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Due to the low concentration of CO2 in the atmosphere 
(currently above 420 ppm [10]), DAC requires a much 
higher energy input than carbon capture from industrial 
sources [11–13]. For this reason, there is a consensus in the 
CDR scientific community that DACS should not be per-
ceived as an alternative to avoiding and sequestering fossil 
CO2emissions from hard-to-abate industrial sectors [3, 14–
17]. However, it seems clear that CDR and synthetic fuels 
will become key technologies in the energy transition [6, 
18]. In this context, DAC is a particularly relevant technol-
ogy due to its capacity to provide high purity CO2 for both 
sequestration and utilization without the biophysical limita-
tions of other technologies [19–21].

Life cycle assessments have shown that due to the high 
energy demand of the DAC, it must be powered by energy 
sources with very low carbon intensities to avoid the indirect 
emissions of energy production reducing the overall carbon 
removal efficiency (possibly even resulting in positive emis-
sions) [22–25]. For this reason, the search for low-carbon 
energy sources and their combination with DAC remains 
one of the main focuses of research in the field [26, 27]. This 
review aims to provide an overview of energy sources and 
integrations that have been proposed to date and to highlight 
some knowledge gaps that, to the best of the authors’ knowl-
edge, have not yet been addressed.

Introduction

Direct air capture of CO2 (DAC) refers to the set of technol-
ogies that can capture carbon dioxide from the atmosphere 
by physically or chemically removing CO2 molecules with-
out involving any biological process [1–3]. The application 
of DAC depends on the final use of the captured CO2. On 
the one hand, if carbon dioxide is permanently sequestered 
(DACS), it can be considered as a carbon dioxide removal 
(CDR) technology, providing negative emissions that can 
offset unavoidable emissions or remove previously emitted 
CO2 [4–6]. On the other hand, captured CO2 can be utilized 
as a feedstock for synthetic fuels or chemicals (DACU), 
which alongside with biofuels, are critical to decarbonize 
certain sectors such as long-haul aviation or maritime trans-
port [7–9].
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Current Energy Sources

In order to understand the energy sources currently in use in 
existing DAC systems, it is necessary to have a closer look 
at the technology. To date, there are two mature approaches: 
liquid DAC (L-DAC) and solid DAC (S-DAC) [3, 28]. 
L-DAC relies on chemical absorption of CO2 with a liquid 
solution, usually containing alkali salts. The carbon diox-
ide reacts with the hydroxides to form carbonates, which 
are precipitated in a step following the air contactor. These 
carbonates are then calcined, requiring temperatures around 
900 °C for calcium carbonate [29]. The main energy demand 
of this process is high-temperature heat (5.25–8.1 GJ/t CO2) 
and electricity to drive the fans and compress the obtained 
CO2 (1.32–1.8 GJ/t CO2) [30]. Existing pilot and first-of-a-
kind plants use a direct-fired calciner with an oxyfuel mix-
ture of natural gas for heat input and a natural gas turbine 
for electricity supply [29, 30]. Thanks to the process design, 
the fossil CO2 resulting from the natural gas combustion is 
immediately captured and mixed with atmospheric CO2. 
Nevertheless, indirect greenhouse gas emissions can be 
significantly affected by methane leakage along the supply 
chain [31, 32]. S-DAC, on the other hand, relies on solid 
sorbents to adsorb CO2 molecules. Sorbent development 
remains a major research topic (and a trade secret for many 
companies), but according to available data, most existing 
S-DAC systems use amine-functionalized porous materials 
[33–35]. In general, S-DAC has similar energy requirements 
as L-DAC (2.9–5.5 GJ/t CO2 for heat and 0.6–1.1 GJ/t CO2 
for electricity), with the advantage of significantly lower 
temperature requirements, as CO2 desorption requires heat 
at around 100 °C [3, 30]. Therefore, existing S-DAC proj-
ects (which are currently much more diverse than L-DAC 
projects) use geothermal or industrial waste heat and grid 
electricity, as they are generally located in countries with 
remarkably low-carbon electricity grids [30, 36, 37].

Prospective Energy Sources

In the face of a likely scenario requiring rapid scale-up and 
deployment of DAC, many authors have envisioned differ-
ent ways to provide low-carbon heat and electricity. In the 
case of L-DAC, this endeavor is particularly complicated 
because the technologies that can supply low-carbon heat 
at very high temperatures are limited [3]. The literature 
review has shown that, in addition to natural gas combus-
tion, calciners powered by (1) biomethane, (2) electricity, 
(3) hydrogen, (4) concentrated solar energy and (5) nuclear 
energy have also been explored. Biomethane is a relatively 
straightforward solution for decoupling L-DAC from fossil 
fuels, although its availability for large-scale use may be 
limited [38, 39]. Therefore, electric calciners appear to be 

the preferred option to date, as they are readily available, 
although not yet at the scale required by a large L-DAC 
facility [31, 40, 41]. Other authors have instead proposed the 
use of hydrogen-fueled calciners, including hybrid concepts 
in which hydrogen is both combusted and consumed in a 
fuel cell to power indirect electric heating for the calciner 
[42, 43]. Alternatively, a study published by the authors 
suggested the use of a solar calciner, inspired by previous 
works on solar calcium looping [44–46]. The direct use of 
nuclear energy in the calciner has been mentioned as a pos-
sibility, but to the best of the authors’ knowledge it has not 
been studied in detail [47]. Notably, none of the aforemen-
tioned alternatives are currently planned to be deployed in 
near-future L-DAC plants [48, 49]. However, an electric 
calciner is under development by a company investigating 
the passive carbonation of calcium hydroxide [50].

Due to the comparatively much lower operating tem-
peratures for S-DAC, it is easier to find suitable energy 
sources. As a result, the literature considers a broader range 
of options that can be grouped into three basic categories: 
S-DAC powered by (1) waste heat, (2) non-renewable 
sources, and (3) renewable sources. Among these catego-
ries, waste heat represents the best-case scenario for S-DAC 
because, if available at the right temperature, it translates 
into free heat with no associated environmental burdens. 
However, the availability of such waste heat sources is lim-
ited and, while feasible in some areas, may not allow for 
massive deployment of DAC [51, 52]. Some studies have 
considered the downstream utilization of CO2 for synthetic 
fuel production and have shown that waste heat from these 
processes could partially power S-DAC [53–55]. If waste 
heat is not available, non-renewable energy sources could 
be the most cost-effective solutions for S-DAC (even when 
indirect emissions are taken into account), with the added 
benefit of co-producing electricity [56]. This is especially 
true for nuclear-based concepts that use both electricity and 
steam produced in nuclear reactors [47, 56, 57]. Similarly, 
powering DAC with a combined cycle gas turbine with 
CCS could also be competitive [38, 56, 58]. In both cases, 
DAC systems benefit from high capacity factors, but these 
approaches also face potential challenges: the nuclear option 
may be hindered by high capital costs, social acceptance and 
national legislations, while gas-powered S-DAC systems 
are vulnerable to indirect emissions from methane leakage 
and fluctuations in natural gas prices [56]. Finally, renew-
able-based S-DAC can be divided into two subcategories: 
systems using renewable heat or fully electric concepts. On 
the one hand, systems using renewable heat normally rely 
on geothermal energy, although biomethane [38] and solar 
heat collected with a linear Fresnel [24] have also been con-
sidered in literature. On the other hand, fully electric solu-
tions rely on power-to-heat systems such as electric heaters 
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or high-temperature heat pumps to produce the heat at the 
desired temperature. This approach has been considered in 
many recent studies that have shown the possibility of using 
battery energy storage to increase the capacity factor of 
the system when powered directly by renewable electricity 
from photovoltaic or wind turbines [59–61]. Recent work 
has also shown the potential of using curtailed electricity to 
power DAC, which could be economically feasible despite 
a relatively low capacity factor [62–64]. An overview of the 
alternatives for powering S-DAC and L-DAC is shown in 
Fig. 1.

Concentrated Solar Thermal Technologies To Power 
DAC

The performed literature review shows an interest towards 
fully electric concepts using power-to-heat systems, which 
is further confirmed by the ongoing efforts to develop elec-
trochemical regeneration processes for both S-DAC and 
L-DAC that would not require any heat input [65, 66]. 

However, there are two fundamental arguments against 
replacing heat demand with electricity in DAC. First, heat 
can be harvested with higher efficiencies than electricity can 
be produced, and as a result, heat generally has a lower cost 
and environmental footprint than electricity. Second, stor-
ing heat, especially at the temperatures relevant to S-DAC, 
remains more economical and scalable than storing electric-
ity [67]. Based on these principles, concentrated solar ther-
mal (CST) technologies can provide dispatchable renewable 
heat that is both significantly cheaper and has a lower carbon 
intensity than power-to-heat systems powered by photovol-
taics or wind energy [68, 69]. In addition, unlike power-to-
heat concepts, CST technologies and thermal energy storage 
do not require any of the most critical raw materials for the 
energy transition [70]. Therefore, from the authors’ perspec-
tive, a research gap exists in the comprehensive integration 
of different CST technologies with S-DAC.

As with any other renewable energy source, it is impor-
tant to consider how local environmental factors may limit 
the optimal locations for the system, as optimal conditions 

Fig. 1 Overview of power alternatives for liquid and solid direct air 
capture (L-DAC and S-DAC, respectively). Acronyms: “CCS” (car-
bon capture and storage) and “HP” (heat pump). Concentrated solar 

power is non-dispatchable for L-DAC due to challenges in storing heat 
at the high temperatures required, while it is dispatchable for S-DAC
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including energy storage that optimize economic and envi-
ronmental impacts.

 [63] An interesting work that explores more flexible 
designs and operational strategies for S-DACs to facilitate 
its integration with intermittent renewable energy, thus con-
tributing to grid stability.
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