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This paper presents a novel approach for assessing and monitoring Sustainable Development Goal 11.2.1, which
measures the proportion of an urban population having convenient access to public transport. Despite its global
importance as the key indicator for urban mobility, many cities face significant barriers to implementation,
including limited access to standardized input data and a lack of technical capacity. To address these challenges,
we introduce PtAC, the Public Transport Access Calculator, an open-source Python library that combines remote
sensing data from the World Settlement Footprint Population with crowdsourced geospatial data from Open-
StreetMap. PtAC automates the calculation of SDG 11.2.1, offering a globally applicable, transparent, and
reproducible methodology for consistent monitoring of urban transport accessibility. The tool was applied to 33
cities worldwide, and its outputs were validated against reference data provided by UN-Habitat. Validation re-
sults show a high correlation, underscoring the tool’s potential to support scalable SDG monitoring. The study
demonstrates how open and remote sensing data can be operationalized to bridge existing methodological gaps

in urban sustainability assessments.

1. Introduction

In 2015, the United Nations adopted the 2030 Agenda for Sustain-
able Development—a global framework comprising 17 Sustainable
Development Goals (SDGs) and 169 targets aimed at eradicating
poverty, fostering peace, and ensuring environmental sustainability
(UN, 2015). Progress toward these goals is tracked through a set of
approximately 230 indicators (Assembly 2017). Among them, SDG
11—Sustainable Cities and Communities—addresses the pressing chal-
lenge of ensuring inclusive, safe, resilient, and sustainable urbanization
in the face of rapid urban growth.

Transport is a cross-cutting theme in the SDGs, with relevance across
several targets, including road safety (SDG 3.6), access to infrastructure
and freight/passenger transport (SDG 9.1), and urban mobility (SDG
11.2). This paper focuses on SDG 11.2, which specifically aims to
“provide access to safe, affordable, accessible and sustainable transport
systems for all,” with particular attention to the needs of vulnerable
groups. Progress is monitored via Indicator 11.2.1, which measures the
proportion of the urban population with convenient access to public
transport, disaggregated by sex, age, and disability status (UN, 2015).

Conceptually, the indicator builds on the notion of accessibility
(Hansen, 1959), which emphasizes the relationship between spatial
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residential location and access to (urban) opportunities. In the context of
SDG 11.2.1, accessibility is operationalized through spatial proximity of
a city’s population to public transport services. Although this approach
has drawn criticism for neglecting temporal and qualitative aspects of
accessibility (Brussel et al., 2019), proximity-based indicators remain
the standard within both policy and academic domains. For instance,
(Alousi-Jones & El-Geneidy, 2025) show that time-based accessibility
metrics play a crucial role in understanding transit use among older
adults. Similarly, (Jahangir et al., 2024) conducted a scoping review on
public transport access disparities among older adults and persons with
disabilities in Bangladesh, highlighting how unequal access can lead to
social exclusion. These findings underscore the importance of inclusive,
data-driven methodologies such as the one proposed in this study.

Despite its centrality to urban sustainability, Indicator 11.2.1 re-
mains difficult to implement consistently across different global con-
texts. Several challenges have been identified in the literature,
including:

(1) the lack of standardized methodologies and input data (Koch &
Ahmad, 2018; Simon et al., 2016);

(2) limited availability of open-source tools adapted to local planning
needs (Hansson et al., 2019; Klopp & Petretta, 2017); and
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(3) inconsistencies in national definitions and data collection prac-
tices (Tiwari & Phillip, 2021)

UN-Habitat working groups continue to debate critical aspects of the
indicator’s definition, data requirements, and operationalization (Koch
& Ahmad, 2018). Consequently, many cities—particularly in the Global
South—struggle to monitor and report on this indicator effectively.

This methodological fragmentation presents a significant research
gap: while several studies assess public transport access at the local
level, there is no widely adopted, open-source, and scalable solution for
calculating Indicator 11.2.1 using globally available data. In particular,
tools that leverage open data (e.g., OpenStreetMap) and open method-
ologies are scarce, limiting reproducibility, comparability, and local
usability.

To address this gap, we introduce PtAC (Public Transport Accessi-
bility Calculator), an open-source Python tool designed to compute SDG
Indicator 11.2.1 using two global, openly accessible datasets: Open-
StreetMap (OSM) and the World Settlement Footprint Population
(WSF2019-Pop) based on remote sensing (Marconcini et al., 2021). The
use of remote sensing for transport applications is gaining momentum,
as high-resolution data become increasingly accessible and effective in
identifying land use and trip-generating areas (Soares Machado &
Quintanilha, 2019). PtAC estimates the population within 500 m of low-
capacity public transport stops and within 1000 m of high-capacity
stops, following the UN definition of “convenient access” (Daniels &
Mulley, 2013; UN, 2015).

Applied across 33 cities worldwide, PtAC enables direct comparison
with results produced by UN-Habitat’s closed-source workflows. Our
findings demonstrate a strong correlation between PtAC outputs and
those of the official reference approach, suggesting that PtAC can sup-
port scalable, transparent, and replicable measurement of urban trans-
port access. In doing so, it offers a valuable tool for cities and researchers
aiming to operationalize SDG 11.2.1 within local planning frameworks.

2. Approach & method

This section delineates the methodology that we employed in the
calculation of SDG 11.2, utilizing remote sensing-based population data
and freely available datasets. It introduces PtAC,' a Python library that
automatically downloads and stores road networks, computes routes
from the population to public transport and calculates the actual indi-
cator. The section also provides a comprehensive overview of the
methodology employed to derive population information from remote
sensing imagery on a global scale. The proposed approach involves the
utilization of freely available data sources and open data standards to
automate and efficiently calculate the input variables. We not only
intend to showcase the ability of the tool here, but also the general
application of such a workflow-related tool to systematically guide the
homogenous assessment of the SDG goals.

Fig. 1 gives an overview on the functionality and workflow of PtAC.
The calculation of this indicator for a specific region requires the
following data sources: 1) disaggregated population information (see
section 2.2); 2) a routable road network (see section 2.3); 3) the city
boundary (see section 2.4); and 4) a spatial allocation of public transport
stops (see section 2.5). The SDG 11.2.1 indicator is then computed by
calculating the walking distance to the next public transport stop for
each of the population points along the street network, and then
determining the share of the population that can walk to public trans-
port within 500 m or 1 km distance. The intention is that the approach
should be transferable and applicable almost everywhere and by
everyone. To this end, we aim to rely on open and globally available data
wherever possible, and to utilize open source software for the

! https://github.com/DLR-VF/PtAC.
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calculation. Details about the functionality” and installation in-
structions® are provided within the project and working examples of the
application are provide using Jupyter notebooks including necessary
data and illustration the results.” The subsequent chapter provides an
overview of the approach and the data sources utilized. Starting with an
introduction of the study sites (2.1), we subsequently introduce the
steps, based on the required input data as introduced in the beginning of
this section. However, it should be noted that alternative data sources
that meet the criteria outlined in points 1), 2), 3) and 4) can also be
employed.

2.1. Study sites

In order to demonstrate the applicability and evaluate the quality of
the outcomes, we employed PtAC to calculate SDG 11.2.1 for 33
example cities. The selection of these cities was based on criteria such as
data availability and geographic location, with the objective of ensuring
representation from all continents, excluding Antarctica due to the
absence of substantial urban areas. The population size of the cities
ranged from under 500.000 to over 5 million inhabitants (see Table 1).

2.2. Deriving population information from remote sensing

Gridded population datasets for 33 cities located around the world
(see Table 1) were produced for this research, following the methodol-
ogy employed in the production of the WSF2019-Pop dataset (Palacios-
Lopez et al.,, 2021). In particular, a weighted, dasymetric modelling
approach was used to disaggregate 2019 population estimates from
administrative units (i.e. highest level of administrative boundaries for
each city) into grids of 10 m spatial resolution, using as proxy layer the
novel World Settlement Footprint 2019 Imperviousness layer
(WSF2019-Imp) (Marconcini et al., 2020) produced by the German
Aerospace Center (DLR). Accordingly, the population estimates for 2019
and corresponding administrative boundaries (i.e. vector data) were
downloaded from the open archive of the WorldPop Global project
(Lloyd et al., 2019).

The WSF2019-Imp layer is a global dataset that describes the percent
of impervious surface (0 < PIS<=100 %) within areas categorized as
settlement in the WSF2019 layer (Marconcini et al., 2020). Concisely,
for each pixel within a given administrative unit, the estimated popu-
lation is defined as follows:

PIS,

= Popye—— P e))
AUZ(peAU)PISP

Pop,

where each pixel in a given administrative unit (AU) is assigned a pro-
portion of the total population (Popay), relative to their percent of
impervious value (PISp).

UN-Habitat utilizes WorldPop population count data (2020) with a
resolution of 100 m that assumes all buildings within the service area are
habitable and the population is equally distributed across built settle-
ments (constrained). Moreover, the dasymetric mapping technique they
utilize allows them to map relative homogeneity of population in each
service area.

Fig. 2-a shows an example of the final gridded population dataset for
the district of Friedrichshain (Berlin). All datasets have been produced at
a spatial resolution of 0.3 arc-sec (~10 m at the Equator), and represent
the number of people per pixel. Once the population grid was produced,
these were converted into point (vector) data using the pixel centroids as
shown in Fig. 2-b.

2 https://ptac.readthedocs.io.

3 https://github.com/DLR-VF/PtAC/blob/master/docs/source/user-guide.
rst.

* https://github.com/DLR-VF/PtAC-examples.
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Fig. 1. PtAC workflow.

2.3. Retrieve and process street networks from OpenStreetMap

To assess the distance the population of a city must walk to access
public transportation, a routable street network is essential. In our
approach, we utilize OpenStreetMap (OSM) because it is open-source,
globally available, and can be seamlessly integrated into PtAC (see
Fig. 3). OSM (OpenStreetMap contributors, 2017) is a collaborative
initiative that collects geographic data to create a free and editable
global map. While the quality of OSM networks is generally high, it
varies across different regions. According to (Barrington-Leigh &
Millard-Ball, 2017), 42 % of countries worldwide have networks that are
over 95 % complete, and the global road network coverage is approxi-
mately 83 %. As the number of contributors continues to grow, the OSM
database is rapidly expanding, making it increasingly reliable for re-
searchers and policymakers in many parts of the world, particularly in
densely populated urban areas which are often well-mapped.

In this study, we download and preprocess OSM road networks using
the methodology described by (Boeing, 2017). This involves obtaining
the walkable sections of city networks via the Overpass API and pre-
paring them to create consistent and routable network graphs. “Walk-
able” refers to all publicly accessible streets or paths where walking is
permitted. This excludes roads such as motorways or cycle paths. Non-
connected segments are removed from the largest network component
to ensure continuous and accurate routing. All edges in the network are
bidirectional, supporting routing in both directions.

2.4. City boundaries

For each analyzed city, a spatial area is defined. This task is not
straightforward, as administrative boundaries do not commonly cover
the urban extent sufficiently and the delineation of city boundaries has a
large impact on the calculation results (Openshaw, 1981). Cities and
agglomerations may span farther than their administrative boundaries,

mostly as a result of urban growth. In many cases, city boundaries that
are designed for statistical purposes are much larger than the settlement
areas of an urban agglomeration (UN-Habitat, 2018). Therefore, the
analysis area (city/urban area) must be carefully defined by adopting
the degree of urbanization for computation of the SDG 11.2. indicator.
For this study, we used the urban extents as defined and calculated by
UN-Habitat (ibd.) (see Fig. 3). These so-called functional city boundaries
rely on an assumption which takes the presence of buildings into ac-
count, thereby defining an indicator of how urban an area is. This is
done in the following way: An area which is densely built up is
accounted as urban, whereas a sparse area is ranked as rural settlement.
The urban extent is then generated based on these area classifications.

In order to define functional urban areas, each small administrative
area is classified as urban or rural by undertaking supervised image
classification including classes for built-up, water, open spaces such as
forests and green areas, etc. After defining hypothetical city boundaries,
the outcome of the supervised classification is reclassified to extract only
built-up pixels using GIS software. Then, focal statistics are computed to
determine the density of built-up areas per square kilometer. The focal
statistics output is then reclassified to determine the urbanness of each
zone based on the built-up area density per square kilometer. The total
urbanized area is the entire spatial extent that meets the defined
threshold of “urban” which is a minimum of 50 % of pixels around each
gridded population cell. The built-up area that has pixel density between
25 and 50 % is defined as “sub-urban area” whereas the built-up area
with pixel density less than 25 % is classified as “rural-area”.

2.5. Public transport stops

In order to calculate SDG 11.2.1, public transport (PT) stops are used
as destination points for the accessibility calculation. Getting such in-
formation is challenging as there is no global, open data set available
that provides this information. Collecting it therefore requires manual
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Table 1

Overview of cities that have been selected for the study.

City Population City Number of high- Number of low-
(Mio) area capacity public capacity public
(km?) transport stops transport stops
Africa
Addis Ababa 3,5 296,69 40 183
Casablanca 4 268,42 43 1237
Johannesburg 9,5 2638,28 162 1479
Lagos 12,3 830,09 6 1092
Nairobi 5,6 720,40 11 2636
America
Chicago 9,1 8297,28 497 12,846
Medellin 3,2 147,94 40 306
Montreal 3,6 1133,64 243 16,153
Santiago 6,7 761,41 437 10,695
Asia
Dubai 4,0 792,37 101 2189
Makassar 2,2 285,26 — 326
Manila 12,6 1110,27 90 1194
Mashhad 2,8 315,50 106 783
Mumbai 26,4 711,67 139 4392
Seoul 24,3 3174,05 3325 11,818
Singapore 5,9 422,33 402 4813
Tehran 9,8 784,70 258 1927
Australia
Brisbane 2,0 1054,23 124 9319
Melbourne 4,4 2207,35 214 19,014
Sydney 4,5 1628,28 281 7801
Europe
Ankara 4,9 537,07 64 1032
Berlin 3,8 977,50 2004 7461
Budapest 2,2 730,34 1055 5681
Izmir 2,8 292,88 84 1454
London 12,3 2524,91 89 28,555
Madrid 5,4 845,46 911 8877
Milan 6,5 2780,94 1564 10,046
Moscow 17,3 3595,39 2444 15,128
Paris 11,4 2862,43 2292 25,580
Strasbourg 0,4 127,45 178 993
Vienna 2,3 537,67 1521 4206
Warsaw 2,7 746,78 931 5264
Zurich 0,8 215,72 638 1829
~/

Pop\pixel
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research and analysis. A common data format that includes information
on public transport stops is the General Transit Feed Specification
(GTFS), but any other datasets containing the location of stops can also
be used. GTFS is a data format which is developed for trip planning and
visualization of public transport network by Google Maps and TriMet
(McHugh, 2013). PtAC supports reading of PT stops directly from GTFS
sources (in text file format) or any geodata point source that can be read
by GDAL/OGR (see Fig. 3).

Since the goal of this study is to compare outcomes of the classical
(closed-source) approach used by UN-HABITAT to calculate the indi-
cator to the output of PtAC, we used the same public transport stops in
both approaches. They were gathered from OSM and from open data
platforms like OpenMobilityData and Transitland, and were extended by
manual localization using very high-resolution optical imagery.

2.6. Routing and indicator calculation

PtAC was developed to ease the calculation of SDG 11.2.1 by
simplifying the data processing steps and handling of the Open Source
accessibility tool UrMoAC (Krajzewicz et al., 2017) (https://github.
com/DLR-VF/UrMoAC). PtAC provides wrapper functionalities for
UrMoAC including: downloading a street network from OSM (see sec-
tion 2.2), reading of public transport stops and population information
(see section 2.1 and 2.4), and doing the actual calculation and visuali-
zation of the SDG 11.2.1 indicator. Based on current definitions, SDG
11.2.1 represents the accessibility within 500 m walking distance to low-
capacity public transit system and 1 km to high-capacity system. Low-
capacity public transport systems include bus, tram and Bus Rapid
Transit (BRT) stops while high-capacity systems cover train, metro and
ferry stops.

PtAC calculates shortest distances on the street network from the
centroid of any pixel of the population dataset to the next public
transport stop. The routing starts at the pixel’s centroid, searches for the
nearest edge of the street network and performs routing until the nearest
edge of the closest public transport stop is reached. In this process, ac-
cess and egress distances from population points to the street network
and from the street network to the public transport stops are omitted. In
order to calculate the SDG 11.2.1 indicator pixel centroids within a
distance of 500 m for low capacity transit and respectively 1000 m for
high capacity transit are summed up and divided through the overall
population of the city (see equation (1).

200 400 m

b

information

0,4-23
2,3-4,2
42-6,1
6,1-8,0
- 80-99

Fig. 2. a) Population information from WSF-Pop in raster format (left) and b) pixel centroids (right) for the district of Friedrichshain (Berlin).
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1km

Fig. 3. Example of input data for Berlin’s district Friedrichshain. a.) illustrates the district/city boundaries, b.) shows the routable street network downloaded from
OSM, c.) depicts the public transport stops where the red points indicate high-capacity and the yellow points low-capacity transport stops and d.) shows the remote
sensing-based population estimation where the colors indicate the population per pixel. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)

n
SDG11.2.1 Indicator — 2=i-1P:

a

where p; is the population of a single pixel within 500 m/1000 m dis-
tance to the next station and p, is the overall population of the city area.

2.7. Evaluation

For validation purposes, SDG 11.2.1 indicators were calculated for
each case study city using the PtAC approach, and the results were
systematically compared to the reference values published by UN-
Habitat. The latter were derived using a proprietary methodology
based proprietary tools and data that are not publicly accessible or
available to local stakeholders. UN-Habitat employs the High-Resolution
Settlement Layer (HRSL, 2015), developed by the Facebook Connec-
tivity Lab, to estimate population distribution. This dataset offers global
coverage at a spatial resolution of 30 m and is freely available for use. In
contrast, PtAC calculations are based on the World Settlement Footprint
(WSF) population dataset from 2019, which provides more recent
population estimates and a significantly higher spatial resolution of 10
m. When interpreting the comparative analysis, two major distinctions
in data sources must be considered: (1) the PtAC approach utilizes more
temporally current population data (2019 vs. 2015), and (2) the spatial
resolution of the WSF dataset is three times finer than that of the HRSL,
allowing for a more detailed and accurate representation of population
distribution.

. Public transport

istance to transit
0-150
150 - 250
250 - 350
350 - 600

* 600 - 1000

* 1000 - 6800

® Train/ bus stops

3. Results

This section presents the results of the study, including exemplary
outputs and a comparative analysis of the SDG 11.2.1 indicator calcu-
lated using the PtAC methodology across 33 global cities. These results
are benchmarked against reference values published by UN-Habitat.

Fig. 4 illustrates the results of the PtAC calculations for the metro-
politan area of Manila. The left panel displays the distribution of pop-
ulation points and their respective distances to the nearest public
transport stop. The right panel shows the cumulative share of the pop-
ulation by distance to the nearest stop. As expected, central urban areas
exhibit high accessibility to public transport, with the majority of the
population residing within 500 m of a transit stop. In contrast, periph-
eral and suburban areas show markedly reduced procimity.

The cumulative distribution indicates that 24.8 % of the population
lives within 500 m, 56.6 % within 1,000 m, and 97.5 % within 3,000 m
of a stop.

Based on these distance thresholds and following the SDG 11.2.1
methodology (see Section 2.5), the final SDG indicator value—defined
by the population share within 500 m of low-capacity and 1,000 m of
high-capacity public transport—is computed to be 29 %. This result
deviates by 3.5 percentage points from the corresponding UN-Habitat
reference value.

The distribution of results reveals three distinct clusters, each cor-
responding to a different range of urban accessibility levels, as high-
lighted in Fig. 5:

100

80

60

Cumulative population (%)

20

0 1000 2000 3000 4000 5000
Distance to transit

Fig. 4. Exemplary results of PtAC calculations for the city of Manila. Spatial distribution of population points and computed distances to the nearest public transport

stop. Right: Cumulative population share by distance to public transport.
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Fig. 5. Comparison of PtAC and UN-Habitat SDG 11.2.1 values across 33 cities. Each dot represents one city, color-coded by continent. The dashed and solid lines
highlight three main clusters—low (<50 %, green), medium (50-75 %, orange), and high (>75 %, purple)— and illustrate varying levels of public transport access
and correspond to different urban development patterns. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

e Cluster 1 (Green ellipse) includes cities with low public transport
accessibility (SDG 11.2.1 values below 50 %), such as Johannesburg,
Manila, and Nairobi. These cities are predominantly located in Af-
rica, Asia, or Latin America and are often shaped by automobile-
centric development patterns or high reliance on informal trans-
port systems (Behrens et al., 2015), which due to data scarcity are not
captured by the SDG 11.2 indicator. As such, the relatively low
accessibility values may reflect the methodological limitations of the
indicator rather than the actual availability of mobility options.
Cluster 2 (Orange ellipse) represents cities with medium accessi-
bility levels (between 50 % and 75 %), including Seoul, Tehran, and
Sydney. These cities are typically in a transitional phase, expanding
their public transport infrastructure and working toward broader
integration of suburban and peripheral areas. They can be inter-
preted as cities that are “picking up” in terms of public transport
development.

Cluster 3 (Purple ellipse) contains cities with high accessibility
(above 75 %), such as Zurich, Paris, and Warsaw. These are primarily
located in Europe or other highly developed regions and are char-
acterized by mature, dense, and well-integrated public transport
systems. Within this group, a dashed line marks the 75 % threshold,
and a solid line highlights cities exceeding 90 %, emphasizing their
ability to meet and surpass the accessibility targets defined in SDG
11.2.1. The consistently high values in both PtAC and UN-Habitat
data highlight the reliability of these systems in providing wide-
spread, convenient access to transit.

A continental breakdown reveals that the highest mean deviation
occurs in Australia (6.4 %), while the lowest is found in the Americas
(1.1 %), as detailed in Table 2. The consistently high R? value sub-
stantiates the reliability and robustness of the PtAC method in repli-
cating SDG 11.2.1 values across diverse urban contexts.Table 3.

4. Discussion
In this study, we present a methodology for computing the SDG

11.2.1 indicator using remote sensing data products, open-access data-
sets, and open-source software. While SDG 11.2.1 has been evaluated

Table 2
Results of comparison based on continents.

Continent ~ R* Median Mean Standard deviation of
Score difference (%) difference (%) difference (%)
Africa 4.1 3.8 2.8
America 1.0 1.1 1.0
Asia 2.2 3.4 3.8
Australia 6.5 6.4 1.1
Europe 2.3 3.1 2.3
All 0.97 2.3 3.3 2.8
Table 3

Comparison of the ease of implementation.

PtAc Manual Calculation

Data acquisition
City boundaries Manual input
Automatic (WSF)

Automatic (OSM)

Manual input
Manual attention
Manual attention

Population Data
Transportation
Network

Public transit stops GTFS

Data Processing

Routing Automatic (Wrapper Manual, using accessibility tools
for UrMoAc) (e.g. R5, ArcGIS)
Analysis
Indicator Automatic Manual
assessment

across a wide range of cities globally, the novelty of our approach lies in
its operational simplicity, high transferability, and negligible data
acquisition costs, all while delivering robust and accurate indicator es-
timates. These characteristics make the method particularly relevant for
contexts with limited technical and financial resources. Accordingly,
this paper provides a critical evaluation of the methodology, focusing on
two key aspects: (a) the extent to which the approach fulfills the
objective of ease of implementation, and (b) the quality and reliability of
the resulting indicator values compared to established reference data.
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To assess ease of implementation, we outline the PtAC methodology,
which organizes the computation process into three core phases: data
acquisition and preprocessing, routing, and indicator assessment. Unlike
conventional manual workflows that often require extensive technical
expertise, PtAC automates most procedures and significantly reduces
user input. Users are required only to define the city boundaries and,
when GTFS data are unavailable, to specify public transport stop loca-
tions. If GTFS data are available, even this step can be automated. Key
input datasets—namely population data from the World Settlement
Footprint (WSF2019-Pop) and transport network data from Open-
StreetMap (OSM)—are retrieved and processed automatically. Routing
is performed using a wrapper for UrMoAc, and the final calculation of
the SDG indicator is fully automated. Of the seven total process steps,
only two require manual input, representing a substantial reduction in
technical workload. As a result, PtAC offers a scalable and accessible tool
for local governments to independently and consistently monitor prog-
ress toward SDG 11.2.1, even in the absence of specialized GIS
capacities.

To evaluate the quality of the results, we compare our outputs with
official reference values calculated by UN-Habitat. The results demon-
strate a high overall correlation, with an R? value of 0.97, indicating
strong agreement between the two approaches. Despite this, certain
deviations are observed, particularly in Australian cities and in Makas-
sar. These discrepancies are most likely attributable to differences in the
underlying population datasets. PtAC employs WSF2019-Pop, which
offers higher spatial resolution (10 m versus 30 m) and more recent data
(2019 as opposed to 2015). Furthermore, UN-Habitat’s methodology
assumes a uniform distribution of population across built-up areas,
which can result in a more homogeneous density and may potentially
overestimate accessibility in low-density regions. Such differences
become especially relevant in peripheral or semi-urban areas, where
PtAC’s more granular data may yield more conservative—but arguably
more accurate—estimates. Nevertheless, given the relatively small
sample size of 33 cities, statistical results should be interpreted
cautiously, and further applications of the tool are necessary to verify
robustness across diverse geographic and socio-economic contexts.

The three empirically derived clusters correspond closely to Ken-
worthy’s typology of urban transport systems (Kenworthy & Laube,
1999). Cities in Cluster 1 reflect the characteristics of “automobile cit-
ies” or “informal transport cities,” where public transport access is
structurally limited and not fully captured by formal indicators such as
SDG 11.2.1. Cluster 2 represents hybrid cities in transition toward more
integrated systems, while Cluster 3 includes mature “transit cities” with
long-standing investments in public transport infrastructure and land-
use integration. This clustering not only validates the PtAC methodol-
ogy but also reveals broader regional patterns and development stages of
public transport infrastructure. Moreover, it highlights a structural bias
in SDG 11.2.1 toward formalized systems, potentially underrepresenting
mobility access in cities where informal transport plays a central role.

Beyond technical validation, this study contributes to both urban
policy and transportation research. For urban policy-makers, PtAC offers
a scalable, transparent, and cost-effective instrument for integrating
transport accessibility indicators into planning routines. The tool’s
reliance on openly available data and automated workflows lowers the
barrier for implementation, particularly in cities with limited resources.
It supports data-driven decision-making by identifying underserved
areas and monitoring progress toward sustainable urban mobility in
alignment with international frameworks such as the 2030 Agenda. For
transportation researchers, PtAC provides an open and reproducible
framework that facilitates large-scale comparative studies of urban
accessibility. It enables testing of alternative accessibility models, inte-
gration of additional data sources such as land use or transport quality
metrics, and the exploration of urban mobility inequalities through
standardized global assessments.

The PtAC methodology offers substantial long-term benefits, both in
terms of resource efficiency and urban governance. Its reliance on open
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data (e.g., WSF2019-Pop, OpenStreetMap, GTFS) and open-source
software ensures minimal to no financial cost for data acquisition and
software licensing. This dramatically reduces recurring expenses
compared to traditional, proprietary GIS workflows—particularly rele-
vant for low- and middle-income cities facing fiscal constraints.

Moreover, from a policy impact perspective, the return on invest-
ment is amplified through improved decision-making and spatial tar-
geting. By accurately identifying underserved areas using high-
resolution and recent population datasets, PtAC supports the prioriti-
zation of infrastructure investments where they are most needed. This
alignment with international goals—such as the 2030 Agenda for Sus-
tainable Development—not only enhances accountability but may also
open access to global funding mechanisms tied to SDG performance.

Finally, the reproducibility and transparency of the PtAC method-
ology offer significant long-term value for transportation research. The
method facilitates longitudinal monitoring, comparative studies, and
the integration of additional layers (e.g., land use, socio-economic in-
dicators), all of which contribute to more holistic and inclusive urban
mobility planning. In this sense, PtAC functions not only as a tool but as
an enabler of systemic, cost-efficient improvements in sustainable urban
transport monitoring and policy formulation.

5. Conclusion

In this study we introduced a workflow for the calculation of SDG
11.2.1. The study is founded on the utilization of open data and open-
source tools, thereby allowing the easier applicability on a global
scale. We introduced the python library PtAC which has been developed
and made available as open source by the authors/DLR. We compared
the outcomes of PtAC to a conventional methodology previously applied
by UN Habitat for 33 cities worldwide. Our results turned out to be very
similar on a city aggregate level for most places, indicating that our
methodology delivers equally good results.

For the future, we expect that open data will become increasingly
available, with enhanced quality in terms of spatial resolution and
timeliness. Furthermore, we expect that with increasing computational
power, automatic or semi-automatic calculations like the one introduced
by us will become even more relevant to generate topical findings and to
monitor ongoing developments. We also expect that the SDG 11.2.1.
Indicator will be refined, for instance by including more variables and a
more complex calculation method. Beyond incorporating distance-to-
transit, refinements could include aspects such as proximity-centred
accessibility and route-based accessibility measures (Lucas
Albuquerque-Oliveira et al., 2024; Silva et al., 2023).

Another, more general limitation of the procedure pertains to
informal transport, which is frequently excluded from GTFS datasets and
other public transport stop data. Consequently, it cannot be incorpo-
rated in the calculation. Informal transport is a form of public transport
that is privately developed and run and mainly operates outside the
wider official regulatory framework (Oviedo Hernandez et al., 2021). It
is widely common in the developing world, often constituting the sole
publicly available transport option in numerous cities. The absence of
any formal transport planning for informal transport means that
knowledge about its extent is frequently limited. Regarding the
appraisal of SDG 11.2, omitting informal transport where available
would mean to systematically underrate the indicator value of this de-
facto public mode of transportation. In recent years, however, mapping
informal transport has become more common, for instance in Nairobi
(Digital Matatu) or by companies and NGOs. Nevertheless, further
research and manual effort are required to improve the quality of
accessibility assessments where informal transport is available, and also
how other public modes of transport such as electric scooters can be
included (Hasselwander et al., 2023).
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