Of networks and regularization: new
developments in Lagrangian Particle Tracking

Daniel Schanz, Philipp Godbersen, Andreas Schréder and many more

Experiments in Fluids Seminar Series, Feb. 11 2025
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Outline ‘#7
DLR

* Improved particle image peak detection using convolutional neural networks

» 3D LPT evaluations: numerical cost and experiences with high-performance
computing

» Advanced post-processing: Flow-field interpolation with different classes of
approches (Binning, Data Assimilation, Neural Network)

» Closing advertisement: 2nd LPT and DA challenge

Daniel Schanz, Experiments in Fluids Seminar Series, 11.02.2025




Peak detection in
3D reconstruction

« Multi-camera experiment

* Projections of 3D particle cloud

on several cameras
Camera 1 Camera 2 Camera 3

« Aim: from 2D particle images back
to 3D positions

 First step: Detection of particle image
peaks °.” on all cameras

« Second step Triangulation of 3D position
by finding intersecting Lines-of-Sight
form the different point clouds

Daniel Schanz, Experiments in Fluids Seminar Series, 11.02.2025




lterative Particle Reconstruction (IPR) and

Shake-The-Box (STB)

Focus of this part IPR scheme

5. Residual images
by subtracting projection of
3D particles from original images

Original images

4. Filtering
by removing
weak particles

2. Triangulation
of 3D positions
from 2D peaks

True particle
o P and intensity

@ False (,ghost’) particle

\ 3. Optimization
of 3D position
X

DLR

STB scheme

Time-resolved multi-camera recordings e 0%
R 0% 9 y ; :
Yl —» ) o %0 %l°| +new particles at t;,4
20°°, /|4 x 3D particle clouds 0%, o0
IPR ° ° °
t, —y ';::o?“ , 0%,
- °0
LIl — |[*%00 °|2 Tracking IPR
° o
" IPR (connect ¢;,,to tracks
% i > \\‘ + create new 4-step tracks)
Initialization
ol W p i
g : s Residual images
= 09 o at ;4
Fitted tracks / F oy
(Wiener filter) | Prediction . 3rgm rt'I:natgesks Image subtraction
(extrapolation to 0 I pArticie trac (original minus
next time step ¢;,4) back-projection)
o0
TS ° % 90
o . H O. ole e 20
Original images e® %l e A ole
atliyg il Correction: ‘shaking’ e
0% o

Predicted tracked (position optimization of
particles at t;;4 predicted particles) , '
particles at t; ;4

Wieneke (2013) Iterative Reconstruction Of Volumetric Particle Distribution, Meas. Sci. Technol. 24 024008

Jahn et al. (2021) Advanced lterative Particle Reconstruction for LPT, Exp. Fluids 62, 179

Schanz et al (2016). Shake-The-Box: Lagrangian particle tracking at high particle image densities. ExpInFluids, 57(5), 70

Schroder,& Schanz, (2023) 3D Lagrangian particle tracking in fluid mechanics. Annual Review of Fluid Mechanics, 55(1)
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250

What 1s Peakdetection?

240

i DLR

* For a given image of a particle cloud:

= determine the 2D position of the center
of each particle image 220

= Sub-pixel accuracy required

230

210

= Our conventional approach: 200 B =
= Cubic Interpolation (CI) of image
» |dentify local maxima
= fit a gaussian for subpixel determination

Camera Image containing two peaks
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Example of peak detection on synthetic ImagesS o markers drawn in

top part

DLR

250

240 240

230 230

Ground truth

220 220

Detections

210 210 using conventional

peakdetection

200
200 210 220 230 240 250 200

0.01 ppp

= Conventional approach works well on sparsely seeded images
= 0.01 ppp (particles per pixel): mostly solitary particles

» The higher the ppp, the more particle images overlap — problems in distinguishing peaks
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Machine learned peak detection

» Classification problem should be well suited
to machine learing

» First consideration: Two-step approach
= Step 1: Binary classification
= Step 2: Subpixel-shift for each hit (individual model)

* Downsides:
» Requires training of two models separately
= Overhead due to individual treatment of each particle

= Common ML approaches not designed for
thousands of tiny 3x3 px objects

= Can we do this single stage?

Daniel Schanz, Experiments in Fluids Seminar Series, 11.02.2025




: . : : Work by
Simultaneous classification and regression  pyjipp Godbersent

DLR

Conv2d Conv2d Conv2d Convzd InSpired by
= > = > YOLO network
.\ Brom +Gnorm +Brorm architecture?
+ReLU +RelLU

L L Output for each pixel:

1 32 32 16 3 Classification K between 0 and 1
and 2 subpixel offsets
Input: Image |K|C(|,3|

Latin letters: Ground truth; Greek letters: Model output

Nz Ny

1 ZZ kijlog (o (kj))+(1 — kij) log (1 — o(kij;))

N.N,

Classification loss

1 Godbersen P, Schanz D, Schroder A. (2024). Peak-CNN: improved particle image localization using
single-stage CNNs. Experiments in Fluids, 65(10), 153.

_ , _ ) _ _ 2 Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object
Daniel Schanz, Experiments in Fluids Seminar Series, 11.02.2025 detection. IEEE conference on computer vision and pattern recognition (pp. 779-788).




Actual model architecture used A#y
DLR

= U-net architecture*

2562 px

= Starting from UL |
2562 px patches tmage data | T oo

= More flexibility .H : {,
* [mage size agnostic 8 LU U

642 px
] g i ——> copy and concat
* Downsampling to - .

I ——> 2D Conv 32 Ch, BNorm, ReLU
low-res patches

32° px N —> MaxPool
- L —— 2D UpConv 16 Ch
= Better representation 0 X —— 2D Conv 3Ch

of low-frequency image  OTF data. 4Ch
content

*Ronneberger O, Fischer P, Brox T (2015). U-net: Convolutional
networks for biomedical image segmentation. MICCAI 2015

Daniel Schanz, Experiments in Fluids Seminar Series, 11.02.2025




Peak-CNN applied to synthetic data

DLR
= Synthetic generation of images

* Training with images and known peaks positions

240 240

210

200 210 220 230 240 250 200 210 220 230 240 250

0.1 ppp conventional (Cl) 0.1 ppp Peak-CNN
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Quantative evaluation of peak detection performance

DLR
- Annotations of Cl, TR, IE: pixel intensity threshold
Detection rate PCNN: internal parameter
Measurement Seeding density: 0.05 ppp | 0.10 pPpp | | 0.15 ppp
B
0.8 || —m— CI | ]
—@— PCNN
—m— TR

0.6 |- - IE

false peak rate

0 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 . . g 1

found peak rate found peak rate found peak rate

Godbersen P, Schanz D, Schroder A. (2024). Peak-CNN: improved particle image localization using
single-stage CNNs. Experiments in Fluids, 65(10), 153.
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Quantative evaluation of peak detection performance

Triangulation results

DLR
Annotations: Used triangulation radius

Measurement

1 Detect peaks

false particle rate

2 Triangulate

| |

0.05 ppp 0.10 ppp %d5 PPP

1.1L

0 0.2 0.4 0.6

~

Particles
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

found particle rate found particle rate found particle rate

Godbersen P, Schanz D, Schroder A. (2024). Peak-CNN: improved particle image localization using
single-stage CNNs. Experiments in Fluids, 65(10), 153.




Evaluation on real world data

= 6-camera STB measurement data of
Rayleigh—Bénard Cell using HFSB

525444 0.18 ppp
AP LN KT

= Backprojected 3d positions
serve as pseudo ground
truth data

e Seeding density decreases |
o over time

» Closed volume: seeding
density decreases
as bubbles burst
= 0.18 ppp to < 0.01 ppp (center)

0.15
0.10 0.005 ppp

0.05

rticles per pixel (ppp)

a

Bosbach J, Schanz D, Godbersen P, Schroder A (2021) Spatially and
temporally resolved measurements of turbulent Rayleigh-Bénard
convection by Lagrangian particle tracking of long-lived helium-
filled soap bubbles. In: Proceedings of 14th international sympo-
sium on particle image velocimetry, vol. 1, pp. 1-12

o

0.00

Daniel Schanz, Experiments in Fluids Seminar Series, 11.02.2025




Training data generation A#y
DLR

= We currently train our model specifically for an individual experiment

» supervised learning approach - labeled training data needed. Two alternatives:

From existing particle tracks

From conventional peakdetect

« Backproject existing 3D tracks onto cameras

Use conv. peak detector on lowly seeded images

« Exploits high reliability of LPT measurements

Training of ML-model on stacked images and detected

peaks (e.g. 10-fold increase in image density)
« Chicken /Egg problem - apply at low ppp

: . L
o7 e 20 _g x x X
& e @ ° ™ w =
o 9 - @ % ol »
o o o s o @ "'y )¢ o %
: )
o o - ) oooo ol o ) x:(x .
4 °% o XX =
x oo
3
)l(x Y
Daniel Schanz, Experiments in Fluids Seminar Series, 11.02.2025 200 20 220 230 240 250 =




Performance of different labeling strategies

= Evaluation on RBC 0.12 ppp data

» | abels from tracking data give
highest performance even if
obtained at lower density

= Peak-only approach with stacking

IS slightly worse but still competitive

= minimal user intervention required

1 I | — -
—— CI
—— PONNtracks@O.lQ
e —o— PCNNtTackS@O.Ol |
—— PCNNpeakS@U.Ol
0.6 o —o— PCNNpeaks@lZ*O.Ol |

false particle rate

0 0.2 0.4 0.6 0.8 1

found particle rate

Daniel Schanz, Experiments in Fluids Seminar Series, 11.02.2025

Godbersen P, Schanz D, Schroder A. (2024). Peak-CNN: improved particle image localization using
single-stage CNNs. Experiments in Fluids, 65(10), 153.




Peak-CNN: Conclusion and Outlook A#y
DLR

» Peak-CNN clearly outperforms conventional approaches
= Significantly higher particle image densities can be handled

* Viable training strategies are available requiring only limited extra effort

= Strong gains expected for Two-Pulse, Four-Pulse and 2D Tracking methods

Godbersen P, Schanz D, Schroder A. (2024). Peak-CNN: improved particle image localization using
single-stage CNNs. Experiments in Fluids, 65(10), 153.
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i DLR

3D LPT evaluations: numerical cost and
experiences with high-performance computing

« Sample Experiment:
Geometry-induced separation of a TBL

« Performed as part of DLR project ADAMANT

« Setup in the large water tunnel at
TU Braunschweig (GWB)

23

Daniel Schanz, Experiments in Fluids Seminar Series, 11.02.2025



180 mm

Details of backward-facing |

“—'""/‘9’.",

ramp experiment

= Splitting plate (1.6 m

length, 1.0 m height)

» Backward-facing ramp

(25°) with incoming TBL

= VVolumetric two-stage scanning laser illumination

= Total volume: 90 x 90 x 16 mm?3
(streamwise x spanwise x wall-normal)

= Captured by five Phantom V2640 cameras

Daniel Schanz, Experiments in Fluids Seminar Series, 11.02.2025




Details of BFR Experiment 4#7
DLR

= Four Reynolds-numbers (Re,=1.2x10% — 2.7x10°%)
» recording rates 3.0 - 7.5 kHz per subvolume (6.0 - 15.0 kHz effectively)

» Two recording modes for each Re,:

= 3 fully time-resolved runs

— 12.700 consecutive timesteps per subvolume and run: 76.200 3D reconstructions

= 31 ‘chunked’ runs (for statistics)

— 100 x 30 consecutive timesteps per subvolume and run: 186.000 3D reconstructions

Daniel Schanz, Experiments in Fluids Seminar Series, 11.02.2025




u[m/s]: -05 -02 01 04 07 1 1.

Evaluation of BFR Experiment

= STB Evaluation:

= Separate STB processing for each

of the two subvolumes

= Multi-pass Variable-Time-Step processing

(4 passes for lower volume, 2 for upper)

» Tracking of ~90.000 and ~160.000 particles (lower and upper volume)

= Evaluation times ,at home' on Ryzen 3950X (16 cores, 96GB RAM)
= STB processing for each time-step and subvolume in converged state: ~3s
» Overhead for multi-pass processing and sum over subvolumes: ~20s per time-step

= Total evaluation time for each Re,.: around 39 days (on single machine).

Daniel Schanz, Experiments in Fluids Seminar Series, 11.02.2025




HPC Evaluation of BFR Experiment ‘#7
DLR

* CARO: DLR HPC Cluster
» Located at GWDG in Gottingen

» 1364 Nodes
= 2*64-cores (AMD EPYC 7702)
= 256 GB Ram

18 Racks

1.364 Compute Nodes

175,744 CPU Cores

6 GPU nodes

* Time-resolved runs: All 12 parallely processed on single node
= Evaluation time: ~ 3.5 days (compared to 35 days at home)

100 Gbit/s Interconnect

3. 46 PetaFlop/s

* Chunked runs: 20 jobs per node, 150 nodes started in parallel
= All chunks for single Re, evaluated instantaneously
= Evaluation time per time-step approx. doubled (40 s)
» Full processing finished in ~ 20 minutes

364 TB RAM

8,4 PiB Storage

Daniel Schanz, Experiments in Fluids Seminar Series, 11.02.2025




Binning results

* Binning in 400 x 20 um bins

= All data processed within ~ 2 minutes

» Quick access to averaged
= Velocities
= Acclerations
» Reynolds stresses

= Triple correlations

» HPC: Vastly improved turn-around time

— easier identification of problems

Daniel Schanz, Experiments in Fluids Seminar Series, 11.02.2025
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Benchmarking Flowfield interpolation schemes

0

4
!

From discrete o Pt 1 ...to continous
particle velocities o P 0 or gridded
and accelerations... e . field variables

O\Rx.\'

3, o
&

Rty
=

Ke Zhout!, Sam Grauer!, Daniel Schanz?, Philipp Godbersen?, Andreas Schroder?3,
Thomas Rockstroh?#, Young Jin Jeon*, Bernhard Wieneke*

1 Pennsylvania State University, USA 2 German Aerospace Center (DLR), Germany
3 Brandenburgische Technische Universitat, Germany 4 LaVision GmbH, Germany

Zhou, K., Grauer, S.J., Schanz, D., Godbersen, P., Schroder, A., Rockstroh, T., Jeon, Y.J. and Wieneke, B., 2024.
Benchmarking data assimilation algorithms for 3D Lagrangian particle tracking. Lisbon Laser Conference

Daniel Schanz, Experiments in Fluids Seminar Series, 11.02.2025




MOtlvathn PennState# LAVISIEIN

FOCUS ON IMAGING

 Why interpolate?:

« Getting access to Flowfield properties (i.e. the velocity gradient tensor, pressure, and more)

« DA methods: Enhancing the spatial (and/or temporal) resolution of a measurement by feeding

physical knowledge into the evaluation

 Aim here: compare the newest approaches on synthetic and experimental data

* Contenders:
* Binning (baseline approach without regularization)
e VIC# 3D and 4D
* FlowFit 3
e Physics-informed neural networks (PINNs; here: NIPA)
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Methods NIPA ’

PennState
Physics-informed neural network raissieta eoz ] | .
l oss Functions Optimization
FIOW represented by a neural network Neural Flow States @ Boundary conditions »| Lyound
Ox
Network parameters optimized to match LPT data, ® X i
@— 9, Governing equations » Lohys ™ | Liotal
via a measurement operator Z N
3; Measurement .
Governing equations as soft physical constraints @8 WpE,...) N i EECIE S
Autormat Experimental data
Neural network diﬁgr;)::;tl;n Parameterized

models

Neural-implicit particle advection zmouanacraer oz
Dedicated particle model with LPT tracks as hard constraints

Data Constrained Track

Statistical treatment of noisy tracks for robust reconstruction
Solves both Navier-Stokes and Maxey-Riley equations for fluids

and particles

Ability to handle nonideal tracers, (ballistic or buoyant particles)

Raissi et al. Hidden fluid mechanics:Learning velocity and pressure fields from flow visualizations 2020 science 367 6481
Zhou & Grauer Flow reconstruction and particle characterization from inertial Lagrangian tracks 2023. arXiv preprint, 2311.09076




Methods FlowFit3 ™~ ‘#;?R

Velocity field representation using uniform B-splines ] —

Optimization of coefficients using L-BFGS

Staggered grid for hard constraint on divergence via orthogonal XXX
projection of gradients

Linear Mode L e

____________________________

Natural definition domain

Uses velocity of particles from TrackFit
L-BFGS on velocity coefficients to minimize velocity reconstruction error
Physics: Continuity as hard constraint V-4 =0

Nonlinear Mode
Uses velocity and acceleration of particles from TrackFit

L-BFGS on velocity coefficients to minimize velocity and acceleration reconstruction error

Physics: Continuity as hard constraint, Pressure via Poisson equation

Du

V-i=0 Ap+V - (@ Vi) =0 Q=5 = -Vp+rAi

Godbersen et al. 2024 FlowFit 3: Efficient data assimilation of LPT measurements. Lishon Symposium



Methods VIC# LAV@DN

VZu = -V X @ and Vz%z —VX (@0 -V)u—(u-V)w)

VO rteX'l n 'Cel I 'p I U S (VI C+) Schneiders and Scarano (2016)

Optimization of w, uyq and du/dt|,q . Dul  Du 2
Calculation of ug and du/dt|q J+ = zn”“n — st +a zn Dtl Dt ;
n TBn
Cost function: disparity between VIC+ and STB
party Je =Ju+ a’l#Z]Du/Dt + JE.
Vortex-in-Cell-sharp (VIC#) seonetal @oz2) fo*D u au/at
Additional constraints Jerm(D) = z [ J+(®)]
Proper correction of boundar i + Jdive 0_
p ' unaary Jaivw) + Jaiv(w) c# C# T|me marchlng
Stable convergence Jeg = fac <]le(3“ Jary + fr -t \ | 0 “ 4
. . o A4 |men|§Mﬁlﬁlve
ConS|.derat|on of pre§sure n fDUN" .{f;o.i‘n o /l:l { ingajve
Coarse grid approximation Nariabes  Uon -~ inted_Jion
du/at |sn |:| —__[}:BFG!

EXtenSIOn tO 4D Jeon et al. (2023)
Temporal evolution of flow field u
w0t [ ’ DDDE%‘DELE]D[:I

w(t+At) = f((t), d), G(1) waabes /20
= (@ -Vu—-(u-Vo +vWw S R Du- "El; O O O &
= (6 Vu+ (0 Vi — - Vo — - Vo + 1726 .

Time integration via 2nd order Taylor expansion

Schneiders and Scarano 2016 Dense velocity reconstruction from tomographic PTV with material derivatives 2016 Exp Fluids 57 9
Jeon et al. 2022 Fine scale reconstruction (VIC#) by implementing additional constraints and coarse-grid approximation into VIC+. Exp Fluids, 63 70
Jeon. 2023 Vorticity time-marching method in Fine scale reconstruction (VIC#) for describing 4-D space-time. ISPIV’'23, San Diego, USA



Test cases Flow configurations &, LAV.@S.DN

Pennstate FOCUS ON IMAGING

Synthetlc TBL Experimental TBL

JHTDB Periman et al. (2007) DLR 1MG measurements schrader et al. (2024)
turbulent boundary layer Zero-pressure-gradient

at Re_= 1000 turbulent boundary layer at Re_= 995
Particle spacing: 6l, Particle spacing: ~7I,

Particles: RK4 integration Particles: TrackFit cesemann et al. (2016)

50 time-steps 50 time-steps

~276,000 particles ~ 54,000 particles



Test cases Parameter space PennState4#7 LAViSion

Particle density

From the initial number, the particle
density is halved several times:

Downsamplig factor: k, = 2"
withn=1..6

[1, Y, Y4, 1/8, 1/16, 1/32, 1/64]

Noise-free



Downselection factor

Results Synthetic TBL

Binning FF-nonlinear

VIC#-4D

PennState

DLR

ez

LAVISION

FOCUS ON IMAGING
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Inter-particle spacing, Ax/l,

Results Synthetic TBL —— :

=z
Binning VIC#-3D g
= = FF-lin — VIC#-4D
— FF-nonlin = NIPA

Pressure NRMSE, e,

0.2 F
0.1 :/
At high particle densities, all DA . . . .

methods perform comparably ° 20 oo D 60

Downselection factor, k,

Binning shows in all cases the highest errors
All methods suffer when decreasing particle

FF3 linear performs comparably to VIC#-4D,
FF3 non-linear is slightly better

NIPA shows the least dependence on particle #
. LAVISION
number, both for velocity and pressure PennState

FOCUS ON IMAGING



Results Synthetic TBL

Animations over all 50 time-steps for k,= 8

Binning

VIC#-4D

8.5

6.5

4.5

3.5

2.5

0.5

lu], m/s



Reconstruction tracks Velocity on grid

Results Experimental TBL =P

PTV data — ‘.' f-:,,,,f/df { j

—

. . [ AT Benchmark tracks Compare to benchmark  Uncertainty
Validation: . [ttty

/ % |
Track benchmarking F ety

separate track data in two groups Schneiders & Sciacchitano

80% tracks for data assimilation (~43.200 particles at £,=1) (e017)
20% tracks for validation (~10.800 positions)

PennState

DLR

e
LAVISION

FOCUS ON IMAGING




Downselection factor

Results Experimental TBL

=1
43,200

kX

k=8

5,400

FF-nonlinear

Binning VIC#-3D
= = FF-lin — VIC#-4D
= FF-nonlin = NIPA

VIC#-4D

Velocity NRMSE, e,

Inter-particle spacing, Ax/I,

10 12 14 16 18

2 4 6 8

PennState

~
s/w ‘|n|

DLR

LAVISION

FOCUS ON IMAGING




Results Computational cost PennState# LAVisIoN

FOCUS ON IMAGING

Reconstruction time in seconds per time-step (ky = 4)

Binning VIC#-3D VIC#-4D FF-linear FF-nonlinear NIPA
HIT 13 393 868 10 73 1420
TBL 6 174 585 6 22 850
CPU GPU GPU CPU CPU GPU
Xeon w7-3465X RTX 4090 Tesla V100 Ryzen 5950X Ryzen 5950X RTX A6000
(28 cores) (16 cores) (16 cores)

4D methods pay a signifcant computational toll
Training of PINN within NIPA takes the longest time

FlowFit 3.0 is very fast due to inherent constraint to divergence-free solutions
and optimizing only the velocity coefficients



2nd LPT and DA Challenge: LIVE now! 4#7
DLR

» Organized by Onera,
TU Delft, Penn State University
and DLR

1st Lagrangian Particle Tracking (LPT)
and Data Assimilation (DA) challenges

2" | agrangian Particle Tracking and
Data Assimilation Challenges

» Synthetic and experimental
test cases for LPT and DA

LPT and DA OF&=00 m
Challenge i ?ﬁ*t TOKYO @
test cases r . @ ISFV21

& ISPIV2025

= Data availabe since Jan. 31 |
\
|

Ay PennState 4
delft.nl  sgrauer@psu.edu ‘

= Deadline: Apr. 25 2025 oreanigy ‘#ZR

andreas.schroeder@dir.de  benjamin.leclaire@onera.fr s
— onllie

= https://w3-d8.onera.fr/flow-benchmarks/en/2ndLPTDAChallenge



https://w3-d8.onera.fr/flow-benchmarks/en/2ndLPTDAChallenge

2" Lagrangian Particle Tracking and OMNERA

LPT cases Data Assimilation Challenges

%
TUDelft 4#7
=, DLR

PennState

= DNS of square duct flow

LES of double cylinder flow

» Experimental RBC

= Parameter variations:
Seeding density

Temporal sampling

Common volume of cameras
Mie scattering

» Time-Resolved and Two-Pulse cases

Daniel Schanz, Experiments in Fluids Seminar Series, 11.02.2025




2" Lagrangian Particle Tracking and

DA cases Data Assimilation Challenges

= DNS of square duct flow

= DNS of compressible
turbulent boundary layer (TBL) @ Mach 4.9

= |deal and inertial tracers _— /g

Download now! Results due on April 25!

Interpolation

OMNERA

%
TUDelft 4#7
=, DLR

PennState

| DNS Of Ray|e| T DCTTArg GUTTVCGUUTT WW

~7d; x=02m

* |nvestigated properties:
* Velocities and gradients
= Pressure
* Temperature
* Density

Daniel Schanz, Experiments in Fluids Seminar Series, 11.02.2025




i DLR

Thank you for your attention!




