of the touching borders is crucial for the separation of buildings
into its sections, we want to regularize it. Typical pixel-wise losses as LCE can not
capture patch-level information. Here we compare our initial loss LCE + LGD with
LCE + LGD + (LT OP )T B. In Table 4.3, we can see the quantitative improvement that
is achieved by adding (LT OP )T B. Both losses lead to similar scores on F1BM , IoUBM ,
F1T B and IoUT B, but on the F1IS , mAP and mAR, the model trained with the topo-
logical loss in the touching borders class scores 0.4089 over 0.3916, 0.3664 over 0.3453
and 0.4626 over 0.4523. The explanation for the difference in instance segmentation
metrics and semantic segmentation metrics can be explained by qualitative inspection.
In Figure 4.8e and Figure 4.8d, it is visualized that the addition of (LT OP )T B reduces
holes in touching border objects, which was similarly shown for road segments in work
[15]. Hence, building sections are separated more accurate and hence, the instance seg-
mentation metrics improve, even though the F1T B and IoUT B are almost equal for both
experiments.

Not only touching borders, but also the building model class should have regular
appearance. Therefore, we trained our FCN on LT OT AL and compared it with the
model trained on LCE + LGD + (LT OP )T B and the model trained on LCE + LGD. In
Table 4.3, the model trained on LT OT AL achieves the better performance than the pre-
vious experiments. It scores 0.4144 F1IS , 0.3672 mAP and 0.4756 mAR, even though
its performance drops on F1T B from 0.5247 to 0.4914 and on IoUT B from 0.3557 to
0.3257. Compared to the model trained without both LT OP terms, it can be seen how
the topology loss improves the shape of the footprints in Figure 4.8. The footprints
of the segmentation of the model trained with LT OP have straighter edges in many
places and even detect an inner yard, that the unregularized model does not detect.
Furthermore, the model trained on LT OT AL segments touching borders as thin lines as
opposed to the model trained with (LT OP )T B but without (LT OP )BM . This helps the
post-processing to produce more accurate sections, since the building sections are less
deformed by separation lines which are to thick.

Since it is crucial that the model is trained in a way that avoids overfitting, we applied
further data augmentation techniques. In Table 4.3 it can be observed that the applied
data augmentation leads to an improvement in mAP of 0.0133. In F1BM and IoUBM the
strongly augmented model does not improve over the not augmented model. In contrast,
the strongly augmented model exceeds the performance of the SkipFuse-DenseNet121-U-
Net without the extra augmentations in F1T B and IoUT B. The touching borders class
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Model Dataset Loss F1BM IoUBM F1T B IoUT B meanIoU

SkipFuse-U-Net-3+ Aer50-NRW LT OT AL 0.9148 0.8429 0.5499 0.3792 0.7218
FrameField-Resnet101-U-Net Aer50-NRW See [65] - - - - -

Table 4.6: Semantic segmentation metric results on Aer50-NRW. Note, that in [65], the full border
is predicted instead of the only the touching borders. Hence, the metric results are not
comparable and we ommit them here.

Model Dataset R Loss F1IS mAP mAR

SkipFuse-U-Net-3+ Aer50-NRW 1 LT OT AL 0.2905 0.2454 0.3559
FrameField-Resnet101-U-Net Aer50-NRW - See [65] 0.2202 0.1776 0.2899

Table 4.7: Instance segmentation metric results on Aer50-NRW. R denotes the size of the structuring
element of the dilation of the separation line in the post-processing.

is much more underrepresented than the building model class. As previously stated,
we weight the touching borders class with a factor of 4 in LCE and the inverse class
frequency in LGD. Therefore, a fewer amount of pixels has a relatively large effect on
the gradient of the model. But with the touching border dropout as we applied it here,
the variety of input-output-relation in the touching border class increases. In Figure 4.9,
a case of an improved separation line and occlusion robustness of the model trained with
strong augmentations is visualized.

We evaluated the SkipFuse-U-Net-3+ on the Sat50-Berlin dataset. As can be seen
in Table 4.2 and 4.3, the SkipFuse-Unet-3+ outperforms all the other models on Sat50-
Berlin. It achieves the meanIoU of 0.7246 and F1IS of 0.4568, which shows that the
SkipFuse-U-Net-3+ performs better not only in the realm of semantic segmentations,
but its predictions are more suitable for building section instance segmentation than
those of the SkipFuse-DenseNet121-U-Net. In the visual inspection in Figure 4.13, we
observe that the SkipFuse-U-Net-3+ is more accurate than the SkipFuse-DenseNet121-
U-Net in places with high visual ambiguity. FSAs allow the SkipFuse-U-Net-3+ to take
even small spectral and height differences into account when making the prediction.

After seeing only roofs of Berlin during training, we leveraged the SkipFuse-U-Net-3+
to make building section instance prediction in the city of Lyon, France. Quantitatively,
the SkipFuse-U-Net-3+ achieves meanIoU 0.582 and mAP score 0.1165 using a dilation
radius of 3. But visually, the model’s behavior is confirmed as more accurate than the
ground truth (see Figure 4.12), which gives us an indicator for why the metrics are much
lower than on our test area in Berlin.

As a means to demonstrate how our findings from the current chapter complement
our previous work, we present our results on Sat30-Berlin. See the quantitative results
on the semantic and instance segmentation tasks in Table 4.4 and Table 4.5.

We re-trained the model from [2] on a slightly modified dataset. In comparison to our
previous paper, the performance dropped by about 0.01 from 0.42 mAP to 0.41 mAP .
But since we shifted the ground truth to match the satellite imagery better, the results
are now more useful and can not directly be compared in terms of metric values.

Since we want to show that the improvements we achieved in the ablation study using
the WorldView-1 data, we also trained our proposed model, the SkipFuse-U-Net-3+,
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(a) LoD-1 DSM (b) Vectorized Format

Figure 4.15: Visualization of our predicted building sections as (a) an LoD-1 DSM and (b) vectorized
polygons. These two variants of our results are useful for further applications.

using our proposed regularization loss scheme. From Table 4.4 and Table 4.5, it can be
seen that our proposed method has higher values in all metrics but the F1T B and the
IoUT B. In Figure 4.10, the separation lines produced by the SkipFuse-U-Net-3+ are
considerably thinner than those infered by the SkipFuse-DenseNet121-U-Net, which is
caused by the regularization loss term (LT OP )T B + (LT OP )BM . Even though thinner
lines are more regular, they lead to dropping semantic segmentation metrics, because
small deviations of the position of the predicted line may cause them to be completely off
the corresponding ground truth. On the other hand, the SkipFuse-U-Net-3+ achieves
an F1IS 0.4874, mAP 0.4497 and mAR of 0.532, which is an improvment of 0.0328,
0.0393 and 0.0211 respectively over the SkipFuse-DenseNet121-U-Net trained without
the perceptual loss terms. Hence, the small drop in performance in the touching borders
class does not effect the resulting instances severely. Furthermore, the SkipFuse-U-
Net-3+ that was trained and evaluated on WorldView-4 data produces more regular
building shapes than the same model trained and evaluated on WorldView-1 data. We
attribute more of the gain to the change in GSD than to the higher spectral resolution.
In Figure 4.11, it can be seen that even in the panchromatic image, the separation
line, which is hard to detect even for the human eye, can be detected more easily on
the WorldView-4 data and is detected by the corresponding model on the WorldView-4
data, but not on the WorldView-1 data.

Next, we present the results of the experiments carried out on the aerial open-source
dataset Aer50-NRW. Find the quantitative results on the semantic and instance seg-
mentation tasks in Table 4.6 and Table 4.7, respectively.

As the baseline model on our benchmark dataset Aer50-NRW, we evaluated the
framefield learning method to segment building sections. Quantitatively, the framefield
learning model achieves an mAP of 0.1776. It is shown in Figure 4.14, that the framefield
learning model produces instances of regular appearance with straight lines and sharp
corners. But in some places, the framefield learning model produces more instances than
are actually present in the image and the ground truth.

On the other hand, our SkipFuse-U-Net-3+, which does not have access to the tangent
direction and hence, can not use the active skeleton model to refine the building bound-
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Figure 4.16: Example of selected test area in Medellin and the obtained instance segmentation results
from the proposed methodology.

ary, produces less regular building sections. But quantitatively, our method improves
over the framefield learning model by 0.0678 mAP . Since our method utilizes the DSM,
it is more robust to variations in the RGB imagery.

As can be observed in Figure 4.15a, our building sections, combined with the cor-
responding DSM and digital terrain model (DTM) are a suitable basis to produce a
regularized LoD-1 DSM. Furthermore, in Figure 4.15b, the corresponding polygons are
visualized on top of the input panchromatic image. The polygons are visually accurate
representations of the underlying building sections.

4.3 Informal Building Instance Segmentation

4.3.1 Application Description

In the undulating slopes of Medellín, Colombia, where challenging topography inter-
twines with the vulnerability of communities, the threat of landslides emphasizes the
pursuit of precise insights into this complex urban landscape. We urgently require addi-
tional information to assess the potential risks and determine the necessity of employing
artificial intelligence for the instance segmentation of buildings. Medellín, faces unique
challenges as it is nestled in a valley surrounded by steep slopes. Historical urbanization,
driven by rapid industrial and economic growth in the mid-20th century, led to an influx
of migrants settling informally on the city’s outskirts [94]. The escalation of informal
housing, exacerbated by conflicts between paramilitary forces and guerrilla groups, par-
ticularly in later years, has extended the city into precarious, hard-to-reach areas on
these steep slopes.

The informal settlements, characterized by low-quality building fabric, are highly vul-
nerable to landslide hazards due to frequent heavy rainfall and the presence of weak,
erosive rocks in the bedrock [95]. Effectively countering this risk requires precise knowl-
edge of the at-risk areas and an understanding of the potential impact on the population.
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Figure 4.17: Locations of the AOIs within the administrative area of Medellín and detailed maps for
the AOIs used for testing.

However, official population data for Medellín accurately geolocates formal residents but
significantly underrepresents the more recent informal settlements on steep slopes, lead-
ing to a substantial underestimation of the exposed population [96].

Detecting informal settlements poses significant challenges [97, 98] due to limited data
availability and the uncertainty associated with reference data [99, 100]. This difficulty
is further aggravated by the intra-and-inter urban variability observed in informal ar-
eas [101]. While the utilization of very high-resolution imagery proves advantageous
for informal settlement classification, as demonstrated in [102], the detection of individ-
ual buildings within informal settlements remains an extremely challenging task, often
requiring manual intervention [103].

To address this critical knowledge gap, we leverage high-resolution remote sensing im-
agery in combination with a DSM, capable of detecting single buildings in the challenging
urban environment of Medellín. This approach will be tested in formal settlements, but
even more pertinent and demanding is its application in the city’s informal settlements
(see Figure 4.16). The morphological characteristics of these areas, marked by small-
scaled, intricate, and densely packed structures, are indicative of informal settlements
[104]. In this study, we employ a SkipFuse-UResNet34 in order to generate building
instances, thus leading to a more comprehensive building mask compared to official data
sources. This enhanced building mask serves as a crucial tool to estimate the population
at risk of landslides, allowing for a comparison with official data and filling the current
spatial knowledge void.

Overall, this section has the following contributions:

• building instance segmentation in formal settlement,

• building instance segmentation in informal settlement,

• empowering disaster aid by providing a building map layer.

4.3.2 Study area and data

The study area is the municipality of Medellín (Figure 4.17). Three regions of interest
(RoI) were used for training, each with different sizes, i.e. from east to west, 3x5.5km,
2.5x3km, and 2.5x1.5km. The testing was undertaken in five distinct RoIs within Medel-
lín, each covering an expanse of 1.5x1.5km. The selection of the test RoIs was guided
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by two primary considerations. Firstly, they were chosen for their high building density,
rendering them well-suited for our proposed application. Secondly, these RoIs showcase
a diverse array of morphological building types, effectively capturing the inherent struc-
tural complexity of buildings. RoI 1 is situated in the central business district, RoI 2
is characterized by a substantial industrial area, RoI 3 primarily consists of residential
building structures with varying heights, RoI 4 incorporates large communal and indus-
trial buildings alongside low- and mid-rise structures, and RoI 5 features a densely-built
informal area located at the steep slopes on the outskirts of Medellín.

For the study area of Medellín, we use very high resolution RGB satellite imagery from
WorldView-3 with a geometric resolution of 0.3 m. For training the model, additional
imagery data depicting Berlin city from WorldView-4, Bonn city from open source aerial
data, and Hamburg city from WorldView-2 were used. All images were brought to a
geometric resolution of 0.3 m.

In contrast to prior research, our model utilized a pansharpened RGB image in ad-
dition to DSM generated by semi-global matching (SGM) technique [19], rather than
relying on a single panchromatic channel and DSM. The RGB images enables better
visualization and interpretation of the details present in the scene. For a challenging
task like detecting small buildings in informal areas, spectral information plays a crucial
role. It provides the network with additional clues about various structures, particularly
in cases of dissimilar textures.

We rely on official building cadaster data for training, validation, and testing of our
method. Cadaster data from Germany for the cities of Berlin, Bonn, and Hamburg, were
used for training and validation. In addition to these, cadaster data from Medellín was
also used for the purpose of training, validation, and testing. This dataset encompasses
the footprints for a significant portion of building structures in Medellín. Nevertheless,
it is important to highlight that the official building cadaster does not include numerous
informal or recently constructed buildings.

4.3.3 Methodology

With this paper, we are testing the applicability of our previously developed methodol-
ogy Section 4.2 for building sections instance segmentation on a new challenging area of
Medellín. The proposed method comprises two consecutive steps: Initially, a SkipFuse-
UResNet34 architecture (see Figure 4.18) is used to segment buildings and separation
lines between building sections as a 3-class problem. The process utilizes RGB and DSM
images fed into two distinct encoders. To preserve fine-grained spatial information, fea-
ture maps, obtained at four distinct scales from the two encoders, are aggregated by
summation and serve as the input for the full-scale skip-connections. During the net-
work training, a combination of three losses—Weighted Cross Entropy Loss, Dice Loss,
and Topology Loss—was employed. For more details, please, refer to Section 4.2.

Next, a map of building section instances is generated using the watershed trans-
form [3] as a post-processing step. Mainly, the watershed transform interprets the ob-
tained 3-class map of background, building, and separation line together with a seed
image and a mask as a topographical surface. The seed map and mask are extracted
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Skip-Conn. BottleneckEncoder PAN
ResNet34

Encoder DSM
ResNet34

Decoder

Figure 4.18: Visualization of the utilized network architecture.

(a) Sample of area from AOI 4 showing a formal
(city) region

(b) Instance segmentation results for sample of area
from AOI 4

(c) Sample of area from AOI 5 showing an informal
settlement

(d) Instance segmentation results for sample of area
from AOI 5

Figure 4.19: Detailed visual analysis of building instance segmentation results on two challenging areas
from AOI 4 and 5.

from the predicted information about buildings and separation lines. Subsequently, wa-
tershed transform simulates a flooding scenario where water initiates flooding from the
seeds and settles into basins. These basins are marked by watershed lines, aligning with
high image intensities. The mask confines the virtual water flow to specific regions. The
enclosed regions delineated by watershed lines are then recognized as objects.
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Table 4.8: Quantitative results for IOU, FPR, FNR metrics of building class and overall accuracy
evaluated on five selected AOIs for testing.

AOI IoUBLD FPRBLD FNRBLD OA

1 0.694 0.125 0.234 0.816
2 0.761 0.039 0.192 0.902
3 0.669 0.066 0.223 0.889
4 0.708 0.078 0.198 0.878
5 0.620 0.086 0.254 0.866

We conduct evaluations on five selected RoIs that combine both formal urban envi-
ronments and informal settlements. Those complex areas are selected for the purpose
to better demonstrate the strength of the proposed methodology.

4.3.4 Results and Discussion

Figure 4.19 illustrates two samples of complex and very dissimilar regions of Medellín
together with the obtained instance segmentation results from our proposed methodol-
ogy.

In a city region (see Figure 4.19a), buildings can have very complex shapes with many
sections within one building construction. To distinguish those sections or separation
lines between those sections is a challenging task even for a human eye. Nevertheless,
one can recognize a city layout within this region, which cannot be done by observing the
informal settlement area (Figure 4.19c). Although buildings within informal settlements
often exhibit simple rectangular shapes, their dense arrangement makes it challenging to
distinguish each individual construction. Analysing the obtained instance segmentation
results for both regions in Figure 4.19b and Figure 4.19d, we can say that our developed
methodology enables the identification of even the smallest building segments, regardless
of the building complexity or the region.

To quantify the quality of instance segmentation results, we evaluate the metrics

IoUBLD = TP
TP + FP + FN , (4.9)

FPRBLD = FP
FP + TN , (4.10)

FNRBLD = FN
FN + TP (4.11)

and
OA = TP + TN

TP + TN + FP + FN , (4.12)

where TP, TN, FP, FN are true positive, true negative, false positive and false negative
of the building class.
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Our approach achieves an IoU around or above 0.7 on the AOIs 1-4. In the informal
AOI 5, it still scores 0.62 IoU, whereas the overall accuracy (OA) is high at above 0.8
for all AOIs. The false positive rate (FPR) is very low for all AOIs, which indicates that
the method produces few false positives. On the other hand, the resulting false negative
rate (FNR) is above 0.19 for all AOIs, pointing at the issue that many small buildings
are very hard to detect.

4.4 Building Footprint Regularization

4.4.1 Contributions

Our goal is to achieve regularized building polygons, assuming that all vertices of build-
ings should have a rectangular angle. Whereas this assumption not always holds, it is
sufficient for most buildings, especially residential houses and industrial buildings. A
90° angle always needs a reference axis, which is the primary orientation of a polygon.
Even though for perfectly regularized polygons, in most cases the primary orientation is
that of the longest sidelength, we are dealing with irregular polygons. Deep learning al-
lows us to automatically learn features from a large training dataset. First, we use deep
learning to extract building footprints from ortho imagery and photogrammetric digital
surface model (DSM). Next, with our regularization framework called primary orienta-
tion learning (POL), we train a 1D convolutional neural network (CNN), from whose
output we compute the primary orientation angle in continuous space. Subsequently, we
use a learning free and iterative approach to insert vertices that make the initial polygon
rectilinear, i.e. having 90° angles at every vertex. Figure 4.20 shows an example of a
regularized building outline obtained by our method. Overall, the contributions of this
sections are

• continuous prediction of primary orientation angle,

• highly efficient primary orientation angle inference,

• and guaranteed rectilinear resulting building polygons.

4.4.2 Methodology

To obtain regularized building footprints, two steps are required. In the first step, we
used the trained network from Section 4.3.1. During the inference of that network,
we merged neighboring building sections into larger building footprints, since our rec-
tilinearization method is not designed for seamless neighboring sections. In the second
step, we extracted building border pixels to form a polygon, followed by predicting the
corresponding primary orientation, and then applied our rectilinearization algorithm to
obtain regular polygons.
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Initial Regularized

Figure 4.20: A building boundary regularization example in our test region, Braunschweig, Germany.
The left figure represents the initial vectorization of the building footprint and the right
one is the final regularized building boundary.

α∗

Figure 4.21: Visualization of a regular polygon (blue), an irregular polygon (brown), the primary
orientation axis (orange) and the secondary orientation axis (green).
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Figure 4.22: Visualization of the architecture of our proposed POL network. Convolutional layers
extract local features for every vertex and linear layers compute global features and the
regression output.

RGB DSM Footprints

Figure 4.23: Our test area in Braunschweig, Germany. Three layers included within the data are shown,
RGB image (left), DSM (middle), and the ground truth building footprints (right).

4.4.2.1 Primary Orientation Learning: Vectorization and Regularization

The previously described method to obtain building footprints delivers them in raster
format. To obtain instances, we first generate initial polygons and then refine them
based on their primary orientation.

4.4.2.1.1 Initial Polygon Generation We applied a tree search to obtain an ordered
set of boundary pixels, forming a polygon. This polygon has many redundant vertices
and has irregular appearance, because of limited ground sampling distance (GSD) and
imperfect building footprints. To remove many redundant vertices and simplify the
polygon, we applied Douglas-Peucker [105] with tolerance ϵ = 1.2 m.

4.4.2.1.2 Direction Prediction & Rectilinearization The next step is based on the
assumption, that the boundaries of a building are aligned with only two directions. We
define the direction, along which the regular polygon stretches most, the primary orienta-
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tion α∗. The 90° rotated primary axis is called secondary orientation β∗ = α∗ +90°. This
can be seen in Figure 4.21, where the orange arrow represents the primary orientation
axis, being rotated with respect to the blue, dashed arrow by angle α∗. For regular poly-
gons, α∗ can be obtained by computing the angle of the linesegment with the longest side-
length with respect to the positive x-axis (blue, dashed line). But for irregular polygons,
the longest sidelength has no meaning. We represent a polygon P = [v0, v1, ..., vn−1],
which is a clockwise ordered set of n vertices vi ∈ V with V = {v0, v1, ..., vn−1} as a
vector p = [x0, y0, x1, y1, ..., xn−1, yn−1,
0, ..., 0]T with trailing zeros to bring each vector to the fixed length 400, which facilitates
the length of all polygons in our dataset. We passed a minibatch of such vectors to a
network consisting of 1D convolutional, rectified linear unit (ReLU), batch normaliza-
tion, dropout and linear layers (see Figure 5.11). This network predicts the primary
and secondary orientation angles α̂ and β̂ by the parameters c0 and c2 of the complex
polynomial

f(z) = z4 + c2z2 + c0, (4.13)

where

c0 = u2 (4.14)
c2 = −(u2 + v2) (4.15)

⇔


u =

√
−1

2

(
c2 +

√
c2

2 − 4c0

)
v =

√
−1

2

(
c2 −

√
c2

2 − 4c0

)
.

(4.16)

The ambiguity of the sign and order when regressing an angle directly is resolved in this
representation of the orientation. We borrow this idea from [65], where the coefficients
are predicted at each pixel of an image along the boundary of buildings. However, we
only predict a single complex value for each c0 and c2 for each polygon. Hence, we
obtained 4 scalars for each input p from the network, from which we calculate the two
complex numbers u and v using Equation (4.16). Then, we converted each of u and v
into an angle with respect to the positive x-axis using trigonometry.

The network is trained using two loss functions, the first loss function

Lalign = |f(eiθ∗ ; ĉ0, ĉ2)|2, (4.17)

where ĉ0 and ĉ2 are the predicted complex polynomial coefficients, enforces alignment
of the prediction with the ground truth primary orientation angle θ∗. The second loss
function

Lalign90 = |f(eiθ∗T ; ĉ0, ĉ2)|2, (4.18)

enforces that the predicted secondary angle is aligned with θ∗T = θ∗ − π. The total loss
is

L = Lalign + 0.2 × Lalign90 (4.19)
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Next, we applied the following rectilinearization algorithm for each of α̂ and β̂, closely
following [72]:

1. Rotate the irregular polygon by θ̂ ∈ {−α̂, −β̂}

2. Given a clockwise ordered set of vertices V = {v0, v1, ..., vn−1}, where vertex vi

has coordinates (xi, yi), generate a line list L = {l0, l1, ..., ln−1};

3. Select the oblique line segments in L. Then for each oblique line segment li ∈ L,
a. Calculate two candidate points to be inserted based on the two subsequent

vertices vi and vi+1:

v1c = (xi, yi+1)
v2c = (xi+1, yi)

b. The relative position of each candidate point relative to li is determined using

d1 =

∣∣∣∣∣∣∣
xi xi+1 xi

yi yi+1 yi+1
1 1 1

∣∣∣∣∣∣∣ ,

d2 =

∣∣∣∣∣∣∣
xi xi+1 xi+1
yi yi+1 yi

1 1 1

∣∣∣∣∣∣∣ ,

where d1 is the relative position of v1c and d2 that of v2c.
c. Since we are dealing with clockwise-oriented polygons, a negative d1 or d2

means that either v1c or v2c is outside the polygon and hence is inserted into
the polygon between vi and vi+1.

Since we applied the above algorithm twice for two different angles, we selected the
rectilinear polygon that has the higher intersection over union (IoU) with the irregular
polygon.

4.4.3 Experiments
We carried out two experiments. Both experiments are based on the footprints from our
raster footprint extraction method, trained according to [8]. The first experiment is the
baseline evaluating the method on our Braunschweig, Germany test region. The second
experiment is our neural network based regularization on the same test region. See a
visualization of the test area in Figure 4.23.

4.4.3.1 Baseline

The baseline method is that of [72]. The main difference to our approach is that the
baseline uses a learning free procedure to obtain the primary orientation angle.
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Figure 4.24: Our results in vector format on some part of the test area. Red polygons represent
predicted building outlines, green polygons are ground truth polygons. The resulting
polygons have regular shapes, i.e. right angles at every vertex with a low number of
vertices. Even non-rectangular buildings are successfully regularized.

4.4.3.2 Primary Orientation Learning

We trained the proposed POL network on a dataset consisting of 92600 regular building
polygons from public sources of the cities of Berlin, Cologne and Hamburg, Germany, as
well as Medellin, Columbia and validated after every epoch on 958 polygons of Cologne,
Germany. Since the trained model should work on irregular polygons, we slightly shifted
each vertex of the regular polygons by a 2D normal distribution centered at the original
vertex position with standard deviation 0.5 m. Additionally, we randomly rotated every
polygon and adjusted the corresponding ground truth angle accordingly to increase the
variety of training samples. We used the Adam optimizer with learning rate 0.001,
batch size 128 and multiplied the learning rate by 0.9 after every ten epochs. We let the
training run for 500 epochs and selected the model that performed best on the validation
dataset.
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Table 4.9: Quantitative evaluation of our method (POL) and the baseline method. We jointly evaluated
quality and efficiency metrics. The baseline method for building regularization does not rely
on machine learning, hence it has no training time.
Exp. IoU F1 Prec Rec Inf. Time Train. Time ε

Basline 0.7946 0.8855 0.8861 0.8850 78.261 ms - 2.7355°
POL 0.7940 0.8852 0.9056 0.8657 2.879 ms 01:38:57 (hh:mm:ss) 4.2447°

We extracted the initial polygons from the predicted raster footprints by tracing the
pixels along the boundary of each connected component. Then, we applied Douglas-
Peucker with tolerance 1.2 m to simplify the initial polygon. We applied our trained
POL network to the simplified polygon to obtain two orientation angles. Then, we
applied the rectilinearization algorithm for each of the predicted angles and selected the
polygon that has the larger IoU with the simplified polygon.

4.4.3.3 Evaluation

To judge the capability of our proposed method, we evaluated it on an RGB and DSM
showing an area in Braunschweig, Germany. The data was captured by an aerial 3K
camera at 0.1 m GSD and downsized to 0.3 m GSD.

We use the Common metrics to evaluate building footprint quality are

IoU = TP

TP + FP + FN
, (4.20)

Prec = TP

TP + FP
, (4.21)

Rec = TP

TP + FN
, (4.22)

and

F1 = 2 × Prec × Rec

Prec + Rec
, (4.23)

where TP , FP , FN are the true positive, false positive and false negative of the building
class. Additionally, we provide the inference time, training time and the angle prediction
error

ε = |θ̂ − θ∗|. (4.24)

For POL, we processed the polygons of the whole test area at once and divided the
inference time by the number of polygons. The experiments were carried out on a server
with an NVIDIA GeForce RTX 2080 Ti GPU with 11019 MB for the neural network
inference and a Intel® Xeon® Gold 6230 CPU @ 2.10GHz for the baseline inference. The
server has 504 GB working memory. To gain more insight into the results, we visualized
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RGB DSM Ground Truth

Initial Baseline Ours

RGB DSM Ground Truth

Initial Baseline Ours

Figure 4.25: Visual result of two buildings in our test region. The baseline and our result are rect-
angular at every vertex, whereas the initial segmentation has irregular appearance. The
horizontal line splits two different cases.

both results next to the ground truth.

4.4.4 Results

We listed the metrics of resulting building footprint quality and training/inference time
in Table 4.9. It shows that both the baseline method and our proposed POL achieve very
similar or almost identical results in IoU and F1, whereas POL has a higher precision
and the baseline has a higher recall. The similarity in IoU and F1 are explained by
the fact that we used the identical initial footprints and regularization does not have
a large effect on these metrics. On the other hand, the baseline method tends to add
the new vertices more on the outside of the ground truth polygon. These results show
that our approach for footprint regularization is not worse than the baseline in terms of
quality. This can be verified visually in Figure 4.25, where both the baseline and our
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method have perfectly regular appearance. In Figure 4.24, the high quality of most of
the resulting building footprints is visualized. Although the satisfying overall result, we
encountered some missing detections. Those are due to tiny building size, low contrast
or lack of visibility in the RGB image, which makes it hard for the footprint predictor
to recognize them. Furthermore, the baseline achieves an angular error ε of about 1.5°
lower than our POL. POL predicts angles continuously which removes ambiguity from
the angle prediction and avoids a method intrinsic error of up to 1.0°, which the baseline
method includes. On the other hand, our learning based method was trained only on
slightly alternations of the regular ground truth polygons, which leads to a domain gap
between training and test polygons. Furthermore, we used the orientation of the longest
side as the ground truth annotation, which is inaccurate in many cases but easy to
obtain for large quantities of ground truth polygons. However, the error of 4.2447° is
still very low, but the baseline needs to test 181 possible angles to achieve this results,
which results in the inference time of 78.261 ms, whereas POL only needs 2.879 ms to
infer a single primary orientation angle. This computational advantage can be explained
by two reasons. The first is the aforementioned necessity of the baseline to compute the
axis density for 181 possible angles. The second one is the capability of batch processing
in POL. POL can process the about 500 predicted initial polygons in the test area in a
single forward pass in parallel.

4.5 Summary

In this chapter, we presented a framework for the separation of building constructions
into sections. We extended the U-Net-3+ architecture to effectively make use of DSM
features by applying the SkipFuse multi-modality fusion-scheme. Our proposed method
consists of (a) prediction of pixel-wise buildings and separation lines by the SkipFuse-
U-Net-3+, (b) transformation of the semantic output into instance-wise output by the
watershed transform and morphological operations. The SkipFuse-U-Net-3+ was trained
with both a pixel-wise and a topology-aware loss on space-borne images and DSMs. The
experiments show the generalization capability of this two-step-procedure to extract
building sections on an area which is different from our training area in terms of source
satellite and roof-top appearance. We re-trained the SkipFuse-U-Net-3+ on aerial data
and outperform the current state-of-the-art methodology. In both cases of aerial and
satellite data, the procedure generates building sections with sharp edges and straight
seams to neighboring touching instances. Our networks achieve high quality results
in terms of metrics and visual inspection. Additionally, we publish the details and
evaluation ground truth of our Aer50-NRW dataset, consisting of aerial RGB and DSM
data showing the cities of Bonn and Cologne, Germany, together with the ground truth,
which was manually adapted in the test area to facilitate meaningful metric evaluation.
We presented simple method that convert the resultant instances from raster to vector
format and produce a level of detail (LoD)-1 model, utilizing the input DSM. In the
future, we will investigate both the fusion of RGB and panchromatic images integrated
in the network and multi-task learning to extract additional building information.
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Moreover, our proposed building instance segmentation approach is able to identify
single building instances in both settlement types, formal and informal. This framework
can obtain detailed instance segmentation masks, especially for informal regions, facil-
itates the accurate counting of built houses and estimation of the population residing
in these areas. This information becomes critical during disasters and for coordinating
humanitarian aid efforts.

Additionally, we presented POL, a framework to predict real-valued, primary orien-
tations of initial, irregular polygons in an end-to-end trainable manner. We leveraged
those angles for accurate and efficient building polygon regularization, using a simple yet
effective rectilinearization algorithm. Furthermore, we demonstrated the generalization
capability of POL on polygons that are very different to those in the training dataset.
Our analysis showed that our method achieves similar results as those of the reference
method but overcomes the limitation of discrete valued angles.
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5 Level of Detail-2 Reconstruction

I n this chapter, two approaches that use instance segmentation for level of detail
(LoD)-2 reconstruction from aerial imagery and photogrammetric digital surface

model (DSM) (Section 5.2), and satellite imagery and photogrammetric DSM (Sec-
tion 5.3) are presented. The content of this chapter is based on the peer-reviewed
journal papers:

[11]: P. Schuegraf, S. Shan, and K. Bittner, "Planes4lod2: Reconstruction of LoD-2
Building Models using a Depth Attention-Based Fully Convolutional Neural Network,"
ISPRS Journal of Photogrammetry and Remote Sensing, vol. 211, pp. 425-437 ff., 2024

and
[12]: P. Schuegraf, S. Gui, R. Qin, F. Fraundorfer, and K. Bittner, “Sat2building:

Lod-2 Building Reconstruction from Satellite Imagery using Spatial Embeddings,” Sub-
mitted to Journal of Applied Earth Observation and Geo Information, 2024.

5.1 Problem Statement

Urbanization is one of the mega-trends that pose massive challenges for humanity. Many
of these challenges are linked to buildings, the main structural elements of cities. From
disaster management, flood simulation, landslide simulation to solar panel recommen-
dation, all need precise knowledge of building locations, dimensions and appearances. A
3D building model at LoD-2, according to the CityGML standard [4], is required in those
applications. One possible way to obtain LoD-2 city models is to scan these structures
with terrestrial laser scanning. Yet, this is a very time and energy consuming approach,
and can’t quickly take into account changes in the housing stock of a city or historic
buildings in large quantities. Laser-scanning from the air involves a light detection and
ranging (LiDAR) sensor, which provides robust geometrical information but lacks spec-
tral information and is much more expensive and less efficient than an optical camera.
Photos from multiple angles of a scene allow the derivation of a photogrammetric DSM.
Although it is more noisy than a LiDAR DSM, it is less cost-intensive and accompanied
by spectral information. To make use of these data, a key step is to extract features from
them. Conventional methods rely on hand-crafting such features to detect buildings and
their components [5, 6, 81], but these features are often not robust to strong variations
in the data. On the other hand, deep learning allows to automatically learn features
from high-dimensional data, making it ideal for image recognition in remote sensing.

Although several studies have carried out LoD-2 reconstruction from airborne sensor
data [5, 6, 18, 81, 85, 86] only few of them use deep learning [18, 85, 86] and none of them
predicts the main planar components (i.e. roof planes) of each roof, directly based on an
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image and photogrammetric DSM. As such, there is a need to uniquely identify building
sections even if they have common borders. Note that we regard building sections as
parts of a building with distinguishable roof-structure according to a single roof type.

The rest of this chapter is organized as follows. Section 5.2 describes a method for LoD-
2 reconstruction from aerial data, noted as PLANES4LOD2, in detail. In Section 5.3,
SAT2BUILDING, a method for LoD-2 reconstruction from satellite data, is introduced.
Section 5.4 concludes this chapter.

5.2 PLANES4LOD2: Reconstruction of LoD-2 Building
Models using a Depth Attention-based Fully Convolutional
Neural Network

5.2.1 Contributions

The work in this sections extends our previous work reported in Schuegraf et al. [16].
In that paper, we introduced a dataset for instance segmentation of buildings and their
respective roof planes, named Roof3D. Along with the data, we presented a method
that jointly segments building sections and roof planes using a U-Net with a ResNet-34
backbone. Although this method showed promising results when operating solely on
the image data, integrating the DSM led to a drop in performance. In Section 5.2, we
introduce a depth attention module (DAM) to improve the prediction performance for
both building sections and roof planes. Here, attention refers to a mechanism that models
the interactions in a feature map by learning weights for computing a weighted sum of
the input. In our case, the weights are calculated from DSM features. We show that the
Efficient-NetB3 is a more suitable backbone for the task at hand. In the meantime, we are
able to reduce the number of primitive classes in the preliminary semantic segmentation
task from 5 to 4 by removing the outer boundary of building. Additionally, we make
use of building sections and planes to derive an LoD-2 reconstruction of our test region
in Cologne, Germany. To demonstrate the generalization capability of our method to
dissimilar architectural styles and geographical locations, we perform an inference on a
separate test region in Braunschweig, Germany.

In this section, we introduce a new approach, PLANES4LOD2, which has the following
contributions:

• It predicts building sections and roof planes jointly, such that each roof plane is
uniquely connected to a building section.

• It utilizes the predicted building sections and roof planes to achieve a complete
LoD-2 reconstruction, which is represented both as a 3D shapefile and an LoD-2
DSM.

• The introduced attention module, DAM, is able to effectively and efficiently utilize
the geometric features of a photogrammetric DSM in a U-Net architecture with
an EfficientNetB3 backbone.
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Figure 5.1: The overall workflow of PLANES4LOD2. The RGB imagery and DSM patches are passed
to U-Net to produce a 4-class map. Polygonization yields building sections and roof planes.
Using an external digital terrain model (DTM), LoD-2 reconstruction generates a vectorized
3D building model.

• By using two independent datasets, we show the superiority of the combination
of spatial and spectral attention. Furthermore, we demonstrate the generalization
capability of our approach to a test region that is dissimilar in architectural style
and geographical location from the primary test region.

5.2.2 Methodology

We will first give an overview of our workflow, the PLANES4LOD2 method, and then
describe its three major steps, including instance segmentation, polygonization and LoD-
2 reconstruction.

5.2.2.1 Overview

The LoD-2 reconstruction of buildings can be achieved using three main inputs: 1)
building sections, 2) building planes and 3) a normalized digital surface model (nDSM).

The definition of building section is often ambiguous. It often refers to a building that
has a primitive roof structure, but it can also be interpreted as the building belonging
to a building address. In the end, the definition is tightly connected to the ground
truth. The data from a public source that we use for training is based on the address
definition. On the other hand, addresses are not always visibly discernible. Hence, for
the hand-labeled data in the inference, we use the roof primitive definition. In the rest
of chapter, we also refer to building section as a roof.

The nDSM is obtained by subtracting a DTM, acquired from a public source, from the
photogrammetric DSM. We derive the polygons of building sections and building planes
by a two-step procedure. The first step consists of passing an RGB image together
with a photogrammetric DSM to fully convolutional neural network (FCN), which then
produces a 4-class segmentation map. The four classes are background, separation lines
between building sections, separation lines between roof planes that do not lie at the
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RGB

EfficientNet-
B3 Backbone DAM

DSM

Decoder

4-Class Map

Figure 5.2: Our proposed DepthAtt-EfficientUnetB3 architecture. The EfficientNet-B3 backbone ex-
tracts features from the RGB data, which are then enriched in the DAM module by DSM
information. The decoder reconstructs geometrical details to produce a 4-class map.

junctions between sections, and building segments. In the second step, holes in the line
classes are filled using morphological dilation. Then, raster instances are obtained using
the watershed transform. Afterwards, the resulting raster instances are polygonized and
simplified. As the last step, the polygons and the nDSM are used to generate the LoD-2
model. In that step, random sample consensus (RANSAC) is used to fit 3D roof planes,
while ridge lines are generated by intersecting roof planes. Figure 5.1 shows the overall
workflow of PLANES4LOD2 as described above.

5.2.2.2 Network Architecture

For the task of building section segmentation and roof plane segmentation, UResNet34
has been leveraged in Schuegraf et al. [16]. Yet, this architecture has multiple drawbacks.
First of all, the ResNet architecture has been outdated by the success of the EfficientNet
architecture. Second, UResNet34 doesn’t gain from the inclusion of height information,
since neighboring buildings may not vary in height, but only in spectral appearance.
Thereby, the network is confronted with confusing information. This observation also
holds when including the SkipFuse-scheme to the UResNet34 [16]. Consequently, we
propose the DepthAtt-EfficientUnetB3 architecture. In Figure 5.11, the individual parts
of our architecture are outlined. The first part of the name DepthAtt refers to a depth
attention mechanism that we call DAM, which is in the center of Figure 5.11. DAM
is applied at the last layer of the encoder of a U-Net architecture. It receives a pho-
togrammetric DSM patch as the input. DAM uses two different attention mechanisms
based only on the DSM, leveraging height features at the deep part of the network.
We apply a sequence of strided convolutional layers, ReLU activations and maximum
pooling layers to the DSM, as is visualized in the upper part of Figure 5.3. The convo-
lution operations allow automatic learning on features from the raw height information.
ReLU introduces non-linearity to the network. The stride in the convolutions and the
maximum pooling layers bring the height features to the same resolution as the feature
maps of the bottleneck of the image network. These height features are then used in two
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Figure 5.3: The structure of DAM. The shadowed area is not part of DAM but is visualized to show
the origin of the spectral features. Conv and Conv/2 refer to convolutional layers with
stride 1 and 2. ReLU means rectified linear unit, BN represents batch normalization, and
MaxPool/4 refers to a maximum pooling layer with stride 4. AAP refers to adaptive average
pooling and Sig stands for the sigmoid function, which maps its inputs to the range [0, 1].
The spatial attention map is visualized with 32-times the original resolution using bi-cubic
interpolation.

types of attention layers. Both attention layers consist of a convolutional layer followed
by a sigmoid activation. Yet, one of the attention layers uses a channel-wise convolu-
tion to place attention on features other than regions, whereas the other attention layer
places the attention on pixels, to enhance features in certain spatial locations, which
are derived from the DSM. DAM enables fusion of the RGB data and DSM at a coarse
spatial resolution (see lower part of Figure 5.3), namely at the bottleneck. Hence, small
spatial shifts between the two inputs affect little to the extracted feature maps. More-
over, since the DSM is only used in the attention mechanism, the network focuses on
the features from the RGB image, but can use height features to suppress noise and
guide the training process. The EfficientUnetB3 receives only an RGB image patch and
extracts features sequentially in the encoder, leveraging the EfficientNetB3 architecture
[34], which is shown on the left side of Figure 5.11. As for the decoder (right part of
Figure 5.11), what we used is similar to U-Net in Baheti et al. [106]. This includes
skip-connections to allow for better information flow from the encoder to the decoder.
Our implementation of the EfficientUnetB3 is mostly based on an implementation that
is publicly available on github1. During the training, we use a softmax activation, since
it is required by our loss functions. When doing inference, we use the argmax of the

1https://github.com/zhoudaxia233/EfficientUnet-PyTorch
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network outputs to produce class predictions for each pixel.

5.2.2.3 Polygonization

Although the raster results are valuable for some applications, most further applications,
e.g. LoD-2 reconstruction, require vector data as the input. Hence, we convert our 4-class
maps to two different vector layers. Note that when we refer to simplification algorithms
in the following paragraphs, we always simplify common borders of polygons and the
rest of the polygons separately to avoid irregular gaps between neighboring instances.
Section polygons with an area smaller than 4 m2 are dropped, since they most likely
correspond to false positive noise.

We achieve the separation of buildings into sections by using the same learning-free
post-processing scheme as in Schuegraf et al. [8]. We treat the plane separation line as
part of a section. Hence, this leaves us with three classes: background, building segment
and section separation line. Then we use the watershed transform to infer instances. As
the seed for the watershed transform, we dilate the section separation line, using a disk
with radius Rsec = 6 as the structuring element, and remove it from the building segment.
The mask element for the watershed transform is the inverse of the background class
raster. The surface map will be the segmentation raster with value 0 for background,
value 1 for building segment, and value 2 for building section separation. To obtain
boundary pixels, we use tree search and simplify the resulting polygon by utilizing the
Douglas Peucker algorithm [105] with tolerance ϵsec = 0.5 m.

For the generation of a roof plane vector layer, we follow the same procedure as for the
building section layer. The only difference is that we reconstruct the plane separation
line by using both the building section separation and plane separation as the separation
line. We again apply dilation to improve separation between sections, but with a disk
of radius Rplane = 6. To simplify the roof plane polygons with the Douglas Peucker
algorithm, we use the tolerance ϵplane = 0.5 m.

5.2.2.4 LoD-2 Model Generation

The next task is to generate the LoD-2 model based on our predicted roof plane ge-
ometries. As the first step, we count the number of predicted planes of each building
section. For a single plane, we estimate the roof plane parameters (ai, bi, ci, di) using
RANSAC [107]. The parameters define a plane with the equation aix + biy + ciz + d = 0
for roof plane i. We then check whether the plane is nearly horizontal or parallel to the
xy-plane (ai ∼ 0, bi ∼ 0, zi ∼ 1). In that case, we improve regularization by assuming
complete flatness of the roof plane and average the height value of all vertices inside the
roof polygon to obtain a single height value at all vertices.

If there are two planes for a roof, we assume that it is a gable roof. Even though
not all roofs with two planes are of roof type gable, this assumption holds for most
buildings in our datasets. We estimate a plane for each of the roof planes using RANSAC.
For plane estimation, we sample all height values from the nDSM that lie in the area
surrounded by the roof plane polygon. Next, we use the two sets of plane parameters
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(a1, b1, c1, d1) and (a2, b2, c2, d2) to compute their intersection line in the point-slope
expression

−→
l (t) = −→p0 + t × −→s , where p0 = [x0, y0, z0]⊺, −→s = [δx, δy, δz]⊺ with

δx = b1c2 − b2c1, (5.1)
δy = a2c1 − a1c2, (5.2)
δz = a1b1 − a2c1, (5.3)

x0 =


0, if δx ̸= 0
(d1c2 − d2c1) ÷ δy, if δx = 0 ∧ δy ̸= 0
(d2b1 − d1b2) ÷ δz, if δx = 0 ∧ δy = 0 ∧ δz ̸= 0,

(5.4)

y0 =


(c1d2 − c2d1) ÷ δx, if δx ̸= 0
0, if δx = 0 ∧ δy ̸= 0
(d1a2 − d2a1) ÷ δz, if δx = 0 ∧ δy = 0 ∧ δz ̸= 0,

(5.5)

z0 =


(b2d1 − b1d2) ÷ δx, if δx ̸= 0
(d2a1 − d1a2) ÷ δy, if δx = 0 ∧ δy ̸= 0
0, if δx = 0 ∧ δy = 0 ∧ δz ̸= 0

(5.6)

and t ∈ R. We intersect this line with the union polygon of the two roof planes using
a line search. There, we iteratively evaluate the point-slope expression for different pairs
(t0, t1), check whether the line that passes through the two resulting points

−→
l (t0) and

−→
l (t1) intersects the union polygon, until we find a pair (t0, t1). At the two intersection

points, we use their average height according to the point-slope expression. The heights
of the remaining vertices of the union polygon are complemented using the initial planes
parameters. Next, we split the union polygon through the intersection line defined by the
two intersection points. As a result, we yield two roof plane 3D-polygons with consistent
height at the ridge line, i.e. avoiding vertical jumps of elevation.

For buildings with more than two planes, we use RANSAC to determine the plane
parameters similar as for two planes. If the normal of a roof plane indicates a non-
inclined plane, we model it as a flat roof with the average elevation at all vertices. We
model the non-flat roof planes by using their estimated plane parameters to complement
the height values at the vertices.

To complete the building models, we further include ground and wall polygons.
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Figure 5.4: Excerpt from the training data of Roof3D. The RGB imagery was captured with a ground
sampling distance (GSD) of 0.1 m, whereas the DSM was computed with 0.5 m GSD. Before
being passed to the network, both of them are resampled at 0.3 m GSD using bicubic
interpolation, since the ground truth is generated at 0.3 m GSD.

5.2.3 Experiments
5.2.3.1 Data

We use two different datasets for the experiments in this chapter. The first dataset is
Roof3D [16], with data from the cities Cologne and Berlin for training and Cologne for
evaluation. The RGB imagery and photogrammetric DSMs in Roof3D are comprised
of real and synthetic pairs. The addition of the synthetic data increases the size of the
training dataset and comes along with perfectly matching ground truth. Next to the
perfect annotations of the synthetic data, Roof3D includes two more sources of ground
truth. One source includes building outlines from the German building cadastre and
coarse roof plane annotation from a semi-automatic method based on laser-scanning.
The other source is manual annotation of real image and DSM pairs. The first testing
region is that of Roof3D in Cologne, Germany, which we use for ablation, is annotated
manually and has exclusively non-synthetic inputs. See Figure 5.4 for a visualization
of an area in the training data. Furthermore, the testing region does not geographi-
cally overlap with the training data. Refer to Schuegraf et al. [16] for further details
about Roof3D. For the construction of a reference LoD-2 DSM, we use public data2.
This reference data stems from a semi-automatic method that uses cadastre data and
laser scanning, which often leads to erroneous annotations. The testing set of Roof3D
originates from the same flight campaign as some of the images used for training.

As for our second dataset, showing a part of the city Braunschweig, Germany, is
solely used for testing and stems from a different flight campaign, with different lighting
conditions, architectural styles and viewing angles, leading to dissimilar artefacts in the
orthorectified imagery. We use the same tiling scheme for all our tests as in Roof3D.
Both the RGB data and DSM in the two datasets have 0.3 m GSD after resampling.

5.2.3.2 Training Details

It is important to train an FCN according to the requirements of the task at hand. One
important aspect is the choice of the loss function, which defines the learning objective

2https://www.opengeodata.nrw.de/produkte/geobasis
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together with the ground truth. We use the weighted cross-entropy loss, which is a
standard choice for semantic segmentation tasks, with weight 1 for the background
class, 6 for the roof plane separation, 6.2 for the building section separation and 1.5
for the building segment class. We obtained these values by using the median frequency
weighting heuristic

wcl = freqm

freqcl

, (5.7)

where freqm is the median of the frequencies of pixels of each class and freqcl is the
pixel frequency of class cl. However, the cross-entropy loss is known to generate models
producing blurry objects. To obtain sharper object boundaries, we combine the cross-
entropy loss with the generalized dice loss [92], which has inverse frequency class weights.
Where noted ("Topo") we also use the topological loss [15] to regularize the semantic
raster output of the respective network. Topological loss was previously applied to
regularize building footprints [8, 48]. We apply it to the building segment class (weighted
with 0.05 in the loss function) and the union of building section separation and roof plane
separation lines (0.1), as two separate terms in the loss function. As the optimization
algorithm, we leverage AdamW [108] with weight decay of 0.0001, as it is a common
choice for training FCNs.

5.2.3.3 Evaluation Metrics

For evaluation, we use two kinds of metrics. The first ones are for the evaluation in 2D,
and the second in 3D.

To quantitatively evaluate the two instance segmentation tasks, building section and
roof plane segmentation, we use average precision (AP) and average recall (AR). The
harmonic mean of these two is

F1INST = 2 × AP × AR
AP + AR . (5.8)

AP and AR are two commonly used metrics for instance segmentation. The two metrics
highly depend on the overlap between the predicted instances and ground truth instances
and are thus highly discriminative. Furthermore, ambiguous ground truth can lead to low
values of these metrics. AP focuses on the quality of the predicted results by considering
both precision and recall, while AR focuses solely on the proportion of relevant items
that are successfully retrieved. Hence, AR responds better to over-segmenting methods,
whereas AP has a higher score on under-segmenting methods. Both metrics are based
on the polygonized results and polygonized ground truth. Since these metrics only give
insight to quantitative aspects of the results, we also carry out a visual inspection for
qualitative evaluation in some of the experiments.

For the quantitative evaluation of the reconstructed LoD-2 DSM with our and reference
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methods, we use the root-mean-squared error (RMSE)

RMSE =

√√√√∑
p |ĥp − hp|2

N
, (5.9)

where p is the respective pixel, N is the total number of pixels, ĥp is the predicted
elevation at pixel p and hp is the reference elevation at pixel p. Yet, the RMSE is sensitive
to the scale of the values and to outliers. Hence, we use a more robust regression metric,
mean absolute error (MAE)

MAE =
∑

p |ĥp − hp|
N

. (5.10)

Another metric, which originates from stereo matching and optical flow, is the Tt-error

Tt = 1
N

∑
p

{
1 if |ĥp − hp| ≥ t

0 otherwise
, (5.11)

which gives the percentage of pixels, where the predicted height has an absolute deviation
of more than t from the ground truth, where t is expressed in meters. We use the strict
T1-error and the T3-error to gain a better overall understanding of the quality of the
predictions of our method.

5.2.3.4 Experiment Descriptions

For the analysis of our method, we perform multiple sets of experiments.
The public Roof3D dataset is suitable for the evaluation of algorithms on the tasks of

segmenting building sections and roof plane extraction. Hence, we use it to carry out
an ablation study to find the best setting of our architecture.

As a baseline model, we train UResNet34 for the 4-class semantic segmentation task us-
ing only RGB imagery. Post-processing techniques, as outlined in Section 3, are applied
to obtain building sections and roof planes. In Schuegraf et al. [16], it was shown that
Fuse-UResNet34 does not improve UResNet34, even though it has auxiliary height infor-
mation as input. To address such drawbacks, we experiment with DepthAtt-UResNet34
with channel and spatial attention, leveraging DAM. To discern the impact of attention
mechanisms, we evaluate DepthAtt-UResNet34 with only spatial attention, only channel
attention, and both channel and spatial attention. Spectral attention uses only the fea-
tures from the RGB image to derive attention maps. In an effort to determine the efficacy
of depth and spectral attention, we introduce SpecAtt-UResNet34 with both channel and
spatial attention. Additionally, we test the combination of spectral and depth attention
in SpecDepthAtt-UResNet34. Given the success of EfficientNet in various image recog-
nition tasks, we explore the performance of the DepthAtt-EfficientUnetB3 with channel
and spatial attention architecture. We evaluate the EfficientNetB3 backbone and com-
pare them to DepthAtt-UResNet34. To enhance regularization in the segmentation
outputs, we introduce the topology loss to DepthAtt-EfficientUnetB3-Topo channel &
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Table 5.1: Results of various models for the building section segmentation task on the Roof3D dataset.
↑ indicates that the higher values of the metrics correspond to better quality.

Architecture MODALITY AP ↑ AR ↑ F1INST ↑
UResNet34 RGB 0.183 0.371 0.245
Fuse-UResNet34 RGB+DSM 0.176 0.365 0.237
DepthAtt-UResNet34 channel & spatial RGB+DSM 0.201 0.390 0.265
DepthAtt-UResNet34 spatial RGB+DSM 0.179 0.365 0.240
DepthAtt-UResNet34 channel RGB+DSM 0.170 0.359 0.231
SpecAtt-UResNet34 channel & spatial RGB 0.194 0.379 0.257
SpecDepthAtt-UResNet34 channel & spatial RGB+DSM 0.183 0.359 0.242
DepthAtt-EfficientUnetB3 channel & spatial RGB+DSM 0.207 0.398 0.272
DepthAtt-EfficientUnet-B3-Topo channel & spatial RGB+DSM 0.197 0.361 0.255

spatial architecture.
We leverage DepthAtt-EfficientUnetB3-Topo channel & spatial to derive building sec-

tions and roof planes from pairs of RGB imagery and photogrammetric DSMs. The
input photogrammetric DSM is normalized using a DTM from a public source to ex-
tract heights above ground. Then, we apply our LoD-2 reconstruction method from
Section 5.2.2.4. We use SAT2LOD2 [18] for comparison to our method with the soft-
ware described in Gui et al. [109]. We feed only the ortho image and photogrammetric
DSM to SAT2LOD2, omitting the open street map (OSM) data.

One of the great promising properties of deep learning-based algorithms is their gener-
alization capability. To test this, we apply our DepthAtt-EfficientUnetB3-Topo channel
& spatial to a dataset that does not geographically overlap with the Roof3D dataset.
Since this dataset stems from an entirely different campaign, this implies not only differ-
ent architectural styles, but also different viewing angles and lighting conditions leading
to a different appearance of buildings in the ortho image than those in the Roof3D
dataset, as well as different architectural styles.

5.2.4 Results

5.2.4.1 Roof3D

In this subsection, we compare the quantitative results as in Tables 5.1 and 5.2 and the
qualitative results from a visual inspection of the models trained and evaluated on the
Roof3D dataset. The regression metrics for the 3D reconstruction task are provided in
Table 5.3.

UResNet-34 successfully segments building sections and roof planes.
Comparing Fuse-UResNet34 and DepthAtt-UResNet34 channel & spatial, we observe

that the latter is scoring higher metric values. Hence, the noise suppression and feature
refinement of DAM lead to improved metrics. On the contrary, directly incorporating
DSM makes it harder for the network to focus on RGB data, which contains the most im-
portant spectral information. Inspecting metric scores of the three models with different
depth attention settings, the combination of channel and spatial attention outperforms
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Table 5.2: Results of various models in the roof plane segmentation task on the Roof3D dataset. The
second-last and third-last row correspond to identical metric values. ↑ indicates that the
higher values of the metrics correspond to better quality.

Architecture MODALITY AP ↑ AR ↑ F1INST ↑
UResNet34 RGB 0.115 0.279 0.163
Fuse-UResNet34 RGB+DSM 0.119 0.289 0.169
DepthAtt-UResNet34 channel & spatial RGB+DSM 0.127 0.295 0.178
DepthAtt-UResNet34 spatial RGB+DSM 0.100 0.267 0.146
DepthAtt-UResNet34 channel RGB+DSM 0.117 0.283 0.166
SpecAtt-UResNet34 channel & spatial RGB 0.123 0.282 0.171
SpecDepthAtt-UResNet34 channel & spatial RGB+DSM 0.109 0.265 0.154
DepthAtt-EfficientUnetB3 channel & spatial RGB+DSM 0.138 0.303 0.190
DepthAtt-EfficientUnetB3-Topo channel & spatial RGB+DSM 0.149 0.312 0.202

Table 5.3: Comparison of the LoD-2 reconstruction results on the two test regions. ↓ indicates that the
lower values of the metrics correspond to better quality

Method Dataset RMSE ↓ MAE ↓ T1 ↓ T3 ↓
SAT2LOD2 Roof3d 5.28 m 2.18 m 0.26 0.15
PLANES4LOD2 Roof3d 3.34 m 1.06 m 0.18 0.07
SAT2LOD2 Braunschweig 2.52 m 0.71 m 0.10 0.08
PLANES4LOD2 Braunschweig 1.39 m 0.24 m 0.04 0.02

spatial attention and channel attention. Using only one of the two attention mechanisms
is not sufficient [110], but the combination of both leads to a more effective use of the
features provided by the RGB image encoder.

We observe in Table 5.1 that the depth attention improves the performance of spec-
tral attention in SpecAtt-UResNet34 channel & spatial. The combination of spec-
tral and depth attention in SpecDepthAtt-UResNet34 is ranking even behind SpecAtt-
UResNet34 channel & spatial. The attention provided by the input RGB data is helpful,
but does not provide as much additional information as the depth attention does. Av-
eraging the attention maps from the spectral and depth information does not seem to
be the best way to make use of both mechanisms. We compared eight different settings
of EfficientNet as the backbone and EfficientNetB3 outperforms all other versions on
both tasks. The replacement of the ResNet34 backbone by the EfficientNetB3 backbone
in DepthAtt-EfficientUnetB3 channel & spatial consistently outperforms all other back-
bones on all metrics. The most likely reason for the superiority of EfficientUnet over
ResNet34 is its fine-grained scalability as compared to UResNet34. This allows us to
choose a properly dimensioned feature extractor.

Training DepthAtt-EfficientUnetB3 spatial & channel with the topology loss leads to
a drop in performance on building segmentation, but to a rise in performance on roof
plane segmentation. The strength of introducing the topology loss is that it makes the
predictions visually more similar to the ground truth. Because of the complex junctions
of separation lines between roof planes, the model profits strongly if it is pushed to
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Figure 5.5: Visualization of the 2D results on a crop of the Roof3D test region. Row (a) shows the input
data. Row (b) shows the reference ground truth and (c) the prediction of the UResNet-
34. Row (d) presents the results derived from the Fuse-UResNet-34 and (e) those of the
DepthAtt-UResNet34 channel & spatial. Blue oval highlight the differences.
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Figure 5.6: Visualization of the 2D results on another crop of the Roof3D test region. Row (a) shows
the input data. Row (b) presents the reference ground truth and (c) the prediction of
the DepthAtt-UResNet34 channel & spatial. Row (d) shows the results of the DepthAtt-
EfficientUnetB3 channel & spatial and (e) those of the DepthAtt-EfficientUnetB3-Topo
channel & spatial. Blue ovals highlight the differences.
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Figure 5.7: The resulting 3D LoD-2 model in vector format of a scene in the Roof3D test region. The
image in the top row shows an overview, whereas the bottom row gives two detailed views.

segment thin and topologically correct lines and junctions. On the other hand, building
segmentation profits more from thicker lines, which avoids gaps better and hence leads
to less missed separations between resulting building section polygons.

Evaluating the LoD-2 DSM with reference to the ground truth raster, our method
achieves better values than SAT2LOD2 on all metrics, indicating more accurate geo-
metrical results. In addition, our PLANES4LOD2 has accurate presentation about roof
planes. Furthermore, PLANES4LOD2 recognizes inner yards and can properly handle
such topological structure of buildings, whereas SAT2LOD2 regards them as parts of
the buildings. All these factors demonstrate that PLANES4LOD2 performs superior.

Figure 5.5 visualizes the predictions of models with different modalities and fusion
strategies. We highlight multiple places where we noted significant visual deviations. In
row (e), DepthAtt-UResNet34 channel & spatial produces separation lines in the raster
segmentation. The results are more complete than in the other rows, which leads to
more accurate and regular building sections and roof plane polygons than UResNet34
in row (c) and Fuse-UResNet34 in row (d). Furthermore, Fuse-UResNet34 sometimes
produces false positives. Figure 5.6 presents the comparisons of the results obtained
from models with the backbone architectures ResNet-34 (row (c)) and EfficientNetB3
(rows (d) and (e)) and under the addition of the topology loss (row (e)). In the RGB
image, we highlight a rectangle by rescaling it to the lowest 30 % of pixel values, which
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Ground Truth

SAT2LOD2

PLANES4LOD2

Figure 5.8: Visualization of the results of our and a reference method for LoD-2 reconstructions of the
test region of Roof3D. For the visualization of height features, we use a color mapping from
blue (low) to red (high).
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Ground Truth SAT2LOD2 PLANES4LOD2

Figure 5.9: An example building in the test region of Roof3D (first row) that is reconstructed as a large
block by a reference method and reconstructed in detail in our reconstruction and some
example results in the test area in Braunschweig, Germany (second row). Both methods
achieve practically identical results for simple roof shapes, as can be seen in the second
row. However, PLANES4LOD2 can handle more complex buildings as visualized in the
first row.

correspond to shadows in the original RGB image. In the highlighted box, regarding
the low corresponding elevation in the DSM, the visible building structure in the middle
most likely corresponds to garages. This structure is detected as buildings by DepthAtt-
EfficientUnetB3 channel & spatial, whereas DepthAtt-UResNet34 channel & spatial seg-
ments it as background. In most parts of the visualization, DepthAtt-EfficientUnetB3-
Topo channel & spatial produces thinner and more complete lines than the other two
models, though it sometimes fails to detect building segments. Overall, the two models
with EfficientNetB3 as backbones produce slightly more complete separation lines.

In Figure 5.7, a resulting LoD-2 model is visualized in vector format. From Figure 5.8
it becomes clear that the 3D building model of our method looks more similar to the
ground truth than the one from SAT2LOD2. In the first row of Figure 5.9, we provide a
more detailed visualization of the reconstruction performed by SAT2LOD2, our method
and the reference ground truth. The rooftops generated by SAT2LOD2 look very regular
because they are based on roof type reconstruction. This induces symmetry into the
resulting roof of the building model. Our method generates building models that are
visually much closer to the ground truth, but does not enforce symmetric properties
similar to SAT2LOD2. Furthermore, SAT2LOD2 cannot reconstruct buildings with
inner yards correctly, because it is based on binary building segmentation. In contrast,
we reconstruct buildings based on individual sections and directly segment their roof
planes. Hence, our method can capture inner yards well, which is an advantage in
scenarios with complex building structure, as it is typical in European cities.
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Ground Truth

SAT2LOD2

PLANES4LOD2

Figure 5.10: Visualization of the results of our and a reference method for LoD-2 reconstructions of
buildings in Braunschweig. For the visualization of height features, we use a color mapping
from blue (low) to red (high). The model is trained with data from Cologne and Berlin.
PLANES4LOD2 profits most from the high resolution RGB image, allowing it to separate
connected or close building sections. Furthermore, it is capable to filter noise from the
DSM.

5.2.4.2 Generalization

To test the capability of our LoD-2 reconstruction method to adapt to an entirely new
scene with different lighting conditions and different architectural styles, we evaluated it
on a test region in Braunschweig, Germany. We also evaluated the SAT2LOD2 method
on the same data for comparison. Quantitatively, Table 5.3 shows that our method scores
RMSE 1.39 m, MAE 0.24 m, T1 0.04 and T3 0.02, whereas SAT2LOD2 achieves RMSE
2.52 m, MAE 0.71 m, T1 0.10 and T3 0.08. Hence, our method quantitatively outperforms
the reference method compared by a factor of ∼2 to 3. Since SAT2LOD2 fits roof tops
based on roof type primitives, it does not produce rooftops that are structurally accurate.
On the other hand, our method fits a plane to each segmented roof plane polygon,
which leads to more accurate, but less mathematically symmetric roof tops. Visually, in
Figure 5.10, both our method and SAT2LOD2 show a reconstruction that looks quite
similar to the ground truth. Taking a closer look in the second row of Figure 5.9, the
impression remains that both results are similar to the ground truth. Even though our
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method also outscores SAT2LOD2 on the simple Braunschweig test area, the advantages
of PLANES4LOD2 are most significant when studying more complex scenes like the test
region of Roof3D.

5.2.5 Discussion

The quality of the LoD-2 resulting from PLANES4LOD2 is affected by multiple factors.
If there is high vegetation covering the roof plane, the accuracy of the associated plane
parameters might be decreased. One possible way to address this issue would be to
use a separate network to remove trees from the DSM [111–113]. Furthermore, we do
not enforce symmetry between roof planes for any roof type other than for a single
plane. Since we assume the roof type to be gable for buildings with two predicted
roof planes, roof tops that have vertical gaps between roof planes will be modeled as
if they intersect at the ridge line. Buildings with roof types like hip and half-hip will
not be reconstructed in a regularized style, since we do not assure either symmetry or
intersection of the roof planes at the identical height at junctions between them. On the
other hand, primitive-based approaches like that of Li et al. [84] fit roof models that are
a-priori symmetrical, but are less flexible than PLANES4LOD2. In practice, one could
combine a primitive-based approach for simple roof types with PLANES4LOD2 for the
remaining roof structures.

Further restrictions are induced by the GSD. We decided to use 0.3 m. A smaller GSD
leads to better visibility of the roof lines and it would be easier to distinguish roof planes.
On the other hand, it would cause more noise, since more details are visible, which the
network would have to learn. Regarding a larger GSD, it would cause blurrier lines and
PLANES4LOD2 is sensitive to the visibility of separation lines.

We also observed that PLANES4LOD2 predicts the instances of roof planes and build-
ing sections more accurate than what the metrics suggest. The reason for this is that
the common objects in context (COCO)-metrics, including AP, AR and F1INST we are
using, are very sensitive. For one ground truth polygon, if the highest overlap with a
predicted polygon is 0.4999, it will not be recognized as a true positive, but as false neg-
ative. Another effect, that makes metrics underestimate, is possible ambiguous ground
truth. Many small roof planes that exist in the ground truth can hardly be seen by bare
eyes, or are so small that even a fine-grained neural network cannot detect them as a
separate object. Moreover, the COCO-metrics compute the average precision AP and
AR not only for the threshold 0.5, but also for much higher thresholds up to 0.95. While
this is a reasonable threshold for large buildings or large objects on multi-media imagery,
it is hard to achieve a good score in building section or roof plane segmentation. On
the other hand, those metrics are commonly used in instance segmentation task and we
argue that they are sufficient and realistic to compare different experimental setups.
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5.3 SAT2BUILDING: LoD-2 Building Reconstruction from
Satellite Imagery using Spatial Embeddings

5.3.1 Contributions
Our first main contribution of this section aims on improved instance segmentation.
Since PLANES4LOD2 segments building sections and roof planes based on line fea-
tures, it is prone to incomplete delineations in the case of occluded or low-contrast
object boundaries. On the contrary, Neven et al. [114] present a method for instance
segmentation that is based on spatial embeddings. Spatial embeddings use 2D direction
vectors, which point to the center of an instance. We use this idea to segment building
sections and roof planes, but add several skip-connections to the respective decoders
and add hierarchical skip-connections [115] to allow flow of information from the build-
ing section to the roof plane task. Overall, we leverage spatial-embedding based instance
segmentation in the much more challenging realm of remote sensing, where objects are
tiny and often occluded.

Our second main contribution of this section is to predict building heights, sharing
the encoder with the instance segmentation network. Building heights are a nDSM, but
without vegetation. We leverage a regularization loss, which enforces surface normal
consistency of the predicted depth with the ground truth.

This section presents SAT2BUILDING, introducing the following contributions:

• Building section and roof plane segmentation based on spatial embeddings.

• Building height estimation with an encoder that is shared with the instance seg-
mentation network.

• Experimental evaluation on test areas in Bonn, Germany and Lyon, France with
varying lighting conditions, architectural styles and GSDs.

• Comparative evaluation with three baseline methods for LoD-2 reconstruction.

5.3.2 Methodology
SAT2BUILDING consists of three stages. First, it segments building sections and roof
planes by a single U-shape FCN alongside LoD-2 building heights from the concatenation
of an orthorectified panchromatic image (PAN) and a patch of a photogrammetric DSM.
Second, it vectorizes the segments. Third, it generates an LoD-2 model based on the
vectorized segments and the building heights.

5.3.2.1 Architecture

We utilize ResNet50 [35] as the backbone network (yellow layers in Figure 5.11) together
with two decoders for the building section task, two decoders for the roof plane task and
one decoder for the building height task (blue layers in Figure 5.11). Each of the decoders
gradually up-samples the feature map from the last encoder layer, using higher-resolution
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PAN DSM

Embedding BS Embedding RP

Sigma BS Sigma RP

Seed BS Seed RP Building Heights

Figure 5.11: The structure of our proposed network architecture. BS and RP are abbreviations for
building section and roof plane. The yellow and blue rectangles indicate encoder and
decoder layers. "∥" is the concatenation operation, the black arrows show the flow of the
input data, blue arrows show the flow of the final encoder feature map to the decoder,
green arrows are skip connections from the encoder to the decoders, and red arrows are
hierarchical skip connections. The circle diagram is the legend of offset directions in the
embedding map. The roof planes in Sigma RP are longer than the building sections in
Sigma BS. Hence, the sections have a reddish color, whereas the planes have a green tint.

features maps from the encoder as guidance (indicated by green arrows in Figure 5.11).
This helps in combining fine geometrical details with deep semantic features. Further
information is passed from the building section decoders to the roof plane decoders (red
arrows in Figure 5.11). This helps in introducing knowledge from the coarse building
section segmentation to the finer roof plane segmentation, which is similarly done for
hierarchical plant segmentation in Roggiolani et al. [115]. In all places where multiple
feature maps flow to the same skip-connection, we use summation to aggregate them,
which is more memory efficient then concatenation.

5.3.2.2 Instance Segmentation

We have two instance segmentation sub-tasks, which are building section and roof plane
segmentation. For each of the tasks, our network produces three outputs, similar to
Neven et al. [114]. We formulate the losses only for a single instance segmentation task,
but all losses are computed once for each building section and roof plane.
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Figure 5.12: The process of spatial embedding-based roof plane segmentation. Two decoders output
spatial embeddings, cluster shape parameters sigma and a seed map. These elements are
passed to a simple clustering algorithm. Gaps between instances are closed using the
watershed transformation.

The first output is the 2D direction vector oi ∈ R2, pointing to the center of an
instance Sk ∈ {S1, S2, ..., SK}. A vanilla loss function to guide the training of oi would
be

Lmse =
n∑

i=1
∥oi − ôi∥2, (5.12)

where ôi = Ck − xi for xi ∈ Sk. Ck = 1
n

∑
x∈Sk

x is the centroid of all pixels x belonging
to instance Sk.

However, during inference, we need to determine the cluster centers C = {C1, C2, ..., CK}
and assign all pixels x to one of the cluster centers. A common method to do that is
density-based clustering, where the density of the embeddings ei = xi + oi is computed
and local maxima are selected as cluster centers. Then, pixels are assigned to the in-
stance with the shortest distance from their corresponding embedding to the center of
the instance. But this includes post-processing, which we want to avoid.

Hence, we use the Lovasz-Hinge loss [116] Llh, which is a continuous and differentiable
extension of the hinge loss

Lhinge =
K∑

k=1

∑
ei∈Sk

max(∥ei − Ck∥ − δ, 0), (5.13)

where δ controls the cluster size. Instead of using a fixed cluster size, we replace ∥ei −
Ck∥ − δ by 2 × ϕk(ei) − 1, where

ϕk(ei) = exp(−tkx × (eix − Ckx)2 − tky × (eiy − Cky)2), (5.14)

and tk = exp(10 × σk). Now, the cluster size is parameterized by σk = 1
|Sk|

∑
σi∈Sk

σi
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and σi is the second output of our network for instance segmentation. Each σi has two
components, σix for the horizontal and σiy for the vertical direction. This makes it easier
to learn non-square instances. To enforce smoothness of the σi, we use

Lsmooth = 1
|Sk|

∑
σi∈Sk

∥σi − σk∥2. (5.15)

During inference, we can get a hint on where pixels belonging to instances are located
by using the seed si of pixel i, which is the third output of our network. The seed score
indicates how close a pixel is to the center of any instance. This distance is equivalent
to ϕk and should be zero in the background bg. Hence, we use the loss function

Lseed = 1
N

N∑
i=1

1{xi∈Sk}∥si − ϕk(ei)∥2 + 1{xi∈bg}∥si − 0∥2, (5.16)

where the gradient of Lseed is only computed with respect to si. The indicator functions
1{xi∈Sk} and 1{xi∈bg} constitute a mask of pixels belonging to any instance Sk or to
the background bg. In the term ∥si − ϕk(ei)∥2, k denotes the number of the cluster Sk

that pixel xi belongs to according to 1{i∈Sk}. The final loss function for both instance
segmentation tasks is

Linst = Llh + Lsmooth + Lseed. (5.17)

To obtain instances during inference time (see Figure 5.12), we sequentially select the
pixels with the highest seed values sk as the cluster centers Ck. We furthermore select
σk at those pixels as the sigma value. Then, we assign all pixels i to cluster Sk if

ei ∈ Sk ⇐⇒ ϕk(ei) < 0.35. (5.18)

Note that the value of ϕk(ei) is specific to the center Ck of cluster Sk. The threshold in
the implementation of Neven et al. [114] was 0.5, but we find that the smaller threshold
0.35 leads to more complete instances in our task. After the assignment of each cluster,
we mask out the pixels assigned to cluster Sk and proceed with the new highest seed
score. If a cluster contains less then 12 pixels, we discard it as noise. This limit lays
far below the 128 pixels used in the original implementation, which is too high for small
instances like roof planes in satellite imagery. The clustering process proceeds until there
are less than 128 pixels which are not yet clustered. This clustering procedure leaves
gaps between adjoining instances open. To solve this issue, we apply a variant of the
watershed transformation [3], that makes each instance grow inside the limits of the
binary building mask, obtained by thresholding the predicted building heights at 2 m,
until it meets another instance.

5.3.2.3 Building Height Estimation

To obtain an LoD-2 model, the building height is required. We define the predicted
building height as function f(p) ∈ R at some pixel p ∈ P , where P is the set of all
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1 2

a

b

Figure 5.13: Visualization of the assignment of building section ids (numbers) to individual roof planes
(letters). Since building section "2" has the higher intersection over union (IoU) with both
roof planes "a" and "b", the ID "2" will be assigned to them.

pixels in an image. The function f is implemented by the shared encoder (yellow,
top in Figure 5.11) and a decoder (right side in Figure 5.11). The decoder consists of
stacked feature fusion modules (FFMs) [117], which has a high-resolution feature map
from the encoder and a low-resolution feature map from the previous decoder layer or
the bottleneck as inputs. Bilinear up-sampling brings the low-resolution feature map to
the same resolution as the high-resolution feature map. In parallel, the high-resolution
feature map is passed to a residual block. Consecutively, the sum of the output of the
residual block and the up-sampled feature map is passed to another residual block. The
ground truth height f̂(p) serves as the learning target in the mean squared error loss

Lmse = 1
|P |

∑
p∈P

∥f(p) − f̂(p)∥2. (5.19)

To improve regularity of the predicted height, we enforce it to have similar normals like
the ground truth by utilizing the loss

Lnormal = 1
|P |

∑
p∈P

∥∇x,yf(p) − ∇x,yf̂(p)∥2. (5.20)

The final loss for depth estimation is

Ldepth = Lmse + Lnormal. (5.21)

5.3.2.4 Vectorization

To reconstruct an LoD-2 model, it is necessary to obtain vectorized roof structure in-
formation. We accomplish this by extracting all border pixels of building sections and
roof planes. The border pixels are considered vertices and are connected by starting
at an initial pixel. From there on, a search finds the closest neighbors among the ver-
tices iteratively along both paths until a cycle exists. We then refine by utilizing the
douglas peucker polygon simplification algorithm [105]. Hence, we remove pixels that,
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if excluded, lead to an error of less than 1.0 m with respect to the initial polygon. In
CityGML, the representation of an LoD-2 building is a collection of 3D roof planes with
a single building ID. We assign building ids to roof planes by selecting the ID of the
building section with the highest IoU with that roof plane. This approach is outlined in
Figure 5.13.

5.3.2.5 LoD-2 Reconstruction

We add 3D information to the 2D polygons by sampling elevations inside roof plane
polygons from the predicted building heights. We then leverage RANSAC [107] to
estimate the parameters of a plane for each roof plane. RANSAC is particularly useful
in this case because it is insensitive to outliers. RANSAC selects a random subset of
the given samples and fits a model to it. Then, RANSAC checks whether the selected
samples conform with the model. Those samples that conform are considered inliers.
The higher the number of inliers, the higher the quality of the model is considered. The
steps from random subset selection to inlier detection are repeated multiple times and
the model with the most inliers is select as the final plane. We sample the elevation of
the final plane at the vertices of the corresponding roof plane to obtain height values.
The above vectorization and LoD-2 reconstruction procedure was originally presented
in our previous work [11].

5.3.3 Experiments

5.3.3.1 Data

For training and validation, we use a World View-1 panchromatic image and photogram-
metric DSM of Berlin, Germany of size 30733 × 45999 pixels (see Figure 5.14). We split
the image into five vertical stripes of equal size and use the middle one for validation
and the remaining four for training. As the ground truth for building sections, roof
planes and building height we use public data provided by the senate of Berlin 3. In the
study area, it contains overall 479,626 building sections with 729,524 roof planes. Some
samples of the test area are visualized in Figure 5.15.

We use two separate datasets for evaluation, one from Bonn, Germany of size 1023
× 896 pixels from Pleíades and the other from Lyon, France of size 1387 × 994 pixels
from World View-1. For metric computation, we use public ground truth of both Bonn 4

and Lyon 5 in vector format. The ground truth of Bonn contains 508 building sections
with 1,141 roof planes, and that of Lyon 778 building sections with 2,575 roof planes.
In Figure 5.16, samples from Bonn and Lyon are visualized. In Lyon, a building section
contains on average more than 3 roof planes, which is much higher than the ratio of ∼
2 in Bonn and ∼ 1.5 in Berlin. Looking at the bottom row of Figure 5.16, it becomes
clear that the ground truth in Lyon contains more details than the other areas.

3https://daten.berlin.de/tags/geodaten
4https://www.opengeodata.nrw.de/produkte/geobasis
5https://data.grandlyon.com/
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Figure 5.14: Visualization of the whole Berlin dataset and how it is split into training and validation
areas. The red vertical box contains the validation data, the orange boxes contain the
training data.

During training, we crop patches of size 256 × 256 pixels without overlap. We do
random window shifting of up to 256 pixels in horizontal and vertical direction to increase
the data diversity during training. In the validation phase, patches of size 256 × 256
pixels are cropped without overlap. While testing, the crop size is also 256 × 256 pixels
and the overlap is 128 pixels horizontally and vertically. The network predicts per-patch
and a large map is created by averaging the patches at the overlapping areas.

The data from Berlin and Lyon has GSD 0.5 m, whereas that of Bonn has GSD 0.7 m.
Hence, we up-sample the data from Bonn to GSD 0.5 m. We generate all ground truth
in GSD 0.5 m. During evaluation, we use two kinds of ground truth, which is raster
ground truth of building heights and vector ground truth of roof planes.

5.3.3.2 Training Details

We use random initialization of the network parameters and train them using Adam
optimizer [32] with learning rate 0.0002, momenta 0.5 and 0.999. The model is trained
for 300 epochs and the learning rate is multiplied by 0.1 after the 100th and 200th epoch.
We use batch size 8 and combine the loss functions from Equations (5.17) and (5.21) to
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PAN DSM BS RP BH

Figure 5.15: Parts from our training data in Berlin. PAN abbreviates panchromatic image, BS build-
ing sections, RP roof planes and BH building heights.

the final multi-task loss

Ltotal = Linst,bs + Linst,rp + Ldepth. (5.22)

5.3.3.3 Evaluation Metrics

To quantify the performance of the trained models, we evaluate both the vectorized roof
planes in 2D and the rasterized predicted LoD-2 model in 3D. One commonly used metric
for segmentation is the IoU. Since it doesn’t take into account individual instances, it
is not suitable for roof plane segmentation. On the other hand, the COCO metrics are
too challenging for tiny objects like roof planes in satellite imagery. Hence, we provide
the new metric

IoUgt
inst = 1

|P̂ |

∑
p̂∈P̂

max
p∈P

IoU(p, p̂), (5.23)
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Figure 5.16: Parts from our test data in Bonn (top row) and Lyon (bottom row). RP vec. abbreviates
vectorized roof planes.

where p ∈ P is a predicted polygon and p̂ ∈ P̂ is a ground truth polygon. In IoUgt
inst, we

iterate over the ground truth polygons and select the respective predicted polygon with
the highest IoU. Then, these IoUs are averaged.

For the evaluation of the 3D models, we rasterize their height values and use the
RMSE

RMSE =

√∑
i |ĥi − hi|

2

N
, (5.24)

where i is a specific pixel, N is the number of pixels, ĥi is the ground truth height at
pixel i and hi is the predicted height at pixel i. Furthermore, we use MAE

MAE =
∑

i |ĥi − hi|
N

. (5.25)

for evaluation. Note that the MAE is less sensitive to outliers than the RMSE. To gain
more insight into the obtained results, we also carry out qualitative inspection on both
the roof plane polygons and the rasterized LoD-2 model.

5.3.3.4 Experiments

Several experiments are done to show the superiority of SAT2BUILDING. As the refer-
ence method, we use PLANES4LOD2 [11], which was originally trained for LoD-2 recon-
struction of aerial imagery. To improve comparability, we re-train PLANES4LOD2 on
the same satellite data of Berlin that we use for SAT2BUILDING. For PLANES4LOD2,
we use an external DTM together with the DSM to derive building heights instead of
predicting them. The next experiment is the method of Gui et al. [17] (SAT2LOD2-
LineSep). SAT2LOD2-LineSep requires normalized building height information and
building sections. We use the building height from our proposed SAT2BUILDING
method and the building sections from PLANES4LOD2, which are obtained based on
the prediction of separation lines between sections. Moreover, we feed the building
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Table 5.4: Quantitative results of comparison between a single shared, and two separate encoders for
two test areas. ↑ indicates that higher values are superior, ↓ indicates that lower values
correspond to higher accuracy.

Test Area Shared Encoder IoUgt
inst ↑ MAE ↓ RMSE ↓

Bonn 0.300 0.56 m 1.92 m
Bonn X 0.323 0.53 m 1.83 m

Lyon 0.199 1.81 m 5.22 m
Lyon X 0.205 1.74 m 4.98 m

height and sections from SAT2BUILDING to the method of Gui et al. [17] and call that
experiment SAT2LOD2-Embed, because the input building sections are obtained using
spatial embedding-based instance segmentation. We compare the above approaches to
SAT2BUILDING.

To showcase the effectiveness of using a shared encoder for both instance segmentation
and height estimation, we compare that to a setting with two separate networks without
inter-connection.

5.3.4 Results

5.3.4.1 Quantitative Results

In this subsection, we analyse the quantitative results of the experimental study. In
Table 5.4 we can see that it is advantageous to use a shared encoder instead of two
separate networks. The unified network performs better in both instance segmentation
and LoD-2 model geometrical accuracy on both test areas, showing that one encoder can
effectively learn features that are more useful for both tasks as compared to two separate
encoders. We attribute this advantage to the regularizing effect of the multi-task setting.
Since both models are trained on data from Berlin that has different lighting conditions
and architectural styles, the results highlight their capability to generalize to unseen
data.

In Table 5.5, we observe the quantitative results of SAT2BUILDING with a shared
encoder in comparison to three baseline methods. The comparison between SAT2LOD2-
SepLine and SAT2LOD2-Embed shows that instance segmentation based on spatial em-
beddings is either an equally as good (Bonn) or a better (Lyon) basis for the LoD-2
reconstruction using the SAT2LOD2 method. The advantage of spatial embeddings
over separation lines becomes particularly clear in Lyon, where the buildings are densely
built. A higher density of buildings and a larger quantity of buildings with joint borders
makes it more critical to discern building sections. Furthermore, separating buildings
based on a thin line is very challenging in satellite imagery, as compared to aerial imagery
with smaller GSDs below 0.3 m.

The comparison between SAT2LOD2-SepLine and PLANES4LOD2 shows that the
LoD-2 reconstruction becomes geometrically more accurate if it focuses on reconstructing
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Table 5.5: Comparative results on Bonn and Lyon. ↑ indicates that higher values are superior, ↓
indicates that lower values correspond to higher accuracy.

Test Area NAME IoUgt
inst ↑ MAE ↓ RMSE ↓

Bonn SAT2LOD2-SepLine - 0.89 m 2.66 m
Bonn SAT2LOD2-Embed - 0.88 m 2.67 m
Bonn PLANES4LOD2 0.1826 0.64 m 2.14 m
Bonn SAT2BUILDING 0.323 0.53 m 1.83 m

Lyon SAT2LOD2-SepLine - 4.00 m 8.60 m
Lyon SAT2LOD2-Embed - 3.16 m 7.50 m
Lyon PLANES4LOD2 0.162 2.66 m 6.35 m
Lyon SAT2BUILDING 0.205 1.74 m 4.98 m

roofs based on individual roof planes instead of primitives. PLANES4LOD2 outperforms
SAT2LOD2-SepLine with a large margin, remarkably in Lyon. The complex building
roofs in Lyon make it even more important to accurately reconstruct each single roof
plane.

Comparing PLANES4LOD2 with SAT2BUILDING puts the spotlight on the effect of
using spatial embeddings as opposed to separation lines for the instance segmentation of
roof planes. SAT2BUILDING clearly outperforms PLANES4LOD2 on all metrics and
both test areas. The difference in IoUgt

inst is bigger in Bonn than in Lyon. This can
be explained by the GSDs of both test areas. The GSD in Lyon is lower than the one
in Bonn, which is 0.7 m. A higher GSD makes it harder to segment the thin line that
separates adjoining roof planes instances. This lead to poorer instance segmentation
performance. On the other hand, instance segmentation based on spatial embeddings
groups pixels to instances based on the center of the instance, which is easier to detect on
lower-resolution satellite imagery than the separation line, which favors SAT2BUILDING
over PLANES4LOD2.

Another advantage of SAT2BUILDING is its independence from external DTM infor-
mation. The strong performance of SAT2BUILDING is achieved using its own predicted
building height map, whereas PLANES4LOD2 includes external terrain information to
obtain heights above ground. The improved values of MAE and RMSE indicate that us-
ing the predicted building heights has no negative effect on the performance as compared
to using an external DTM.

5.3.4.2 Qualitative Results

In Figure 5.17, it can be seen that SAT2BUILDING generates geometrically accurate
building models at LoD-2. Even under highly challenging conditions like large shadows,
high GSDs and complex building structures, SAT2BUILDING correctly identifies indi-
vidual roof planes. Nevertheless, in some places, roof planes are misaligned. The LoD-2
reconstruction pipeline can sometimes estimate incorrect plane parameters, if RANSAC
randomly selects an inadequate subset of points on the plane.
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Bonn Lyon

Figure 5.17: A 3D visualization of the results on our two test sites in Bonn and Lyon.

As we inspect Figure 5.18, we see that SAT2BUILDING reconstructs roof more similar
to the ground truth than all other tested methods in Bonn. In the middle of the up-
per sample, the positive effect of the improved instance segmentation leads to correctly
generated gable roofs. PLANES4LOD2 incorrectly generates flat roofs, which is caused
by missing separation lines. SAT2LOD2-Embed and SAT2LOD2-SepLine produce reg-
ularized buildings, but they often do not accurately reflect the structure of the roof.
SAT2LOD2 reconstructs building roofs based on fixed roof templates, which are often
incorrectly inferred in case of complex buildings. Furthermore, SAT2LOD2 does not
keep seamless neighboring relations while refining the boundaries of building sections,
which leads to incorrect gaps between them. On the other hand, SAT2BUILDING and
PLANES4LOD2 do not have such a gap because they refine outlines of adjoining building
sections and roof planes jointly. In the lower example of Figure 5.18, SAT2BUILDING
is the only method that gets the pyramid shape of the four squared building in the
middle correct. Since we use training data from a public source, which contains many
inconsistencies, this can sometimes cause incorrect predictions.

In Figure 5.19 we can see that SAT2BUILDING is more accurate than the other three
methods even in highly complex scenarios like the city of Lyon. For example, the hipped
roof in the middle of the scene is only accurately reconstructed by SAT2BUILDING.
Furthermore, SAT2LOD2 generates even more incorrect gaps than in Figure 5.18.

5.3.5 Discussion

Although SAT2BUILDING outperforms the other methods in quantitative evaluation,
the metric IoUgt

inst does not exceed 0.323 in Bonn and 0.205 in Lyon. Particularly
the value for Lyon is very low. We can observe in the third column bottom row of
Figure 5.16, that the roof plane ground truth in Lyon contains many details, that are
very hard to recognize in the panchromatic image (first column) and impossible to detect
in the DSM (second column). On the other hand, SAT2BUILDING extracts roof plane
polygons, representing larger planar structures of building sections. But the IoUgt

inst

metric averages IoU scores across ground truth instances, leading to a low score.
Moreover, Table 5.5 shows much higher MAE and RMSE in Lyon than in Bonn. The
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PAN GT SAT2BUILDING

PLANES4LOD2 SAT2LOD2-Embed SAT2LOD2-SepLine

PAN GT SAT2BUILDING

PLANES4LOD2 SAT2LOD2-Embed SAT2LOD2-SepLine

Figure 5.18: Visual results of the comparative study from Bonn.
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PAN GT SAT2BUILDING

PLANES4LOD2 SAT2LOD2-Embed SAT2LOD2-SepLine

Figure 5.19: Visual results of the comparative study from Lyon.

evaluation of the generated 3D models was done based on rasterized height maps. Since
our test area in Bonn is more sparse, it leads to a lot of background pixels, which causes
better metrics. In Lyon on the other hand, a high building density, with buildings at
various heights, and complex building structures have more room for error and cause
worse 3D metrics.

5.4 Summary

We presented PLANES4LOD2, a method that uses planar roof components to recon-
struct buildings as level of detail (LoD)-2 models. The PLANES4LOD2 pipeline relies
on deep learning as well as conventional approaches to implement a full 3D reconstruc-
tion pipeline from an RGB image, a photogrammetric digital surface model (DSM) and
a digital terrain model (DTM). The method makes use of the DSM in the novel depth
attention module (DAM) to enhance building plane prediction and in the roof surface
reconstruction. PLANES4LOD2 robustly interpolates roof surfaces from sampled height
values and initial roof planes. The resulting LoD-2 building model appears visually sim-
ilar, or close to be identical to the ground truth, even when the test region contains
very complex building structures and is densely built. Furthermore, we demonstrated
the advantages of our method for LoD-2 reconstruction compared to other software. We
also evaluated PLANES4LOD2 on a test region in a different city. The results reveal
superior generalization capability of our method being adaptive to lighting conditions
and architectural styles different from the ones the model is trained.

Furthermore, we presented SAT2BUILDING, a novel method for LoD-2 reconstruction
based on the segmentation of main planar roof components. SAT2BUILDING utilizes
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deep learning and conventional methods to build a complete 3D reconstruction workflow,
only based on panchromatic satellite imagery and photogrammetric DSM. Our method
predicts normalized building heights, which makes it independent from external ter-
rain information. SAT2BUILDING leverages spatial embeddings for robust roof plane
segmentation. The resulting LoD-2 model is geometrically accurate, even when facing
difficulties such as high ground sampling distances (GSDs) of 0.5 m to 0.7 m, large shad-
ows, densely built areas, and complex roof structures. We showed how SAT2BUILDING
improves in comparison to existing methods, obtaining considerable performance gains.
Furthermore, SAT2BUILDING generalizes well when evaluated on cities with different
lighting conditions, architectural styles, and GSDs then are contained in the training
area.
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6 Conclusion

6.1 Summary

N owadays, remote sensing sensors are big providers of data that can help gain un-
derstanding about objects on the surface of the earth. Among others, optical

sensors provide detailed structural and spectral information. With the help of deep
learning, image data can be used to detect buildings and reconstruct them. Yet, there is
a lack in methods that can do so with enough detail, i.e. detect parts and components of
buildings. Furthermore, there is a lack in methods that can accurately reconstruct build-
ings in level of detail (LoD)-2. Another issue is the absence of methods that effectively
and efficiently make use of digital surface models (DSMs) to separate buildings from
other objects on the ground, such as roads. In conclusion, this thesis presents a compre-
hensive exploration into automated building information extraction and reconstruction
techniques. Through a detailed analysis, novel methods were developed. In the fields
of building section instance segmentation and LoD-2 reconstruction, two objectives are
targeted.

The first part of the study proposes a solution for building section instance segmen-
tation. It can separate building section in complex scenarios, which was showcased for
various scenarios with different complexity of the buildings, geographical location, dif-
ferent lighting conditions, and architectural styles. Moreover, based on a case study on
data from Medellín, Columbia, we showed how this method can support humanitarian
aid, crisis management, and disaster response by providing detailed information about
the building inventory in informal settlement.

The method does not produce any overlaps and does not leave gaps between directly
neighboring building sections, which sets it apart from other AI-based instance segmen-
tation methods such as Mask-RCNN. It achieves that by segmenting the separation line
between directly neighboring sections as a separate class and then utilizing the water-
shed transform. The method uses a SkipFuse-UNet-3+, which has a strong, hierarchical
interconnection between encoder and decoder, leading to well-segmented buildings and
separation line, even under the presence of shadows. Furthermore, DSM information is
injected by using a separate branch in the network architecture. This additional infor-
mation makes it easier for the network to separate buildings from roads and highlight
separation lines between sections if the neighboring buildings have a height difference in
between them. The additional topological loss term lead to more complete separation
lines and more regular building section appearance. This contribution is even helpful
for the next step, which is vectorization of building sections, because the resulting poly-
gons will be simpler. The method simply extracts initial boundary polygons for each
section and then simplifies them using Douglas-Peucker. Hence, the resulting section
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polygons are useful for applications that require memory-efficient and easily editable ob-
jects. Then, those polygons are enriched with the average height from the corresponding
area of the input DSM, leading to LoD-1 models that are suitable for flow simulations,
3D mapping, an many more.

Despite the importance of building outlines and LoD-1 models, they lack detailed
roof information that is pertinent for more accurate simulations and realistic graphical
representations of cities. Hence, we propose two methods that extend our approach for
2D instance segmentation to LoD-2 reconstruction. The first method, PLANES4LOD2,
utilizes a deep learning model, that extracts robust features from imagery and DSM
data. This allows the method to extract building features in simple, rural scenarios
like our test area in Braunschweig, Germany and in more complex, urban scenarios like
in our test area in Cologne, Germany. Those features are building segment, building
section separation line and roof plane separation line. They allow the gap-less and
overlap-free segmentation of directly neighboring instances, which leads to LoD-2 mod-
els that share these properties if looked on from the top-view in the later part of the
method. PLANES4LOD2 produces geometrically accurate, topologically consistent and
semantically correct LoD-2 models in vector shape. It uses random sample consensus
(RANSAC) to project roof planes polygons into 3D space. RANSAC is robust to out-
liers, which avoids the collapse of height values along the boundary of the building due
to small misalignments between predicted roof planes and the building edge in the DSM.
The second method we investigate for LoD-2 reconstruction is called SAT2BUILDING.
It successfully predicts roof planes by using spatial embeddings, which focuses on the
center of each roof plane to generate instances. Spatial embeddings are more robust in
satellite imagery, where high ground sampling distance (GSD) of over 0.5 m and atmo-
spheric distortion make it hard to recognize the separation line for both the eye and
the neural network. Another important contribution of SAT2BUILDING is the predic-
tion of the building height in the same deep learning model as the spatial embeddings.
It overcomes the challenge of normalizing height values by extracting a digital terrain
model (DTM), which is no longer necessary for LoD-2 reconstruction.

In summary, this thesis contributes significant advancements in the field of automated
building information extraction and reconstruction, providing not only valuable insights
but also innovative methodologies that are applicable across a wide range of domains.
These advancements have the potential to impact areas such as disaster management, ur-
ban planning, environmental monitoring, and more, where precise and efficient building
information is critical. By addressing complex challenges in this domain, this work lays
a foundation for future research and practical applications in various interdisciplinary
fields.

6.2 Future Work

Future work contains end-to-end methods for both building section instance segmenta-
tion and LoD-2 reconstruction. Even though the methods proposed in this thesis are
robust, they still contain learning-free steps that are incapable of adapting to training
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data. They learn how to extract image features that are suitable for semantic segmenta-
tion. Some post-processing is applied to obtain instances, and 3D reconstruction is based
on the assumption that building models have planar components. To achieve end-to-end
3D reconstruction, a method that predicts multi-polygons with 3D coordinates is re-
quired. Then, the method could learn the criteria for building models like planarity and
symmetry from the data or a specific loss could enforce them. Moreover, there is a lack
of accurately labeled training data and satellite data at global scale. Future methods
should be trained on a larger variety of satellite imagery and accurately labeled building
models. Combining a large synthetic dataset can provide perfectly accurate labels in a
pre-training step. In a finetuning process, a small set of various, accurately labeled, real
imagery can be used to adapt a model to the target domain. Another future direction of
work would be to target higher LoDs. For instance, modelling windows, chimneys, and
doors from street view imagery can enrich 3D models of buildings. Even though there
is existing work for these building components, they are yet to be integrated with the
LoD-2 information in a single end-to-end trainable workflow.
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Acronyms

AFM attraction field map.

AP average precision.

AR average recall.

ASIP approximating shapes in images with polygons.

BM building mask.

CityGML city geography markup language.

CNN convolutional neural network.

COCO common objects in context.

DAM depth attention module.

DSM digital surface model.

DTM digital terrain model.

FCN fully convolutional neural network.

FFM feature fusion module.

FN false negative.

FP false positive.

FSA full scale aggregated skip-connections.

GAN generative adversarial network.

GCP ground control point.

GIS geoinformation system.

GNN graph neural network.

GPS global positioning system.
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Acronyms

GSD ground sampling distance.

GT ground truth.

IoU intersection over union.

KIBS keypoint inference by segmentation.

LiDAR light detection and ranging.

LoD level of detail.

LSM least squares matching.

LSTM long short term memory.

MAE mean absolute error.

mAP mean average precision.
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SOTA state-of-the-art.
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VHR very high resolution.
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