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A B S T R A C T

This paper presents a novel approach for assessing and monitoring Sustainable Development Goal 11.2.1, which 
measures the proportion of an urban population having convenient access to public transport. Despite its global 
importance as the key indicator for urban mobility, many cities face significant barriers to implementation, 
including limited access to standardized input data and a lack of technical capacity. To address these challenges, 
we introduce PtAC, the Public Transport Access Calculator, an open-source Python library that combines remote 
sensing data from the World Settlement Footprint Population with crowdsourced geospatial data from Open
StreetMap. PtAC automates the calculation of SDG 11.2.1, offering a globally applicable, transparent, and 
reproducible methodology for consistent monitoring of urban transport accessibility. The tool was applied to 33 
cities worldwide, and its outputs were validated against reference data provided by UN-Habitat. Validation re
sults show a high correlation, underscoring the tool’s potential to support scalable SDG monitoring. The study 
demonstrates how open and remote sensing data can be operationalized to bridge existing methodological gaps 
in urban sustainability assessments.

1. Introduction

In 2015, the United Nations adopted the 2030 Agenda for Sustain
able Development—a global framework comprising 17 Sustainable 
Development Goals (SDGs) and 169 targets aimed at eradicating 
poverty, fostering peace, and ensuring environmental sustainability 
(UN, 2015). Progress toward these goals is tracked through a set of 
approximately 230 indicators (Assembly 2017). Among them, SDG 
11—Sustainable Cities and Communities—addresses the pressing chal
lenge of ensuring inclusive, safe, resilient, and sustainable urbanization 
in the face of rapid urban growth.

Transport is a cross-cutting theme in the SDGs, with relevance across 
several targets, including road safety (SDG 3.6), access to infrastructure 
and freight/passenger transport (SDG 9.1), and urban mobility (SDG 
11.2). This paper focuses on SDG 11.2, which specifically aims to 
“provide access to safe, affordable, accessible and sustainable transport 
systems for all,” with particular attention to the needs of vulnerable 
groups. Progress is monitored via Indicator 11.2.1, which measures the 
proportion of the urban population with convenient access to public 
transport, disaggregated by sex, age, and disability status (UN, 2015).

Conceptually, the indicator builds on the notion of accessibility 
(Hansen, 1959), which emphasizes the relationship between spatial 

residential location and access to (urban) opportunities. In the context of 
SDG 11.2.1, accessibility is operationalized through spatial proximity of 
a city’s population to public transport services. Although this approach 
has drawn criticism for neglecting temporal and qualitative aspects of 
accessibility (Brussel et al., 2019), proximity-based indicators remain 
the standard within both policy and academic domains. For instance, 
(Alousi-Jones & El-Geneidy, 2025) show that time-based accessibility 
metrics play a crucial role in understanding transit use among older 
adults. Similarly, (Jahangir et al., 2024) conducted a scoping review on 
public transport access disparities among older adults and persons with 
disabilities in Bangladesh, highlighting how unequal access can lead to 
social exclusion. These findings underscore the importance of inclusive, 
data-driven methodologies such as the one proposed in this study.

Despite its centrality to urban sustainability, Indicator 11.2.1 re
mains difficult to implement consistently across different global con
texts. Several challenges have been identified in the literature, 
including: 

(1) the lack of standardized methodologies and input data (Koch & 
Ahmad, 2018; Simon et al., 2016);

(2) limited availability of open-source tools adapted to local planning 
needs (Hansson et al., 2019; Klopp & Petretta, 2017); and
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(3) inconsistencies in national definitions and data collection prac
tices (Tiwari & Phillip, 2021)

UN-Habitat working groups continue to debate critical aspects of the 
indicator’s definition, data requirements, and operationalization (Koch 
& Ahmad, 2018). Consequently, many cities—particularly in the Global 
South—struggle to monitor and report on this indicator effectively.

This methodological fragmentation presents a significant research 
gap: while several studies assess public transport access at the local 
level, there is no widely adopted, open-source, and scalable solution for 
calculating Indicator 11.2.1 using globally available data. In particular, 
tools that leverage open data (e.g., OpenStreetMap) and open method
ologies are scarce, limiting reproducibility, comparability, and local 
usability.

To address this gap, we introduce PtAC (Public Transport Accessi
bility Calculator), an open-source Python tool designed to compute SDG 
Indicator 11.2.1 using two global, openly accessible datasets: Open
StreetMap (OSM) and the World Settlement Footprint Population 
(WSF2019-Pop) based on remote sensing (Marconcini et al., 2021). The 
use of remote sensing for transport applications is gaining momentum, 
as high-resolution data become increasingly accessible and effective in 
identifying land use and trip-generating areas (Soares Machado & 
Quintanilha, 2019). PtAC estimates the population within 500 m of low- 
capacity public transport stops and within 1000 m of high-capacity 
stops, following the UN definition of “convenient access” (Daniels & 
Mulley, 2013; UN, 2015).

Applied across 33 cities worldwide, PtAC enables direct comparison 
with results produced by UN-Habitat’s closed-source workflows. Our 
findings demonstrate a strong correlation between PtAC outputs and 
those of the official reference approach, suggesting that PtAC can sup
port scalable, transparent, and replicable measurement of urban trans
port access. In doing so, it offers a valuable tool for cities and researchers 
aiming to operationalize SDG 11.2.1 within local planning frameworks.

2. Approach & method

This section delineates the methodology that we employed in the 
calculation of SDG 11.2, utilizing remote sensing-based population data 
and freely available datasets. It introduces PtAC,1 a Python library that 
automatically downloads and stores road networks, computes routes 
from the population to public transport and calculates the actual indi
cator. The section also provides a comprehensive overview of the 
methodology employed to derive population information from remote 
sensing imagery on a global scale. The proposed approach involves the 
utilization of freely available data sources and open data standards to 
automate and efficiently calculate the input variables. We not only 
intend to showcase the ability of the tool here, but also the general 
application of such a workflow-related tool to systematically guide the 
homogenous assessment of the SDG goals.

Fig. 1 gives an overview on the functionality and workflow of PtAC. 
The calculation of this indicator for a specific region requires the 
following data sources: 1) disaggregated population information (see 
section 2.2); 2) a routable road network (see section 2.3); 3) the city 
boundary (see section 2.4); and 4) a spatial allocation of public transport 
stops (see section 2.5). The SDG 11.2.1 indicator is then computed by 
calculating the walking distance to the next public transport stop for 
each of the population points along the street network, and then 
determining the share of the population that can walk to public trans
port within 500 m or 1 km distance. The intention is that the approach 
should be transferable and applicable almost everywhere and by 
everyone. To this end, we aim to rely on open and globally available data 
wherever possible, and to utilize open source software for the 

calculation. Details about the functionality2 and installation in
structions3 are provided within the project and working examples of the 
application are provide using Jupyter notebooks including necessary 
data and illustration the results.4 The subsequent chapter provides an 
overview of the approach and the data sources utilized. Starting with an 
introduction of the study sites (2.1), we subsequently introduce the 
steps, based on the required input data as introduced in the beginning of 
this section. However, it should be noted that alternative data sources 
that meet the criteria outlined in points 1), 2), 3) and 4) can also be 
employed.

2.1. Study sites

In order to demonstrate the applicability and evaluate the quality of 
the outcomes, we employed PtAC to calculate SDG 11.2.1 for 33 
example cities. The selection of these cities was based on criteria such as 
data availability and geographic location, with the objective of ensuring 
representation from all continents, excluding Antarctica due to the 
absence of substantial urban areas. The population size of the cities 
ranged from under 500.000 to over 5 million inhabitants (see Table 1).

2.2. Deriving population information from remote sensing

Gridded population datasets for 33 cities located around the world 
(see Table 1) were produced for this research, following the methodol
ogy employed in the production of the WSF2019-Pop dataset (Palacios- 
Lopez et al., 2021). In particular, a weighted, dasymetric modelling 
approach was used to disaggregate 2019 population estimates from 
administrative units (i.e. highest level of administrative boundaries for 
each city) into grids of 10 m spatial resolution, using as proxy layer the 
novel World Settlement Footprint 2019 Imperviousness layer 
(WSF2019-Imp) (Marconcini et al., 2020) produced by the German 
Aerospace Center (DLR). Accordingly, the population estimates for 2019 
and corresponding administrative boundaries (i.e. vector data) were 
downloaded from the open archive of the WorldPop Global project 
(Lloyd et al., 2019).

The WSF2019-Imp layer is a global dataset that describes the percent 
of impervious surface (0 < PIS<=100 %) within areas categorized as 
settlement in the WSF2019 layer (Marconcini et al., 2020). Concisely, 
for each pixel within a given administrative unit, the estimated popu
lation is defined as follows: 

Popp = PopAU
PISp

∑
(p∈AU)PISp

(1) 

where each pixel in a given administrative unit (AU) is assigned a pro
portion of the total population (PopAU), relative to their percent of 
impervious value (PISp).

UN-Habitat utilizes WorldPop population count data (2020) with a 
resolution of 100 m that assumes all buildings within the service area are 
habitable and the population is equally distributed across built settle
ments (constrained). Moreover, the dasymetric mapping technique they 
utilize allows them to map relative homogeneity of population in each 
service area.

Fig. 2-a shows an example of the final gridded population dataset for 
the district of Friedrichshain (Berlin). All datasets have been produced at 
a spatial resolution of 0.3 arc-sec (~10 m at the Equator), and represent 
the number of people per pixel. Once the population grid was produced, 
these were converted into point (vector) data using the pixel centroids as 
shown in Fig. 2-b.

1 https://github.com/DLR-VF/PtAC.

2 https://ptac.readthedocs.io.
3 https://github.com/DLR-VF/PtAC/blob/master/docs/source/user-guide. 

rst.
4 https://github.com/DLR-VF/PtAC-examples.
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2.3. Retrieve and process street networks from OpenStreetMap

To assess the distance the population of a city must walk to access 
public transportation, a routable street network is essential. In our 
approach, we utilize OpenStreetMap (OSM) because it is open-source, 
globally available, and can be seamlessly integrated into PtAC (see 
Fig. 3). OSM (OpenStreetMap contributors, 2017) is a collaborative 
initiative that collects geographic data to create a free and editable 
global map. While the quality of OSM networks is generally high, it 
varies across different regions. According to (Barrington-Leigh & 
Millard-Ball, 2017), 42 % of countries worldwide have networks that are 
over 95 % complete, and the global road network coverage is approxi
mately 83 %. As the number of contributors continues to grow, the OSM 
database is rapidly expanding, making it increasingly reliable for re
searchers and policymakers in many parts of the world, particularly in 
densely populated urban areas which are often well-mapped.

In this study, we download and preprocess OSM road networks using 
the methodology described by (Boeing, 2017). This involves obtaining 
the walkable sections of city networks via the Overpass API and pre
paring them to create consistent and routable network graphs. “Walk
able” refers to all publicly accessible streets or paths where walking is 
permitted. This excludes roads such as motorways or cycle paths. Non- 
connected segments are removed from the largest network component 
to ensure continuous and accurate routing. All edges in the network are 
bidirectional, supporting routing in both directions.

2.4. City boundaries

For each analyzed city, a spatial area is defined. This task is not 
straightforward, as administrative boundaries do not commonly cover 
the urban extent sufficiently and the delineation of city boundaries has a 
large impact on the calculation results (Openshaw, 1981). Cities and 
agglomerations may span farther than their administrative boundaries, 

mostly as a result of urban growth. In many cases, city boundaries that 
are designed for statistical purposes are much larger than the settlement 
areas of an urban agglomeration (UN-Habitat, 2018). Therefore, the 
analysis area (city/urban area) must be carefully defined by adopting 
the degree of urbanization for computation of the SDG 11.2. indicator. 
For this study, we used the urban extents as defined and calculated by 
UN-Habitat (ibd.) (see Fig. 3). These so-called functional city boundaries 
rely on an assumption which takes the presence of buildings into ac
count, thereby defining an indicator of how urban an area is. This is 
done in the following way: An area which is densely built up is 
accounted as urban, whereas a sparse area is ranked as rural settlement. 
The urban extent is then generated based on these area classifications.

In order to define functional urban areas, each small administrative 
area is classified as urban or rural by undertaking supervised image 
classification including classes for built-up, water, open spaces such as 
forests and green areas, etc. After defining hypothetical city boundaries, 
the outcome of the supervised classification is reclassified to extract only 
built-up pixels using GIS software. Then, focal statistics are computed to 
determine the density of built-up areas per square kilometer. The focal 
statistics output is then reclassified to determine the urbanness of each 
zone based on the built-up area density per square kilometer. The total 
urbanized area is the entire spatial extent that meets the defined 
threshold of “urban” which is a minimum of 50 % of pixels around each 
gridded population cell. The built-up area that has pixel density between 
25 and 50 % is defined as “sub-urban area” whereas the built-up area 
with pixel density less than 25 % is classified as “rural-area”.

2.5. Public transport stops

In order to calculate SDG 11.2.1, public transport (PT) stops are used 
as destination points for the accessibility calculation. Getting such in
formation is challenging as there is no global, open data set available 
that provides this information. Collecting it therefore requires manual 

Fig. 1. PtAC workflow.
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research and analysis. A common data format that includes information 
on public transport stops is the General Transit Feed Specification 
(GTFS), but any other datasets containing the location of stops can also 
be used. GTFS is a data format which is developed for trip planning and 
visualization of public transport network by Google Maps and TriMet 
(McHugh, 2013). PtAC supports reading of PT stops directly from GTFS 
sources (in text file format) or any geodata point source that can be read 
by GDAL/OGR (see Fig. 3).

Since the goal of this study is to compare outcomes of the classical 
(closed-source) approach used by UN-HABITAT to calculate the indi
cator to the output of PtAC, we used the same public transport stops in 
both approaches. They were gathered from OSM and from open data 
platforms like OpenMobilityData and Transitland, and were extended by 
manual localization using very high-resolution optical imagery.

2.6. Routing and indicator calculation

PtAC was developed to ease the calculation of SDG 11.2.1 by 
simplifying the data processing steps and handling of the Open Source 
accessibility tool UrMoAC (Krajzewicz et al., 2017) (https://github. 
com/DLR-VF/UrMoAC). PtAC provides wrapper functionalities for 
UrMoAC including: downloading a street network from OSM (see sec
tion 2.2), reading of public transport stops and population information 
(see section 2.1 and 2.4), and doing the actual calculation and visuali
zation of the SDG 11.2.1 indicator. Based on current definitions, SDG 
11.2.1 represents the accessibility within 500 m walking distance to low- 
capacity public transit system and 1 km to high-capacity system. Low- 
capacity public transport systems include bus, tram and Bus Rapid 
Transit (BRT) stops while high-capacity systems cover train, metro and 
ferry stops.

PtAC calculates shortest distances on the street network from the 
centroid of any pixel of the population dataset to the next public 
transport stop. The routing starts at the pixel’s centroid, searches for the 
nearest edge of the street network and performs routing until the nearest 
edge of the closest public transport stop is reached. In this process, ac
cess and egress distances from population points to the street network 
and from the street network to the public transport stops are omitted. In 
order to calculate the SDG 11.2.1 indicator pixel centroids within a 
distance of 500 m for low capacity transit and respectively 1000 m for 
high capacity transit are summed up and divided through the overall 
population of the city (see equation (1). 

Table 1 
Overview of cities that have been selected for the study.

City Population 
(Mio)

City 
area 
(km2)

Number of high- 
capacity public 
transport stops

Number of low- 
capacity public 
transport stops

Africa
Addis Ababa 3,5 296,69 40 183
Casablanca 4 268,42 43 1237
Johannesburg 9,5 2638,28 162 1479
Lagos 12,3 830,09 6 1092
Nairobi 5,6 720,40 11 2636

America
Chicago 9,1 8297,28 497 12,846
Medellin 3,2 147,94 40 306
Montreal 3,6 1133,64 243 16,153
Santiago 6,7 761,41 437 10,695

Asia
Dubai 4,0 792,37 101 2189
Makassar 2,2 285,26 − 326
Manila 12,6 1110,27 90 1194
Mashhad 2,8 315,50 106 783
Mumbai 26,4 711,67 139 4392
Seoul 24,3 3174,05 3325 11,818
Singapore 5,9 422,33 402 4813
Tehran 9,8 784,70 258 1927

Australia
Brisbane 2,0 1054,23 124 9319
Melbourne 4,4 2207,35 214 19,014
Sydney 4,5 1628,28 281 7801

Europe
Ankara 4,9 537,07 64 1032
Berlin 3,8 977,50 2004 7461
Budapest 2,2 730,34 1055 5681
Izmir 2,8 292,88 84 1454
London 12,3 2524,91 89 28,555
Madrid 5,4 845,46 911 8877
Milan 6,5 2780,94 1564 10,046
Moscow 17,3 3595,39 2444 15,128
Paris 11,4 2862,43 2292 25,580
Strasbourg 0,4 127,45 178 993
Vienna 2,3 537,67 1521 4206
Warsaw 2,7 746,78 931 5264
Zurich 0,8 215,72 638 1829

Fig. 2. a) Population information from WSF-Pop in raster format (left) and b) pixel centroids (right) for the district of Friedrichshain (Berlin).
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SDG 11.2.1 Indicator =
∑n

i=1pi

pa 

where pi is the population of a single pixel within 500 m/1000 m dis
tance to the next station and pa is the overall population of the city area.

2.7. Evaluation

For validation purposes, SDG 11.2.1 indicators were calculated for 
each case study city using the PtAC approach, and the results were 
systematically compared to the reference values published by UN- 
Habitat. The latter were derived using a proprietary methodology 
based proprietary tools and data that are not publicly accessible or 
available to local stakeholders. UN-Habitat employs the High-Resolution 
Settlement Layer (HRSL, 2015), developed by the Facebook Connec
tivity Lab, to estimate population distribution. This dataset offers global 
coverage at a spatial resolution of 30 m and is freely available for use. In 
contrast, PtAC calculations are based on the World Settlement Footprint 
(WSF) population dataset from 2019, which provides more recent 
population estimates and a significantly higher spatial resolution of 10 
m. When interpreting the comparative analysis, two major distinctions 
in data sources must be considered: (1) the PtAC approach utilizes more 
temporally current population data (2019 vs. 2015), and (2) the spatial 
resolution of the WSF dataset is three times finer than that of the HRSL, 
allowing for a more detailed and accurate representation of population 
distribution.

3. Results

This section presents the results of the study, including exemplary 
outputs and a comparative analysis of the SDG 11.2.1 indicator calcu
lated using the PtAC methodology across 33 global cities. These results 
are benchmarked against reference values published by UN-Habitat.

Fig. 4 illustrates the results of the PtAC calculations for the metro
politan area of Manila. The left panel displays the distribution of pop
ulation points and their respective distances to the nearest public 
transport stop. The right panel shows the cumulative share of the pop
ulation by distance to the nearest stop. As expected, central urban areas 
exhibit high accessibility to public transport, with the majority of the 
population residing within 500 m of a transit stop. In contrast, periph
eral and suburban areas show markedly reduced procimity.

The cumulative distribution indicates that 24.8 % of the population 
lives within 500 m, 56.6 % within 1,000 m, and 97.5 % within 3,000 m 
of a stop.

Based on these distance thresholds and following the SDG 11.2.1 
methodology (see Section 2.5), the final SDG indicator value—defined 
by the population share within 500 m of low-capacity and 1,000 m of 
high-capacity public transport—is computed to be 29 %. This result 
deviates by 3.5 percentage points from the corresponding UN-Habitat 
reference value.

The distribution of results reveals three distinct clusters, each cor
responding to a different range of urban accessibility levels, as high
lighted in Fig. 5: 

Fig. 3. Example of input data for Berlin’s district Friedrichshain. a.) illustrates the district/city boundaries, b.) shows the routable street network downloaded from 
OSM, c.) depicts the public transport stops where the red points indicate high-capacity and the yellow points low-capacity transport stops and d.) shows the remote 
sensing-based population estimation where the colors indicate the population per pixel. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

Fig. 4. Exemplary results of PtAC calculations for the city of Manila. Spatial distribution of population points and computed distances to the nearest public transport 
stop. Right: Cumulative population share by distance to public transport.
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• Cluster 1 (Green ellipse) includes cities with low public transport 
accessibility (SDG 11.2.1 values below 50 %), such as Johannesburg, 
Manila, and Nairobi. These cities are predominantly located in Af
rica, Asia, or Latin America and are often shaped by automobile- 
centric development patterns or high reliance on informal trans
port systems (Behrens et al., 2015), which due to data scarcity are not 
captured by the SDG 11.2 indicator. As such, the relatively low 
accessibility values may reflect the methodological limitations of the 
indicator rather than the actual availability of mobility options.

• Cluster 2 (Orange ellipse) represents cities with medium accessi
bility levels (between 50 % and 75 %), including Seoul, Tehran, and 
Sydney. These cities are typically in a transitional phase, expanding 
their public transport infrastructure and working toward broader 
integration of suburban and peripheral areas. They can be inter
preted as cities that are “picking up” in terms of public transport 
development.

• Cluster 3 (Purple ellipse) contains cities with high accessibility 
(above 75 %), such as Zurich, Paris, and Warsaw. These are primarily 
located in Europe or other highly developed regions and are char
acterized by mature, dense, and well-integrated public transport 
systems. Within this group, a dashed line marks the 75 % threshold, 
and a solid line highlights cities exceeding 90 %, emphasizing their 
ability to meet and surpass the accessibility targets defined in SDG 
11.2.1. The consistently high values in both PtAC and UN-Habitat 
data highlight the reliability of these systems in providing wide
spread, convenient access to transit.

A continental breakdown reveals that the highest mean deviation 
occurs in Australia (6.4 %), while the lowest is found in the Americas 
(1.1 %), as detailed in Table 2. The consistently high R2 value sub
stantiates the reliability and robustness of the PtAC method in repli
cating SDG 11.2.1 values across diverse urban contexts.Table 3.

4. Discussion

In this study, we present a methodology for computing the SDG 
11.2.1 indicator using remote sensing data products, open-access data
sets, and open-source software. While SDG 11.2.1 has been evaluated 

across a wide range of cities globally, the novelty of our approach lies in 
its operational simplicity, high transferability, and negligible data 
acquisition costs, all while delivering robust and accurate indicator es
timates. These characteristics make the method particularly relevant for 
contexts with limited technical and financial resources. Accordingly, 
this paper provides a critical evaluation of the methodology, focusing on 
two key aspects: (a) the extent to which the approach fulfills the 
objective of ease of implementation, and (b) the quality and reliability of 
the resulting indicator values compared to established reference data.

Fig. 5. Comparison of PtAC and UN-Habitat SDG 11.2.1 values across 33 cities. Each dot represents one city, color-coded by continent. The dashed and solid lines 
highlight three main clusters—low (<50 %, green), medium (50–75 %, orange), and high (>75 %, purple)— and illustrate varying levels of public transport access 
and correspond to different urban development patterns. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)

Table 2 
Results of comparison based on continents.

Continent R2- 
Score

Median 
difference (%)

Mean 
difference (%)

Standard deviation of 
difference (%)

Africa ​ 4.1 3.8 2.8
America ​ 1.0 1.1 1.0
Asia ​ 2.2 3.4 3.8
Australia ​ 6.5 6.4 1.1
Europe ​ 2.3 3.1 2.3
All 0.97 2.3 3.3 2.8

Table 3 
Comparison of the ease of implementation.

PtAc Manual Calculation

Data acquisition
City boundaries Manual input Manual input
Population Data Automatic (WSF) Manual attention
Transportation 

Network
Automatic (OSM) Manual attention

Public transit stops GTFS ​

Data Processing
Routing Automatic (Wrapper 

for UrMoAc)
Manual, using accessibility tools 
(e.g. R5, ArcGIS)

Analysis ​ ​
Indicator 

assessment
Automatic Manual
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To assess ease of implementation, we outline the PtAC methodology, 
which organizes the computation process into three core phases: data 
acquisition and preprocessing, routing, and indicator assessment. Unlike 
conventional manual workflows that often require extensive technical 
expertise, PtAC automates most procedures and significantly reduces 
user input. Users are required only to define the city boundaries and, 
when GTFS data are unavailable, to specify public transport stop loca
tions. If GTFS data are available, even this step can be automated. Key 
input datasets—namely population data from the World Settlement 
Footprint (WSF2019-Pop) and transport network data from Open
StreetMap (OSM)—are retrieved and processed automatically. Routing 
is performed using a wrapper for UrMoAc, and the final calculation of 
the SDG indicator is fully automated. Of the seven total process steps, 
only two require manual input, representing a substantial reduction in 
technical workload. As a result, PtAC offers a scalable and accessible tool 
for local governments to independently and consistently monitor prog
ress toward SDG 11.2.1, even in the absence of specialized GIS 
capacities.

To evaluate the quality of the results, we compare our outputs with 
official reference values calculated by UN-Habitat. The results demon
strate a high overall correlation, with an R2 value of 0.97, indicating 
strong agreement between the two approaches. Despite this, certain 
deviations are observed, particularly in Australian cities and in Makas
sar. These discrepancies are most likely attributable to differences in the 
underlying population datasets. PtAC employs WSF2019-Pop, which 
offers higher spatial resolution (10 m versus 30 m) and more recent data 
(2019 as opposed to 2015). Furthermore, UN-Habitat’s methodology 
assumes a uniform distribution of population across built-up areas, 
which can result in a more homogeneous density and may potentially 
overestimate accessibility in low-density regions. Such differences 
become especially relevant in peripheral or semi-urban areas, where 
PtAC’s more granular data may yield more conservative—but arguably 
more accurate—estimates. Nevertheless, given the relatively small 
sample size of 33 cities, statistical results should be interpreted 
cautiously, and further applications of the tool are necessary to verify 
robustness across diverse geographic and socio-economic contexts.

The three empirically derived clusters correspond closely to Ken
worthy’s typology of urban transport systems (Kenworthy & Laube, 
1999). Cities in Cluster 1 reflect the characteristics of “automobile cit
ies” or “informal transport cities,” where public transport access is 
structurally limited and not fully captured by formal indicators such as 
SDG 11.2.1. Cluster 2 represents hybrid cities in transition toward more 
integrated systems, while Cluster 3 includes mature “transit cities” with 
long-standing investments in public transport infrastructure and land- 
use integration. This clustering not only validates the PtAC methodol
ogy but also reveals broader regional patterns and development stages of 
public transport infrastructure. Moreover, it highlights a structural bias 
in SDG 11.2.1 toward formalized systems, potentially underrepresenting 
mobility access in cities where informal transport plays a central role.

Beyond technical validation, this study contributes to both urban 
policy and transportation research. For urban policy-makers, PtAC offers 
a scalable, transparent, and cost-effective instrument for integrating 
transport accessibility indicators into planning routines. The tool’s 
reliance on openly available data and automated workflows lowers the 
barrier for implementation, particularly in cities with limited resources. 
It supports data-driven decision-making by identifying underserved 
areas and monitoring progress toward sustainable urban mobility in 
alignment with international frameworks such as the 2030 Agenda. For 
transportation researchers, PtAC provides an open and reproducible 
framework that facilitates large-scale comparative studies of urban 
accessibility. It enables testing of alternative accessibility models, inte
gration of additional data sources such as land use or transport quality 
metrics, and the exploration of urban mobility inequalities through 
standardized global assessments.

The PtAC methodology offers substantial long-term benefits, both in 
terms of resource efficiency and urban governance. Its reliance on open 

data (e.g., WSF2019-Pop, OpenStreetMap, GTFS) and open-source 
software ensures minimal to no financial cost for data acquisition and 
software licensing. This dramatically reduces recurring expenses 
compared to traditional, proprietary GIS workflows—particularly rele
vant for low- and middle-income cities facing fiscal constraints.

Moreover, from a policy impact perspective, the return on invest
ment is amplified through improved decision-making and spatial tar
geting. By accurately identifying underserved areas using high- 
resolution and recent population datasets, PtAC supports the prioriti
zation of infrastructure investments where they are most needed. This 
alignment with international goals—such as the 2030 Agenda for Sus
tainable Development—not only enhances accountability but may also 
open access to global funding mechanisms tied to SDG performance.

Finally, the reproducibility and transparency of the PtAC method
ology offer significant long-term value for transportation research. The 
method facilitates longitudinal monitoring, comparative studies, and 
the integration of additional layers (e.g., land use, socio-economic in
dicators), all of which contribute to more holistic and inclusive urban 
mobility planning. In this sense, PtAC functions not only as a tool but as 
an enabler of systemic, cost-efficient improvements in sustainable urban 
transport monitoring and policy formulation.

5. Conclusion

In this study we introduced a workflow for the calculation of SDG 
11.2.1. The study is founded on the utilization of open data and open- 
source tools, thereby allowing the easier applicability on a global 
scale. We introduced the python library PtAC which has been developed 
and made available as open source by the authors/DLR. We compared 
the outcomes of PtAC to a conventional methodology previously applied 
by UN Habitat for 33 cities worldwide. Our results turned out to be very 
similar on a city aggregate level for most places, indicating that our 
methodology delivers equally good results.

For the future, we expect that open data will become increasingly 
available, with enhanced quality in terms of spatial resolution and 
timeliness. Furthermore, we expect that with increasing computational 
power, automatic or semi-automatic calculations like the one introduced 
by us will become even more relevant to generate topical findings and to 
monitor ongoing developments. We also expect that the SDG 11.2.1. 
Indicator will be refined, for instance by including more variables and a 
more complex calculation method. Beyond incorporating distance-to- 
transit, refinements could include aspects such as proximity-centred 
accessibility and route-based accessibility measures (Lucas 
Albuquerque-Oliveira et al., 2024; Silva et al., 2023).

Another, more general limitation of the procedure pertains to 
informal transport, which is frequently excluded from GTFS datasets and 
other public transport stop data. Consequently, it cannot be incorpo
rated in the calculation. Informal transport is a form of public transport 
that is privately developed and run and mainly operates outside the 
wider official regulatory framework (Oviedo Hernandez et al., 2021). It 
is widely common in the developing world, often constituting the sole 
publicly available transport option in numerous cities. The absence of 
any formal transport planning for informal transport means that 
knowledge about its extent is frequently limited. Regarding the 
appraisal of SDG 11.2, omitting informal transport where available 
would mean to systematically underrate the indicator value of this de- 
facto public mode of transportation. In recent years, however, mapping 
informal transport has become more common, for instance in Nairobi 
(Digital Matatu) or by companies and NGOs. Nevertheless, further 
research and manual effort are required to improve the quality of 
accessibility assessments where informal transport is available, and also 
how other public modes of transport such as electric scooters can be 
included (Hasselwander et al., 2023).
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