
The Dynamics in Vibro-fluidized Beds: A Diffusing Wave Spectroscopy Study

Marlo Kunzner,1 Christopher Mayo,1 Matthias Sperl,1, 2, ∗ and Jan Philipp Gabriel1, †

1Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
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We demonstrate the densification of a granular model system of 130 µm polystyrene spheres over
time by shaking with varying excitation amplitudes or effective temperatures. This densification is
quantified by the mean square displacement (MSD), which is measured by diffuse wave spectroscopy
(DWS) of a sinusoidally excited vibrating fluidized granular bed. The DWS method also extracts the
inherent heterogeneous dynamics of the system in the bulk and at the wall. Through an empirical
model-based extraction, we obtain the ballistic and diffusive time constants, as well as caging sizes,
which were found to depend on temperature and density. The results obtained from this study
reveal a subdiffusive power-law behavior in the MSD, indicating an arrest of motion and potentially
a glassy system, especially in cases where the excitation is low to moderate compared to gravity.
The extracted MSD caging sizes are two orders smaller than the Lindeman length found in colloidal
systems.

I. INTRODUCTION

In everyday life, it is common to observe granular mat-
ter in motion. The movement of wind, for example, can
be seen in the drifting of sand dunes or the occurrence
of sandstorms. Within industrial contexts, another ex-
ample of granular matter in motion is the passage of
wheat grains through a silo. The perspective of mate-
rial science addresses the diverse forms of motion within
granular systems, which bear resemblance to the solid,
liquid, and gas phases characterized in thermodynamics.
[1–4]. A primary area of interest is the transition from
liquid-like states to solid-like states, which can be de-
scribed as a glass transition [5, 6]. This transition, as
well as the dynamics of granular media in general, are
in some respects more complicated than in atomic mat-
ter, due to the many interactions such as electrostatics,
friction, dissipation, and gravity [2–4, 7, 8]. Many macro-
scopic descriptions of the behavior of powders exist, but
looking at inter-particle dynamics is often complicated,
as powders are dense and opaque [2, 4, 9, 10]. Here we
consider a granular model system of polystyrene spheres
driven by sinusoidal oscillating agitation. To provide a
good statistical description of the system and take ad-
vantage of the opaqueness, we use Diffusive Wave Spec-
troscopy (DWS) as a method to measure intensity cor-
relation functions and then subsequently calculate the
mean-square displacements (MSD) of our particles un-
der certain assumptions [11, 12]. DWS has previously
been used to study dry gas fluidized beds and granular
flows [13–15], and vibrated suspensions [16, 17]. Some
studies investigated, similarly to us, a dry vibro-fluidized
bed of grains with DWS [18–21]. However, we focus on
exploring the influence of vibro-fluidized beds on the dy-
namics of granular media in the full available spectral
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DWS range by modeling the agitation. DWS can fully
utilize its key features: the ability to measure high spa-
tial and temporal resolution with regard to a large num-
ber of particle movements, in this system. This in turn,
enables a comparison of this system to funnel and gas-
fluidized beds. The findings from this study will serve
as a solid foundation for future research, including ex-
periments conducted under microgravity conditions on
the International Space Station [22], as well as extending
the investigation to different agitation methods, particle
sizes, and frictional properties.

II. METHODS

In this section, we will first introduce details about
the experiment and the sample, and secondly explain
the DWS method and the adaptations for agitated dry
grains.

Experimental details

The set-up comprises a 15x15x5 mm3 sample cell
containing 0.602 g of 130 µm polystyrene particles
(Dynoseeds 140, mean size 130 micrometer, the distribu-
tion of particle sizes are in [23]) mounted on a voice coil
(VC) Visaton EX 80 S and a laser wavelength of λ = 532
nm (Coherent Verdi G5 SLM), as is shown in Fig. 1.
The container is shaken via an oscillation from the voice
coil. This supplies the system with energy, thereby ag-
itating the system. The lab is not humidity controlled,
but the sample cell is sealed airtight [24]. The green
laser light is scattered multiple times and detected via
single-mode fibers and polarizers connected to avalanche
photodiodes (APDs) in backscattered and transmission
geometry. The signal is then passed into a hardware cor-
relator (ALV 7004). The sample, being mounted on a
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FIG. 1. Schematic of the set-up with a sample cell mounted on
a voice coil for excitation and a laser source. Light is collected
in transmission and backscattering geometry and then fed into
Avalanche Photo Diodes (APDs) and a correlator.

voice coil, can move vertically via the voice coil’s sinu-
soidal oscillation. In addition, a camera (Panasonic hc-
v180) is mounted to perform video surveillance to collect
information on the packing fraction. We observe the sur-
face of the fluidized bed and cut out a 2D plane repre-
sentative of the volume occupied by the particles. This
assumes that the surface is homogeneous, which is an
error-prone assumption in the beginning of shaking. The
image analysis is done using Fiji (ImageJ) [25].
The experimental procedure is as follows. We vacuum-
dry the sample, weigh it, and fill it into the sample cell.
Afterwards, we start the camera recording, and follow-
ing that the shaking is started with a constant frequency
of 100 Hz at a chosen Γ value by tuning the amplitude
(85µm, 21.4µm and 19.5µm), almost instantly after the
shaking is started the DWS collects data. For repro-
ducibility, we start with a strong excitation to always
create a loose system. The system is analysed for 10
seconds with the measurement time doubling iteratively
until 5120 seconds.
The time steps are chosen for two reasons: Firstly, DWS
needs many scattering events for proper statistics. The
statistics become insufficient in the highest 3 decades
measured, thereby measuring at least 1000 times as long
as the longest timescale we want to observe is necessary
[11]. Secondly, the system changes over time, and the
time steps give insight into the dynamics at different vol-
ume fractions of the system.

Diffusing Wave Spectroscopy on oscillated grains

Shaken granular matter is commonly characterized by
comparing the gravitational acceleration with the vibra-
tional acceleration using the dimensionless acceleration
[4, 26–28]

Γ =
Aω2

g
. (1)

with A the oscillation amplitude, ω the angular fre-
quency, g the gravitational acceleration, and Γ the di-
mensionless acceleration. For Γ < 1, particles should
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FIG. 2. Depiction of Eq. 10 at arbitrary lag times with
a superimposed shaking oscillation. The upper graph shows
g2(t) versus time plot, and the lower one shows the MSD. The
dashed green line is a measurement including oscillations, and
the blue line is the model function. The orange line depicts a
power law attributed to sub-diffusive behavior, likely caused
by friction or caging. Additionally, the insert shows the sinu-
soidal oscillation of the voice coil used for excitation.

not be excited enough to be lifted up or slide along each
other, but rather show small oscillations. However, it is
observed that real systems with shear show densification
[4, 28, 29]. Whereas for a critical Γc above 1 (Γ > 1), the
particles show relative motion and can no longer densify
[4]. Shaking a granular packing of frictional spheres will
inevitably lead to shear, making it important to note the
existence of dilatancy. Shearing a granular packing above
a density threshold will make it expand, if below the
threshold, the packing will compact [2, 30]. For tracking
the particle movements, we use DWS as a non-intrusive
scattering technique [31, 32] illustrated in Fig. 1. The
incident laser light undergoes multiple scattering events
in the sample before being detected. The fluctuations
contain the averaged dynamics of the observed scatter-
ing volume and can be correlated to obtain the Intensity
Correlation function g2(t), defined as

g2(t) =
⟨I(0)I(t)⟩
⟨I(0)⟩⟨I(t)⟩

. (2)

with intensity I. The voice coil used to excite the system
is illustrated in Fig. 1 and the sinusoidal excitation is
shown in the inset of Fig. 2. The oscillation O(t) is mod-
ifying the intensity correlation function g2(t) as follows

g2,mes(t)− 1 = O(t)(g2(t)− 1) (3)
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with oscillation function

O(t) =
1

T

∫ T

0

exp(−κ2A2[sin(ω(t+ t′))− sin(ωt′)]2dt′

(4)
with the period T , where κ is the variance of the outgoing
wave vector projected onto the direction of the oscillation
[21]. An estimate for κ can be done assuming that the
variance of the accepted scattering vectors is given by the
acceptance angle of the optical fiber setup in the range
of 200 µm and an approximate distance of the last scat-
tering event of 100 mm, resulting in κ ≈ 0.002k. The
dynamics of the particle are related to the fluctuating
electric fields. Assuming the Siegert-Relation [11].

g2(t) = 1 + Λc |g1(t)|2 (5)

the intensity correlation function g2(t) is related to the
electric field correlation function g1(t) (FCF)[11]. With
the coherence area factor (inverse speckle number) Λc de-
termining the number of geometrically selected speckles,
in our case being one (due to the use of a linear polarizer
for the detection) [11]. Assuming the DWS approxima-
tion for the electric field correlation function g1(t) that
the light is undergoing a random walk [12] we can relate
it to the mean square displacement (MSD) ⟨∆r2⟩ by

g1(t) = exp(−1

3

(
kL

l∗

)2

⟨∆r2⟩) (6)

with k = 2π/λ, the wave vector of the incident light with
a magnitude of 1.18·109 1/m, L the effective length of the
sample, in transmission geometry, the sample length of 5
mm, and 1.43 mm in backscattering geometry [31]. The
transmission geometry can be calculated in the frame-
work of the theory. However backscattering is more com-
plicated and therefore needs to be approximated by an
effective length, in relation to the transmission geometry.
The randomization length l∗ is calculated (see eq. 7 to
9) as 480 µm, and can be viewed as the distance until the
direction of light propagation is randomized, r is the 3-D
distance a particle moves, and ⟨ ⟩ indicates an ensemble
average [11, 12]. The randomization length is given by

l∗ =
l

1− ⟨cos(θ)⟩
(7)

where l is scattering mean free path and ⟨cos(θ)⟩ de-
scribes the anisotropy of a scattering event. The experi-
mental determination is difficult [33] and we will assume
that the surface scattering is, in good approximation,
negligible and that, since l∗ is small compared to the
light paths, backscattering effects are negligible so that
transmission and backscattering geometry are treated the
same. The distance between scattering events is propor-
tional to the inverse of the number density of the scat-
terers, ρN , multiplied by scattering cross-section σ.

l(σ) =
1

ρN σ
(8)

This is dependent on the ratio of the wavelength of the in-
cident light to the particle size, according to Mie-Theory
[34] and calculated by using the Python program PyMi-
eScatt [35]. In our case, the particles’ radii are larger than
the wavelength of the light, but not sufficiently large to
consider Fraunhofer or geometrical optics. According to
Mie-Theory, backscattering and forward scattering will
have different intensities. The volume fraction is given
by

Φ = N ρN =
4π

3
· a

3 N

VCell
(9)

with particle number N and spherical particles with ra-
dius a occupying a cell volume VCell. The particle dy-
namics can now be extracted by empirically modeling the
dynamics with power laws in the MSD representation for
the three expected behaviours, ballistic, caging, and dif-
fusion by

⟨∆r2⟩ = h2

( τt )
2 + ( τt )

β
+ 6Dt− 6Dτ

(
1− e−

t
τ

)
(10)

with the diffusion coefficient D, ballistic timescale τ , and
height h related to the power law describing the caging,
taken where the diffusion behavior of the system appears.
The first term in equation 10 is a ballistic and caging
power law, the second term is the diffusion power law and
the third term is a correcting term for the non-additive
contribution of the ballistic and caging power law with
the diffusion power law. This ensures that no diffusion
contribution appears before the ballistic regime ends.
The measured intensity correlation function g2,mess can
be calculated by applying the model Eq. 10 on Eq. 6
and using Eq. 2 to obtain the result shown as the green
dashed line in Fig. 2. The blue line describes the particle
dynamics by g2(t) without the oscillations. We use this
function to extract the velocity at short time scales, the
supposed caging length at intermediate time scales, and
diffusing behavior at long time scales. Following that,
DWS averages over relative motions of the entire sample
volume since the interference pattern is made of compo-
nents from everywhere in the sample, the MSD values are
averaged, and measured velocities are the mean velocities
v = v/h of fluctuating particles. The velocity fluctuation
from the MSD

lim
t→0

⟨∆r2⟩ = ⟨δv2⟩t2 = v2t2. (11)

is related to the granular temperature [15]

TGrani
= m · v2i =

1

3
m · v2 (12)

with m the particle mass and vi the velocity component
of one of the three directions in 3-D space [2, 10, 14].
Furthermore, with the velocity, we can estimate the

possible deformation and collision time of the particle.
For two spherical particles forming and breaking contact,



4

the surface deformation and collision times can be calcu-
lated according to Hertz [36–38]. The first important
parameter is the elastic modulus (E) of the two spheres
colliding, giving the parameter Λ ∝ 1/E [37]. Using Λ
and the radius of the particle a the spring constant of the
contact can be calculated in Eq.13 [37].

k2 =

(
4

5

2

3Λ

)2

a (13)

Following this we can use the velocity calculated by DWS
(v), the mass of a particle (mp), and Eq.14 to calculate
the contact time [37].

tc = 2.94

 m√(
4
5

2
3Λ

)2 ·R
2/5

v−1/5 = 2.94
(m
k

)2/5

v−1/5

(14)
Afterward, we can place the indentations caused by
the collision in the MSD graphs according to δ2 = (tc·v)2.

III. RESULTS

A. Packing Fraction

The packing fraction is determined by means of video
microscopy during shaking. Determination of the pack-
ing fraction using this method can show densification
throughout the experiment, which is further supported
by changes in the correlation functions seen in Sec. III B.
Fig. 3 shows the relationship between packing or volume
fraction and time. The accuracy can be observed by the
grouping of the data and is lower at the beginning of the
measurements, as the system still has a more heteroge-
neous surface in the beginning. As expected, the system
densifies over time for both Γ values around 1. The shak-
ing up (Γ = 3.77) does not further compact the sample.
The plateau for Γ = 0.89 can be explained by the di-
latancy onset for mono-disperse spheres at ΦD ≈ 60%
depending on friction and pressure and this Γ value does
not supply enough energy to rearrange the beads and
further densify the system [30]. In contrast, the system
becomes denser with Γ = 0.99 as agitation continues. We
base this on the same reasoning, as the particles should
be able to move relative to each other at Γc and become
somewhat fluid-like. This can densify the system even
above the threshold of ΦD ≈ 60%.

B. Dynamics

Fig. 4 shows Γ and time-dependent correlation func-
tions g2(t) in backscattering (top) and transmission (bot-
tom) geometry. The purple, blue, red, and green curves
show Γ values of 3.77, 1.1, 0.99, and 0.89, respectively.
Recorded data is shown as symbols and the fit as lines,
showing a good agreement between the fit function and
data. The set-up depictions in the figures indicate the

100 101 102 103 104

Time [s]

54

56

58

60

62

Vo
lu

m
e 

Fr
ac

tio
n 

 [%
]

3.77 g
0.99 g
0.89 g

FIG. 3. Evolution of the volume fraction for different Γ values.
The volume fraction in % is plotted versus time to observe
any densification. Shaking up is shown in purple triangles
and lasts a maximum of 60 seconds.

probed scattering volume. The oscillations look more
pronounced in the backscattering correlation functions,
and the time is shorter for transmission geometry across
all measurements to fully decay. Both factors are not
necessarily representative of stronger underlying oscilla-
tion amplitudes as well as faster or slower underlying
dynamics respectively.

IV. ANALYSIS

Fig. 5 shows Γ and time-dependent MSDs calculated
from data in Fig. 4 shown as symbols and model fits
following equation 10 shown as dashed lines. The data
relies on the determination of the scattering cross sec-
tion σ, which uses the density determination in Fig. 3.
The fitted factor before the oscillation term κ2A2 is be-
tween 0.5 and 1.5 and therefore in the expected order.
Since the model can describe the agitation oscillation,
we were able to remove the oscillations present in the
MSD representation to an almost oscillation-less depic-
tion. The remaining oscillation visible in the MSD curves
indicates the level of reliability of the results. The mea-
sured MSDs reveal the presence of power law behavior,
initially manifesting as a power law exponent of 2 at very
short time scales, indicative of ballistic motion or elas-
tic deformation. Subsequently, a transition occurs into
a plateau-like interval, which may represent caging be-
havior, gradually softening the cage and exploring a dis-
tribution of different ballistic environments. The dots
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FIG. 4. Γ and time-dependent Correlation functions g2(t)
in backscattering (top) and transmission (bottom) geome-
try, with figure inserts depicting the probed volume. The
Γ values of 3.77, 1.1, 0.99, and 0.89 are shown by the purple,
blue, red, and green curves, respectively. The color scheme
is designed such that darker shades of the color indicate later
or more dense versions of the same system. Hollow symbols
show backscattering values and full symbols show transmis-
sion data.

in the lower graph indicate collision times and indenta-
tions calculated by the Hertzian model, while the blue
curves (Γ = 1.1) additionally show a power law exponent
of 1, which is indicative of diffusive motion. For pro-
gressively more dense systems, like the red curves, the
diffusion is at a later time and has higher displacement
values than the technique can resolve. Conversely, the
purple curves show no diffusion since the strong agita-
tion has ballistically displaced the particles too far to
resolve any particle interactions seen by a full decorrela-
tion before any plateau has formed. To highlight the
differences in traveled distances Fig.6 shows a combined
graph of all Γ values at their respective highest achieved
volume fraction in backscattering and transmission ge-
ometry. It is demonstrated that the backscattering and
transmission geometries exhibit a high degree of similar-
ity in shape, with a divergence occurring at the point
where the ballistic regime ends. We attribute this to in-
homogeneities in the sample. The transmission curves
have a lower MSD value than the backscattering curves,
suggesting a shorter particle displacement traveled. We
expected that the transmitted light experiences a greater
exposure to the bulk of the material, thereby providing
an average dynamics of the entire sample. Meanwhile,
the backscattered light probes the sample closer to the
walls. This point is highlighted by the small sample de-
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geometry and model fits following equation 10. The Γ values
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FIG. 6. Γ and time-dependent MSDs in both geometries
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est achieved volume fraction. The backscattering geometry
has hollow symbols and transmission full ones. The legend is
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pictions in the figures, where the green color represents
the scattered light. The packing differs close to the wall
compared to the bulk since the wall prevents proper close
packing.
The extracted fit parameters are plotted against volume
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fraction in Fig. 7, with empty symbols for backscatter-
ing geometry and full symbols for transmission geometry.
The fit parameters h and τBal are lower for transmission
than for backscattering geometry. The plateau heights
decrease with lower excitation energies in the backscat-
tering case, as shown Fig. 7 a). The backscattering
for 1.1 Γ does not follow this trend, and we expected
the plateau to be higher. As the system’s density in-
creases, the particles enter the caging regime earlier, a
phenomenon that can be quantified by observing the de-
crease in height strongly seen in the backscattering case.
The h values for transmission seem to remain constant.
This is because the system is more loosely packed close
to the wall due to the wall acting like a ’surface’ break-
ing the bulk, and the packing fraction can change more
drastically there [39]. Ballistic time scales are visible in
Fig. 7 b) and show a slight increase as the system densi-
fies for Γ < ΓC , indicating that the system is becoming

slower. Both the backscattering and transmission cases
show that the ballistic time scale increases with lower en-
ergy input or Γ values. Γ = 1.1 in transmission do not
align with the trend. The diffusive time scales τDiff , are
only visible in the blue MSD curves, are shown by the
star symbols. The velocities, shown in Fig. 7 c), are
calculated according to Eq. 11 and show the expected
behavior, as it increases with excitation energy and ad-
ditionally decreases with density, which is shown by the
red and green symbols. The highest Φ value for 0.89 Γ in
b) and c) do not follow the trend exactly, indicating the
limits of the data. These deviations reveal the resolution
limits indicated by the scattering of the obtained values.

V. DISCUSSION

The system densifies over agitation time, as shown
in Fig. 3. This is to be expected as vibrations are
a commonly used and highly effective way to densify
granular media [40, 41]. It can also be seen that
the system stops densifying at the dilatancy onset
for excitations below Γ = 1. This phenomenon can be
attributed to the inherent difficulty of particle movement
relative to each other, thereby hindering the potential
for reorientation-driven densification. Higher excitations
do not show this property, especially since Γ = 3.77
visibly fluidizes the sample and has a measured volume
fraction below 54%, which is close to the most loose solid
granular packing [30, 42]. Furthermore, we are aware
of the fact that depending on humidity and material
used, the system tribo-charges more or less strongly
[24, 43, 44]. In the video recordings, no strong charging
effects, e.g. particles sticking to the walls, are visible
as the system proceeds to be densified over time. Only
the very first measurement showed some effects which
could be reasonably attributed to charging, which could
have been caused by preparing the sample and filling
the sample cell. This leads us to believe that the sample
is weakly tribo-charged.
We also observe a clear difference between backscat-
tering and transmission measurements for excitations
close to and above Γ = 1. This leads us to conclude
that the system is strongly heterogeneous. At low Γ
values this behavior is less prominent. We suspect
convection rolls to be one of the causes of this effect,
confirmed visually via the video taken of the system
[10]. Due to the nature of the scattering geometry,
the transmission measurements provide us with a more
complete insight into the average behavior of the bulk,
as the scattering path passes through the whole sample.
This has the benefit of reducing the effect of localized
velocity differences in the sample.
From the fits of the MSD curves in Fig. 5, we extract
parameters that align with what the MSD curves show
by visual inspection. The power law exponent β, indica-
tive of the slope of the MSD after the ballistic regime,
has a constant value of 0.55 for backscattering geometry
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but differs between excitations for transmission. A β of
0.55, called sub-diffusive motion, is not uncommon for
colloids in solution [45]. This leads to the assumption
that the observed behavior is analogous to a thermal
system and thus may indicate caging behavior. [45–49].
In general, an exponent of 0.5 is found in strongly
collective dynamics for molecular substances and is
assumed to be a generic feature of structural relaxation
[50, 51]. The power law has slight variations between
measurements, this could be caused by the small amount
of polydispersity of our system as colloidal DWS mea-
surements with mono and polydisperse particles show
similar characteristics [12, 14, 52]. Estimation shows
that this behavior is influenced by the frictional forces
between the particles, and that tuning the friction would
change the power law exponent [30, 53, 54].
The MSD is cut at the resolution limits given by k,
mean distances larger than k can not be resolved. The
calculated MSDs and the limits align well with literature
over several decades [13, 14]. The resolution limit,
however, is not only given in distance but also in time.
This leads us to two likely explanations of the cause of
the initial ballistic decorrelation. DWS is a statistical
average of all dynamics in the scattering volume. As our
system has several thousand particles in motion, each
one of them needs to move only a fraction of what is
given for the one-event decorrelation case.
Firstly, we consider the clapping contacts mentioned in
literature on granular media [55, 56]. Here, contacts
would form due to collisions, these would then deform
the particles up 10 nm, when assuming Hertzian con-
tacts, and break apart again [4, 36–38, 57]. The collision
process takes roughly 5 · 10−6s for our particles at the
highest agitation, slight deviations are depending on
the excitation energy [37]. It should be noted that
the time scale relating to each contact time for each
agitation aligns with the ballistic-like increase in the
MSD and continues even after the Hertzian contact
is expanded. The behavior appears ballistic since the
resolved Hertzian part of the MSD is linear following
Hook’s law, and nonlinear deviations from ballistic
behavior should be on even shorter unresolved times.
Additionally, the indentations created by making that
contact align with the MSD values, making it plausible
that the short-time-scale behavior analyzed is the con-
tact formation breaking of the Hertzian contact. Lower
excitations lead to a bigger deviation from the Hertzian
model since the particles are no longer breaking apart,
but follow the movement of the voice coil. Interestingly,
data of Scalliet et al. [58] for very high excitations can
be used to extrapolate our data, showing that the actual
ballistic behavior happens at slightly larger time and
length scales than probable by DWS with green light
[58].
Secondly, it could be either translational or rotational
motion of the particles or a combination of both. As the
movement on a nanometer scale is very small compared
to the size of our particles, one could also attribute the

decorrelation to rattling or vibrations [4]. 1 Å is also
equal to 0.01% of a particle’s circumference, implying
that the amount one particle would need to turn to
decorrelate the light path is achievable, even at short
timescales.
The surface is assumed to be a strong scattering source,
giving us information about the motion of the particle
surface (leading to sensitivity for deformation, transla-
tion, and rotation). Since the largest refractive index
gradient is at the air-particle boundary, the light is
scattered weaker on the particle length scale relative to
the surface roughness. This can be further illustrated by
the observed brightness of each sphere compared to other
materials[59, 60] and leads to a slide underestimation of
l∗ resulting in smaller MSDs than assumed.
Measured particle velocities are lower than the velocity
of the voice coil, as they should be when considering
dissipation, consequently, the excitation itself is not
responsible for decorrelating the light. The velocities for
high voice coil excitations agree with measurements for
granulates falling through a funnel, as both show a mean
velocity fluctuation of 0.1-1 mm/s. [13, 14]. We measure
MSD plateau values between 3 · 101 and 3 · 103nm2

for transmission and backscattering, respectively. The
funnel experiment shows a plateau value of roughly
103nm2 for particle sizes of 95µm and 194µm, covering
larger and smaller particle sizes than ours [13]. In the
gas-fluidized bed, the plateau is a little below 104nm2,
this intuitively makes sense as a gas-fluidized bed will be
less dense than our system and the particles should have
a higher mean free path [14]. We like to emphasize that
the funnel experiment resolves the beginning of diffusion
consistently with applied camera-extracted diffusion
values underlining the reliability of the extracted length-
scales [14]. Our particles show no sign of bubbling,
therefore the system would be classified as Group A,
according to Geldart [61]. Menon’s particles, used in
a gas-fluidized bed, would either be class A or B [14].
This leads us to believe that the Geldart classification
for fluidized beds should be able to be transformed into
a granular temperature-dependent version.
When comparing Mode-Coupling Theory (MCT) calcu-
lations to our system, the localization lengths normalized
to radius should be around 7.46 · 10−2, our experiment,
however, shows a localization length of 1.3 · 10−3 to
4 · 10−4 in backscattering and transmission geometry
respectively [45, 62, 63]. It is remarkable that the MCT
calculations agree with the Lindemann melting criterion
or length, and still show a difference in MSD of 4 orders
of magnitude from experimental data [64]. We suspect
possible causes to be friction, roughnesses, or deviations
from a sphere shape on the order of 1%, as the mentioned
MCT calculations are frictionless ideal spears. However,
the core spectral characteristics of the MSD graph are
evident in both theoretical and experimental contexts
[62].
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VI. CONCLUSION

We demonstrate that DWS can be used to produce re-
liable and reproducible MSDs from vibro-fluidized beds,
in agreement with the literature for other types of flu-
idization, such as funnel fluidization and gas fluidization
[13, 14]. All three regimes, ballistic, sub-diffusive, and
diffusive, shown in previous granular DWS experiments,
can be observed in the present voice coil experiment. It is
observed that the diffusive behavior changes to the sub-
diffusive behavior of the system and undergoes a tran-
sition in response to agitation (granular temperature).
In addition, we verify that the behavior of the system
changes as it densifies, as a denser system slows down
the dynamics. We expect links to jamming and a gran-
ular glass transition as the temperature is constant but
the dynamics slow down. Compared to colloidal systems
the mean free paths appear considerably smaller. Finally,
we show that the dynamics observed in the backscattered

and transmitted geometries are different, demonstrating
the sensitivity of DWS to heterogeneities within the sys-
tem, specifically between wall and bulk dynamics. Con-
sequently, we conclude that DWS can provide a coherent
picture of granular fluids across different agitation mech-
anisms, as it allows the measurement of particle dynamics
independent of the agitation method.
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