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Of networks and regularization: new 

developments in Lagrangian Particle Tracking



Outline

▪ Improved particle image peak detection using convolutional neural networks

▪ 3D LPT evaluations: numerical cost and experiences with high-performance 

computing

▪ Advanced post-processing: Flow-field interpolation with different classes of

approches (Binning, Data Assimilation, Neural Network)

▪ Closing advertisement: 2nd LPT and DA challenge
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Peak detection in 
3D reconstruction

• Multi-camera experiment

• Projections of 3D particle cloud

on several cameras

• Aim: from 2D particle images back 

to 3D positions

• First step: Detection of particle image

peaks on all cameras

• Second step Triangulation of 3D position

by finding intersecting Lines-of-Sight

form the different point clouds
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Iterative Particle Reconstruction (IPR) and 
Shake-The-Box (STB)
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Focus of this part

Daniel Schanz, Experiments in Fluids Seminar Series, 11.02.2025

Wieneke (2013) Iterative Reconstruction Of Volumetric Particle Distribution, Meas. Sci. Technol. 24 024008 

Jahn et al. (2021) Advanced Iterative Particle Reconstruction for LPT, Exp. Fluids 62, 179

Schanz et al (2016). Shake-The-Box: Lagrangian particle tracking at high particle image densities. ExpInFluids, 57(5), 70

Schröder,& Schanz, (2023) 3D Lagrangian particle tracking in fluid mechanics. Annual Review of Fluid Mechanics, 55(1)

IPR scheme STB scheme



What is Peakdetection?

▪ For a given image of a particle cloud:

▪ determine the 2D position of the center

of each particle image

▪ Sub-pixel accuracy required

▪ Our conventional approach: 

▪ Cubic Interpolation (CI) of image

▪ Identify local maxima

▪ fit a gaussian for subpixel determination
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Camera Image containing two peaks
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Example of peak detection on synthetic images
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0.01 ppp

Ground truth

Detections

No markers drawn in 

top part

▪ Conventional approach works well on sparsely seeded images

▪ 0.01 ppp (particles per pixel): mostly solitary particles

▪ The higher the ppp, the more particle images overlap → problems in distinguishing peaks

0.05 ppp 0.1 ppp

using conventional

peakdetection



Machine learned peak detection

▪ Classification problem should be well suited

to machine learing

▪ First consideration: Two-step approach

▪ Step 1: Binary classification

▪ Step 2: Subpixel-shift for each hit (individual model)

▪ Downsides: 

▪ Requires training of two models separately

▪ Overhead due to individual treatment of each particle

▪ Common ML approaches not designed for 

thousands of tiny 3x3 px objects

▪ Can we do this single stage?
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Simultaneous classification and regression
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1 32 32 16 3

Conv2dConv2d
Conv2d

Conv2d

+Bnorm

+ReLU

+Bnorm

+ReLU
+Bnorm

+ReLU

Classification loss Subpixel offset loss

Inspired by

YOLO network 

architecture2
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Latin letters: Ground truth;   Greek letters: Model output

Input: Image

Output for each pixel: 

Classification 𝜅 between 0 and 1 

and 2 subpixel offsets

|𝜅|𝛼|𝛽|

Work by

Philipp Godbersen1

1 Godbersen P, Schanz D, Schröder A. (2024). Peak-CNN: improved particle image localization using 

single-stage CNNs. Experiments in Fluids, 65(10), 153.

2 Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object 

detection. IEEE conference on computer vision and pattern recognition (pp. 779-788).



Actual model architecture used

▪ U-net architecture*

▪ Starting from

2562 px patches

▪ More flexibility

▪ Image size agnostic

▪ Downsampling to

low-res patches

▪ Better representation

of low-frequency image

content
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*Ronneberger O, Fischer P, Brox T (2015). U-net: Convolutional 

networks for biomedical image segmentation. MICCAI 2015



Peak-CNN applied to synthetic data
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0.1 ppp conventional (CI) 0.1 ppp Peak-CNN

▪ Synthetic generation of images

▪ Training with images and known peaks positions



Quantative evaluation of peak detection performance
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Peaks

Godbersen P, Schanz D, Schröder A. (2024). Peak-CNN: improved particle image localization using 

single-stage CNNs. Experiments in Fluids, 65(10), 153.

Annotations of CI, TR, IE: pixel intensity threshold

PCNN: internal parameter
Detection rate



Quantative evaluation of peak detection performance
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Particles
Godbersen P, Schanz D, Schröder A. (2024). Peak-CNN: improved particle image localization using 

single-stage CNNs. Experiments in Fluids, 65(10), 153.

Annotations: Used triangulation radius
Triangulation results



Evaluation on real world data

▪ 6-camera STB measurement data of

Rayleigh–Bénard Cell using HFSB

▪ Reliable tracking of > 500,000 bubbles

▪ Backprojected 3d positions

serve as pseudo ground

truth data

▪ Closed volume: seeding

density decreases

as bubbles burst

▪ 0.18 ppp to < 0.01 ppp (center)
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Training data generation

▪ We currently train our model specifically for an individual experiment

▪ supervised learning approach → labeled training data needed. Two alternatives:
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From existing particle tracks

• Backproject existing 3D tracks onto cameras

• Exploits high reliability of LPT measurements

• Chicken /Egg problem → apply at low ppp

From conventional peakdetect

• Use conv. peak detector on lowly seeded images

• Training of ML-model on stacked images and detected

peaks (e.g. 10-fold increase in image density)



Performance of different labeling strategies

▪ Evaluation on RBC 0.12 ppp data

▪ Labels from tracking data give 

highest performance even if 

obtained at lower density

▪ Peak-only approach with stacking 

is slightly worse but still competitive

▪ minimal user intervention required
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Godbersen P, Schanz D, Schröder A. (2024). Peak-CNN: improved particle image localization using 

single-stage CNNs. Experiments in Fluids, 65(10), 153.



Peak-CNN: Conclusion and Outlook

▪ Peak-CNN clearly outperforms conventional approaches

▪ Significantly higher particle image densities can be handled

▪ Viable training strategies are available requiring only limited extra effort

▪ Strong gains expected for Two-Pulse, Four-Pulse and 2D Tracking methods
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Godbersen P, Schanz D, Schröder A. (2024). Peak-CNN: improved particle image localization using 

single-stage CNNs. Experiments in Fluids, 65(10), 153.



3D LPT evaluations: numerical cost and 
experiences with high-performance computing
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• Sample Experiment: 

Geometry-induced separation of a TBL

• Performed as part of DLR project ADAMANT

• Setup in the large water tunnel at 

TU Braunschweig (GWB)



Details of backward-facing 
ramp experiment

▪ Splitting plate (1.6 m 

length, 1.0 m height)

▪ Backward-facing ramp 

(25°) with incoming TBL

▪ Volumetric two-stage scanning laser illumination

▪ Total volume: 90 × 90 × 16 mm3 

(streamwise × spanwise × wall-normal)

▪ Captured by five Phantom V2640 cameras
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h = 8mm
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Details of BFR Experiment

▪ Four Reynolds-numbers (𝑅𝑒𝑥=1.2×106 – 2.7×106) 

▪ recording rates 3.0 - 7.5 kHz per subvolume (6.0 - 15.0 kHz effectively)

▪ Two recording modes for each 𝑅𝑒𝑥: 

▪ 3 fully time-resolved runs 

→ 12.700 consecutive timesteps per subvolume and run: 76.200 3D reconstructions

▪ 31 ‘chunked’ runs (for statistics)

→ 100 × 30 consecutive timesteps per subvolume and run: 186.000 3D reconstructions



▪ STB Evaluation: 

▪ Separate STB processing for each

of the two subvolumes

▪ Multi-pass Variable-Time-Step processing

(4 passes for lower volume, 2 for upper)

▪ Tracking of ~90.000 and ~160.000 particles (lower and upper volume)

▪ Evaluation times ‚at home‘ on Ryzen 3950X (16 cores, 96GB RAM)

▪ STB processing for each time-step and subvolume in converged state: ~3s 

▪ Overhead for multi-pass processing and sum over subvolumes: ~20s per time-step

▪ Total evaluation time for each 𝑅𝑒𝑥: around 39 days (on single machine).
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Evaluation of BFR Experiment



▪ CARO: DLR HPC Cluster

▪ Located at GWDG in Göttingen

▪ 1364 Nodes 

▪ 2*64-cores (AMD EPYC 7702)

▪ 256 GB Ram

▪ Time-resolved runs: All 12 parallely processed on single node

▪ Evaluation time: ~ 3.5 days (compared to 35 days at home)

▪ Chunked runs: 20 jobs per node, 150 nodes started in parallel

▪ All chunks for single 𝑅𝑒𝑥 evaluated instantaneously

▪ Evaluation time per time-step approx. doubled (40 s)

▪ Full processing finished in ~ 20 minutes
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HPC Evaluation of BFR Experiment



Binning results
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▪ Binning in 400 × 20 µm bins

▪ All data processed within ~ 2 minutes

▪ Quick access to averaged

▪ Velocities

▪ Acclerations

▪ Reynolds stresses

▪ Triple correlations

▪ HPC: Vastly improved turn-around time

→ easier identification of problems

streamwise velocity

Reynolds 

stresses

Triple 

correlations

(here u‘u‘v‘)



Benchmarking Flowfield interpolation schemes
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From discrete

particle velocities

and accelerations…

…to continous

or gridded

field variables

Zhou, K., Grauer, S.J., Schanz, D., Godbersen, P., Schröder, A., Rockstroh, T., Jeon, Y.J. and Wieneke, B., 2024. 
Benchmarking data assimilation algorithms for 3D Lagrangian particle tracking. Lisbon Laser Conference

Ke Zhou1, Sam Grauer1, Daniel Schanz2, Philipp Godbersen2, Andreas Schröder2,3,

Thomas Rockstroh4, Young Jin Jeon4, Bernhard Wieneke4

1 Pennsylvania State University, USA 2 German Aerospace Center (DLR), Germany
3 Brandenburgische Technische Universität, Germany 4 LaVision GmbH, Germany



Motivation

• Why interpolate?:

• Getting access to Flowfield properties (i.e. the velocity gradient tensor, pressure, and more)

• DA methods: Enhancing the spatial (and/or temporal) resolution of a measurement by feeding

physical knowledge into the evaluation

• Aim here: compare the newest approaches on synthetic and experimental data

• Contenders:
• Binning (baseline approach without regularization)

• VIC# 3D and 4D

• FlowFit 3

• Physics-informed neural networks (PINNs; here: NIPA)



Methods NIPA
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Optimization
Physics-informed neural network Raissi et al (2020)

▪ Flow represented by a neural network

▪ Network parameters optimized to match LPT data, 

via a measurement operator

▪ Governing equations as soft physical constraints

Neural-implicit particle advection Zhou and Grauer (2023)

▪ Dedicated particle model with LPT tracks as hard constraints

▪ Statistical treatment of noisy tracks for robust reconstruction

▪ Solves both Navier-Stokes and Maxey-Riley equations for fluids 

and particles

▪ Ability to handle nonideal tracers, (ballistic or buoyant particles)

Particle velocity, m/s

1.5 4.530𝐱0

𝐱1
𝐱2

𝐱3
𝐱4

Data Constrained Track

Raissi et al. Hidden fluid mechanics:Learning velocity and pressure fields from flow visualizations 2020 science 367 6481

Zhou & Grauer Flow reconstruction and particle characterization from inertial Lagrangian tracks 2023. arXiv preprint, 2311.09076



Linear Mode 
▪ Uses velocity of particles from TrackFit

▪ L-BFGS on velocity coefficients to minimize velocity reconstruction error  

▪ Physics: Continuity as hard constraint 

Nonlinear Mode
▪ Uses velocity and acceleration of particles from TrackFit

▪ L-BFGS on velocity coefficients to minimize velocity and acceleration reconstruction error  

▪ Physics: Continuity as hard constraint, Pressure via Poisson equation 

Velocity field representation using uniform B-splines

Optimization of coefficients using L-BFGS

Staggered grid for hard constraint on divergence via orthogonal 

projection of gradients

Godbersen et al. 2024 FlowFit 3: Efficient data assimilation of LPT measurements. Lisbon Symposium

Godbersen et al. 2024 

Methods FlowFit 3
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Vortex-in-Cell-sharp (VIC#) Jeon et al. (2022)

▪ Additional constraints

▪ Proper correction of boundary

▪ Stable convergence

▪ Consideration of pressure

▪ Coarse grid approximation

Methods VIC#
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Vortex-in-Cell-plus (VIC+) Schneiders and Scarano (2016)

▪ Optimization of  𝛚, 𝐮𝜕𝛀 and |Τ𝜕𝐮 𝜕𝑡 𝜕𝛀

▪ Calculation of  𝐮𝛀 and |Τ𝜕𝐮 𝜕𝑡 𝛀

▪ Cost function:  disparity between  VIC+ and  STB

Schneiders and Scarano 2016 Dense velocity reconstruction from tomographic PTV with material derivatives 2016 Exp Fluids 57 9

Jeon et al. 2022 Fine scale reconstruction (VIC#) by implementing additional constraints and coarse-grid approximation into VIC+. Exp Fluids, 63 70

Jeon. 2023 Vorticity time-marching method in Fine scale reconstruction (VIC#) for describing 4-D space-time. ISPIV’23, San Diego, USA

Extension to 4D Jeon et al. (2023)

▪ Temporal evolution of flow field

▪ 𝛚 𝑡 + ∆𝑡 = 𝑓(𝛚 𝑡 , ሶ𝛚 𝑡 , ሷ𝛚(𝑡))

▪ ሶ𝛚 = 𝛚 ∙ ∇ 𝐮 − (𝐮 ∙ ∇)𝛚 + 𝜈∇2𝛚

▪ ሷ𝛚 = ሶ𝛚 ∙ ∇ 𝐮 + 𝛚 ∙ ∇ ሶ𝐮 − ሶ𝐮 ∙ ∇ 𝛚 − 𝐮 ∙ ∇ ሶ𝛚 + 𝜈∇2 ሶ𝛚

▪ Time integration via 2nd order Taylor expansion

𝐽#TM(𝐷) = ෍

𝑡=𝑡0−𝐷

𝑡0+𝐷

𝐽# 𝑡

VIC# Time-marchingVIC#



Test cases Flow configurations

Synthetic HIT Synthetic TBL Experimental TBL
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▪ JHTDB Perlman et al. (2007) 

▪ Homog. Isotr. Turb. Reλ = 433

▪ Artificial forcing term

▪ Particle spacing: 6lη
▪ Particles: RK4 integration

▪ 50 time-steps

▪ ~105,000 particles

▪ JHTDB Perlman et al. (2007) 

▪ turbulent boundary layer

at Reτ = 1000

▪ Particle spacing: 6lν
▪ Particles: RK4 integration

▪ 50 time-steps

▪ ~276,000 particles
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▪ DLR 1MG measurements Schröder et al. (2024)

▪ Zero-pressure-gradient 

turbulent boundary layer at Reτ = 995

▪ Particle spacing: ~7lν
▪ Particles: TrackFit Gesemann et al. (2016)

▪ 50 time-steps

▪ ~ 54,000 particles



Test cases Parameter space

Particle density

▪ From the initial number, the particle

density is halved several times:

▪ Downsamplig factor: 𝑘x = 2𝑛

with 𝑛 = 1…6

▪ [1, ½, ¼, 1/8, 1/16, 1/32, 1/64]

▪ Noise-free

Noise variations dt variations

▪ Noise is added to the particle

positions.

▪ Standard case:

𝜎x = 𝜎y = 0.01 𝑚𝑚 (~0.1 px)

𝜎z = 2 ∙ 𝜎x

▪ Noise variations: 

𝜎z = [2, 4, 6, 8, 10] ∙ 𝜎x

▪ For these: 𝑘x = 4, dt = 1

▪ Downsampling of the temporal

resolution

▪ Downsampling factor: 

𝑘t = 1, 2, 4, 6, 8

▪ 𝑘x = 4

▪ Noise-free



Results Synthetic TBL

FF-nonlinear VIC#-4D NIPA
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Results Synthetic TBL

Binning VIC#-3D

FF-lin VIC#-4D

FF-nonlin NIPA
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▪ At high particle densities, all DA 

methods perform comparably

▪ Binning shows in all cases the highest errors

▪ All methods suffer when decreasing particle

▪ FF3 linear performs comparably to VIC#-4D, 

FF3 non-linear is slightly better

▪ NIPA shows the least dependence on particle

number, both for velocity and pressure

▪ NIPA and FF show little dependence on temporal sampling

▪ Worse results for VIC# (likely due to less accurate track filtering)

▪ Noise variations show little effect on all methods
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Results Synthetic TBL

▪ Animations over all 50 time-steps for 𝑘x= 8



Schneiders & Sciacchitano 

(2017)

Results Experimental TBL

FF3-nonlinear VIC#-4D NIPABinning
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Validation: 

Track benchmarking
separate track data in two groups

▪ 80% tracks for data assimilation (~43.200 particles at kx=1)
▪ 20% tracks for validation (~10.800 positions)



Results Experimental TBL 10 14 16 1812
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Results Computational cost

CPU
Xeon w7-3465X 

(28 cores)

GPU
RTX 4090

GPU
Tesla V100

CPU
Ryzen 5950X

(16 cores)

CPU
Ryzen 5950X

(16 cores)

GPU
RTX A6000

▪ 4D methods pay a signifcant computational toll

▪ Training of PINN within NIPA  takes the longest time

▪ FlowFit 3.0 is very fast due to inherent constraint to divergence-free solutions

and optimizing only the velocity coefficients

Reconstruction time in seconds per time-step (𝑘x = 4)

Binning VIC#-3D VIC#-4D FF-linear FF-nonlinear NIPA

HIT 13 393 868 10 73 1420

TBL 6 174 585 6 22 850

CPU

Xeon w7-3465X

(28 cores)

GPU

RTX 4090

GPU

Tesla V100

CPU

Ryzen 5950X

(16 cores)

CPU

Ryzen 5950X

(16 cores)

GPU

RTX A6000



2nd LPT and DA Challenge: LIVE now!

▪ Organized by Onera, 

TU Delft, Penn State University 

and DLR

▪ Synthetic and experimental

test cases for LPT and DA

▪ Data availabe since Jan. 31

▪ Deadline: Apr. 25 2025

▪ https://w3-d8.onera.fr/flow-benchmarks/en/2ndLPTDAChallenge

https://w3-d8.onera.fr/flow-benchmarks/en/2ndLPTDAChallenge


LPT cases

▪ DNS of square duct flow

▪ LES of double cylinder flow

▪ Experimental RBC 

▪ Parameter variations:

▪ Seeding density

▪ Temporal sampling

▪ Common volume of cameras

▪ Mie scattering

▪ Time-Resolved and Two-Pulse cases
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DA cases

49
Daniel Schanz, Experiments in Fluids Seminar Series, 11.02.2025

▪ DNS of square duct flow

▪ DNS of compressible 

turbulent boundary layer (TBL) @ Mach 4.9

▪ Ideal and inertial tracers

▪ DNS of Rayleigh–Bénard convection

▪ Investigated properties:

▪ Velocities and gradients

▪ Pressure

▪ Temperature

▪ Density

Download now! Results due on April 25!



Thank you for your attention!
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