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Abstract

The synthesis of RANS (Reynolds-averaged Navier-Stokes) equations and the required
modeling of turbulence entails certain uncertainties in CFD (Computational Fluid Dy-
namics). Currently, engineers employ safety factors to address these uncertainties in
turbomachinery design processes, which lead to overly conservative designs and result
in missed opportunities to optimize the performance. Therefore, understanding the
uncertainties in CFD and establishing methods to analyze the credibility of numerical
simulations is crucial to achieve robust designs for future turbomachinery components
and to create virtual certification processes.

This cumulative dissertation investigates a framework to account for the uncertainty
stemming from the turbulence closure model, a primary source of the overall uncertainty
in RANS simulations. Although there are a variety of approaches to assess the uncer-
tainty associated with turbulence models, the appropriate estimation of the epistemic
uncertainty inherent in turbulence models is demanding. Therefore, the establishment of
a methodology capable of reasonably assessing this model-form uncertainty in the context
of RANS-based design of turbomachinery components is a major objective of the present
thesis.

The EPF (Eigenspace Perturbation Framework), designed to add physics-constrained
perturbations to the eigenspace of the Reynolds stress tensor and provide a systematic
approach to quantifying its inherent uncertainty, is implemented in the CFD solver TRACE
and evaluated in the scope of this thesis. The current research includes an extensive
verification of the numerical implementation as well as a scrutiny of the conceptual idea of
the EPF. This thesis proposes enhancements related to the consistency and applicability
of the methodology, while exploring its general capabilities and limitations. Additionally,
the introduction of machine learning to reduce user-defined input and prevent overly
conservative estimations of the turbulence modeling uncertainty is discussed and results are
presented. Moreover, the eigenvalue perturbation is applied to the TUDa compressor stage,
presenting the first application of the EPF to multi-row turbomachinery flows. Finally,
the ability to quantify, analyze and interpret the uncertainties associated with turbulence
closure models, provides a valuable starting point for next-generation enhancements in
modeling turbulent effects for complex configurations and flow phenomena. Overall, by
refining the EPF and critically assessing its capabilities, this dissertation contributes to
the development of reliable methods to consider the uncertainties in CFD.
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Kurzfassung

Die Reynolds-gemittelten Navier-Stokes (RANS: Reynolds-averaged Navier-Stokes) Glei-
chungen in Verbindung mit der notwendigen Modellierung von Turbulenz bringen in-
hérente Unsicherheiten in die numerische Strémungssimulation (CFD: Computational
Fluid Dynamics). Gegenwértig verwenden Ingenieurinnen und Ingenieure Sicherheitsfak-
toren, um diese Unsicherheiten im Rahmen von Turbomaschinenauslegungsprozessen zu
beriicksichtigen. Dies fiihrt jedoch héufig zu konservativen und deshalb suboptimalen
Auslegungen, wodurch mogliche Potenziale zur Steigerung der Leistungsfahigkeit un-
genutzt bleiben. Es ist daher von entscheidender Bedeutung, die Unsicherheiten der CFD
einerseits zu verstehen und andererseits Methoden zu entwickeln, um die Verlasslichkeit
numerischer Simulationen analysieren zu kénnen, sodass robuste Designs und virtuelle
Zertifizierungsprozesse zukiinftiger Turbomaschinenkomponenten ermoglicht werden.

Diese kumulative Dissertation untersucht eine Methodik zur Beriicksichtigung von Un-
sicherheiten, die aus der Modellierung der Turbulenz resultieren. Diese Turbulenzmodell-
unsicherheit ist eine der wesentlichen Unsicherheiten in RANS-Simulationen. Obwohl
es verschiedene Ansétze zur Bewertung der Unsicherheiten in Verbindung mit Turbu-
lenzmodellen gibt, stellt eine addquate Abschétzung dieser epistemischen Unsicherheiten
eine besondere Herausforderung dar. Daher ist die Entwicklung, Bereitstellung und
Demonstration einer Methodik, die diese Modellunsicherheiten im Kontext der simula-
tionsgestiitzten Auslegung von Turbomaschinenkomponenten angemessen bewerten kann,
ein zentrales Ziel dieser Arbeit.

Die Eigenraumstormethode (EPF: Eigenspace Perturbation Framework), welche darauf
abzielt, den Eigenraum des Reynoldsspannungstensors innerhalb physikalisch motivierter
Grenzen zu modifizieren, stellt einen systematischen Ansatz zur Quantifizierung der
inhédrenten Unsicherheiten von Turbulenzmodellen dar. Diese Methode wird im Rahmen
dieser Arbeit in den Stromungsléser TRACE implementiert und evaluiert. Die vorliegende
Forschung umfasst eine umfangreiche Verifikation der numerischen Implementierung sowie
eine kritische Untersuchung des konzeptionellen Ansatzes der Eigenraumstérmethode.
Diese Dissertation enthélt dabei Verbesserungen der Methodik in Bezug auf Konsistenz
und Anwendbarkeit, wihrend die Vor- und Nachteile kritisch analysiert werden. Dariiber
hinaus wird der Einsatz von Methoden des maschinellen Lernens im Kontext der Un-
sicherheitsquantifizierung untersucht, um die Stérung des Reynoldsspannungstensors zu
automatisieren und gleichzeitig konservativen Unsicherheitsabschétzungen vorzubeugen.
Die Stoérung der Eigenwerte des Reynoldsspannungstensors wird zudem auf die TUDa-
Verdichterstufe angewendet, was die erste Anwendung dieser Methodik auf eine derartige
mehrreihige Turbomaschinenkonfiguration darstellt. Letztendlich stellt die Fahigkeit, die
mit Turbulenzmodellen verbundenen Unsicherheiten zu quantifizieren, zu analysieren und
zu interpretieren, ebenfalls einen wertvollen Ausgangspunkt fiir zukiinftige Weiterentwick-
lungen von Turbulenzmodellen dar. Diese Dissertation leistet einen wichtigen Beitrag
zur Entwicklung zuverldssiger Methoden fiir die Beriicksichtigung von Unsicherheiten in
der numerischen Stromungssimulation, insbesondere durch die Modifikationen der Eigen-
raumstérmethode, aber auch durch die kritische Auseinandersetzung mit der Methodik
selbst.
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1. Introduction

1.1. Motivation and background

As turbomachinery is integral to both the aviation and energy sector, its future designs
are intrinsically linked to the challenges posed by the global climate change. The
European Green Deal, which aims to make Europe the first climate-neutral continent by
2050, significantly impacts the turbomachinery industry [37]. It necessitates a massive
decarbonization, as well as the reduction of non-carbon emissions. Although the world’s
energy consumption is expected to remain at a high level until 2050, the energy sector is
striving to meet the ambitious goal of achieving climate neutrality (net-zero greenhouse
gas emissions) by the year 2050 primarily by exploiting renewable energy sources [67].
Nevertheless, there will be a demand for highly flexible storage technology to compensate
for fluctuations in electricity production. As turbomachinery components provide such
scalable and flexible power generation from various sources, the turbomachinery industry
can contribute to the development of the next generation, efficient engines for future
energy supply, alongside all efforts in sustainable energy solutions. At the same time,
the aviation sector faces a parallel challenge, with global air traffic expected to continue
growing, potentially leading to a devastating exponential increase in CO4 emissions [43, 26].
Therefore, the aviation industry is exploring new strategies such as the electrification of
the propulsion system and evaluating the potential of alternative fuels like hydrogen or
Sustainable Aviation Fuels (SAF). In addition to low-emission propulsion systems, there
is a persistent need for innovations that improve fuel efficiency and performance flexibility.
Both inevitably contribute to reducing direct and indirect greenhouse gas emissions
and making turbomachinery more sustainable. The Original Equipment Manufacturers
(OEMs) of the propulsion systems have to address these requirements through advanced
concepts, such as multi-shaft engines, variable cycle engines, ultra-high bypass engines,
open rotor concepts and last but not least the usage of intercoolers or recuperators.

To create and assess such drastic conceptual changes of future turbomachinery designs,
digitalization is supposed to be a catalyst, significantly accelerating these developments.
The German Aerospace Center (DLR) aligns its strategy when aiming for efficient next
generation designs by positioning itself as a virtual OEM [26]. Unlike past technology
developments, which often relied on experimental testing and extensive expert knowledge,
computer-based simulations have already started to pave the way towards faster design
cycles. Before industrial products, such as aircraft or turbomachinery components, can
be marketed, they must comply with stringent safety and environmental regulations in
general. Besides the actual optimization in the design, meeting these standards through
traditional methods can be both time-consuming and costly. Hence, the DLR aims
to reduce costs, mitigate risks and expedite market entry through simulation-based
certification, also known as virtual certification [26]. This approach not only optimizes
the design process, but also ensures that new technologies meet regulatory requirements
more efficiently and effectively.

The capabilities of modern Computational Fluid Dynamics (CFD) software are of utmost
importance in the pursuit of designing efficient revolutionary turbomachinery for the
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Figure 1.1.: Schematic representation of key aspects of turbulence.

energy sector as well as the aviation industry. CFD approximates solutions of the
governing equations of continuum fluid flow - the Navier-Stokes equations - numerically,
making it one of the engineer’s key tools for predicting the flow field and the resulting
performance of turbomachinery components [25]. The advancement of CFD has been
profoundly influenced by an exponential growth in computational power, allowing for the
execution of increasingly complex and detailed analyses. The Department of Numerical
Methods at DLR’s Institute of Propulsion Technology provides TRACE (Turbomachinery
Research Aerodynamics Computational Environment), a CFD software developed in
strong cooperation with MTU Aero Engines AG with special focus on the issues and
characteristics of turbomachinery flows. TRACE fits into the portfolio of the DLR, as it
meets the demand for simulation-based design optimization and virtual certification.

With few exceptions, the flow inside turbomachinery components is typically affected by
turbulence. The flow’s turbulent character develops, if inertial forces dominate over the
viscous ones. This ratio is expressed via the Reynolds number Re = M, based on a
certain characteristic length L, density p, magnitude of the velocity vector « and dynamic
viscosity p. If the flow features a sufficiently high Reynolds number, it is generally referred
to as turbulent flow or turbulence. Although there is no general definition of turbulent
flows, they are typically described as irregular (chaotic), three-dimensional, unsteady,
diffusive, dissipative and featuring cascading energy transfer between different turbulent
scales (eddies with different sizes and energy) [123] (cf. Fig. 1.1b). This is reflected in the
fact, that the mean flow quantities are superimposed with fluctuations as schematically
illustrated in Fig. 1.1a for an arbitrary turbulent signal. Probing such a signal at a certain

time results in a random value with reproducible temporal mean.

The above-mentioned Navier-Stokes equations completely describe turbulent flows as
well. However, accounting numerically for the entire range of length and time scales in
turbulent flows is challenging in two respects. Either an appropriate resolution of space
and time is required to resolve these occurring turbulent scales, or adequate modeling
of their effect on the mean flow field is needed. The first approach, known as Scale-
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Resolving Simulations (SRS), involves methods such as Direct Numerical Simulations
(DNS) or Large Eddy Simulations (LES), which resolve large parts of the turbulent energy
spectrum (as schematically illustrated in Fig. 1.1b). The contrary approach involves
solving the equations for the average flow field instead of the instantaneous one, which is
the fundamental idea of the Reynolds-averaged Navier-Stokes (RANS) equations. The
derivation of the RANS equations requires a split of the flow quantities occurring in the
Navier-stokes equations into an average and a fluctuating part (see Fig. 1.1a). This is
followed by averaging the set of equations, which leads to the appearance of unknown
correlations of fluctuating velocity components, known as Reynolds stresses. Unfortunately,
the set of equations has to be closed by introducing turbulence models for these Reynolds
stresses, addressing what is known as the turbulence closure problem. Hereby, the entire
range of the spectrum in Fig. 1.1b is modeled, applying the steady-state RANS approach
and employing turbulence modeling. Unsteady RANS simulations, relying on turbulence
models as well, try to resolve the largest scales (corresponding to low wavenumbers) by the
application of an adequate temporal resolution. In turbomachinery flows these scales are
associated with the deterministic unsteadiness such as blade row interactions (i.e. blade
passing frequencies) [133]. In order to adequately resolve these lower frequencies and, even
more importantly, to correctly model the higher frequencies using a turbulence model,
there needs to be a spectral gap between the deterministic and the turbulent, stochastic
contributions [154]. As this thesis focuses on steady RANS computations, the emphasis
in Fig. 1.1b is on the full range of the spectrum being modeled. Due to the imposed
challenges to computational resources for simulating flow phenomena in turbomachinery
(and the resulting high costs) using SRS [16], these methods are not expected to replace
RANS simulations in the daily design processes of turbomachinery industry, although they
might be employed at certain stages in the design, e.g. to deepen the understanding of
causality between observed deficits and benefits (such as global efficiency) of a design and
the underlying detailed flow physics. Since information on the mean flow is considered to
be sufficient for most of the design relevant questions in industrial processes, particularly
for design iterations and optimizations, the numerical approximation based on the RANS
equations will be the dominant method in the foreseeable future.

Nevertheless, a significant challenge persists in the accurate representation of physical
modeling [119]. Given the necessity to rely on RANS equations and closures due to their
computational efficiency, it is important to acknowledge that when mapping physical
phenomena, such as the mean transport of momentum due to turbulence represented
by the Reynolds stresses, onto a mathematical model, an inherent lack of knowledge
inevitably introduces uncertainties. This is in contrast to SRS approaches, which are
typically known for incorporating no or minor modeling, leading to a reduction in
modeling uncertainties. In this vein, RANS turbulence models, while essential to solve
the underlying Navier-Stokes equations efficiently, may result in oversimplifications or
inadequate representations of the real-world physics. This limitation becomes particularly
pronounced with the emergence of drastic but advanced future turbomachinery concepts
that go beyond the calibration cases of turbulence models.

A key focus for the future of turbomachinery CFD simulations is on Uncertainty Quantifi-
cation (UQ) becoming an integral and systematic framework for assessing the confidence
in the predictions that drive innovations [111]. Besides the aspiration to highly accurate
numerical simulation techniques (such as SRS), UQ can play a pivotal role in advancing
the reliability and predictive capabilities of state-of-the-art CFD, especially but not only
for low fidelity simulations, such as RANS [132]. UQ approaches seek to identify and
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quantify uncertainties arising from various sources'. In CFD these sources may be inac-
curate representation or simplification of the geometry (such as omitting cavity flows or
approximating three-dimensional (3D) flows to lower dimensionality), deviating geometry
due to manufacturing tolerances, unspecified or even varying boundary conditions during
operations, simplifying assumptions as a compromise between computational effort and
accuracy (such as the RANS approach in contrast to SRS) and describing physical phe-
nomena by mathematical models (such as turbulence modeling). The capabilities of UQ
techniques will be particularly important for optimizing simulation-based designs relying
on Design Under Uncertainty (DUU) approaches in industry, where reliable predictions
ensure robustness under varying conditions? [88]. With the help of UQ, engineers will be
able to establish more realistic safety margins supporting informed decision-making to
push the boundaries of turbomachinery technology further in the future. However, before
UQ becomes an integral part of standard industrial workflows, its primary role in CFD
will be to assist designers in interpreting and judging numerical results. UQ can also
provide valuable insights when comparisons with other data sources, such as experiments
or high-fidelity simulations, are drawn. Primarily, UQ approaches will enhance the
credibility of simulation results by either quantifying their probability and variance, by
highlighting certain upper and lower bounds in terms of intervals or simply by presenting
realizable solutions under diverse plausible circumstances.

Although there are multiple uncertainties to be accounted for in CFD, this thesis focuses
on accounting for the uncertainty due to the reliance on turbulence models, as they
are a major contributor to the overall uncertainty in RANS simulations [169]. Ongoing
enhancements in the development and calibration of these turbulence models highlight
the critical need for a method to quantify their uncertainties, without requiring constant
modifications to improve the model accuracy. By quantifying the uncertainty associated
with the chosen turbulence model in RANS-based simulations of turbomachinery flows,
designers can confidently assess the plausibility of their results and better communicate
the degree of certainty in their predictions, while being aware of the fact, that there
might be other uncertainties involved as well. This motivates the necessity of providing,
demonstrating and evaluating a methodology to address turbulence modeling uncertainties
as a foundational step towards comprehensive UQ in CFD integrating miscellaneous
sources of uncertainties in the future.

Throughout this thesis (see detailed information on its structure and content in Section 1.3),
the Eigenspace Perturbation Framework (EPF) for the Reynolds stress tensor is employed
to appropriately account for the model-form uncertainties of RANS turbulence closures
models, relying on the linear eddy viscosity assumption [33, 66]. The EPF adds physics-
constrained selective perturbation to the eigenspace (eigenvalues and eigenvectors) of the
Reynolds stress tensor to cover its potential realizable variations reflecting the inherent
uncertainty in the turbulence model due to lack of knowledge. Since different Reynolds
stress tensors lead to varying solutions for Qol, the EPF simply aims to sample from the
possible solution space and provide meaningful intervals based on resultant additional but
discrete simulations. The presented research within this thesis involves comprehensive

1Some UQ techniques, such as Bayesian inference, also mitigate the a priori uncertainties using
available data. However, as it is difficult to completely eliminate uncertainty in general design tasks, UQ
can help to understand and manage the uncertainties that do exist.

2That is, optimizing the design under uncertainties in order to reduce the variability of the Quantity
of Interest (Qol), represented by the inverse design problem, which intends to maximize the tolerable
uncertainties, such as manufacturing tolerances.
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Verification and Validation (V&V)? efforts to ensure its reliability and accuracy for
practical applications. Although the underlying methodology has been described in detail
and applied to a variety of flows by previous researchers (see the review of the available
literature in Section 3.5.3), its integration to TRACE has revealed several shortcomings
that had not been addressed so far. Consequently, besides the theoretical introduction,
implementation and application of the EPF, there remain opportunities to improve the
framework.

1.2. Research objectives

The primary objective of this thesis is the advancement of the physics-constrained
EPF enabling researchers and engineers to estimate the uncertainty with respect to the
underlying RANS turbulence model, especially for complex turbomachinery applications.
This study is guided by the main research question, whether the EPF is able to account
adequately for the turbulence modeling uncertainty.

A key aspect of this research is the development of novel physics-constrained modifications
to the EPF, improving both numerical accuracy and the core concept of perturbing the
eigenspace of the Reynolds stress tensor. Moreover, the suitability of the approach for
practical applications is critically examined, with particular attention to its strengths but
also its inherent limitations.

The practical reliability of the EPF is assessed in both generic and complex flow scenarios,
culminating in the most advanced turbomachinery case studied using the EPF to date.
The estimation of the turbulence modeling uncertainty for a multi-row turbomachinery
test case demonstrates the capabilities of the EPF and enables lessons to be learned for
an application of the framework in such contexts.

In addition, as machine learning strategies are emerging to support the determination
of the turbulence modeling uncertainties, this research also investigates whether these
recent promising approaches, as reported in the literature, offer verifiable benefits, how
they can be effectively used, and if not, the reasons for the lack of such benefits.

Finally, the capability of the eigenspace perturbations to bridge the gap between RANS
simulations and high-fidelity simulations or experimental measurements is examined. If
closing the gap is not feasible, guidance is provided on how to consider the conceptual
idea that results in the inevitable limitations.

In pursuit of the research question, this thesis establishes a deeper understanding of the
eigenspace perturbation methodology, offers insights into its effective use and interpreta-
tion of the obtained uncertainty intervals and contributes to improving the quantification
of the turbulence modeling uncertainty relying on the EPF.
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Table 1.1.: Summary of the considered articles in this thesis.

Authors Title Journal Reference Chapter
M. Matha Evaluation of physics constrained Computers
K. Kucharczyk data-driven methods for turbulence & [99] 4
C. Morsbach  model uncertainty quantification Fluids
Improved self-consistency of L
M. Matha Reynolds stress tensor eigenspace Physics
. of [96] 5
C. Morsbach perturbation for .
. . . Fluids
uncertainty quantification
. Physically constral.ned Physics
M. Matha eigenspace perturbation for of [97] 6
C. Morsbach turbulence model .
. . . Fluids
uncertainty estimation
M. Matha Advanced methods for assessing
F. M. Moller flow physics of the Journal
C. Bode TU Darmstadt compressor stage: of [101] 7
C. Morsbach Uncertainty quantification Turbomachinery

E. Kiigeler of RANS turbulence modeling

1.3. Structure and content

The research findings, which were already published in peer-reviewed journals, are included
in Chapter 4 to Chapter 7 of this cumulative dissertation*. Table 1.1 provides a summary
of the respective publication details, such as authors and journals. Two additional
chapters precede these main chapters in order to equip the reader of this thesis with a
comprehensive understanding of the theoretical and practical aspects of the uncertainties
in CFD, the fundamentals of RANS turbulence modeling and the eigenspace perturbations
of the Reynolds stress tensor.

Chapter 2 clarifies the term wuncertainty in CFD through detailed classification and
distinction according to common literature. As turbulence closures are the physical
models of interest for the present consideration of uncertainty, Chapter 3 briefly introduces
the RANS modeling approach and the origin of uncertainties. The need for quantifying
these uncertainties follows the known inaccuracies of turbulence models. As the EPF
is the method of choice in this thesis, the basic idea and the physical rationale are
described. Subsequently, the core functionality of the EPF is demonstrated exemplarily
for application in a generic test case. Additionally, a review of the available literature
and details on the implementation in TRACE are given.

The data-free (without incorporating any true data) but physics-constrained eigenspace
perturbations of the Reynolds stress tensor tend to result in uninformed, conservative
estimates of the turbulence modeling uncertainty. For this reason, Chapter 4 focuses on

3Verification ensures that the implementation of a methodology aligns with the developer’s conceptual
idea, while validation assesses the model’s accuracy in representing real-world phenomena for its intended
purposes [1, 148, 120].

4 Abbreviations are introduced where they appear for the first time. Once introduced, these abbrevia-
tions are used consistently throughout the dissertation. Additionally, a single bibliography is used for
the entire dissertation instead of creating separate bibliographies for each chapter to ensure consistency
and ease of reference. Consequently, previous publications in Chapter 4 to Chapter 7 were adapted
accordingly. Moreover, minor adjustments in the form of corrections and alignments have been made for
the individual publications.
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the evaluation of a data-driven approach to apply local perturbations on the basis of
machine learning predicted model deficiencies. The procedure was pioneered by Heyse
et al. [61]. The underlying idea is motivated by the fact that the uncertainties with
respect to the closure model are not expected to be uniformly distributed across the
computational domain often featuring various flow physics. Hence, a random forest is
trained to predict the local variation of the perturbation of the Reynolds stress tensor’s
eigenvalues in order to contribute to the estimation of the turbulence modeling uncertainty
using the EPF. This research uses several test cases, featuring turbulent boundary layers,
adverse pressure gradient, separation and reattachment, to train and validate the machine
learning model. Additionally, key points associated with machine learning strategies, such
as the selection of input features, tuning of hyperparameters and judging the model’s
accuracy in an a priori and an a posteriori way are addressed. The latter requires
the consideration of an appropriate metric that is chosen to be an extrapolation metric
based on the Kernel Density Estimation (KDE) in this research. The NACA 4412
(National Advisory Committee for Aeronautics (NACA)) airfoil at near-stall conditions
represents the final validation test case. Hereby, the a priori confidence judgement by the
extrapolation metric is demonstrated and the random forest’s prediction of local RANS
turbulence model deficiencies is presented. Conclusions for the future can be drawn from
the comparison of the data-free and the data-driven uncertainty estimation using the
EPF for the NACA 4412. Moreover, Chapter 4 already summarizes the objectives but
also the limitations of the EPF and the applied machine learning strategies.

The common turbulence modeling assumption that the eigenvectors of the Reynolds
stress tensor and the strain-rate tensor are identical is not universally valid (see details
in Chapter 3). To break out of this assumption, it requires physics-based perturbations
of the orientation of the Reynolds stress tensor’s eigenvectors. This enables the user of
the EPF to explore a potentially greater RANS solution space and to contribute to the
overall turbulence modeling uncertainty estimation. Although the need for moderating
the effect of Reynolds stress tensor perturbation on the RANS equations due to numerical
convergences issues is already briefly discussed in Chapter 4, Chapter 5 finally reviews
the suggestion of incorporating an additional moderation factor, as suggested by Mishra
et al. [107]. In-depth verification of the EPF helps to identify a flaw in the numerical
implementation that is contradictory to the conceptual idea of the methodology. From
this, a self-consistent implementation is proposed and integrated in TRACE, ensuring
that the perturbations can be mitigated without losing the underlying concept. The
correctness of the proposed procedure is evaluated for the turbulent flow in a generic
channel. Besides, Chapter 5 contains fundamentals with respect to the realizability
constraints of the Reynolds stresses and their ramifications for the Reynolds stress
anisotropy, and introduces the concept of tensor visualizations.

Chapter 6 provides further verification concerning the proposed eigenvector perturbation
approach by laccarino et al. [66], focusing on its implications on the dynamics resulting
from the Reynolds stress tensor. This chapter utilizes the example of wall-bounded flows
to illustrate the effects of the eigenvector perturbation on a commensurable effective
turbulent eddy viscosity and the turbulence production term. Based on this analysis, an
appropriate rotation angle for the principal axes of the Reynolds stress tensor can be
derived by analyzing the generic one-dimensional (1D) turbulent boundary layer flow.
This derived constraint is validated a posteriori, demonstrating its applicability to the
flow within a converging-diverging channel, which also includes a separated flow region.
Finally, the modified eigenvector perturbation procedure is applied to the same test case,
confirming its effect regarding physical plausibility and numerical stability simultaneously.
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Chapter 7 details the simulation of the design speedline of the Technische Universitét
Darmstadt (TUDa) compressor. The EPF is employed to estimate the turbulence
modeling uncertainties for global compressor performance metrics as well as for Qol
at specific reference locations. This chapter pioneers the application of the EPF to a
multi-row turbomachinery test case, providing a comprehensive description of how to
employ the Reynolds stress tensor perturbations across an entire speedline. This research
is dedicated to aiming for worst case scenarios that result in the most conservative
estimate of the turbulence modeling uncertainty. Contrary to previous chapters, only
perturbations to the eigenvalues of the Reynolds stress tensor are considered in this
research. The numerical RANS results are compared against experimental measurements
from Klausmann et al. [74] and a Delayed Detached-Eddy Simulations (DDES) conducted
by Moller et al. [114]. In addition to the details on the local flow physics, the analysis of
the rotor’s shock-boundary layer interaction and the discussion on the effects of Reynolds
stress anisotropy on the turbulence production, this chapters contributes to the assessment
of the overall uncertainties of simulating the TUDa compressor.

Chapter 8 of this dissertation contains the discussion, which assesses the methodological
coherence across the respective studies and comprehensively summarizes the conducted
research, while providing guidance for practical applications.

Finally, Chapter 9 aims to present a critical reflection on the chosen methodology and
derive conclusions and recommendations for future research related to the EPF.

1.4. Contributions

The listed publications in Table 1.1 form the core of this thesis, encapsulating the primary
research outcomes. This section summarizes the main contributions to the research
community and a personal statement regarding the specific contribution to each paper.

1.4.1. Research contribution

Essentially, there are four major novelties presented in this dissertation, aligning with the
formulated objectives in Section 1.2:

1. The research presented in Chapter 4 (cf. [99]) merges various strategies for quan-
tifying turbulence modeling uncertainty, the application of data-driven machine
learning methods and a priori confidence estimation. Hence, it serves as a com-
prehensive synthesis of contemporary research topics that have been previously
examined in isolation. Moreover, the research extends the range of considered
test cases used for training and validating the random forests, building upon the
previous work by Heyse et al. [61]. This facilitates extensive cross-validation of
the machine learning model, thereby improving its generalizability. Additionally,
this research represents the first attempt to combine the data-driven eigenvalue
perturbation with data-free eigenvector perturbation as suggested by laccarino et al.
[66]°. Besides, this publication stands out as one of the few that critically discusses
the limitations of the EPF referring to the actual objectives of the methodology. It

®The following chapters (based on Matha and Morsbach [96, 97]) reveal that using the combination
of eigenvector perturbation and moderation factor as suggested by Mishra and Iaccarino [106] violates
the consistency of the implementation on the one hand, whereas the eigenvector perturbation of laccarino
et al. [66] may create non-physical Reynolds stress tensor dynamics on the other hand.
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is essential for future users and developers of the EPF to understand these aspects
and judge the simulation outcomes appropriately.

2. Aiming at verifying the numerical model with respect to the underlying conceptual
idea of the EPF lead to a fundamental and essential recommendation for the
implementation and application of this method. Hereby, Chapter 5 (cf. [96])
provides a consistent implementation by omitting a moderation factor, in contrast
to the previous proposal by Mishra et al. [107]|. This study has the potential to shift
the mindset of the community using this framework. Previously, practitioners tended
to use a maximum perturbation magnitude for the eigenvalue perturbation, arguing
that this approach is the only viable option in the absence of superior knowledge
regarding the flow topology (such as e.g. incorporating data-driven predictions).
However, the effect of tensor perturbations on the RANS equations have often
required mitigation through an additional moderation factor to overcome numerical
stability issues, particularly when incorporating eigenvector perturbations as well.
This research suggests to prevent numerical convergence issues by directly reducing
the perturbation magnitude from a model-consistent point of view. Therefore, it
is inferred that choosing the strongest perturbation possible before encountering
convergence issues can be considered as the worst case (most conservative) scenario
for future applications.

3. Since 2017, the eigenvector perturbation approach by laccarino et al. [66] has
been widely accepted in the research community. The verification and subsequent
derivations presented in Chapter 6 (cf. [97]) establish a physics-based constraint on
these eigenvector perturbations for wall-bounded flows, which are the crucial ones in
turbomachinery applications. This research suggests to describe the Reynolds stress
tensor’s eigenvector perturbation as a tensor rotation around the second eigenvector.
It is determined that a maximum rotation angle of 7/4 should not be exceeded, as
this may lead to the formation of non-physical Reynolds stress tensor dynamics,
when applied in the RANS equations. This constraint challenges common practice
up to date and improves stability and accuracy of the EPF.

4. In Chapter 7, the EPF is used to account for the RANS turbulence modeling uncer-
tainty when simulating the TUDa-GLR-OpenStage compressor, which represents
the most complex application of the EPF related to turbomachinery flows. This
study represents the first application of the framework in a multi-row configuration,
quantifying the uncertainties associated with structural uncertainties of the turbu-
lence model for an entire speedline. Based on this pioneering work, this dissertation
guides appropriate usage of the framework and establishes best practices for such
complex applications.

1.4.2. Article contribution statement

I was the primary researcher responsible for the conceptualization, methodology and
execution of the research in any of the above-mentioned publications (see Table 1.1). I
did the implementation for incorporating the necessary features of the EPF in DLR’s
CFD solver TRACE that is developed in strong cooperation with MTU Aero Engines
AG. Furthermore, simulation data collection and their subsequent analysis was done by
me. Based on this, I was the one, verifying the underlying methodology, which led to the
further advancements of the framework. With respect to the manuscripts, I was the lead
author, who was responsible for writing and the visualizations. I also coordinated the
revisions and addressed reviewers’ comments during the peer-review processes.



10

1. Introduction

The following individual contributions were made by the respective co-authors:

Dr.-Ing. Edmund Kiigeler, being the head of the Department of Numerical Meth-
ods, was instrumental in organizing funding for conference attendance and my
employment in general. In addition, he was involved in discussions about the results
presented in Chapter 7.

Dr. rer. nat. Christian Morsbach provided guidance in the planning of each paper.
He reviewed my writing and made suggestions for the appropriate presentation of
results. Because of his role, as my group leader, he always took part in valuable
discussions about my research in general.

Felix-Mazimilan Méller generated the grid and the initial RANS setups for the
simulation of the TUDa compressor. In preparation of the conference paper for
the American Society of Mechanical Engineers (ASME) Turbo Expo 2024 [100], to
which we submitted a two-part paper, we had a gainful cooperation. He proofread
the final conference and the resulting journal paper presented in Chapter 7.

Karsten Kucharczyk contributed to my research progress during his Master’s thesis
that I was supervising. We had discussions on the usage of machine learning and the
EPF. He participated in the proofreading of the conference paper for the American
Institute of Aeronautics and Astronautics (AIAA) Aviation 2022 [98], the results of
which form the basis for Chapter 4.

Dr.-Ing. Christoph Bode was an interested observer of the capabilities of the EPF.
He supported me to structure the underlying paper of Chapter 7 and reviewed my
writing.



2. Uncertainties in CFD

This chapter is motivated due to the fact that the choice of an appropriate UQ approach
is often dependent on the classification of the uncertainty itself. In CFD but especially in
the scope of this thesis, it is important to understand and classify involved uncertainties.
Therefore, uncertainties are distinguished from errors and the difference between aleatoric
and epistemic uncertainties with respect to CFD is presented. An overview on these
distinctions is given in Fig. 2.1 that condenses the following two sections while also giving
examples.

Error Uncertainty

Potential deficiency

—

Recognizable deficiency

— |

Acknowledged

Unacknowledged Aleatoric

Epistemic

e Source is
known

e Obtained re-
sults are suffi-
ciently accurate

e Source is un-
known

e Can be de-
tected through
repeated checks

e Inherent vari-
ability (random)

e Not due to lack
of knowledge

e Not reducible

e Due to lack of
knowledge

e Reducible

Examples:
e Turbulence model

e Data extrapolation

Examples: Examples:
. E les:
e Round-off errors e Coding Bug xamp es .
e Manufacturing
e Discretization error o Misuse tolerances

e Operating conditions

Figure 2.1.: Overview of errors and uncertainties in CFD.

2.1. Uncertainties vs. errors

An error is a recognizable deficiency that does not arise from a lack of knowledge [1, 121].
This concept stands in contrast to uncertainty that defines a potential inaccuracy and/or
an inherent variability. While different types and sources of uncertainties are discussed in
Section 2.2, errors can be categorized into two broad classes: acknowledged (recognized)
and unacknowledged (not recognized) [41]. The application of additional resources,
whether computational or human, can mitigate both types of errors. In the context of
CFD, acknowledged errors include finite precision arithmetic (round-off error), insufficient
spatial discretization (discretization error) and premature termination of the simulation
(convergence error). There are also errors due to physical modeling, such as relying on

11
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a steady-state solver when the flow is obviously unsteady or modeling a compressible
flow as incompressible. These errors typically result from deliberate decisions of CFD
practitioners, who are capable of estimating the probable consequences and judge the
numerical results as being satisfactory. Conversely, unacknowledged errors usually stem
from human failure in coding or handling of CFD software. Common examples are
programming errors or the use of incorrect input data. While various methods exist to
account for the acknowledged errors, such as grid convergence studies or error propagation
techniques, there are only a few systematic approachs, e.g. the method of manufactured
solutions [8, 38, 39|, to quantify the unacknowledged errors in CFD and modeling.

2.2. Aleatoric vs. epistemic uncertainties

Understanding and distinction between aleatoric and epistemic uncertainties can be
crucial for incorporating these uncertainties in decision-making and risk assessment
for engineering problems, as the way to account for a certain kind of uncertainty may
vary due to its nature [117, 131|. Generally, the source of uncertainty leads to the
classification of these two categories. While, aleatoric! uncertainty arises from the
intrinsic randomness and natural variability present in physical systems, epistemic?
uncertainty is presumed as a lack of knowledge about the system, phenomenon or
process being modeled |73, 162]. Aleatoric uncertainty is a property of the system
itself, whereas epistemic uncertainty emerges from attempts to describe and analyze the
system [141]. Hence, Oberkampf et al. [121] further classify aleatoric uncertainty as the
inherent variation and epistemic uncertainty as a potential inaccuracy. The latter suggests
that certain phenomena might be modeled correctly even though there is incomplete
understanding or information of the underlying process. Common examples of aleatoric
uncertainties are manufacturing tolerances, material properties, varying environmental
operating conditions or boundary conditions [41|. A straightforward way to account
for these kinds of aleatoric uncertainties is by providing a probability distribution for
the quantity in question. In general, aleatoric uncertainties cannot be mitigated due to
their random, unbiased characteristics [141]. However, initially chosen prior probability
distributions representing an uncertain parameter can be minimized by using Bayesian
inference methods [115]. Conversely, mapping a mathematical model to a physical
phenomenon with incomplete knowledge or simplified assumptions inevitably leads to a
certain degree of epistemic uncertainty. Insights in Section 3.2 demonstrate how this is
directly linked to the formulation of a RANS turbulence model, representing a prominent
example of such mathematical models. Increasing knowledge would eventually reduce the
degree of epistemic uncertainty. Thus, referring to Faber [40], the promising aspect for
the turbulence modeling community is that these mathematical models, dominated by
epistemic uncertainties, have the potential for reducing the uncertainties by adaptations
and enhancements.

Although most available literature clearly distinguishes between aleatoric and epistemic un-
certainty, Kiureghian and Ditlevsen [73]| argue that the context and the actual application
may influence how to deal with certain uncertainty. They propose that every uncertainty
ultimately arises from a certain lack of knowledge, which introduces a philosophical
debate. Moreover, Senge et al. [138] emphasize that the classification of an uncertain
quantity as epistemic or aleatoric may also evolve over time due to increased observations,
experience or applications, which contributes to knowledge gain. Even though, it is

'Latin alea: rolling of dice
2Greck emornun (episteme): knowledge
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agreed on the fact that the lack of knowledge seems to be relative, in the present author’s
view, the aforementioned classifications offer an appropriate distinction for the purpose
of this thesis. Furthermore, one might also argue that applying a particular turbulence
model to flow phenomena that it might not handle well (see Section 3.4), constitutes a
modeling error. However, the definition of uncertainty within this thesis adheres to the
prevailing literature, as a CFD practitioner might not necessarily know a priori how well
the assumptions and approximations in the formulation of the turbulence model fit the
current problem.






3. Turbulence closures and uncertainties

In order to ensure a consistent comprehension of the results obtained in this thesis, this
chapter provides relevant background information to turbulence modeling. Based on the
fundamental equations of fluid mechanics, the details of the RANS modeling approach
for turbulent flows are presented. The classification of the inherent uncertainties involved
in RANS simulations and the discussion on the common approach to close the set of
equations is followed by the introduction of the applied UQ framework.

3.1. Statistical turbulence modeling

The basis of fluid mechanics are the Navier-Stokes equations, which can be derived from
the conservation of mass, momentum and energy. In differential conservation form, the
unsteady, compressible equations for mass, momentum and total energy, while neglecting
volume forces such as gravity, are the following

0 0
87;) + ox; (pui) =0 (5.1)
0 0 . 8p 80‘@'
En (pui) + ox; (pujui) = o T oz, (3.2)
gi 10 (e 75) | + 5w (n+=50)| = g Carvwos) - (39

The summation convention is used here, so that sums over duplicate indices are implied.

In order to solve these equations numerically, there are several assumptions and modeling
approaches required that are outlined subsequently. Based on Stokes’s hypothesis for
Newtonian fluids, the trace of the viscous stress tensor

o 8uZ 8uj 2 8uk

must disappear. The dynamic viscosity p is computed according to Sutherland [149] in
this thesis. The molecular heat flux vector
or  cpu 0T

e pP T 3.5
4 K@xj Pr dx; ’ (3.5)

occurring in the conservation of total energy (Eq. (3.3)), is typically modeled by assuming
a diffusion law with a constant Prandtl number Pr. In this thesis, Pr is chosen to be 0.72
in all the considered cases. Assuming ideal gas closes the set of equations finally

p=pRT =p(h—e), (3.6)
while the internal energy e and enthalpy h are expressed as

e=c,T and h=¢,T (3.7)
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using the specific heat at constant volume ¢, and at constant pressure c,. The ratio
between the specific heats of the fluid is chosen to be v = ¢,/¢, = 1.4 in the scope of this
thesis.

As already described in Section 1.1, the derivation of the compressible RANS equations
requires the split of the instantaneous flow quantities into a mean and a fluctuating part

6=0+¢ (3.8)

following the approach of Reynolds [126]. In general, turbomachinery flows have to be
considered being compressible, which requires a density weighted average (Favre-average)

¢=0¢+¢" and 56 = pg . (3.9)

Replacing all instantaneous quantities in Eq. (3.1)-Eq. (3.3) with the respective split in
Eq. (3.9) except for density and pressure, which are split according to Eq. (3.8), and
subsequent Reynolds-averaging (time-averaging) leads to the unsteady Favre-averaged
Navier-Stokes equations
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In the scope of this thesis, we call this set RANS equations, although Reynolds-averaging

was initially developed for incompressible flows [126].

The RANS equations come along with new unknown correlations of fluctuating quantities.
Hereby, the term turbulence closure problem refers to the fact that equations for higher
correlations invariably generate additional unknowns due to the non-linearity inherent in
these equations. The focus of this thesis is on the Reynolds stresses puj'u’f. For the sake
of pragmatism and practicality,

7y = U] (3.13)

is referred to as the Reynolds stress tensor even though it is actually a specific stress
given its units [123]. The trace of this tensor is known as the turbulent kinetic energy

1
k= —Tii - (314)
2
Due to Favre-averaging, additional correlations appear in Eq. (3.12). While the molecular

diffusion o;;u and the turbulent transport of turbulent kinetic energy %ﬁu;f ufu] can be

neglected /fgr/ flows with Mach numbers up to the supersonic range, the turbulent transport
of heat puh” has to be modeled [161]. All simulations within this thesis apply the simple
gradient diffusion hypothesis by introducing a turbulent Prandtl number equal to 0.9
to model the turbulent heat conductivity kT in accordance with the laminar heat flux
q; [128]. Currently, the Favre-averaged energy conservation in Eq. (3.12) implemented in
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——

TRACE also neglects the fluctuating velocity contribution /v /2 on the total energy E.
Because the test cases examined throughout this thesis can be approximated using the
steady-state assumption, the derivative with respect to the physical time 0J/0t must
vanish for a solution of the steady RANS equations’.

Appendix A summarizes the RANS equations implemented in TRACE. Their numerical
solution forms the basis of the presented results and discussions in the current thesis.

To shorten and simplify the notation in the following sections and chapters, u; — U is in-
troduced for the mean velocities, T is simplified as T', while the overlines for density p — p,
pressure p — p and the viscous stress tensor o;; — 0;; are omitted. Furthermore, the mean

strain-rate tensor will be also denoted with a capital letter 5;; — S;; = % (gg? + gg”_' )
7 [

3.2. Origin of uncertainties in RANS turbulence models

Due to the turbulence closure problem and the absence of the fluctuating quantities
in RANS simulations, turbulence (closure) models have to be introduced to account
for the mean transport and dissipation of momentum induced by turbulence. Over the
past century, researchers have developed and applied a wide range of turbulence models
from simple algebraic relationships in order to approximate the Reynolds stresses to the
most complex Reynolds Stress Models (RSMs) [161, 123]. Besides their mathematical
complexity, turbulence models differ by their model parameters, also known as the
coefficients. Because the adequate representation of turbulence is crucial for the accuracy
of RANS simulations, functional extensions based on available models and recalibration
of existing parameters have inevitably led to a variety of different models with individual
advantages for specific purposes [155]. However, the turbulence modeling community has
not managed to develop a single model that generalizes across the complete variety of
applications. Apparently, the simpler the model (structure, terms and parameters), the
more universal is its application purposes®. Conversely, increasing a model’s accuracy for
specific application necessitates greater complexity in general, which can diminish both
its universality and comprehensibility.

Consequently, each model features its own advantages and drawbacks with respect to
modeling accuracy and applicability. The drawbacks are mainly caused by simplifying
assumptions during the formulation of RANS closures. Duraisamy et al. [29] summarized
and classified these simplifications into four levels:

Level 1 Reynolds-averaging [J in combination with the non-linearity of the Navier-Stokes
equations (indicated as N (+)) leads to N () # N (%) bringing along the turbulence
closure problem. The resultant loss of information is due to the fact that there
are infinitely many realizations of the flow field compatible with the averaged
flow field by dropping the fluctuating parts. This unavoidably causes uncertainty
that is even irrecoverable.

Level 2 When neglecting the modeling of the turbulent heat flux for illustration purposes,

the only modeled term in N (-) is the Reynolds stress tensor T approximated via

'To be precise: The numerical solution process of the steady RANS equations require the replacement
of the physical time by a cell-local pseudo-time, which is locally evaluated based on the Courant-Friedrichs-
Lewy (CFL) number [9].

2 Although the accuracy of a simpler model may suffer for certain specific applications, which can
also limit its actual application rangefrom the perspective of CFD users.
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Level 1: Level 2: Level 3: Leveld:
Uncertainty due  Uncertainty due Uncertainty in Uncertainty in
to averaging to representation functional form parameters

N() N #N(E) M(m)~T M (m; T (m)) M (m; T (m);c)

Degree of empiricism — Possibility for model diversity

Figure 3.1.: Sources of uncertainty in RANS turbulence models at different levels according
to Duraisamy et al. [29].

some model M:
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In general, the Reynolds stress tensor is approximated as a function of a set of
mean flow variables m based on the solution of the RANS equations indicated
as M (m). This necessary choice of representing the microscopic scale (higher-
order statistical moments of fluctuating velocity components) with respect to the
macroscopic (low-order) averaged states introduces additional uncertainty.

Level 3 Selecting a specific functional form for the relationship between the Reynolds
stresses and certain mean flow quantities adds another source of uncertainty.
This typically involves transport equations accounting for convection, production,
dissipation and certain redistribution of turbulent quantities, denoted here as
T (m). The effects of the modeled Reynolds stresses on the RANS equations are
derived from the solutions of the transport equations, consequently the model

reads M (m; T (m)).

Level 4 Given the specific functional form of the turbulence model (such as transport
equations), a set of parameters ¢ must be determined. In general, these parameters
are calibrated for certain flow scenarios, which incorporates further uncertainty.

These levels, arranged from the general set of the Navier-Stokes equations A (-) to the
final model M (m;T (m);c), are illustrated in Fig. 3.1. The increase in empiricism from
Level 1 to Level 4 is associated with a growing range of potential turbulence model
formulations (model diversity). Examples for Level 2 to Level 4 are given in Section 3.3,
when introducing the linear eddy viscosity assumption to close the set of equations.

While the first level is hard to assess, most of the published research focuses on the
quantification of the uncertainties related to the representation of the Reynolds stresses as
a function of the mean flow field (Level 2) and the uncertainties arising due to the chosen
functional form (Level 3) and parameters (Level 4) of a particular model. Therefore, it is
convenient to call Level 2 structural (model-form) uncertainty and Level 4 parametric
uncertainty. Level 3 can be considered either as model-form or parametric uncertainty,
depending on the method of accounting for it. Both uncertainties are epistemic in nature,
as they stem from a lack of knowledge (see classification of uncertainties in Section 2.2).
Thus, deeper understanding of turbulent flow physics could help to formulate more
accurate functional representations, while increased availability of a vast amount of
calibration data for the turbulence model’s coefficients would lead to better fit Qol.
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True T RANS-model predicted 7

Solution space explored by

Solution space explored by a parametric approach
a non-parametric approach

Figure 3.2.: Conceptual difference of non-parametric and parametric approaches for as-
sessing the uncertainty of RANS turbulence modeling to explore the possible
solution space of the Reynolds stress tensor, inspired by Xiao and Cinnella
[169] and Soize [142].

Xiao and Cinnella [169] comprehensively reviewed the available literature on UQ in RANS
simulations. Parametric approaches primary denote methods to assess the uncertainty in
turbulence models by focusing on the sensitivity of Qol to closure coefficients. Although
the uncertainty is classified to be epistemic and not aleatoric nature, parametric approaches
generally rely on defining probabilistic distributions, random sampling methods (Monte
Carlo methods and all of their variants) and/or statistical inference.

Given the epistemic nature of turbulence model uncertainty, multi-model approaches
acknowledge the strengths and weaknesses of each model, addressing uncertainty by
employing a variety of models [124, 150]. Instead of just ensemble averaging individual
predictions of multiple models, Bayesian statistical techniques may also help to provide a
data-informed estimation on the modeling uncertainty, if accurate data for certain Qol is
available [63]. In addition to parametric and multi-model approaches, non-parametric
approaches aim to account for the model-form uncertainty. According to Xiao and
Cinnella [169], non-parametric approaches are expected to contribute more significantly
to the overall turbulence model uncertainty than parametric approaches, as the possible
solution space of the Reynolds stress tensor explored by parametric approaches is a
subset of the solution space obtained via non-parametric ones, illustrated schematically
in Fig. 3.2. This is because approaches trying to judge the sensitivity with respect to
closure coefficients always rely on an unchanged structural form of the turbulence model.
Although the goal is to design non-parametric approaches, which are able to sample
from the possible solution space enveloping the true Reynolds stress tensor, it cannot be
guaranteed in general. More importantly, from a CFD practitioner’s point of view, in
the context of RANS simulations, certain true Qol, such as e.g. pressure and velocity
distributions, cannot be expected to be enveloped by the sampled solution space of the
Reynolds stress tensor®. As the goal of this thesis is to investigate a non-parametric
approach to sample from the physically plausible solution space of the Reynolds stress
tensor, it is reasonable to introduce the major source of the model-form uncertainty in
industry relevant turbulence models in the following.

3Focusing on the solution space for certain Qol: The true data point for certain Qol (not for T
as illustrated in Fig. 3.2) might also be located outside of the possible solution space spanned by a
non-parametric approach. Finally, this will be addressed retrospectively in Section 8.2.1 and Section 9.1
for the chosen EPF in this thesis.
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3.3. Closure via linear eddy viscosity assumption

Except for RSMs that solve transport equations for each individual Reynolds stress
component?, most of the available approaches apply the eddy viscosity hypothesis relying
on the Boussinesq approximation [161|. The Boussinesq approximation states that the
deviatoric part of the Reynolds stress tensor scaled by k, known as the anisotropy tensor,
Tij 2
- 35”, (3.16)
can be computed in analogy to the viscous stresses (see Eq. (3.4)%), introducing a turbulent
eddy viscosity vp°

Qi5 =

1 2
Tij = —2vr (Sz] - 35kk51]> + gk‘éw , (317)
given the mean strain-rate tensor S;; = 5 (g;- + 5,7 ). Hence, the relationship in
J i

Eq. (3.17) introduces Level 2 uncertainty and shifts the closure of the RANS equations
to the adequate determination of the turbulent eddy viscosity by the imposed relations of
the turbulence model. Turbulence models that rely on this linear assumption between the
anisotropic part of the Reynolds stress and traceless strain-rate tensor Si; = Si; — %5@‘
are called Linear Eddy Viscosity Models (LEVMs).

Within the scope of this thesis, a two-equation turbulence model, which solves transport
equations for the turbulent kinetic energy and for the turbulent dissipation rate, is
considered. This type of model forms the simplest but complete turbulence model that
can be applied without prior knowledge of the flow” [161]. By taking the trace of the
transport equation of the Reynolds stresses, which manifest from the momentum equation,
the transport equation for the turbulent kinetic energy can be derived following the
notation of Wilcox [161]

0 0
— (pk) +—=— (pU,k
- 1 _o o (3.18)
= pPy — pe + 873:3 ojiul — §pu;.’u;’u;’ — p’u;,’ — u”a—xi +p’a—$’i .
The last two terms on the right hand side (pressure work W% and pressure dilatation
ou”

P’ gz-) vanish for incompressible flows with zero density fluctuations [161]. However, they
are usually neglected also for compressible flows, as considered in this thesis.
The molecular diffusion can be expressed exactly via
ok

v
p Bz
while the sum of the turbulent transport and the pressure diffusion behave similar to
gradient diffusion, leading to a model of the form [161]

(3.19)

o —
Oj4il; =

J

4RSMs also solve an equation for a quantity such as the turbulent dissipation rate, which accounts
for the length or timescale of turbulence.

"Equation (3.4) is also valid in an adapted form for o;; in the Favre-averaged equations.

5For simplicity, pr = pvr is also referred to as turbulent eddy viscosity in the scope of this thesis, in
analogy to the molecular viscosity, while v has identical units as the kinematic viscosity.

"As algebraic or one-equation models, which only account for the transport of turbulent kinetic
energy, require specification of the turbulent length scale in advance, associated with a certain turbulent
dissipation given the turbulent kinetic energy.
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The remaining terms in Eq. (3.18) are the turbulence production

oU;

Pk = —Tii=—
ia..
0z

(3.21)

which can be modeled by inserting the Boussinesq approximation from Eq. (3.17) for 75,
and the dissipation
ou
€E=0j— . 3.22

Jt 833j ( )
The reason for solving a second transport equation is to model the dissipation of the
turbulent kinetic energy equation. Although, it is possible to derive an exact transport
equation for €, for the scope of this thesis it suffices to note that the general formulation

of this transport equation also features production, dissipation and diffusion terms®.

Based on the early observations and developments by Kolmogorov [77], the use of the
specific turbulent dissipation rate w o €/k has been established that still forms the foun-
dation of daily turbomachinery designs. Consequently, the dissipation of k in Eq. (3.22)
is approximated via € < kw (with some model-specific constant of proportionality) and
the need to solve an additional transport equation for w. The final closure of the RANS
equations is done via v « k/w. The constant of proportionality depends on the specific
choice of the turbulence model and is one of many examples of introducing Level 4
uncertainty, whereas the formulation of the transport equations of the model, such as
Eq. (3.18), already introduces Level 3 uncertainty. Throughout this thesis, the Menter
SST k-w turbulence model [104] is used as the underlying baseline model.

3.4. Need for quantifying the intrinsic uncertainties in RANS
models

Although the linear relationship of LEVMs does not always hold true in reality [135],
these models are commonly used in industrial turbomachinery design processes. Generally,
the underlying turbulence for these kind of applications cannot be characterised by a
linear relationship of the Reynolds stress tensor with the mean strain-rate tensor (see
resulting Reynolds stress tensor in Eq. (3.17)). Hence, this simplification results in
limited accuracy for flows featuring streamline curvature |23, 78] and mean rotation |5,
84, 143|. Furthermore, LEVMs fail to accurately predict flows with separation and
reattachment [89]. Due to the linear relationship, these models cannot account for
differences in normal Reynolds stresses, leading to an inability to predict the formation
of turbulence-driven secondary flows in fully developed turbulent flow through pipes
with non-circular cross sections [145, 109]. The flow inside turbomachinery is far beyond
generic turbulent boundary layers, being dominated by interactions of vortex systems,
such as the horse shoe, passage and tip leakage vortex, as well as secondary flows
(e.g. corner separations) [81]. Monier et al. [110] demonstrated that there is significant
misalignment of the Reynolds stress and strain-rate tensors in compressor secondary flow
regions. Besides, the accuracy in predicting turbomachinery relevant design parameters,
such as the compressor stall margin and the overall efficiency, is heavily influenced by
the capabilities and limitations of turbulence models [25]. Consequently, the unknown
epistemic uncertainty of the turbulence model represents a major contributor to the
applied safety margins in turbomachinery designs. The violation of the linear constitutive
relation of LEVMs with subsequent necessary increase of safety factors becomes even more

8The exact derivation can be found in textbooks [161, 123].
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prominent in light of future turbomachinery components, aiming for drastic designs [156].
That is because RANS models show reduced accuracy as soon as their validation range is
left. To conclude, the Boussinesq approximation in Eq. (3.17) is a common example of
introducing significant amount of uncertainty by choosing a functional relationship that
does not coincide with actual turbulence, particularly regarding the underlying Reynolds
stress tensor and its effect on the mean flow. This underscores the need to account for
the model-form uncertainty of LEVMs.

3.5. Estimating uncertainty with the Reynolds stress tensor
perturbations

Researchers have employed various techniques and approaches to assess the model-form
uncertainty of RANS models (see detailed review of Xiao and Cinnella [169]). Some have
assessed the model-form uncertainty on a certain budget term of the transport equation
using field inversion techniques [139, 140, 10|, while others have presented the uncertainty
with respect to the turbulent eddy viscosity [28]|. Nevertheless, it seems to be even more
general to focus on the modeled quantities entering the RANS equations, which are the
Reynolds stresses itself. On the one hand, this approach is motivated by the fact that
trying to quantify the uncertainty of a budget term or the turbulent eddy viscosity may
result in accounting for parametric uncertainty, as their effects can be expressed via an
additional parameters in front of the respective terms. On the other hand and even
more importantly, both approaches still rely on the linear eddy viscosity assumption,
whereas targeting the Reynolds stress tensor is able to invalidate this assumption (see
also Fig. 3.2).

3.5.1. Overview of the fundamental concept and physical rationale of the
EPF

Emory et al. [33] pioneered the work in accounting for the inherent model-form uncertainty
based on turbulence modeling assumptions by exploring the possible eigenspace of the
Reynolds stress tensor. He and his co-workers in the group of Prof. laccarino at Stanford
University aimed to create enveloping models by deriving physics-based bounds for the
Reynolds stress tensor. In this vein, they postulated that the perturbations of the
eigenspace of the Reynolds stress tensor can help to overcome the potential bias induced
by the assumptions of LEVMs. The final uncertainty for certain Qol is deduced? from
selective sampling from the perturbed simulations. Hence, the EPF primarily serves as a
tool to assess the sensitivity of the results with respect to the eigenspace of the Reynolds
stress tensor (in other words: with respect to turbulence anisotropy), a task that is
acknowledged as unfeasible for unperturbed, baseline RANS models. The underlying idea
forms the basis of the current work presented in this thesis. Although the method is
described in any of the following chapters, as they represent individual publications on
their own, the brief concept is described subsequently.

9As outlined and justified in the conclusion section (Section 9.1) of this thesis, estimated would be a
more appropriate description.
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As the deviatoric part (anisotropy tensor a;;) of the Reynolds stress tensor forms a real
symmetric tensor!?, the spectral decomposition

2 2
Tij = k (aij + 3(51']') =k <UinAnlUjl + 35ij> (3.23)

serves as the starting point, with the eigenvectors vy being column-wise ordered in v;,
and the traceless diagonal matrix A,; containing the corresponding eigenvalues A\; of
aijn.

The perturbation of the Reynolds stress tensor aims to systematically introduce physically
constrained modifications to the eigenvalues, eigenvectors and turbulent kinetic energy,

resulting in a perturbed Reynolds stress tensor

Initially, as the Reynolds stress tensor has to fulfill the realizability constraints by Schu-
mann [136], the most straightforward perturbation can be done for the eigenvalues using
the transformation from the eigenvalues of the anisotropy tensor onto barycentric coordi-
nates and exploiting the derived bounding properties of them [4]. Consequently, Emory
et al. [33, 34] selected the limiting states of turbulence componentiality (the isotropic limit
(3C), the two-component axisymmetric limit (2C) and the one-component limit (1C)) [93]
to be the target states for the eigenvalue perturbation. These limiting states are special
points as 1C, 2C and 3C represent the number (1, 2 and 3) of non-zero eigenvalues, while
2C and 3C further correspond to two or all eigenvalues of the Reynolds stress tensor
being equal (see details in Table 5.1). In reality, turbulence tends to be 2C in the vicinity
of walls, whereas 3C turbulence is commonly present outside of boundary layers and in
undisturbed free flow regions [151]. Separated shear layers, for example, are represented
by Reynolds stress tensors having only one non-zero eigenvalue (1C) [42]. In-depth
information on the realizability of Reynolds stresses, implications on the eigenspace
and its representation in invariant maps (such as barycentric coordinates) and tensor
visualization can be found in Chapter 5.

The perturbed eigenvalues are obtained by a relative shift using a relative perturbation
magnitude Ap € [0, 1] according to

Af = (1 — AB) A+ AB)‘(t;) , (325)

while
Ay € {A1c, Aac; Asc} (3.26)

represents the eigenvalues at the 1C, 2C or 3C limiting state of turbulence (see Table 5.1).

Since the eigenbasis (set of eigenvectors) of the anisotropy tensor a are modeled to coincide
with the ones of the strain-rate tensor S, due to the linear eddy viscosity assumption
in Eq. (3.17), it is reasonable to account for this by introducing perturbations to them
as well. While Thompson et al. [152] used the Reynolds stress transport equations to
constrain the eigenvector perturbations, laccarino et al. [66] suggested to exploit the
boundedness of the turbulence production term (see Eq. (3.21)) in order to modify the
eigenvectors. Essentially, two extreme states (minimum and maximum) of the turbulence

10The Reynolds stress and the strain-rate tensor are symmetric as well, hence they can also be
diagonalized using their eigenvectors, which form an orthogonal matrix.

"For completeness: Every combination of vg and A satisfy the eigenvalue and eigenvector problem
avg = \pvg for k=1,2,3.
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production term can be achieved by modifying the orientation of the Reynolds stress
tensor’s eigenvectors. Nevertheless, the derivations in Chapter 6 prove that the lower limit
of the turbulence production may lead to implausible Reynolds stress tensor dynamics.
Hence, this thesis suggests the perturbation of the eigenvectors via a rotation matrix

cos(a) + v3, (1 — cos(a)) v21092(1 — cos()) — a3 sin(«)
R = [ v21v22(1 — cos(a)) + vog sin(a) cos(a) + v35(1 — cos(a))
v21023(1 — cos()) — veg sin(a) waova3(1l — cos(ar)) + vaq sin(a)

v21v23(1 — cos(a)) + va2 sin(a)
v92v23(1 — cos(a)) — vorsin(a) | , (3.27)
cos(a) + v35(1 — cos(a))

describing a rotation around the second eigenvector vg = (va1, v22,v23) with an angle
a € [0, 7/4]. Hence, the eigenvector matrix v is rotated (perturbed) according to

v =Rv. (3.28)

A detailed motivation and derivations for the above mentioned equations and the proposed
limitation on «, which is a major novelty of this work, are given in Chapter 6.

Unfortunately, there are no physical bounds for the turbulent kinetic energy level. However,
studies by laccarino et al. [66] and Gorlé et al. [53, 56| revealed that the turbulence
production Py is dependent on the eigenvalues and eigenvectors of the Reynolds stress
tensor, respectively of the anisotropy tensor. A summary is presented in Appendix B
to support understanding and provide context in this thesis. Consequently, the indirect
manipulation of the actual turbulence level by changing the eigenvalues and eigenvectors
of the Reynolds stress tensor became state-of-the-art, leading to the fact that k* = k in
Eq. (3.24).

To interpret the presented results in this thesis, a thorough understanding of the physical
rationale behind the eigenspace perturbation of the Reynolds stress tensor is essential.
Mishra and Iaccarino [106] have conducted pioneering research on this topic. While the
details pertinent to the analysis in this thesis are outlined in Appendix C, the summary
of the physical rational of the EPF is provided below. Symbolically, in the principal axes
of the strain-rate tensor, the anisotropy tensor under eigenvalue perturbation applied to
LEVMs can be expressed as

0 0 0
a’[posg = — 2’% (1-Ap)T +Ap |0 6, 0¥, (3.29)

scalar

~
diagonal tensor

while —29F (1 — Ap) is a scalar, the entries of the diagonal tensor are 0 and ¥~ is
the eigenvalue matrix of the traceless strain-rate tensor (see Appendix C.1 for detailed
derivation). As each 6y can have a different value, the eigenvalue perturbation is able to
change the isotropic LEVM to an orthotropic eddy viscosity model, assigning different
scalars analogous to varying turbulent eddy viscosities along the principal axes of the
anisotropy tensor'?. This is highlighted in Fig. 3.3c, as the anisotropy tensor is scaled
differently along each eigenvector direction, resulting in a distorted ellipsoid compared to
the traceless strain-rate tensor. In contrast, Fig. 3.3b shows the ellipsoid of the anisotropy

2The principal axes (eigenvectors) of the anisotropy tensor coincide with the ones of the Reynolds
stress tensor per definition.
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(a) Traceless strain-rate tensor (b) Anisotropy tensor resulting from the lin-
ear eddy viscosity hypothesis (Boussi-
nesq assumption) in Eq. (3.17)

(c) Resulting anisotropy tensor under (d) Resulting anisotropy tensor under eigenvector pertur-
eigenvalue perturbation according to bation according to Eq. (3.28) (see also Eq. (3.31))
Eq. (3.25) (see also Eq. (3.29))

Figure 3.3.: Schematic representation of the relationship between anisotropy a (gray) and
the traceless strain-rate tensor S~ (orange) in the eigenbasis defined by the
eigenvectors v;. As a and ST are not positive semi-definite, the magnitude
of the eigenvalues \; and 1), is plotted according to Kratz et al. [79]. The
Reynolds stress tensor featuring identical principal axes as the anisotropy
tensor behaves in similar manner as the anisotropy tensor.

tensor that is based on the Boussinesq assumption (see Eq. (3.17)) following the linear

dependency
vr .
A= =2t fori=1,2,3 (3.30)

between the eigenvalues of the anisotropy tensor and the ones of the traceless strain-rate
tensor in Fig. 3.3a'3.

13The negative correlation between \; and 9, results in the change of the eigenvalue order corre-
sponding to the ordered eigenvectors of the anisotropy tensor v;.
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Figure 3.4.: Representation of the eigenvalue perturbation within the ABM and its effect
on the shape of the Reynolds stress tensor ellipsoid. The eigenvalue pertur-
bation towards the 2C limiting state is shown exemplarily.

According to the derivations in Appendix C.2, the perturbed anisotropy tensor under
eigenvector rotation in the principal axes of the strain-rate tensor can be written as

a*|pcs, = —Q%G\P_GT . (3.31)
As G, resulting from the tensor rotation, is typically not a diagonal matrix, the anisotropy
tensor in the principal axes of the strain-rate tensor contains off-diagonal elements under
eigenvector perturbation. That implies that the eigenvector perturbation is able to mimic
an anisotropic eddy viscosity. For illustration purposes, Fig. 3.3d shows the schematically
effect of an arbitrary rotation of the anisotropy tensor.

3.5.2. Demonstration of the core functionality and credibility of the EPF

This section aims to demonstrate the functionality of the described eigenspace perturbation
approach and substantiate its credibility in applying selective perturbations to the
Reynolds stress tensor to account for its model-form uncertainty, when there is actually
an infinite number of realizations. The primary questions to be addressed are as follows:

1. How do the Qol respond to variations in the perturbation magnitude of the eigenval-
ues, represented by the relative perturbation parameter Ap, and the eigenvectors,
represented by the rotation angle a7

2. Why is it reasonable to target the limiting states of turbulence componentiality,
1C, 2C and 3C, as representative states for estimating the model-form uncertainty
of the Reynolds stress tensor?

Building on the introduced idea and theoretical foundation of the EPF outlined in
Section 3.5.1, the imposed physical constraints of realizable Reynolds stress tensors, and
anisotropy tensors respectively, can be used to derive the Anisotropy Barycentric Map
(ABM) of physically feasible states (see Fig. 3.4). Banerjee et al. [4] and Terentiev [151]
introduced barycentric coordinates

1 3 .
€T = §$1C ()\1 — )\2) “+ Toc ()\2 — /\3) + X3¢ <2>\3 + 1) with A1 > Ao > A3 (3.32)
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based on the eigenvalues of the Reynolds stress anisotropy tensor. The barycentric
coordinate vector & describes any state inside the barycentric triangle bounded by
the limiting states of turbulence componentiality. This representation enables a linear
interpolation of the barycentric coordinates with respect to the eigenvalues and equal
weighting applied to these limiting states.

The perturbation of eigenvalues, as defined in Eq. (3.25), can be expressed as a relative
shift in barycentric coordinates according to

Tzt =x+ Ap (m(t) — as) with Ap € [0,1] and x () € {z1c, T20, T3c} - (3.33)
Figure 3.4 visualizes the perturbation towards the 2C limiting state.

In order to exemplify the EPF’s functionality and to answer the questions raised above, the
generic test case of the converging-diverging channel, investigated by Laval and Marquillie
[85]'4, is considered. First of all, the effect of Ap, the relative shift of the eigenvalues of
the anisotropy tensor towards the corners of the barycentric triangle, on the streamwise
velocity profiles of the converging-diverging channel is investigated to address the first
part of the first question in this section. Ten simulations are conducted with eigenvalue
perturbations targeting for 1C, using Ap = [0.1,0.2,0.3,...,1.0], and compared against
a baseline RANS simulation using the unperturbed Menter SST model'®. The resulting
barycentric coordinates of the perturbed Reynolds stress tensor are presented in Fig. 3.5a,
while the corresponding streamwise velocity profiles are shown in Fig. 3.5b. By increasing
the perturbation strength starting from the baseline simulation without any Reynolds
stress tensor modification, the deformation of the velocity profiles becomes stronger.
Notably, enlarged views at specific locations in the converging-diverging channel (see
Fig. 3.5¢ to Fig. 3.5¢) highlight the transition of the velocity profiles, culminating in the
fully perturbed case at the 1C limiting state (applying Ap = 1). Although only the
perturbations towards the 1C state are shown here, targeting the other limiting states of
turbulence componentiality yields similar trends.

To answer the second question, whether the limiting states of turbulence are adequate
representatives to assess the uncertainty of the turbulence model, the barycentric triangle
is discretized into 55 states, as shown in Fig. 3.6a. These states correspond to specific and
individual eigenvalues of the anisotropy tensor, with samples 0, 45 and 54 representing the
limiting states 3C, 1C and 2C respectively, when using Ap = 1. Each state is propagated
in a perturbed RANS simulation of the converging-diverging channel and the effects
of each state on the streamwise velocity are evaluated in Fig. 3.6b to Fig. 3.6e. The
simulations propagating the eigenvalues corresponding to the sampled data points 0-5, 8,
9 and 14 failed to achieve sufficiently converged steady-state results due to their reducing
effect on the actual turbulence level caused by manipulating the turbulence production
term (see derived relationship in Appendix B). While the perturbations aiming for the 2C
(sample 54) and 1C (sample 45) corners show convergence using Ap = 1, the perturbation
towards the isotropic corner has to be adjusted iteratively by choosing Ap < 1. After
a discrete search by reducing Ap by 0.1, a converged simulation could be achieved for
Ap = 0.2 (see study in Section 6.4 for more information). In general, simulations featuring
barycentric coordinates close to the isotropic state increase the separated flow area at the
bottom wall, whereas most propagated anisotropic states of the Reynolds stress tensor
tend to reduce the separated region in the diverging section of the channel compared to

14 A detailed description and analysis of this test case are provided in Chapter 4 and Chapter 6. Hence,
this section focuses on the demonstration of the EPF.

The unperturbed baseline simulation is effectively equivalent to Ag = 0, although the numerical
procedures and solved equations differ slightly.
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3C

2C 1C
(a) Resulting barycentric coordinates; every data point indicates a single solution point of the simulation.

—— Baseline 1C, Ag=0.3 1C, A =0.6 — 1C, Ag=0.9
1C, Ag=0.1 1C, Ag=0.4 — 1C, Ag=0.7 — 1C, Ag=1.0
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(b) Streamwise velocity Ui inside the converging-diverging channel; Ui, ,,,, is the maximum streamwise
velocity of the baseline simulation at x/H=0.
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(c) Profile of Uy at x/H =3 (d) Profile of Uy at x/H =7 (e) Profile of Uy at /H =11

Figure 3.5.: Effect of Ap when targeting for the 1C limiting state on the solution of
the converging-diverging channel without modifying the eigenvectors of the
Reynolds stress tensor; legend in (b) applies also for (a), (c), (d) and (e).
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a) Sampled states of the anisotropy tensor represented by barycentric coordinates; brown data points
S led states of the anisot t ted by b. tri dinates; b dat int
(circles) lack convergence, while gray data points (crosses) are shown in (b), (c), (d) and (e).

—— Baseline — 1C, Ag=1.0
Sampled barycentric coordinates — 2C,Ag=1.0
—— 3C,Ag=0.2
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(b) Streamwise velocity U; inside the converging-diverging channel; Uy, ..., is the maximum streamwise
velocity of the baseline simulation at xz/H=0.
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(c) Profile of Uy at «/H =3 (d) Profile of Uy at x/H =7 (e) Profile of Uy at z/H =11

Figure 3.6.: Effect of sampled states inside the barycentric triangle on the solution of
the converging-diverging channel without modifying the eigenvectors of the
Reynolds stress tensor; legend in (b) applies also for (c), (d) and (e).
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—— Baseline 1C, Ag=1.0, a=m/20
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(a) Streamwise velocity U inside the converging-diverging channel; Uiy .., is the maximum streamwise
velocity of the baseline simulation at z/H=0.
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(b) Profile of Uy at ©/H =7

Figure 3.7.: Effect of a@ when perturbing the eigenvalues to the 1C limiting state on the
solution of the converging-diverging channel; legend in (a) applies also for

(b).

the unperturbed Menter SST model. The 1C state exhibits the most significant gradient
of the streamwise velocity at the wall, eliminating flow separation across the entire
computational domain. The presented study demonstrates that simulations targeting
the limiting states of componentiality (1C, 2C and 3C) effectively estimate the range
of observed Qol in the majority of locations (x and y positions of 1D profiles) without
necessitating full discretization of the ABM!6. Nevertheless, there are some areas where
other sampled perturbations (not the states at the corners of the barycentric triangle)
or the baseline simulation form the bound on the streamwise velocity profiles, e.g. in
Fig. 3.6d, where the unperturbed baseline result forms an upper bound at y/H ~ 0.63
(see remarks at the end of this section).

16This investigation is limited due to the fact, that it was aimed to propagate the identical barycentric
state in the entire computational domain in each simulation. However, this study was also supported by
additional stochastic experiments, involving random states within the barycentric triangle for each grid
cell, leading to some intermediate result with respect to the streamwise velocity profiles. Since it was
and can only be exploratory nature, and there is an infinite number of possible combinations, it is not
shown in this thesis.
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To finally also address the second part of the first raised question regarding the effect of
the amount of eigenvector rotation, the angle of rotation around the second eigenvector
is varied while the eigenvalues are perturbed towards the 1C corner using Ap = 1. As
described in Section 3.5.1, the modification of the eigenvectors according to Eq. (3.28)
decreases the turbulence production term and consequently the actual level of turbulent
kinetic energy. The impact of eigenvector rotation on the streamwise velocity profiles of
the converging-diverging channel is presented in Fig. 3.7. As « increases, the gradient
of the velocity profiles at the walls decreases, forming rounder profiles. However, it is
impossible to increase the angle of rotation beyond 7/10, because of convergence issues
similar to those encountered when approaching the isotropic state of the Reynolds stress
tensor (see derivations and study in Chapter 6 for detailed information).

The presented studies evaluate the effect of perturbing the Reynolds stress tensor and
the impact of various anisotropic states. Thus, this analysis provides credibility in the
EPF building on a few selective perturbations based on these observations. A user
of the framework is equipped with the ability to obtain the most deviating results
from an unperturbed RANS baseline simulation by applying the largest amount of
perturbations possible (within the limits of numerical convergence), resulting in the most
conservative uncertainty consideration for Qol. Therefore, this thesis proposes to use the
three perturbations towards the limiting states of turbulence componentiality combined
with a maximum possible rotation of the Reynolds stress tensor to assess the uncertainty
in RANS turbulence modeling. Finally, while this analysis focuses on a single Qol, similar
conclusions can be drawn for other Qol. Although, as will be examined in the following
chapters, there is no linear relationship between any Qol and these perturbations due to
the nature of the set of equations. Consequently, it cannot be assured, that the selective
perturbations always (at every location and for every Qol) provide the bounds (minimum
and maximum values) for certain Qol.

3.5.3. Literature review of the applications of the eigenspace perturbations
and their fundamentals

As the Reynolds stress tensor perturbation is often described as being interpretable,
physics-based and physics-constrained at the same time, the basic concept of the methodol-
ogy has been integrated into various CFD solvers, like ANSYS Fluent [30], OpenFoam [24]
and SU2 [107]. With this said, the methodology was applied in multiple engineering
applications such as aircraft nozzle jets [105], turbomachinery [35, 125|, aircraft wing-
body configuration [113], civil structural design [55, 80| and wind farm design [31, 64, 32].
Different research focused on the uncertainty estimation of heat transfer [58] and even
extended the framework to determine the uncertainty of turbulent scalar flux models [52].
Other researchers applied the eigenspace perturbation framework to create reliable en-
gineering designs in design optimizations (DUU) [22, 125, 108, 51, 87]. While many
applications typically assume ideal gas properties and incompressible flow conditions,
Gori [49] applied the framework to non-ideal compressible flow. Most of the applications
used fully turbulent RANS simulations, but Chu et al. [18, 19] applied the eigenvalue
perturbation in transitional flows, which required the coupling with a dedicated transition
model. Furthermore, Gori et al. [50] analyzed the sensitivity of the estimated uncertainties
with respect to time and space resolution.

Even though, marker functions can be used for identifying flow regions within the
simulation domain that are prone to inaccurate model-predictions to apply derived non-
uniform perturbations |36, 54|, the majority of researchers have favored the usage of
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a uniform but relative perturbation magnitude (Ap) for the eigenvalue perturbation.
However, Huang et al. [65] introduced a novel approach by prescribing an absolute
perturbation radius within the barycentric triangle, offering a distinct distance for the
perturbations towards every turbulent target state. Adopting the concept of non-uniform,
local perturbations, researchers also tried to improve the uncertainty estimation based
on the eigenspace perturbation framework by adding data-driven machine learning
techniques [61, 32|. Recently, Bidar et al. |7] applied the EPF to appropriately place
probes at locations showing increased sensitivity with respect to changes in Reynolds
stress tensor’s eigenspace. By doing this, they were able to significantly reduce the
amount of probe data points needed in order to correct the turbulence model using
field inversion techniques. Moreover, other researchers aimed to broadening the view
of the overall uncertainty in CFD by accounting for mixed aleatoric (e.g. boundary
conditions) and epistemic (turbulence model) uncertainties in conjunction with the
eigenspace perturbations [55, 57].

As the fundamentals of the eigenspace perturbation, which is the actual representation
of the Reynolds stress tensor in its eigenspace, inspired another research group around
Prof. Xiao to focus on Bayesian statistics to infer posterior distributions of the Reynolds
stresses based on available observation data for Qol [170, 163]. Furthermore, they applied
random matrix approaches relying on the realizability constraints, where the uncertainties
are directly injected into the Reynolds stress tensor [159, 171]. Last but not least, the
eigenspace decomposition of the Reynolds stress tensor was used to achieve more accurate
RANS predictions with the help of machine learning [153, 165, 166, 69|, keeping in mind
the ill-conditioning of the RANS equations [167, 13|.

3.5.4. Details on the implementation in TRACE

The schematic of the implemented EPF in the solver suite TRACE is presented in Fig. 3.8.
The perturbation of the eigenspace happens every iteration, representing the pseudo-time
for the considered steady RANS computation, on a cell-by-cell basis. The calculation
of the turbulent eddy viscosity vt follows the solution of the RANS equations and the
subsequent update of the turbulence model’s transport equations for £ and w. Using the
turbulence quantities k£ and v in combination with the velocity gradients, the anisotropy
tensor a can be determined, relying on Eq. (3.13) and Eq. (3.16). The eigenvalue problem
is efficiently solved using the LAPACK library [2]. In order to obtain perturbed spectral
properties, the EPF requires a couple of inputs, which are normally based on user decisions.
But, as shown in Chapter 4, the inputs can also be prescribed by any kind of machine
learning model. The determination of perturbed eigenvalues requires the selection of
the target state with respect to the turbulence componentiality (1C, 2C, 3C) and the
amount of altering the eigenvalues towards these special states. The latter is done via a
relative perturbation magnitude Ap, ranging from 0 to 1, according to Eq. (3.25). Based
on the derivations in Chapter 6, the latest version of the implementation of the EPF in
TRACE requires a rotation angle «v in order to rotate A around the second eigenvector!”.
Once the eigenspace has been perturbed, the reconstruction of the anisotropy and the
Reynolds stress tensor is performed according to Eq. (3.24) by setting &* = k. The
perturbed Reynolds stress tensor essentially affects the subsequent solution step of the
set of equations via two contributions:

17"The implementation used for the simulations in Chapter 4 and Chapter 5 relied on the suggested
implementation by laccarino et al. [66]. However, as shown in Chapter 6, their approach is equivalent to
choosing o = 7/2.
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e Because of the similarity of the viscous and the turbulent stresses modeled via the
Boussinesq assumption (compare Eq. (3.4) and Eq. (3.17)), LEVMs usually consider
only the deviatoric part of the Reynolds stress tensor (neglecting the main diagonal
entries 2/3k). Thus, the eddy viscosity is added to the dynamic viscosity of the
fluid resulting in an effective viscosity'®. However, when the EPF is applied, the
Reynolds stresses occurring in the Favre-averaged momentum and energy equation
are explicitly replaced by the available perturbed tensor, thus the main diagonal
entries of the Reynolds stress tensor are considered as well (see Hirsch [62] and
Blazek [9] for details). As TRACE solves the RANS equations using a cell-centered
finite-volume method, volume sources and fluxes over the surfaces of each control
volume contribute to the balance of the integral conservation formulation of the
RANS equations. Consequently, it is the viscous flux, consisting of the viscous
stress and the Reynolds stress tensor, which is updated using the EPF (see Fig. 3.8).
Although the transport equations of the turbulence model are still updated and
solved, the derived eddy viscosity does not directly affect the RANS equations
anymore. Solely, the eddy viscosity is used for the implicit part of the pseudo-time
derivative of the conservative variables of the momentum and energy equations, in
order to stabilize the numerics!®. As soon as the simulation reaches a converged
state, this implicit part is of no consequence and the solution is only affected by
the actual perturbed Reynolds stress tensor.

e The initially approximated relationship of the production term of the turbulent

kinetic energy transport equation is based on the turbulent eddy viscosity and
velocity gradients according to Menter et al. [104]. Relying on the actual perturbed
Reynolds stresses in the EPF replaces this approximated relationship by the exact
formulation in Eq. (3.21).
According to Wilcox [161], negative source terms of the turbulence model’s trans-
port equations are linearized, while positive ones are treated explicitly. Although
the eigenvector rotation, developed in Chapter 6, is derived to prevent negative
contributions of P in boundary layers, the turbulence production term can become
negative in principle. Hence, the turbulence production term needs to be linearized.
Similar to the procedure proposed by Morsbach [112], differentiating the production
term with respect to pk leads to the linearized contribution

opP; 9 (‘Pﬁ}&j) B .2
(Opk) (dpk) == <aij + 35w> Sij - (3.34)

The production limiter proposed by Menter et al. [104]?° for stagnation regions,
limiting the actual production term to ten times the destruction term of the k
transport equations, is retained in the current implementation.

Although the implemented EPF perturbs the Reynolds stress tensor on a cell-by-cell
basis, some adjustments have to be included at the boundaries as well. As the framework
is implemented in TRACE’s block-structured, cell-centered finite-volume code (see e.g.

18To be precise: This means that the pressure in the momentum equation is now represented by p+ % pk
[6]. However, the turbulent kinetic energy contribution is neglected, when considering unperturbed
LEVMs in TRACE.

'9As the consideration of perturbed Reynolds stresses is similar to the incorporation of Reynolds
stresses originating from RSMs; details on the implementation in TRACE are given by Morsbach [112].

2OMenter [103] postulated earlier that he carefully tested the limitation. He came to the conclusion
that the actual production reaches a maximum level of two times the destruction term inside shear layers
even for complex flows.
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Section 7.3.2 for some details on the applied methods), it requires the specification of
values in neighboring grid cells outside of the computational domain, called ghost cells [62]:

e Inflow/Outflow/Far-field /Mixing plane In order to obtain net zero viscous
fluxes due to the perturbed Reynolds stress tensor for these interfaces, its val-
ues in these outer ghost cells are set to the identical ones as for the inner cells.
The respective boundary conditions for k and w of the underlying turbulence
model remain unchanged at the outer boundaries of the computational domain
(inlet/outlet/far-field). At mixing planes, representing the interfaces between ro-
tating and non-rotating components used for many steady RANS studies [25], the
turbulent transport quantities £ and w are circumferentially averaged at defined
radial positions and communicated to the downstream component.

¢ Rotational periodic boundaries/non-matching (zonal) interfaces If neigh-
boring panels for rotational configurations are considered, the perturbed Reynolds
stresses require special treatment due to the tensor properties. Therefore, the values
in the respective ghost cells are computed via a base transformation between these
panels, similar to the implementation for RSMs by Morsbach [112].

e Solid walls Because of the no slip condition at solid wall boundaries, all the
components of the Reynolds stress tensor are set to zero at the wall.
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Abstract

In order to achieve a virtual certification process and robust designs for turbomachinery,
the uncertainty bounds for CFD have to be known. The formulation of turbulence closure
models implies a major source of the overall uncertainty of RANS simulations. We discuss
the common practice of applying a physics-constrained eigenspace perturbation of the
Reynolds stress tensor in order to account for the model-form uncertainty of turbulence
models. Since the basic methodology often leads to overly generous uncertainty estimates,
we extend a recent approach of adding a machine learning strategy. The application of a
data-driven method is motivated by striving for the detection of flow regions that are
prone to suffer from a lack of turbulence model prediction accuracy. In this way any
user input related to choosing the degree of uncertainty is supposed to become obsolete.
This work especially investigates an approach, which tries to determine an a priori
estimation of prediction confidence, when there is no accurate data available to judge the
prediction. The flow around the NACA 4412 airfoil at near-stall conditions demonstrates
the successful application of the data-driven EPF. Furthermore, we especially highlight
the objectives and limitations of the underlying methodology.

4.1. Introduction

In previous times, engineering design applications tried to account for a variety of
uncertainties in CFD simulations by applying factors of safety, margins of safety and
levels of redundancy. Such heuristic methods need adjustments and recalibration for
each new configuration. They are also highly empirical, especially when applied to
innovative designs or new flow configurations. Nowadays, methodologies such as robust
design or reliability-based design have the possibility to preempt such methods. In recent
years, the interest in UQ, leading to more reliable simulation-based designs, has grown
significantly |71, 119, 36, 169].

As a compromise between computational time and accuracy, RANS-based turbulence
modeling is still the prevailing tool in industrial design of turbomachinery, as the replace-
ment of RANS by SRS, e.g. DNS or LES cannot be expected for design optimization

!Copyright Elsevier
37
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simulations in the near future. The derivation of the RANS equations reveals an unclosed
term, called the Reynolds stress tensor. This tensor has to be approximated in CFD
simulations by applying turbulence models. The prediction quality of the simulation is
highly dependent on the accuracy of the turbulence models. However, many RANS-based
models suffer from the inability to replicate fundamental turbulent processes. Throughout
this paper, we consider LEVMs, which are widely used for complex engineering flows,
by referring to RANS turbulence models. Due to simplifying assumptions used in the
formulation of such models, the turbulence model is one of the main limitations in striving
for the next generation of reliable, efficient and environmentally friendly design. These
simplifications are the result of data observation, physical intuition, engineering and
computational pragmatism, leading to a significant degree of epistemic uncertainty. Ac-
counting for the uncertainties that arise due to the structural form of the turbulence model
in RANS simulation is known to be the ’greatest challenge’ in CFD [172]. Nevertheless,
these epistemic uncertainties could, in principle, be reduced, by increasing knowledge
about turbulent processes, resulting in developing advanced models. This is contrary
to aleatory uncertainties, e.g. manufacturing tolerances or operating conditions, which
cannot be reduced and are not considered in the current work. Different approaches try
to account for the uncertainty of the turbulence model at different modeling levels [29].
Generally, one distinguishes between parametric and non-parametric approaches. While
the parametric uncertainties arise from the chosen closure coefficients and their calibra-
tion process, non-parametric methodologies directly investigate the uncertainties on the
modeled Reynolds stress tensor and its functional relationship. It is expected that the
possible solution space, with respect to the uncertainty of the turbulence model, is larger
for non-parametric approaches [169].

Taccarino and co-workers proposed an EPF, which is based on the inability of common
LEVMs to deal with Reynolds stress tensor anisotropy |34, 66]. This methodology belongs
to the non-parametric approaches, as it tries to account for the uncertainty due to the
closure model-form itself. The physical rationale of the EPF is discussed in-depth by
Mishra and Taccarino [106]|. It enables a designer to optimize components towards an
optimum design with less sensitivity to uncertainty. Successful application of DUU using
the perturbation framework was already presented by Mishra et al. [108]. Moreover,
this methodology was applied in multiple engineering applications such as aerospace
design (aircraft nozzle [66], turbomachinery [35, 125|, entire aircraft [113]), civil structural
design [80] and even wind farm design |31, 64]. The increasing availability of high-fidelity
simulations (such as LES and DNS) in combination with the emergence of machine learning
strategies guided the path towards data-driven approaches also for the RANS turbulence
modeling community [29]. Heyse et al. [61] enhanced the uncertainty estimation based
on the eigenspace perturbation approach by adding a data-driven method leading to less
conservative uncertainty estimates. The machine learning strategy should identify flow
regions that are prone to show reduced turbulence model prediction accuracy. From our
point of view, their investigations suffered under limited availability of data, most notably
with respect to judging an appropriate application of a machine learning model. We
consolidate the usage of a random forest regression model by investigating the credibility
explicitly in the present work.

In the current work, we present details on the functionality of the eigenspace perturbation
methodology, its data-driven extension and its implementation within the CFD solver
suite TRACE developed by the DLR in strong cooperation with MTU Aero Engines
AG. TRACE is being developed by the Institute of Propulsion Technology with focus on
turbomachinery flows and offers a parallelized, multi-block CFD solver for the compressible
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RANS equations [112]. In order to obtain a trustworthy quantification of uncertainties
for future design application in turbomachinery flows, we investigate our implementation
of the data-driven Reynolds stress tensor perturbation framework for flow configurations
featuring adverse pressure gradient, flow separation and reattachment with TRACE.
This procedure is reasonable, as the prediction accuracy of RANS turbulence models
is significantly reduced in the presence of these complex flow phenomena. In order to
further advance the data-driven prediction capabilities, additional data sets obtained by
SRS of relevant test cases are used to train and validate a machine learning model. These
test cases include complex flow physics such as adverse pressure gradient, separation and
reattachment. In this work, we verify the application of a trained machine learning model
in detail. A methodology to quantify an a priori estimate of prediction confidence is
particularly studied as well. Finally, the data-driven perturbation approach to estimate
the epistemic uncertainty of turbulence models is applied for the flow around the NACA
4412 airfoil at near-stall conditions featuring a separation zone on the suction surface. By
analyzing and comparing the uncertainty estimates for certain Qol with respect to the
usage of the data-free and data-driven strategy, we analyze the initial intention of the
Reynolds stress tensor perturbation framework and its capabilities consequently. From
our point of view, this kind of subsumption was missing in the literature oftentimes.

4.2. Details of the Eigenspace Perturbation Framework

4.2.1. Motivation and goal

RANS turbulence models are utilized in order to approximate the Reynolds stress tensor

—~—

Tij = u) ug-’ in terms of mean flow quantities, e.g. u; = U; = u; —ul. As already described,

the formulation of turbulence models brings along certain assumptions. For example, even
state-of-the-art LEVMs rely on the eddy viscosity hypothesis, also known as the Boussinesq
assumption, and the gradient diffusion hypothesis. This leads to the inability to account
for rotational effects, secondary flow, swirl and streamline curvature [146, 109, 23|. Besides,
limited success in cases with separation and reattachment have also been reported [89].
The motivation for injecting perturbations to the eigenspace of the Reynolds stress tensor
is the inability of LEVMs to account correctly for the anisotropy of Reynolds stresses.
This is due to the Boussinesq assumption, approximating the turbulent stresses in similar
manner to the molecular viscous stresses. The Boussinesq approximations reads

1 8’U,k 2
Tij = —2vT <Sz" - Saxk&j) + ki (4.1)
where the turbulent kinetic energy is defined as k = %m and summation over recurring
indices within a product is implied. The strain-rate tensor is denoted as S;; and the eddy
viscosity, derived from the transport equations of the turbulence model, is represented by
UT.

Because of the epistemic uncertainty that is introduced into turbulence models by the
choice of the actual closure model [29], the perturbation approach tries to derive and
quantify the effects on Qol, e.g. the pressure field, by modifying the anisotropy of
turbulence within physical limitations. The implemented framework for UQ of turbulence
models seeks to sample from solutions, resulting from a modified underlying structure of
the turbulence model, while aiming for extreme states of the Reynolds stress tensor [106].
In this manner a CFD practitioner may get the chance to estimate the sensitivity of
some Qol regarding the uncertainty in predicting the Reynolds stress anisotropy. In the
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Figure 4.1.: Schematic representation of the eigenvalue perturbation approach.

following section we explain how to obtain a perturbed state of the Reynolds stress tensor
and how to apply machine learning in order to get a better-informed, less conservative
uncertainty prediction.

4.2.2. Data-free approach

The symmetric Reynolds stress tensor can be expressed by applying an eigenspace
decomposition as

2 2
Tij = k <6Lij + 35ij> =k (UinAnlvjl + 35@') . (4.2)

Equation (4.2) includes the split into the anisotropy tensor a;; and the isotopic part of
7ij. The eigenspace decomposition provides the eigenvector matrix v and the diagonal
eigenvalue matrix A, where the eigenvalues represent the shape and the eigenvectors
imply the orientation of the tensor. Emory et al. [34] propose a strategy to perturb the
eigenvalues and eigenvectors in Eq. (4.2), resulting in a perturbed state of the Reynolds
stress tensor

* * * * 2

The eigenvalue perturbation (determining A*) makes use of the fact that every physical,
realizable state of the Reynolds stress tensor can be mapped onto barycentric coordinates

1 3
T = 93105 (A — A2) + xac (A2 — A3) + @3¢ (2)\3 + 1> with Ay > Ao > A3, (4.4)

which is essentially a linear transformation according to = QA (whereby three eigen-
values \; are represented by the vector A and Q depends on the choice of coordinates
x10, T2c and x3c) [4]. Figure 4.1a shows the three limiting states of the Reynolds
stress tensor, represented by the corners of the triangle (x1c, ®2c, €3¢), corresponding
to the one-, two- and three-component (isotropic) turbulent states (1C, 2C and 3C).
Thus, Taccarino and co-workers [34, 66| defined the eigenvalue perturbation as a shift in
barycentric coordinates towards each of the limiting states to location x*, according to

' =x+ A (zn) —x) . (4.5)
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The relative distance Ap € [0,1] controls the magnitude of eigenvalue perturbation
towards the corner state Ty € {z1c,x2c, T3c}. The perturbed eigenvalues A} can be
remapped by

A =Q lz* . (4.6)
The creation of the perturbed eigenvector matrix v* is purely motivated by manipulating
the turbulence production term P, = —TingU;. Changing the alignment of the eigenvectors

of the Reynolds stress tensor and the strain-rate tensor S limits the production term to a
maximum and minimum value [66]. Maximum turbulence production is obtained by not
changing the eigenvectors of the Reynolds stress tensor. Commuting the first and the
last eigenvector of the Reynolds stress tensor leads to minimum turbulence production:

Vmax = ('Ul V2 ’03) = Plnax

4.7
Vimin = (v3 v2 v1) = P )

When combining the eigenvalue and eigenvector perturbation, not only the shape of the
Reynolds stress ellipsoid is modified but also the relative alignment with the principal
axes of the mean rate of the strain tensor is changed (orientation). It should be noted
that targeting the 3C turbulent state with Ap = 1 results in identical eigenvalues and
consequently the eigenvector matrix cancels out with its inverse. That is the reason, why
there will be no distinction between minimized and maximized turbulence production.
To sum up, the data-free perturbation framework promises to only need five distinct
simulations € {(1C, P,..), (1C, Py, . ), (2C, Py,..), (2C, P_..) and 3C}, in order to
get the entire information with reference to the epistemic uncertainty of the underlying
turbulence model, if A = 1 is chosen.

4.2.3. Data-driven approach

The eigenspace perturbation approach is a purely physics-based methodology, aiming
for understandable uncertainty bounds for the turbulence modeling community. The
data-free procedure applies a uniform perturbation to the entire flow domain. But
the perturbation amplitude is a reflection of the inability of the turbulence model to
reproduce the underlying physics with high fidelity. This discrepancies between the
turbulence model’s dynamics and those of the turbulence physics are not uniform, but
differ between different turbulent flows and even across different regions of the same flow.
Thus, enabling variation in the magnitude of the perturbations is a better reflection of
the actual model-form uncertainty. As an additional advantage, if executed correctly,
such a varying perturbation approach would enable more precise and less conservative
uncertainty bounds on the Qol. Moreover, a user has to choose the degree of uncertainty
by selecting Ap before each investigation, which is major drawbacks of the proposed
method. This might be especially unfavorable in the design phase of turbomachinery
components, when even a CFD practitioner experienced in turbulence modeling does not
know a priori how to set the degree of uncertainty.

Consequently, the user defined bounds on the eigenspace perturbation procedure need to
be replaced. Data-driven modeling approaches can be very beneficial for such surrogate
modeling. Such machine learning surrogate models have found wide application in
turbulence modeling [29, 68, 15]. As the amount of high-fidelity simulations (such as
LES and DNS) increases, this data can be used to estimate the perturbation magnitudes.
Heyse et al. [61] propose a strategy to obtain a locally varying perturbation strength by
using a random forest model. Physical flow features are extracted to train a machine
learning model in order to predict the local perturbation strength

p = ||®true — TrANS|| = |[TRANS — TRANS]] (4.8)
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as illustrated in Fig. 4.1b. Forward propagating CFD simulations follow training the
model, where the predicted perturbation strength is used to modify the Reynolds stress
towards the same three limiting states as in the data-free approach.

In this work, we go several steps beyond the initial proposed strategy. First of all, Heyse
et al. [61] applied pure eigenvalue perturbation of the anisotropy tensor. We combine the
data-driven eigenvalue perturbation with the data-free manipulation of the eigenvectors
of the Reynolds stress tensor, as already described above. From our point of view, this
procedure is inevitable, as the assumption that the Reynolds stress tensor and the mean
rate of strain tensor share their eigenvectors (see Eq. (4.1)), is known to be invalid in flow
situations, where streamline curvature, rotational effects, flow separation or reattachment
play a role [84]. We decided against utilizing machine learning to adjust the perturbations
for the eigenvectors of the Reynolds stress tensor and the turbulent kinetic energy directly,
as this would lead to a data-augmented, corrected turbulence model instead of obtaining
uncertainty estimates. Since no justifiable bounds for the turbulent kinetic energy budget
exist, the present methodology perturbs it indirectly by applying the described eigenvector
manipulation. Furthermore, we evaluate the adequate usage of a machine learning model
for the desired application by extending the training data set and performing certain
verification checks. The latter also includes the question, how to build trust in such a
trained machine learning model, when there is no accurate data available anymore to
estimate the prediction error. Finally, we assess the limitations and capabilities of this
method.

Choice of machine learning model

The general concept of machine learning is to approximate the relationship between
input quantities (features) and output quantities (targets) to make prediction under
similar conditions. There are multiple approaches to approximate these relationships.
For the sake of interpretability and usability, decision trees are chosen to be the machine
learning model in the present work. Decision trees (also called regression trees for solving
regression problems) learn binary rules (if/else decision rules) to predict target values
based on given features [11]. Decision trees are prone to overfitting, which means that
the model is not able to generalize. A machine learning model is able to generalize, if it
performs adequate predictions based on a feature space that is different than the feature
space of the training data. Machine learning models that are prone to overfitting reveal a
high variance. The potential accuracy of a machine learning model is also dependent on
its bias that is characterized by the difference between the averages of the predictions
and the true values. An inflexible model is not capable to fit the total number of data
sufficiently, which is determined as a high bias of the model. The fact that an increasing
flexibility (lower bias) comes along with worse generalization (high variance), is known as
the bias-variance trade-off. This trade-off describes the aim to choose a machine learning
model that has low variance and low bias simultaneously [48, 91]. Random forests are
based on a number of uncorrelated regression trees and offer the possibility to handle the
bias-variance trade-off, while enabling powerful predictions [91]. For this reason, we have
chosen to use this ensemble learning technique. Instead of just averaging the prediction
of individual regression trees, a random forest makes use of two essential key concepts:

e Bootstrapping: Random sampling (with replacement) of the training data for each
individual tree, i.e. each tree is trained on a different data set with equal size.
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e Feature bagging: Random subsampling of features at each decision point (also
known as split) for each tree, i.e. every tree uses a different feature space at each
binary decision.

In combination with bootstrap aggregation (bagging), which implies averaging the predic-
tion of a number of bootstrapped regression trees, the variance is reduced and overfitting
is avoided [12]. In this work, the python library scikit-learn [122] is used to train the
random forests and evaluate their predictions.

Choice of flow features

The selection of input features, which are relevant for predicting more accurate pertur-
bation magnitude p, is critical for turbulence modeling purposes. It has to be ensured
that the chosen features represent physical significance with respect to the desired target
(output) quantity. Wu et al. [165] identified four raw quantities

to be a reasonable choice as input data for conducting machine learning based on LEVMs.
The two raw input tensors S, €2 represent strain-rate and rotation-rate, while Vp and Vk
are the gradients of pressure and turbulent kinetic energy. In our work, we agree on the
usage of @ and make use of the normalization scheme, derived by Ling and Templeton
[90]. A normalization by a factor 8 and the absolute value? of each element o of Q

according to

.«
o= 7‘0[‘ 1A (4.10)

lead to the determination of non-dimensional flow features, which are presented in
Table 4.1.

Table 4.1.: Raw flow features for constructing the invariant basis.

Description Normalized input & raw input « normalization factor 3
Strain-rate S S w
Rotation-rate Q Q |||

Pressure gradient Vp Vp pl|U - VU||
Turbulent kinetic energy gradient Vk Vk wVk

Since we are aiming for invariant features, which means that they should stay the same
in different inertial frames of reference, it is essential to embed invariance properties
into a machine learning model (if the model should not learn these properties during
training). One method to do this is by formulating inputs and output quantities of the
model such that they are invariant. In order to determine the invariant feature basis
of the normalized flow features, Wu et al. [165] make use of the Hilbert basis theorem.
This theorem states that a finite number of invariants belongs to each minimal integrity
basis for a finite tensorial set [144]. A minimal integrity basis is the minimal set of
invariants that represent all polynomial invariants associated with a tensorial set under
transformation. In this manner the minimal integrity basis amounts to 47 invariants,
which are in the following used as input features for training and evaluating the random
forest. We add additional physical meaningful flow features to this exhaustive list of

2If « is a vector or tensor, the euclidean norm is used.
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Table 4.2.: Physical flow features.

Numbering Description raw input @  normalization factor 3
@ Q-criterion 3 (12> = 1Is11?) 1812
g2 Turbulent kinetic energy k %UiUi
q3 Wall-distance based Reynolds Number min (\ﬁj, 2) -
q4 Pressure gradient along streamline Uka‘% %%UiUi
qs Turbulent time scale % ﬁ
qs Production term P kw
q7 Mach number Ma -
qs Eddy viscosity W
q9 Norm of Reynolds stresses HIZ/’LL\? [l k

features based on domain knowledge and physical intuition. The additional input features,
which are presented in Table 4.2, can be computed by providing the turbulent kinetic
energy k, the specific turbulent dissipation rate w, the molecular viscosity u, the eddy
viscosity pr, the distance to the nearest wall d, the local Mach number Ma, the mean
velocity U and its gradient tensor and the mean pressure p and its gradient vector. The
normalization procedure is retained in accordance to Eq. (4.10). Thus, a total number
of 56 input features is used for training and evaluating the random forests. Lastly, each
feature is standardized by removing the mean and scaling to unit variance by applying a
standard scaler preprocessing functionality of scikit-learn [122].

Although Wang et al. [160] reported significant improvements in prediction accuracy
for using the invariant feature basis over a smaller number of features (e.g. physical
motivated scalars) in a comparable study, we cannot confirm such observations in our
work. We rather think that due to the limited number of data (for training and testing
purposes) a smaller number of input quantities performs excellently as well. As soon as
the diversity of the data starts to increase (significantly different geometries featuring
various flow phenomena) the need for a large set of features may occur. Being aware
of the fact that the present feature list may be needlessly large, we assure, that this
exhaustive list of features does not involve any disadvantages in terms of accuracy. For
this reason, we use the total amount of 56 input features in the present work.

4.2.4. Integration of UQ computation in CFD solver suite TRACE
Implementation

The aim of running a CFD simulation, propagating a perturbed Reynolds stress tensor,
is to obtain a sensitivity with respect to the solution. For smooth and time-efficient
simulations, it is advisable to start the perturbation from a sufficiently converged baseline
RANS simulation (baseline means standard unmodified turbulence model). Mishra et al.
[107] apply a factor to march the solution based on the perturbed Reynolds stress tensor
to a fully converged state. In our implementation, we use a factor f for the reconstruction
of Reynolds stresses in order to be able to achieve fully converged perturbed solutions
as well. We discuss the necessity and the effect of this factor in Section 4.2.4. The
perturbation of the Reynolds stress tensor was implemented to the existing C code of
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Figure 4.2.: Implementation of the UQ framework within the CFD solver suite TRACE.

TRACE and can be subdivided in several steps within each pseudo-time step of steady
simulations:

1. Calculate Reynolds stresses based on the Boussinesq approximation (see Eq. (4.1)).
2. Determine the anisotropy tensor (see Eq. (4.2)).

3. Perturb the anisotropy tensor within physical realizable limits by selecting Ap (see
Eq. (4.5)) and whether the turbulence production term should be minimized or
maximized (see Eq. (4.7)).

4. Reconstruct the perturbed Reynolds stress tensor according to
* * 2
T, =Tig + |k (a + §5ij —Tij| (4.11)

where f € [0, 1] is the introduced moderation factor, adjusting the total amount of
newly perturbed anisotropy tensor to be considered.

5. Update of the viscous fluxes using the perturbed Reynolds stresses explicitly.

6. Update of the turbulence production term P, = —TingU; using the perturbed
Reynolds stresses explicitly.

TRACE features a python interface, called pyTRACE |[27], which can be used to conduct
a full set of perturbed simulations and sample the results for some Qol. In case of applying
a data-driven perturbation of the Reynolds stresses, the python script takes also charge
of evaluating a previously in preprocessing trained machine learning model based on
extracted mean flow quantities. The high-level python script takes input parameters,
containing information regarding the geometry, mesh resolution and additional solver
settings. Furthermore, the set of intended perturbed simulations is set up, including
selecting the limiting state of turbulence () € {%1c,®2c, 3c}), the relative distance
Ap € [0,1], the alignment of the Reynolds stress eigenvectors with the strain-rate tensor
(Vmin OF Vimax) and the moderation factor f € [0, 1], as described earlier. As illustrated in
Fig. 4.2 the integration of the UQ module in the TRACE simulation run is conducted
every time step (steady simulation) in each cell of the computational domain. When the
converged perturbed solution is reached, the python script takes charge of setting up the
next desired perturbation.
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Discussion about restrictions of the Reynolds stress tensor perturbations

The eigenspace perturbation methodology, presented in Section 4.2, is solely motivated
on quantifying the epistemic uncertainties of LEVMs due to the inaccurate account for
anisotropic flow phenomena. Iaccarino and co-worker [34, 66, 107| designed this method
based on the mathematical derivations of Lumley [92] and Banerjee et al. [4]. These
derivations map the states of the Reynolds stress tensor, when it features one, two or
three non-zero eigenvalues, onto corners of a constructed triangle, called the barycentric
triangle. These states are described to be the extreme states of the Reynolds stress tensor,
as the turbulence is only present in one, two or three directions - the corresponding
directions of the eigenvectors.

A CFD practitioner is interested in ascertain the effect of the turbulence model’s un-
certainty on certain Qol, which are relevant for design. However, the relation between
the one-, two- and three-component corner of the Reynolds stress tensor and some Qol
is anything but linear. As a consequence, modifying/perturbing the turbulent state of
the Reynolds stress tensor seeks to estimate the uncertainty bounds rather than create
extreme state of Qol.

Nonetheless, we analyzed the relation of barycentric coordinates and Qol for selected flow
cases by sampling points inside the barycentric triangle and propagating the perturbed
Reynolds stress tensor in an earlier prior investigation [94]3. Therefore, assessed against
currently available data, we agree on the fact that the corners of the barycentric coordi-
nate produce adequate estimate of the uncertainty bounds in most of the flow regions.
Although there might be areas of the flow solution, where the extreme state of turbulence
is not corresponding to the extreme state of some Qol. This observation will be also
discussed in Section 4.5.

Additionally, we would like to discuss the effect of the moderation factor f, which was
initially mentioned by Mishra et al. [107]. The main goal of applying f is to reach a
converged solution based on the perturbation approach. We agree on the fact that this
factor is needed for convergence issues, as some perturbed states tend to be unstable.
Understandably, this is especially the case for perturbations seeking to decrease the turbu-
lence production term (P _. and/or 3C). Nevertheless, it is shown in the Appendix 4.A
that the effect of applying the moderation factor is actually identical to reducing Ag in
case of pure eigenvalue perturbation. The need for moderating the effect of Reynolds
stress tensor perturbation by an additional factor according to Eq. (4.11) emerges, when
combining eigenvector and eigenvalue perturbation. Generally speaking, using f < 1
stabilizes the CFD simulation by weakening the impact of perturbation. Accordingly,
users are encouraged to not only state the prescribed Ap but also the factor f. It has to
be stated, though, that damping the effects of the actual perturbation (eigenvalues and
eigenvectors) weakens the interpretability of the limiting states of turbulence, represented
by the corners of the barycentric triangle.

Last but not least, the data-driven extension of the EPF is build on Reynolds stress
reference data, whereas other machine learning approaches in the field of turbulence
modeling utilize indirect mean flow quantities like velocity and pressure. Hence, appropri-
ate training data are mainly limited to well-resolved DNS/LES and cannot make use of
experimental measurement data containing no second-moment statistics.

3 As the cited paper is not part of this cumulative dissertation, the underlying study is taken over,
expanded and presented in Section 3.5.2 of this thesis.
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4.2.5. Data sets for training, testing and applying the machine learning
model

As already described in Section 4.1, the final well-trained machine learning model should
be sensitive to flow phenomena such as adverse-pressure gradient, separation and reat-
tachment due to the known shortcomings of the LEVMs. Consequently, it is reasonable to
use data sets for training that include these flow situations. We are continuously striving
for extending our database, which contains various flow cases for machine learning. For
the present study, we use the following flow cases:

e DNS of turbulent channel flow at Re, € {180,550, 1000, 2000, 5200} based on Lee
and Moser [86].

e DNS at Rey € {2800, 5600} and LES at Rey = 10595 of periodic hill flow based
on Breuer et al. [14].

e DNS of wavy wall flow at Rey = 6850 based on Rossi [130].

e DNS of converging-diverging channel flow at Re; = 617 based on Laval and
Marquillie [85].

All the DNS and LES data of the described test cases are generated using incompressible
solvers. In order to simulate these incompressible flows using the compressible solver
TRACE without low-Mach preconditioning, the simulations are scaled (adapting dimen-
sions of the geometry and/or molecular viscosity) to an incompressible Mach number of
approximately 0.1, while preserving the intended Reynolds numbers. The two-equation,
linear eddy viscosity Menter SST k — w turbulence model is selected as the baseline model
for all conducted RANS simulations [104]. In order to obtain steady-state solutions,
an implicit time marching algorithm is applied. A flux difference splitting approach is
employed to discretize the convection terms making use of a second order accurate Roe
scheme in combination with MUSCL extrapolation [129, 158].

To evaluate proper features as input parameters based on the RANS simulations, we
conducted a mesh convergence study for each of the listed flow cases. Although the
mesh convergence studies are not presented here due to the scope of the paper, we affirm
that we only use RANS simulation data that shows sufficient grid convergence using
a low-Reynolds resolution (y* < 1) at solid walls. The perturbation magnitude p can
be determined according to Eq. (4.8) by comparing scale-resolving and RANS solutions.
In order to compute the intended target quantity, the scale-resolving data has to be
interpolated onto the RANS data points for every test case first. Due to numerical issues
some RANS data samples may be located outside the barycentric triangle. Therefore, we
included the opportunity to remove these samples from the training or testing sets. The
final application of the UQ perturbation approach is presented for the airfoil test case
NACA 4412 at Re. = 1.52 - 10°.

Turbulent channel

Although we are interested in more complex cases, the channel flow data represents one
of the key properties, which the model should be able to recognize and predict: turbulent
boundary layer with inaccurate anisotropy represented by the LEVM close to the wall.
The configuration for simulating the turbulent boundary layer is sketched in Fig. 4.3.
The characteristic Reynolds number is defined as

_ purH

R
er o

: (4.12)
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Figure 4.3.: Schematic turbulent channel flow setup.

where H is the channel height and the friction velocity is known as u, = /(7 /p) with
Tw = u%—g]yzwall. The turbulent channel flow is homogeneous in the streamwise direction
x and the spanwise direction z. A constant pressure gradient dp/0x is applied to balance
the skin friction at the wall. We use the available RANS grid cells in one half of the
channel at the five different Reynolds numbers as subsequent data points for training the
random forest.

Periodic hill

The flow over periodic hills features flow separation from curved surfaces, recirculation
and a subsequent reattachment on the flat bottom of the channel. Since the Reynolds
number has a strong impact on the actual size of the separation bubble, it is worthwhile
to add three different Reynolds number flows to our training set.

viscous wal

RN
\\\\\‘\‘I |
periodic

9H

NRW
N

N
periodic

NN

T
3.035H =

11
/ =
_viscous wall

o 1 2 3 4 5 6 7 8 9
X/H

\\

ANANNY
N\

separation bubble

AN

NN

NN\
N

N

(a) Relative dimensions and sketch of the (b) Mesh (Rem = 10595, every tenth line shown)
flow and boundary conditions; slip conditions/invis-
cid walls are applied in spanwise direction

Figure 4.4.: Schematic periodic hill setup.
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The Reynolds number based on the bulk velocity Up, evaluated at the crest of the hill
and the hill height H is defined as

Rey = . (4.13)

For simulating the periodic hill configuration, periodic boundary conditions are applied
as illustrated in Fig. 4.4. A constant pressure gradient dp/dx is applied to move the fluid
through the configuration. The available scale-resolving data sets of the periodic hill
only contain data at certain slices (x/H € {0.05,0.5,1.0,2.0, 3.0,4.0,5.0,6.0,7.0,8.0}).
Consequently, the RANS solution is sliced at these locations accordingly. The scale-
resolving data are interpolated onto the wall-normal RANS data positions, in order to
generate the desired target quantity for the machine learning model.

Wavy wall

The wavy wall test case is confined by a plane wall and a wavy surface, which is sketched
in Fig. 4.5. In former experimental settings, the desired flow situation was generated by
stringing together multiple hills and valleys, described by a cosine function. For the CFD
simulations (DNS and RANS) periodic boundary conditions in streamwise direction can
be applied. In order to adjust the intended Reynolds number of Reyg = 6850, based on
the bulk velocity and the mean channel height evaluated on the hill crest (according to
Eq. (4.13)), a constant pressure gradient dp/0z is used. Since the available DNS data set
is two-dimensional (2D) and covers the entire domain size, we use all available RANS
grid cells as subsequent data points for training the random forest.
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(a) Relative dimensions and sketch of the flow  (b) Mesh (every fourth line shown) and boundary
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plied in spanwise direction

Figure 4.5.: Schematic wavy wall setup.

Converging-diverging channel

The configuration of a converging followed by a diverging section is an ideal test case to
investigate the effect of an adverse pressure gradient with and without curvature. The
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Figure 4.6.: Schematic converging-diverging setup.

flow separates slightly at the diverging part at the lower wall, but not on the flat top wall,
as shown in Fig. 4.6. Similar to the DNS, the inflow boundary conditions are derived
from a fully developed turbulent boundary layer at Re, = 617 (RANS predicted). A
constant mass flow rate is prescribed at the outflow of the domain, which was derived
based on the domain size and bulk quantities of the inflow profile (streamwise velocity
and density). Since the available DNS data set is 2D as well, we are able to provide all
available RANS grid solution points as subsequent data points for training the machine
learning model.

NACA 4412 airfoil

To demonstrate the application of the UQ framework with and without a machine learning
model, the near-stall NACA 4412 airfoil test case is chosen in the presented work. This
test case is a NASA benchmark case for turbulence models, featuring boundary layer
separation close to the trailing edge. This airfoil is operated at a Reynolds number of
Re, = 1.52 - 10% (based on the freestream velocity U, and the chord length c) and a
Mach number of Ma = 0.09 (based on Us). The angle of attack is 13.87° as sketched in
Fig. 4.7a. The CFD results are compared against experimental measurements of Coles
and Wadcock [21]. In order to minimize the effect of boundary conditions on the CFD
simulation, far-field conditions are applied to prescribe the specified flow conditions (see
Fig. 4.7b). A turbulence intensity of 0.086% and an eddy viscosity ratio pr/u of 0.009 is
prescribed in accordance with the description of NASA [116]. The mesh topology is the
so-called C-grid featuring a grid cell resolution of n;,ny,n, = 896,256, 1, which can be
downloaded from NASA’s turbulence database [116].
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Figure 4.7.: Schematic NACA 4412 setup.
4.3. Hyperparameter selection based on generalization study

Before the training of the final random forest regression model is conducted, the impact
of four different hyperparameters on the accuracy is evaluated:

e Maximum tree depth: maximum number of decision nodes from the root down to
the furthest node allowed.

e Minimum sample count: minimum number of data samples required at a decision
node allowed.

e Maximum number of features: maximum number of features randomly chosen at
each decision node allowed.

e Number of trees: total number of individual decision trees used.

Since the final trained model should be able to generalize for different geometries and flow
conditions, it seems to be reasonable to evaluate these hyperparameters with focus on
generalization capabilities of the random forest. Therefore, we apply a leave-one-out-cross
validation, which is an appropriate procedure for small data sets. This means that three
out of four available training data sets (see Section 4.2.5) are used for training, while the
remaining flow case is used to verify the model (see Table 4.3). Data samples featuring
non-physical Reynolds stress tensors (barycentric coordinates are located outside the
barycentric triangle) are removed from each data set.

For each of the first three hyperparameters several different values were studied over a range
of the total amount of individual regression trees, while the other two hyperparameters
were set to default values (see scikit-learn documentation for further information). As an
example, Fig. 4.8 presents the effect of the considered hyperparameters on the accuracy
of the model prediction in scenario I, where the accuracy is expressed in terms of the
Root Mean Square Error (RMSE).
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Table 4.3.: Scenarios for hyperparameter study: x means part of training data, o means
testing data.

Scenario
Flow cases I IT IIT IIIT
turbulent channel XX X O
periodic hill XX 0o X
wavy wall X0 X X
converging-diverging channel o x x x

The subsequent statements made coincide with all evaluated scenarios as well. With
increasing maximum depth of each individual tree, the model prediction error on the
training data is reduced at the expense of increasing complexity. Increasing complexity of
the tree may result in reduced generalizability capabilities (reduced test data accuracy)
of the model. Because a maximum tree depth of 15 showed excellent performance for the
training as well as for testing data, it is preferred compared to a higher value of 20, which
increases computational costs (see Fig. 4.8a). The smaller the number of data samples
for each decision node, the more accurate the performance on the training data (see
Fig. 4.8b). Since the RMSE based on evaluated testing data is not significantly affected by
this hyperparameter, a minimum sample count of 10 is chosen. This enables the model to
generalize to a greater extend, than selecting a smaller value. A larger number of selected
features for each decision node lowers the training error and increases the risk of overfitting.
Since a maximum number of 7 features produces accurate prediction performance for
the test data as well (see Fig. 4.8¢), it is selected as inferred hyperparameter. In terms
of total number of individual trees, one can observe a steep drop in RMSE for small
numbers followed by an almost constant level of accuracy. The computational costs scale
linearly with the number of individual trees. Although computational costs do not really
play a relevant role for our application, as we only evaluate the model once before each
simulation run, we sought for the minimum number of trees for maximized performance
of the model. Therefore, we concluded to use a total number of 30 individual trees for
the random forest by evaluating all described scenarios in Table 4.3.

4.4. Verification of trained machine learning model

Based on the choice of hyperparameters, which was discussed in the previous section,
the prediction accuracy of the random forest should be evaluated on the available data
(see Section 4.2.5). Ten different scenarios based on combinations of the flow data cases,
listed in Table 4.4, serve as verification of functionality and present the accomplishment
of the intended generalization of every model. While data samples featuring non-physical
Reynolds stress tensors (barycentric coordinates are located outside the barycentric
triangle) are removed from the data sets, the RMSE classifies the prediction accuracy of
different scenarios. As the target quantity p can vary between zero and one (based on
the construction of the equilateral triangle with edge length equals to one), the resulting
RMSEs indicate less than 10% absolute prediction error except for scenario II.

As soon as a trained machine learning model should make predictions on flow cases, for
which accurate data does not exist, judging the model’s prediction in terms of accuracy
becomes difficult. Comparing the input feature spaces of training and testing data
(previously unseen case) based on extrapolation metrics in order to build confidence in
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Figure 4.8.: Training accuracy (solid / left) and testing accuracy (dashed / right) based
on RMSE for selection of hyperparameters in scenario I.

a machine learning model, is a reasonable idea. An extrapolation metric measures the
distance between a test point 7 and the training data feature set m® for i =1,...,n
with n as the number of training data points. In this paper, we use the KDE to compute
the distance by estimating the probability density

()

1 n d s
fKDE:WZHK %

i=1j=1

(4.14)

with the number of features d and the bandwidth o, determined by Scott’s rule [137].
According to the work of Wu et al. [164], we use a Gaussian kernel
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and the distance is computed as follows:

JfKkDE .
_— th
fxkpE + 1/A '

A= fI <mjax (mﬁ»i)) — min (my))) for 7=1,...,d.

dgpr =1 —
(4.16)

J

The applied Gaussian kernel K ensures that the smaller the difference of m; and my),
the larger the output of K. In other words, Eq. (4.14) increases, if m becomes close to
a concentrated feature space of the training data points and vice versa. The quantity
A, which is only dependent on the features of the training set, can be interpreted as
the volume of a cuboid with d dimensions. Thus 1/A is the probability density with
respect to a uniform distribution inside such a cuboid. Due to the normalization of the
distance in Eq. (4.16), the metric is able to measure the distance of m to the training
data with respect to a uniform distribution. Consequently, on the one hand, if m is
close to a concentrated feature space, fxkpgr > 1/A implies dgkpg — 0. On the other
hand, dgpg — 1 follows from fxprp < 1/A. This enables a user to interpret the rate of
extrapolation needed based on the training data set. Thus, two extreme scenarios are

represented according to:

e dxpg = 0: No extrapolation is required <> the features of the training data set
cover the features of the test point m.

e dxpg = 1: High extrapolation is required <> the features of the test point m are
far off the features of the training data.

Since the extrapolation metric only assesses the closeness of the features between training
and test data sets, Wu et al. [164] demonstrate that the KDE extrapolation metric can
be used to estimate the prediction confidence by quantifying the correlation between the
degree of extrapolation and the prediction accuracy. In our work, the flow case of the
converging-diverging channel serves to present the application of the extrapolation metric.
The remaining data (turbulent channel flow, flow over periodic hills and wavy walls) is
used for training individual random forests, while each random forest is evaluated on the
converging-diverging channel.

Selected input features attributed with significant feature importance are considered
for computing the KDE distance dxpg. The individual feature importance for each of

Table 4.4.: Prediction accuracy of random forest:  means part of training data, o means
not part of training data, red highlights data sets used for evaluation of RMSE.

Scenario

Flow cases I ITa 11 I[Ia III IIla IIIb IIII IIlla V
turbulent channel X X X X X X X o X X
periodic hill

- Ren € {2800, 5600, 10595} X X X X o X X X X
- Rey € {2800, 10595} X

- Rep = 5600 o
wavy wall X X o X X X X X X b
converging-diverging channel o X X X b X X X X b

RMSE (ppred; Ptrue) 0.098 0.010 0.133 0.029 0.095 0.028 0.041 0.051 0.014 0.013
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Figure 4.9.: Relationship between the RMSE of the prediction for the converging-diverging
channel and the mean value of the KDE extrapolation metric (standard
deviation of the extrapolation metric is shown as the horizontal bars). All 56
input features are considered for the prediction and training of the random
forest models, while only g1, g2, ¢3, ¢7 and gg are used to compute dkpg.

the 56 input features, is determined after training the final random forest (scenario V
in Table 4.4) using the chosen hyperparameters (see Section 4.3). The utility of each
feature is determined by the permutation feature importance approach, accounting for
the reduction in the model accuracy, when the values of this feature are randomly shuffled.
Consequently, the selected five most important features to be considered for determining
dxpg are the eddy viscosity gg, the normalized wall-distance g3, the Mach number ¢7, the
turbulent kinetic energy go and the Q-criterion g;. Contrary to the work of Wu et al. [164],
we cannot confirm a strong correlation between the accuracy of the model, evaluated by
predicting the perturbation magnitude p for the converging-diverging channel, and the
mean of the KDE distance dgpg for different training data sets, as illustrated in Fig. 4.9.

However, Fig. 4.10 presents a possible explanation for reduced prediction error, when
training on the periodic hill compared to the wavy wall. The DNS data based barycentric
coordinates of the converging-diverging channel and the periodic hill cover similar areas
in the barycentric triangle, while true values of barycentric coordinates for the wavy wall
test case are only located in the lower area of the triangle. Thus, the target quantity,
which is the distance in barycentric coordinates, becomes more frequent in a similar range
of absolute values for the converging-diverging channel and the periodic hill (see Fig. 4.11).
Even Wu et al. [164] mention that the correlation between accuracy and extrapolation
metric is less correlated, if the training set is very similar or very different from the test
set, which we might be facing here as well.

Nevertheless, the result of the extrapolation metric is highly dependent on the set of
considered features. Thus, it seems reasonable to limit the evaluation of the metric
to certain important features for the random forest. Figure 4.12a presents the two-
dimensional distribution of the KDE metric, evaluated based on the five most important
features gg, g3, g7, g2 and ¢; (corresponding to the blue data point in Fig. 4.9 and scenario I
in Table 4.4). Although, some spatial correlated regions between KDE distances dxpg and
model errors |ppred — Perue| in Fig. 4.12b can be recognized, their overall correlation is not
strong (Pearson correlation coefficient of approx. 0.2). Nonetheless, similar observations
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Figure 4.10.: Barycentric coordinates for the selected flow cases; legend of (b) corresponds
to (a) and (c) as well.
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Figure 4.11.: Frequency of the target quantity p for the selected flow cases; vertical axis
correspond to (a), (b) and (c).

based on comparable test cases as in the work of Wu et al. [164] (not shown here) reinforce
the trust in the presented KDE distance, when applied in an adequate manner.

Before the actual application of the data-driven UQ perturbation framework on the flow
around NACA 4412 can be conducted, the prediction of the random forest model for this
case should be discussed. Figure 4.13 shows the evaluated extrapolation metric and the
corresponding predicted p, when the model was trained on all available data (channel flow,
wavy wall, periodic hill, converging-diverging channel). The estimated distribution of the
KDE distance based on the five most important flow features gs, g3, g7, ¢2 and ¢; is shown
in Fig. 4.13a. Solely regions close around the airfoil contain dxpgr < 1. This is due to the
substantially differing geometry, Reynolds number and flow situation compared to the
training data. The feature space of NACA 4412 contains especially higher Mach numbers
g7 in regions far off the boundary layer with less turbulent kinetic energy go (respective
turbulent eddy viscosity gg) and limited wall-distance based Reynolds Number ¢3. This
fact also manifests, when taking a look at the level of turbulence intensity for the baseline
RANS solution (not shown here). Because far-field boundary conditions are used, laminar
flow is present almost everywhere in the CFD domain. An area with Tu > 0.01% can
only be identified in the boundary layer around the profile, in the wake flow and around
the stagnation point on the pressure side (PS) at z/c ~ 0.035. Consequently, the chosen
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(a) Evaluated extrapolation metric

(b) Model prediction pprea presented as absolute deviation based on true values

Figure 4.12.: Verification of extrapolation metric based on converging-diverging channel.
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Figure 4.13.: Evaluated metric and perturbation magnitude for the NACA 4412 profile.
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training data does not sufficiently cover the feature space of NACA 4412 in the outer
regions, leading to dgxpg = 1. But since the entire mapping of the Reynolds stress tensor
onto barycentric coordinates makes only sense for relevant turbulent stresses, which are
significantly larger than machine precision, the random forest is restricted to predict
values in the area at Tu > 0.01% (see Fig. 4.13b). This decision is purely based on our
observations and physical intuition. The verification of this procedure was numerically
justified by comparing forward data-driven UQ computations based on model predicted
p. Some simulations contained p, determined by the random forest, everywhere in the
domain, others only in the area Tu > 0.01%. Although the random forest is able to
predict certain values greater than zero in the region featuring Tu < 0.01%, the evaluated
flow quantities around the NACA 4412 airfoil did not show any significant difference
(not shown here). Even the KDE distance in Fig. 4.13a confirms the chosen procedure,
by revealing reduced extrapolation distance in areas with increased turbulence intensity.
Thus, restricting the model prediction to certain area closely around the airfoil can be
justified from a physical and a machine learning perspective. However, the presented
extrapolation metric and model prediction close to the separation zone (x/c > 0.8 based
on RANS simulation) reveal that predicting the influence of a separated region in terms of
anisotropy discrepancy is a challenging task. This issue might be only overcome with an
increasing number of training data sets involving varying flow conditions and geometries.

4.5. Application of UQ perturbation framework

The flow around NACA 4412 at Re, = 1.52 - 105, Ma = 0.09 and an angle of attack of
13.87° demonstrates the general framework of the UQ perturbation approach presented
in Section 4.2. Before analyzing the actual perturbed solutions and derived UQ estimates,
the general performance of the Menter SST k — w turbulence model is discussed briefly.
The baseline simulation is in accordance with the presented RANS solutions using the
identical turbulence model provided by NASA’s turbulence modeling resource site [116].
Similar to NASA’s observations, when conducting steady simulation with TRACE on
the given grid resolution, CFL = 1 has to be used in order to reach a fully converged
steady-state solution. The main difference of the baseline simulation in comparison with
the experimental surface pressure measurements conducted by Coles and Wadcock [21]
can be observed at the trailing edge of the suction side (SS). The pressure coefficient,
shown for example in Fig. 4.14a, is defined as
P — Do

Cp %pooUgo ) (417)
while the reference quantities are those at infinity Uy, = 31.2 m/s, ps, = 76914.1 Pa
and ps = 0.9 kg/m? (far-field boundary condition). Although the reference velocity
is evaluated at different locations in the experiment, we apply the far-field freestream
velocity instead, based on best practice guidelines and in order to retain similar CFD
results compared to the NASA findings [116].

The data-free uncertainty estimates, presented in Fig. 4.14 are the result of perturbed
turbulence model simulations using a relative perturbation magnitude Ap = 1, as
there is no justifiable physical reason to reduce the amount for targeting the extreme
states of turbulence a priori without data [34]. Unfortunately, as already discussed in
Section 4.2.4, the perturbed simulations, trying to minimize the turbulence production,
come along with stability issues in terms of convergence or even completely diverge
from steady-state solutions. An appropriate moderation factor f has to be adjusted to
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Table 4.5.: Moderation factor f for every perturbed UQ simulation of NACA 4412.
Application of Ag <1 in the data-driven approach necessitates a distinction

between Py . and Py for 3C.
Data-free
Perturbed
Simulation: (1C7 Pkmax) (]‘C’ Pkmin) (207 Pkmax) (207 Pkmin) 3C
moderation factor 1.0 0.03 1.0 0.05 0.1
Data-driven
Perturbed
Slmulatlon (1C? Pkmdx) (]‘C’ Pkmln) (2C7 Pk?mdx) (2C7 Pkmm) (3C’ Pkmdx) (30’ Pkmln)
moderation factor 1.0 0.2 1.0 0.2 1.0 0.2

retain acceptable, converged simulations. Besides examining the overall residuals of each
simulation, we evaluate the mean blade force in y-direction to distinguish between an
unacceptable unstable and an acceptable converged solution. Based on physical experience
and consequent intuition, a threshold of 2% relative standard deviation with respect to
the mean of the overall blade force in y-direction is chosen.

Put simply, as one is increasing the moderation factor f for simulations minimizing the
turbulence production term (P, ), the standard deviation of the mean blade force rises.
In our investigations, a high-level python script (see Fig. 4.2) is applied to march the
moderation factor as high as possible (by steps of 0.1 for f € [0.1,1.0) and by steps of
0.01 for f €[0,0.1)). As the designated solutions may still contain small variations, we
instrument probes on the airfoil surface and average the solution in order to get the
mean for Qol. Due to the described convergence issues only a fraction of the perturbed
Reynolds stress tensor (according to Eq. (4.11)) can be utilized to update the Navier-
Stokes equations for the NACA 4412 simulations (see moderation factors in Table 4.5).
To the authors knowledge, these low values are in accordance with the implementation
of the eigenspace perturbation in the solver suite SU2, as their default value for the
moderation factor is 0.1 [147].

Figure 4.14 presents the uncertainty estimates based on the perturbed target states, using
the moderation factors presented in Table 4.5. As discussed above, the baseline Menter
SST k — w simulation shows significant deviation for the prediction of the separation
zone close to the trailing edge. The results of (1C, Py, ) and (2C, Py, ) minimize this
gap on the SS for 2/c < 0.7, whereas perturbed simulations minimizing the turbulence
production term by modifying the eigenvectors of the Reynolds stress tensor predict an
increased static pressure on the SS for z/c > 0.7. Targeting for the 3C turbulent state
with Ap = 1 results in minimizing the turbulence production term as well [22], which
can be seen on the presented surface quantities. Reduced turbulent kinetic energy moves
the separation zone towards the front of the airfoil, indicated by the friction coefficient

Tw

Cf =175 (4.18)

%pooU 020
in Fig. 4.14b. In contrast, the boundary layers of the perturbed solutions (1C, Py . )
and (2C, Py, ) reveal significant increased momentum transfer into the viscous sublayer,
inducing complete suppression of the separation bubble. As already mentioned in Sec-
tion 4.2.4, the estimated uncertainty bounds by the perturbation framework are only

aiming for the extreme state of turbulence in terms of Reynolds stress tensor’s shape and
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Figure 4.14.: Surface quantities for the flow around NACA 4412 including data-free
evaluation of the uncertainty estimates for the Menter SST k — w turbulence
model; legend in (a) applies also for (b).

orientation, which may not necessarily need to coincide with extreme state of some Qol.
In the range of 0.72 < x/c < 0.82 the baseline solution lies outside of the determined
gray shaded UQ estimate for the pressure coefficient.

The random forest predicted perturbation magnitude p (see Fig. 4.13b) is forward
propagated towards the same three limiting states as in the data-free approach, as
described in Section 4.2.3. This two-dimensional distribution of p is used to determine the
respective Ap for each target state (see Fig. 4.15 for 1C, 2C and 3C). Due to the fact that
the unperturbed RANS solution data points are distributed along the plane-strain line?,
the spatially averaged relative distance Ap is highest for the the simulations targeting the
isotropic corner (3C), followed by the two-component corner (2C) and the one-component
corner (1C). In order to reach an acceptable steady-state solution for each perturbed
simulation the moderation factor f is adjusted in the same manner as discussed above
for the data-free procedure. Since the overall perturbation is weaker than using Ap =1,
the moderation factor could be increased (see Table 4.5).

The estimated uncertainty bands for the surface quantities, shown in Fig. 4.16, become
narrower. Especially the uncertainty estimates for the pressure coefficient based on
(1C, Py,...) and (2C, Py, ) are very close to the baseline solution. As the overproduction
of turbulent kinetic energy for the data-free 1C and 2C cases disappears, all data-driven
perturbed simulations feature a separation zone on the suction surface.

Last but not least, the fact that none of the presented U(Q estimates envelopes the
experimental surface pressure measurements needs to be discussed. To start with,
as discussed already in the beginning of this section, the CFD setup seems to come
along with certain weaknesses. Moreover, the underlying intention of applying the UQ
perturbation framework is not to include certain high-fidelity data, whether it originates
from experiments or SRS, into its resulting envelope. The methodology seeks to produce
limiting states of the Reynolds stress tensor, propagates these states and results in
modified Qol. But it cannot be ensured that accurate data points for some Qol have

4Plane-strain turbulence is characterized by at least one zero eigenvalue of the anisotropy tensor.
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Figure 4.15.: Comparison of the effect of identical model predicted perturbation magnitude
p on the relative perturbation magnitude Apg.

to be covered by the uncertainty estimates resulting from the Reynolds stress tensor
perturbation framework. Therefore, we disagree with some recent publications (e.g. [32]),
where the quality of the EPF is judged by covering certain Qol. As the uncertainty
envelopes do not represent confidence or strict intervals at all [108|, we encourage to
validate the uncertainty estimates with respect to the underlying physical concept of the
EPF. Analyzing simulation results related to the perturbed state of the Reynolds stress
tensor should be chosen over evaluating the coverage of certain reference data. The main
reason for this is that the perturbation framework is only able to account for structural
uncertainties limited to the chosen RANS turbulence model in the CFD solver. However,
other sources of uncertainties related to RANS simulations are not considered by the
eigenspace perturbations, such as:

e approximation of 3D geometries with 2D CFD setups,
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Figure 4.16.: Surface quantities for the flow around NACA 4412 including data-driven
evaluation of the uncertainty estimates for the Menter SST k — w turbulence
model; legend in (a) applies also for (b).

e neglecting of geometry and manufacturing tolerances,

e choice of boundary conditions that must not necessarily coincide with reference
conditions,

e assuming steady-state flow conditions, when the flow might be already unsteady in
reality,

e averaging of the Navier-Stokes equations and, thus, neglecting the unsteady nature
of turbulence itself.

Consequently, it cannot be expected that the perturbed simulations envelope reference
data.

The described machine learning procedure only accounts for the spatially varying devia-
tion in the Reynolds stress anisotropy, as the turbulence model’s uncertainties are not
expected to be uniformly distributed across the computational domain. The impact of the
discrepancy in terms of anisotropy between RANS and scale-resolving data on certain Qol,
was not part of the machine learning process. Thus, with reference to the disregarded
sources of uncertainty mentioned above, even the data-driven perturbed turbulence model
simulations cannot account for adequate entirely enveloping bounds for selected Qol.

4.6. Conclusion & outlook

The present work aims to consolidate an arisen method in the field of turbulence model
UQ. We demonstrate the possibility to estimate uncertainty bounds for turbulence models
with state-of-the-art methods in the CFD solver suite TRACE. The UQ perturbation
framework is described extensively, presenting its underlying idea while mentioning its
limitations and what it is not able to do for industrial applications. Additionally, since
TRACE is eminent in turbomachinery industry, designing and implementing a framework
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to easily conduct uncertainty estimation for turbulence models using TRACE was a major
goal of this work.

Moreover, we applied a proposed machine learning strategy to further enhance the inter-
pretability of generated uncertainty estimates by being less conservative and nonetheless
physics-constrained simultaneously. Our extension of this data-driven eigenvalue per-
turbation approach is the enlargement of flow cases featuring separated flows, adverse
pressure gradient and reattachment for training and testing purposes on the one hand.
This enables us to check and verify the appropriate application of trained random forest
regression model in-depth. On the other hand, considering eigenvector perturbation of
the Reynolds stress tensor on top of the data-driven eigenvalue perturbation was the
plausible next step in this specific research field.

In our investigations, we outline tools and methodologies for assessing and analyzing
data-driven models, especially in the context of turbulent flows. We address key points in
the field of machine learning such as selection of input features, tuning of hyperparameters,
judging the model’s accuracy in an a posteriori and and an a priori way.

In order to predict the desired target quantity for the selected flow cases by the random
forest, we admit that we might not have to use this abundant number of input features, as
described above. This is due to the fact, that the considered cases show certain similarities
in terms of input and target quantities. However, if the amount of training data sets
increases, covering a wider range of flow phenomena, the machine learning model will
likely take advantage of a larger number of input features.

We confirm that the perturbation approach to account for turbulence model uncertainties,
is a purely physics-based, comprehensible framework. Nevertheless, it suffers from reduced
convergence or even divergence of steady-state solutions. The necessity to moderate
certain perturbations by an arbitrary factor, seems unsatisfactory for such an advanced
approach. Currently, we are not aware of any other remedy for convergence issues as well,
as even the machine learning does not help to overcome this particular issue. Moreover,
we also agree on the underlying idea to account for spatially varying of turbulence model
uncertainties by using data-driven methodologies to determine certain areas of high
deviations from accurate Reynolds stress anisotropy states. Training a machine learning
model to predict an appropriate model-form uncertainty will always help CFD users to get
an indication, in which regions the LEVM assumptions might be violated®. However, we
believe, based on our experiences with the data-driven Reynolds stress tensor perturbation
framework (which are not only limited to the NACA 4412 flow case), that an enhanced
applicability can only be achieved, if the stability issues in terms of convergence for
steady-state simulation were solved.

5More specifically, this may be of particular interest to the turbulence modeling community rather
than designers, whose main concern is the overall (turbulence modeling) uncertainty on CFD results.
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Appendix 4.A Mathematical effect of the moderation factor
f in case of pure eigenvalue perturbation

By applying the moderation factor f € [0, 1], the perturbed Reynolds stress tensor can
be expressed as

2
T;;-f =T + f [k <a:~‘j + 35¢j> — Tij]

= (= f)7ij + f75
where 7;; is the Reynolds stress tensor that was calculated based on Boussinesq assumption
in step 1 (see Section 4.2.4). Based on the perturbed anisotropy tensor, the reconstructed

Reynolds stress tensor is indicated by ’7';; The anisotropy tensor related to this perturbed
Reynolds stress tensor can be written as

(4.19)

*

. Tij 2
A= Prg+fr 2
- k 30
(1—f) [/ﬂ (al-j + %5@‘)} + f [k‘ (afj + %5@')} 2(5 (4.20)
- k T 37

2 .2 2
=(1-1) <az'j + 35ij> +f <aij + 35zj> — 30

== f)aij + faj; .

When just applying eigenvalue perturbation of the anisotropy tensor, a;; and a;; share
identical eigenvectors. Thus, the eigenvalues of a;‘jf are

M= (1= A+ FA] (4.21)

The barycentric weights Cjc, which are used to calculate the barycentric coordinates in
Eq. (4.4), can be expressed in terms of the moderation factor:

* ]‘ * *
Clcf 9 { 1y = Azf}

1 " 5
= S[A=HM+ X = U= ) e+ 23] (4.22)
:(1—f)%(A1—A2)+f%(AT_A§)
= (1-f)Cic + fCiq
C;Cf :Agf _)\gf
=1 =) A+ A= (1= f)As+ fA3 (4.23)
= (1= f) (2= A3) + f (A5 — A3)
=(1—f)Cac+ fCs¢
3
C;Cf :§A§f+1
3 3 pys
:5(1—f))\3+§f>‘3+(1_f)+f (4.24)

—(1-1) (;/\3+1)+f<2x§+1>
:(1—f)03c+fC§C.
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The perturbed barycentric coordinates x’ (modified by the moderation factor f) can be
written using Eq. (4.22), Eq. (4.23) and Eq. (4.24) as

:E} = mlccfcf + mgcf + wgccgcf
=z1c[(1 = f) Cic + fOic] + 22c [(1 = [) Cac + fC5c] + z3c [(1 — f) Csc + fC5]
= (1 - f) (z1cCic + ®2cCoc + 3¢ C3c) + f (£1cClc + T20C5¢ + 23¢C30)
=1-flz+ fx*.
(4.25)

Remembering Eq. (4.5) and rearranging leads to
Tt = (1—AB)w+ABZB(t) . (4.26)

The analogy of Eq. (4.25) and Eq. (4.26) reveals the similar effect of adjusting Ap or f
in case of only perturbing the eigenvalues of the anisotropy tensor. Thus, one can rewrite
the actual intended location inside the barycentric triangle as a relative distance towards
the corners

.’B; =(1—-Apf)x+ ABf:I:(t) . (4.27)
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Abstract

The limitations of turbulence closure models in the context of RANS simulations play
a significant part in contributing to the uncertainty of CFD. Perturbing the spectral
representation of the Reynolds stress tensor within physical limits is common practice
in several commercial and open-source CFD solvers, in order to obtain estimates for
the epistemic uncertainties of RANS turbulence models. Recent research revealed that
there is a need for moderating the amount of perturbed Reynolds stress tensor to be
considered due to upcoming stability issues of the solver. In this paper, we point out that
the consequent common implementation can lead to unintended states of the resulting
perturbed Reynolds stress tensor. The combination of eigenvector perturbation and
moderation factor may actually result in moderated eigenvalues, which are not linearly
dependent on the originally unperturbed and targeted perturbed eigenvalues anymore.
Hence, the computational implementation is no longer in accordance with the conceptual
idea of the EPF. We verify the implementation of the conceptual description with respect
to its self-consistency. Adequately representing the basic concept results in formulating a
computational implementation to improve self-consistency of the Reynolds stress tensor
perturbation.

5.1. Introduction

Industrial aerodynamic designs increasingly rely on numerical analysis based on flow
simulations using CFD software. Such industrial applications usually feature turbulent
flows. Due to its cost- and time-effective solution procedure, RANS equations are an
appropriate approach for design optimizations and virtual certification. Unfortunately,
the RANS equations are not closed and, hence, require the determination of the second-
moment Reynolds stress tensor. In this context, the Reynolds stress tensor is approximated
using turbulence models. These models make assumptions regarding the relationship
between the Reynolds stresses and available mean flow quantities, such as the mean

'Licensed under a Creative Commons Attribute (CC BY) license
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velocity gradients, which limit their applicability in terms of accuracy on the one hand.
On the other hand, the assumptions made in the formulation of closure models inevitably
lead to uncertainties as soon as their range of validity is left. The quantification of these
model-form uncertainties for industrial purposes is a demanding task in general.

Several approaches seek to account for these uncertainties at different modeling levels 29,
169]. We focus on the EPF [34, 66|, which estimates the predictive uncertainty due to
limitations in the turbulence model structure, namely its epistemic uncertainty. The EPF
is purely physics-based and introduces a series of perturbations to the shape, alignment
and size of the modeled Reynolds stress ellipsoid to estimate its uncertainty. Because of
its straightforward implementation, the EPF has been used in diverse areas of application
such as mechanical engineering [125|, aerospace engineering [105, 22, 108, 18, 19|, civil
engineering [45, 80] and wind farm design [31, 64]. The EPF is the foundation of recent
confidence-based DUU approaches [51]. There have been studies showing the potential
to optimize it using data-driven machine learning approaches [61, 32| and it has been
applied for the virtual certification of aircraft designs [113, 118]. The EPF has been
integrated into several open and closed source flow solvers [30, 56, 107, 99|. This range of
applications emphasizes the importance of the EPF. Imperfections in the EPF can have
a cascading ramification to all these applications and fields.

There is need for V&V of such novel methodologies. Validation focuses on the agreement
of the computational simulation with physical reality [120], which has been done for the
EPF in the aforementioned studies. Whereas, verification focuses on the correctness of
the programming and computational implementation of the conceptual model [148]. For
the EPF, this verification would involve the theory behind the conceptual model and
the computational implementation. The theoretical foundations of the Reynolds stress
tensor perturbations have been analyzed in detail [106]. In this investigation, we focus
on the computational implementation of the EPF, analyzing the consistency between
the envisioned conceptual model and the actually implemented computational model. In
order to estimate the epistemic uncertainty for future design applications with respect
to turbulence closure model, we review the current implementation of the framework
in the CFD solver suite TRACE developed by DLR in strong cooperation with MTU
Aero Engines AG. Especially, we focus on the motivation, implementation and effects
of applying a moderation factor f that serves to mitigate the amount of perturbation
and aid numerical convergence of CFD solution [107, 99| (in some publications f is called
under-relaxation factor). The present investigation reveals a shortcoming when combining
the eigenspace perturbation of the Reynolds stress tensor with the moderation factor,
which has not yet been addressed in the literature. On this basis, we formulate a way of
improving self-consistency of the EPF and recovering its originally intended, physically
meaningful idea in the present paper. Such adherence of self-consistency is an essential
component of the verification assessment stage of V&V [127] in order to ensure agreement
between the conceptual and the computational model (numerical implementation) in
accordance with verification as outlined by the ATAA CFD Committee [1].

The paper is structured as follows: Section 5.2 introduces the Reynolds stress tensor’s
eigenspace perturbation. We describe the fundamental motivation, the mathematical
background and the deduced practical implementation of the EPF. In Section 5.2.1, we
present the conceptual idea to apply an eigenspace decomposition of the anisotropy tensor.
On this basis, the evident choice to perturb the eigenvalues and eigenvectors within
physical limits is demonstrated from a practical engineering perspective in Section 5.2.2.
Propagating these limiting states of turbulence enables a CFD practitioner to estimate the
model-form uncertainty for certain Qol with respect to the underlying turbulence model.
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Finally, we point out an inconsistency in the prevailing computational implementation
of the eigenspace perturbation in CFD solvers and suggest an alternative self-consistent
formulation in Section 5.2.3. The uncertainty estimation for simulations of a turbulent
boundary layer serve to demonstrate the envisioned benefits of the proposed consistent
implementation of the EPF in Section 5.2.4. Section 5.3 summarizes the findings of the
paper and assesses their significance for future applications.

5.2. Reynolds stress tensor perturbation to estimate
uncertainties

5.2.1. Reynolds stress anisotropy and visualization

The symmetric, positive semi-definite? Reynolds stress tensor 7;; = u/ uj needs to be

determined by turbulence models in order to close the RANS equations. It can be
decomposed into an anisotropy tensor a;; and an isotropic part

2
Tij = k <aij + 35ij> , (5_1)

where the turbulent kinetic energy is defined as k = %Tii and summation over recurring
indices within a product is implied. As the Reynolds stress tensor and its symmetric
anisotropic part only contain real entries, they are diagonalizable. Thus, based on an
eigenspace decomposition, the anisotropy tensor can be expressed as

a;j = UmAnlUjl . (5.2)

The orthonormal eigenvectors form the Principal Coordinate System (PCS) and can be
written as a matrix v;, while the traceless diagonal matrix A,; contains the corresponding
ordered eigenvalues A, with respect to a;j|pcs. Because of the definition of the anisotropy
tensor in Eq. (5.1), Reynolds stress and anisotropy tensor share the same eigenvectors
while the eigenvalues of the Reynolds stress tensor are & = k(A +2/3). Consequently, the
eigenvalues and the eigenvectors represent the shape and the orientation of the positive
semi-definite 3x3-tensor and can be visualized as an ellipsoid (see Fig. 5.1).

Generally, the anisotropy tensor describes and measures the deviation of the Reynolds
stress tensor from the isotropic state, where its geometric ellipsoid representation forms a

Figure 5.1.: Representation of the Reynolds stress tensor as an ellipsoid; eigenvalues &;
and eigenvectors v; are highlighted.

2A tensor which is positive semi-definit has only non-negative eigenvalues.
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Figure 5.2.: AIM of the Reynolds stress tensor comparing second and third invariant
of respective anisotropy tensor. The corners of the triangle (1C, 2C, 3C)
represent the componentiality of turbulence (see Table 5.1).

perfect sphere ({1 = £ = &3). The invariants of the anisotropy tensor

[h=tr(a)=0
1
= —5131‘ (32) = XAy + A1 A3+ Ao )s (53)
HIa = det ( ) )\1)\2)\3

can be used to visualize the tensor in a coordinate-system-invariant way, called the
Anisotropy Invariant Map (AIM) [93], in Fig. 5.2.

Because of the physical realizability constraints of the Reynolds stress tensor [136]
Taa 20, Taa Tag >7a, det(7)>0, o,f=1,23 (5.4)

and the definition of the anisotropy tensor (see Eq. (5.1)), the entries of the anisotropy
tensor are bounded in the following ranges:

S [F53] fori=j
azﬂe{ [1,1] fori#j (5:5)

The eigenspace decomposition of the anisotropy tensor in combination with tensor
diagonalization (see Eq. (5.2)) leads to the fact that any physically realizable Reynolds
stress tensor can be mapped to exactly one respective anisotropy tensor in its canonical
form A;; = diag(A1, A2, A3). When applying Eq. (5.5) to A;j, the ordered eigenvalues

A1 = max (@aalpcs)
Ay = max (ags|pcs) (5.6)

A3 = —A1 — A9 = min (a
3 1 2 fy;éa,ﬁ( 'y'y|PCS)

are bounded accordingly [151]:

m’)\l<g_)\2' (5.7)

A >
1= 2 =3
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Table 5.1.: Turbulence componentiality and limiting states of turbulence with respect to
the eigenvalues of the Reynolds stress tensor &; and the anisotropy tensor A;.

States of turbulence Componentlahty2 eigenvalues

#EAOor # Ni# 2 & | A
One-component (1C) 1 §1=2k,E=E6=0\\ = %) Ay = A3 = _%
Two-component 2 E+&E=2kE=0[A+X= %, A3 = _%
Two-component . B N s
axisymmetric (2C) 2 G=&=k=0M=%=75="3
Three-component 3 &1+ & + & =2k M+AX+X3=0
Three-component .9 N
isotropic (3C) 3 G=L=8=3k | M=h=A:=0

Turbulence componentiality [151] categorizes three fundamental states (one-, two- and
three-component turbulence) based on the number of non-zero eigenvalues of the Reynolds
stress tensor &; (and respective anisotropy tensor eigenvalues J;), presented in Table 5.1.
Besides, axisymmetric turbulence is characterized by two eigenvalues being equal, while
an isotropic state features three identical eigenvalues. The corners of the AIM in Fig. 5.2
can be classified as the (three-component) isotropic limit (3C), the two-component
axisymmetric limit (2C) and the one-component limit (1C) (see also Table 5.1). Moreover,
due to the boundedness of the anisotropy tensor entries (and its eigenvalues, respectively),
all physically plausible states of turbulence must lie within the area spanned by the
corners of the triangle. Furthermore, a barycentric triangle can be constructed based on
the spectral theorem [4]. Consequently, every physically realizable state of the Reynolds
stress tensor can be mapped onto barycentric coordinates

1 3
x :§$1C (A — A2) + xac (A2 — A3) + @3¢ <2/\3 + 1)

x=Q\ with A\{ > XAy > A3,

(5.8)

while Q depends on the choice of corners of the barycentric triangle. Figure 5.3 shows
these three limiting states of the Reynolds stress tensor, defined by the corners of the
triangle (x1c, €20, T3c) representing the one-component, two-component axisymmetric
and three-component isotropic turbulent state. A great benefit of the ABM is the
possibility to obtain a linear interpolation between two points with respect to their
eigenvalues. The eigenspace perturbation exploits this property as well.

5.2.2. Perturbation of eigenspace representation

As the Reynolds stresses are expressed as functions of the mean flow quantities for
turbulence modeling, we need to consider the nature of their relationship. A common
example is the state-of-the-art LEVMs, which assume this relationship to be linear and
introduce a turbulent (eddy) viscosity vt to approximate the Reynolds stress tensor in
analogy to the viscous stresses

1 8uk 2
Tij = —2uT <S¢ — 38{Ekdlj) + gk‘(s” , (59)
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Figure 5.3.: ABM representing the eigenvalues of the anisotropy tensor and its effect on
the shape of the Reynolds stress tensor ellipsoid. The eigenvalue perturbation
towards the two-component limiting state of turbulence is shown schemati-
cally.

where the strain-rate tensor is denoted as S;;. In the past decades researchers have
pointed out limitations of these LEVMs for flow situations that are not covered by the
calibration cases [146, 109, 23, 89|. The estimated relationship between Reynolds stresses
and mean rate of strain results in the inability to account correctly for its anisotropy and
consequently lead to a significant degree of epistemic uncertainty. In order to account for
such epistemic uncertainties due to the model-form, the perturbation approach suggests
to modify the eigenspace (eigenvalues and eigenvectors) of the Reynolds stress tensor
within physically permissible limits [34, 66]. The EPF of the Reynolds stress tensor
implemented in TRACE creates a perturbed state of the Reynolds stress tensor defined as

* * 2

5 (5.10)

=k (U;knA:lU;l + 35z‘j> y
where a,;-*j is the perturbed anisotropy tensor, Ay, is the perturbed eigenvalue matrix and
v}, is the perturbed eigenvector matrix. The turbulent kinetic £ energy is left unchanged.
In the following sections, we will describe the mathematical and physical foundation of
forming a perturbed eigenspace.

Eigenvalue perturbation

The eigenvalue perturbation utilizes the boundedness of the eigenvalues of the anisotropy
tensor and their representation in terms of barycentric coordinates, as described in
Section 5.2.1. As the representation of the anisotropy tensor within the ABM enables
linear interpolation between a starting point « and a target point @), the perturbation
methods creates a modified location &*, according to

' =x+ Ap (:r(t)—ac) , (5.11)

with the relative distance Ap € [0, 1] controlling the magnitude of eigenvalue perturbation
as illustrated in Fig. 5.3. The starting point « is usually determined within the RANS
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simulation iteration via the relationship for the Reynolds stresses determined by the
turbulence model, e.g. the Boussinesq assumption for LEVMs (see Eq. (5.9)). Due to
their distinctive significance, the limiting states of turbulence at the corners act typically
as the target point @) € {z1c, a0, x3c}. Subsequently, the perturbed eigenvalues A}
can be remapped by the inverse of Q

A =Q . (5.12)

Eigenvector perturbation

In contrast to the eigenvalues, there are no physical bounds for the orientation of the
eigenvectors of the Reynolds stress tensor and there is no upper limit for the turbulent
kinetic energy. Thus, the fundamental idea of perturbing the eigenvectors is to create
bounding states for the production Py of turbulent kinetic energy k in transport equation
based LEVMs. Hereby, the budget of turbulent kinetic energy is indirectly manipulated.
The production of turbulent kinetic energy is defined as the Frobenius inner product of
the Reynolds stress and the strain-rate tensor. Since both are positive semi-definite, the
bounds of the Frobenius inner product can be written in terms of their eigenvalues &; and
1; arranged in decreasing order [83]:

oU;
Pk = —Tijaixj = —Tij* Sij = _<T7 S>F = —tr (TS)

€ [§193 + Eatba + E3v1, §19h1 + avha + E3¢3]

Since the Reynolds stress and the strain-rate tensor share the same eigenvectors in LEVMs
(see Eq. (5.9)), the lower bound of the turbulence production term can be obtained by
commuting the first and third eigenvector of the Reynolds stress tensor, whereas maximum

turbulence production is obtained by not changing the eigenvectors of the Reynolds stress
3.

(5.13)

tensor
Vmax = ('Ul U2 ’03) = Pl

5.14
Vimin = (v3 v2 v1) = B 514)

min °

Implications for CFD practitioners

The eigenspace perturbation can be divided into eigenvalue and eigenvector modifications
of the Reynolds stress tensor. For practical application purposes each eigenvalue perturba-
tion towards one of the limiting states of turbulence can be combined with minimization or
maximization of the turbulence production term (eigenvector perturbation). In summary,
the model-form uncertainty of LEVMs can be estimated by six additional CFD simulations
if Ap < 1 and only five perturbed simulations if Ag = 1 is chosen. This is because the
Reynolds stress ellipsoid is a perfect sphere when targeting for the 3C turbulence state
with Ap =1 (see Fig. 5.3), making an eigenvector perturbation obsolete. As the amount
of considered turbulence model uncertainty scales with the relative perturbation strength
Ap, aiming for the corners of the barycentric triangle (applying Ap = 1) is common
practice in order to obtain the worst case estimate corresponding to the most conservative
uncertainty bounds on Qol [34, 66, 107, 99]. The analysis of additional CFD simulations,
propagating the effect of perturbed Reynolds stress tensors, enables a CFD practitioner
to quantify the derived effect of the turbulence model perturbation on certain Qol, e.g.
the pressure distribution.

3Permuting of the eigenvectors of the Reynolds stress is equivalent to changing the order of the
respective eigenvalues. Both change the alignment of the Reynolds stress ellipsoid with the principal axes
of the strain-rate tensor.
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5.2.3. Self-consistent formulation of perturbation

The emergence of some shortcomings of the eigenspace perturbation of the Reynolds
stress tensor is highlighted in this section. This forms the foundation for rethinking the
computational formulation of the EPF. The present paper suggests an appropriate way
of formulating the EPF, ensuring control over numerical stability while preserving the
conceptual model of perturbing the eigenspace of the Reynolds stress tensor.

Need for moderating the perturbation strength

The need for moderating the effect of Reynolds stress tensor perturbation emerges,
when the Reynolds stress tensor perturbation seeks to decrease the turbulent kinetic
energy budget (P, and/or 3C). These perturbations featuring overly reduced turbulent
viscosity can lead to numerical convergence issues for example when simulating separated
flows. To ensure convergence, moderating the effect of Reynolds stress tensor perturbation
is required. Recent publications introduce a moderation factor f to enable the CFD
solver to achieve fully converged, steady-state RANS results [107, 99]. Consequently, the
propagated perturbed Reynolds stress tensor (entering the update of the viscous fluxes
and the turbulence production term) can be expressed as

T, =i+ F [ — 7] (5.15)

where f € [0,1] is the introduced moderation factor, adjusting the total amount of
perturbed anisotropy tensor to be considered?.

Inconsistency when combining eigenspace perturbation and moderation factor

Unfortunately, the unperturbed Reynolds stress tensor 7;; and the perturbed one 7'2-’; do
not necessarily share the same eigenvectors. When eigenvector perturbation is applied,
the resulting moderated Reynolds stress tensor T{'}-f shows unintended behaviour with
respect to its projection onto barycentric coordinates. Fig. 5.4 presents the perturbation
trajectory when increasing f from 0 to 1 for selected RANS data points inside the ABM
towards the one-component limiting state of turbulence. The moderated Reynolds stress
tensor is calculated based on Eq. (5.15) with 7;; = 75, while 7;; . is a function of Afjlc,
v; and krang. Each location along the perturbation trajectory results from determining
the respective moderated anisotropy tensor and its barycentric coordinates related to its
eigenvalues. The perturbation trajectory when T{; and 7;; share identical eigenvectors
shows the expected linear interpolation between the respective coordinates. However,
when applying eigenvector perturbation (first and last column of v are commuted) the
resulting intermediate paths do not represent the most direct connection between starting
and target point. Instead, the perturbation trajectories in Fig. 5.4b point towards
axisymmetric expansion (line between x3c and xi¢) first, head towards axisymmetric
contraction (line between xsc and xoc) subsequently and target the one-component limit
of turbulence finally.

The mathematical explanation for this observation, when combining eigenvalue and
eigenvector perturbation while moderating their effects by a factor according to Eq. (5.15)
is given thereupon. Thus, the prerequisites for the accomplishment of linear interpolation
properties in terms of barycentric coordinates, when adding two tensors X and Y, are
addressed. Assuming X and Y are positive semi-definite (as the Reynolds stress tensor),

4The effect of applying the moderation factor is identical to a reduction of Ap in Eq. (5.11) in case
of pure eigenvalue perturbation (see Appendix 4.A in Chapter 4).
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Figure 5.4.: Comparison of the perturbation trajectory for RANS channel flow data at
Re, = 1000 (blue dots) in barycentric coordinates. The trajectories for
selected RANS data points (7;;) are created by increasing f = 0...1 with and
without eigenvector perturbation targeting the one-component limiting state

of turbulence 75 = 7;;,, (orange dot).

then these tensors are realizable [136] and their projection onto barycentric coordinates
has to lie within the barycentric triangle [4], following the reasons mentioned above (see
Section 5.2.1). If X and Y share identical eigenvectors (commuting matrices), their
sum X + Y will feature the same eigenvectors and its eigenvalues are the sum of the
individual eigenvalues of X and Y consequently (see Appendix 5.A). Moreover, if X and
Y are positive semi-definite, their sum X 4+ Y will be positive semi-definite as well (see
Appendix 5.B). This implies that the sum of two realizable Reynolds stress tensors will
fulfill realizability constraints and will be located inside the ABM accordingly.

The line of argument mentioned above is also true for the summation of two scaled tensors

Z=X+f[Y-X]=(1-f)X+FfY, (5.16)

as multiplying a tensor by a scalar does not affect the eigenvectors and modifies the
eigenvalues linearly. The individual scaling of the tensors is chosen, such that the first
invariant of Z (tr (Z)) remains identical to X and Y (tr(X) = tr(Y) = tr (Z)). Keeping
in mind that X and Y represent Reynolds stress tensors, this means that the turbulent
kinetic energy remains constant. This is achieved by choosing f € [0, 1]. Due to the affine
transformation, the barycentric coordinates of the anisotropic part of Z are determined
by xz = (1 — f) xx + foxy, when x and xy are the initial states of the tensors X and
Y in barycentric coordinates (see Appendix 5.C). Finally, if f is increased incrementally
from 0 to 1, the resulting states xz will end up forming a straight line connecting xx
and xvy, as illustrated in Fig. 5.5 and especially in Fig. 5.5a. For reference, Fig. 5.5b and
Fig. 5.5¢ show the result of linear interpolation in terms of barycentric coordinates in the
classical AIM and the alternative Anisotropy Invariant Map [17].

However, the summation of commuting matrices is the exception. Adding up two arbitrary,
positive semi-definite matrices, eigenvector orientation is not preserved and the resulting
eigenvalues are not just the sum of the original eigenvalues. As a consequence, their
transformation into barycentric coordinates is not located along the shortest possible
path connecting the representation of the anisotropy of the original tensors, as shown in
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Figure 5.5.: Transition from tensor A to B (defined in Appendix 5.D) featuring identical
eigenvectors by increasing f = 0...1 (see Eq. (5.16)). The intermediate
brown-colored states in (a), (b) and (c) correspond to the states with f €
[0.2,0.4,0.6,0.8] in (d) and (e).
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Figure 5.6.: Transition from tensor A to C (defined in Appendix 5.D) featuring different
eigenvector by increasing f = 0...1 (see Eq. (5.16)). The intermediate
brown-colored states in (a), (b) and (c¢) correspond to the states with f €
[0.2,0.4,0.6,0.8] in (d) and (e).
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Fig. 5.6. Analyzing the orientation of the PCS of each tensor in Fig. 5.6d and Fig. 5.6e
reveals the transformation of eigenspace. The representation in barycentric coordinates
shows a perturbation trajectory that connects starting and target point via the sides
of the triangle (see Fig. 5.6a). Hence, the introduction of a moderation factor violates
the original intent of the EPF and, in addition to that, affects the plausibility of recent
data-driven machine learning approaches [61, 99|, relying on the interpolation property
with respect to barycentric coordinates. Moreover, the bounds of the Frobenius inner
matrix product (see Eq. (5.14)) can only be achieved, if the matrices share the same
eigenvectors®. When applying Reynolds stress eigenvector perturbation in combination
with a moderation factor, the resulting turbulence production indeed yields a value
within the interval of the inner product defined in Section 5.2.2, but does not reach
the theoretical limits as the perturbed Reynolds stress tensor features some different
eigenvectors compared to the strain-rate tensor.

To sum up, the concept of the EPF that is perturbing the eigenvalues of the Reynolds
stress tensor linearly between the initial state and a certain limiting state of turbulence
cannot be guaranteed if a moderation factor is introduced as in current implementations.
Applying this moderation factor in combination with eigenvector perturbations results in
a conceptually unintended state of the anisotropy tensor on the one hand. On the other
hand, the intended minimization and maximization of the turbulence production term is
no longer guaranteed.

Proposed approach to improve self-consistency

In order to resolve the issues described in Section 5.2.3 the implementation of the
EPF needs to be changed. A first step is the removal of the entire idea of applying a
moderation factor to adjust the amount of perturbed Reynolds stress tensor according
to Eq. (5.15). As a consequence, Ap in Eq. (5.11), which controls the amount of
perturbation towards the respective limiting state of turbulence, has to be adjusted, in
order to retain converged RANS simulations (see Section 5.2.3). This is in contrast to
the common practice of choosing Ap = 1, arguing that there is no physical reason to
restrict this value without the usage of data-driven methods or expert knowledge on
the flow configuration. In other words, the perturbed Reynolds stress tensor, entering
the update of the viscous fluxes and the turbulence production term, in the proposed
self-consistent implementation is based on Eq. (5.10). Nevertheless, the fundamental idea
of the individual perturbation of eigenvalues and eigenvectors, introduced in Section 5.2.2,
remains the same. Hereby, the entire EPF in order to quantify the structural uncertainties
of turbulence models is formulated in a verified, physics-constrained and self-consistent
manner. Its implementation in TRACE can be subdivided in several steps within each
pseudo-time step of steady RANS simulations:

1. Calculate the Reynolds stress tensor based on the Boussinesq approximation in
Eq. (5.9).

2. Determine the respective anisotropy tensor (see Eq. (5.1)).
3. Decompose the anisotropy tensor in its eigenvalues and eigenvectors (see Eq. (5.2)).

4. Compute the barycentric coordinates based on the eigenvalues of the anisotropy
tensor (see Eq. (5.8)).

®Details can be found in Appendix B.
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5. Perturb the barycentric coordinates of the anisotropy tensor within physical realiz-
able limits by chosen Ap (see Eq. (5.11)).

6. Determine the perturbed eigenvalues of the anisotropy tensor with respect to the
perturbed barycentric coordinates (see Eq. (5.12)).

7. Perturb the eigenvectors of the anisotropy/Reynolds stress tensor if the production
term of the turbulent kinetic energy should be minimized (see Eq. (5.14)).

8. Reconstruct the perturbed Reynolds stress tensor according to Eq. (5.10).
9. Update the viscous fluxes using the reconstructed perturbed Reynolds stress tensor.

10. Update the turbulence production term using the reconstructed perturbed Reynolds
stress tensor explicitly.

It should be noted that different types and magnitudes of the perturbations (1C, 2C or 3C;
Py . or Py chosen Ap and/or f) result in different solutions of the RANS equations
from a mathematical point of view regardless of the EPF formulation (non-consistent or
consistent). However, not every mathematical solution represents a physically meaningful
solution (e.g. a solution giving laminar flow in a clearly turbulent domain, or unsteady
flow in steady-state conditions). Hence, the EPF requires certain expert knowledge and
engineering practice to determine the appropriate amount of perturbation magnitude
(Ap in the consistent formulation) leading to meaningful, converged RANS solutions.

5.2.4. Application to plane turbulent channel flow

The uncertainty estimates based on the non-consistent and self-consistent eigenspace per-
turbation are compared when applied to a canonical turbulent channel flow at Re,; = 1000.
The channel flow is homogeneous in streamwise and spanwise direction. A constant stream-
wise pressure gradient dp/dx is applied to balance the skin friction at the walls. The
configuration for simulating this wall-bounded flow is sketched in Fig. 5.7. The mesh has
a low-Reynolds resolution (y < 1) at the solid walls with 100 cells up to the symmetry
line in wall-normal direction. The two-equation Menter SST k-w turbulence model [104],
which belongs to the group of LEVMs, is considered as the baseline model for the present
simulations. The discrepancies with respect to barycentric coordinates of the RANS
turbulence model when compared with available DNS data of Lee and Moser [86] are
moderate in the channel center and start to increase close to the wall due to the strong
anisotropy of turbulence (see Fig. 5.8). Due to the fact that the turbulence model relies on
the Boussinesq assumption Eq. (5.9) and that a velocity gradient in spanwise direction is
missing, the Reynolds stress tensor has at least one zero eigenvalue. Hence, the resulting
barycentric coordinates are known to be the plane-strain line in the ABM.

The turbulence model-form uncertainty is quantified applying the EPF. In order to
demonstrate the implications of using the proposed consistent formulation a relative
perturbation strength of A = 0.5 is used for the consistent formulation, while A = 1.0 is
used for the non-consistent formulation. Consequently, a factor of f = 0.5 is applied for
the non-consistent formulation to moderate the strength for eigenvalues and eigenvector
perturbation and to obtain comparable results to the consistent formulation. The
streamwise pressure gradient, which was adjusted for the baseline simulation to match
the Reynolds number, remains constant throughout the perturbed simulations. This is
comparable to the procedure of Emory et al. [34] for a similar test case. The comparison of
the uncertainty estimated by the EPF for the streamwise velocity profile of the boundary
layer is presented in Fig. 5.9. The simulations featuring eigenvector perturbation are
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Figure 5.7.: Schematic turbulent channel flow setup.
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Figure 5.8.: Barycentric coordinates of DNS data and RANS simulation using the Menter
SST k-w model. Data points are colored according to their distance from the
wall.

indicated by Py, . (aiming for minimized turbulence production), while no eigenvector
permutation is applied for Py . (see Eq. (5.14)). Overall, the uncertainty estimate
(gray shaded area) of the boundary layer profile are identical for both formulations.
On the one hand, this is because the simulations without any eigenvector perturbation
are mathematically equivalent, leading to identical results for Qol. On the other hand,
applying eigenvector permutation for the channel flow results in laminarization of the
boundary layer. Hence, the laminar velocity profile driven by the selected constant
streamwise pressure gradient bounds the uncertainty estimation, regardless of the EPF
formulation or target barycentric coordinate x(). Overall, the uncertainty intervals
are smaller for previous investigations of the channel flow by Emory et al. [34]. To
the authors’ knowledge and experience, this is because of the fact that Emory et al.
[34] do not explicitly update the turbulence production term based on the perturbed
Reynolds stresses. Additionally, as the perturbations for both formulations are uniform
throughout the computational domain, it is expected that by applying an appropriate
amount of perturbation strength (e.g. locally varying perturbations with the help of
machine learning) the uncertainty estimates would be more adequate.
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Figure 5.9.: Comparison of the resulting uncertainty bounds for the streamwise velocity
profile of turbulent channel flow simulation derived by the EPF.
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Figure 5.10.: Comparison of the resulting barycentric coordinates of the perturbed
Reynolds stress tensors for the turbulent boundary layer profiles.

In terms of conceptual model verification, the proposed self-consistent formulation guar-
antees to maintain agreement between the theoretical idea of the EPF and the simulation
results, which are shown in Fig. 5.10. The final perturbed states of the Reynolds stress
anisotropy tensor for simulations aiming at Py, show the expected identical perturbed
anisotropic states for both EPF formulations. Fig. 5.10a reveals the initial motivation for
scrutinizing the consistency of the formulation using a moderation factor in combination
with eigenvector perturbation, as the RANS solution points for the turbulent boundary
layer do not show the intended behaviour for Py . . If a CFD practitioner runs a per-
turbed RANS simulation aiming for one of the corners of the barycentric triangle, it is
expected that the resulting anisotropic states show respective shifts towards that limiting
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state of turbulence. The boundary layer solution points of (1C, Py, _. ) and (2C, Py, )
are located at some unintended states inside the barycentric triangle in Fig. 5.10a due
to summation of two non-commuting tensors. In contrast, the respective simulations
using the consistent formulation produces anisotropic states of the Reynolds stress tensor,
which are entirely perturbed towards one of the corners of the triangle (keeping in mind
that the unperturbed Reynolds stress tensor is represented by the plane-strain line as in
Fig. 5.8).

Besides, the self-consistent formulation of the EPF framework, presented in Section 5.2.3,
enables the user to additionally perform the perturbed RANS simulation aiming for
(3C, Pg_. ), which was obsolete in the non-consistent formulation using Ap = 1.

min)

5.3. Conclusion & outlook

The EPF, which creates perturbed states of the Reynolds stress tensor in order to
quantify the structural uncertainties of RANS turbulence models, is described in detail,
presenting its underlying idea and discussing its practical implementation and usage.
The present work highlights one shortcoming in the commonly proposed implementation
of this framework. Due to numerical convergence issues, researchers have suggested to
weaken the effect of perturbed Reynolds stress by introducing a moderation factor in
previous publications. The assessment of the common computational implementation
reveals that the basic concept of the EPF is not correctly represented in that case. The
introduction of a separate moderation factor may cause unintended behaviour and violate
EPF’s self-consistency. Therefore, the present paper presents a self-consistent way of
formulating the Reynolds stress tensor perturbation framework, as the significance of
reasonable physics-constrained U@ methodologies is indisputable. This formulation has
recently been implemented in the CFD solver suite TRACE. The analysis of the results
based on the proposed eigenspace perturbation formulation when applied to turbulent
channel flow verifies its benefits with respect to the interpretability of the uncertainty
estimates. In the near future the framework will be applied to quantify the uncertainties
for more complex flows for which the differences between the non-consistent and the
self-consistent formulation are expected to be greater for Qol. Moreover, ongoing research
focusing on determining the Reynolds stress tensor perturbation by the use of data-driven
machine learning practises will benefit from verified self-consistent implementation of the
framework as well.

Appendix 5.A Properties of the sum of two tensors
featuring identical eigenvectors in terms of
eigenspace

Let &« be the eigenvalues of tensor X and &;,, be the eigenvalues of tensor Y. Both

tensors share the same eigenvectors v;. Therefore, we know that the relationships

Xv; =&,v; 1=1,2,3
P = SixVi . (5.17)
Y’Ui = &Y’Ui 1= 1,2,3

are satisfied. The summation of X and Y leads to:
X+Y)v; =Xv; +Yv; i=1,2,3
= &ix Vi + &y v; (cf. Eq. (5.17)) (5.18)
= (&ix +&iy) Vi -
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Consequently, the resulting sum features identical eigenvectors as well and its eigenvalues
are the sum of the individual eigenvalues.

Appendix 5.B Transferability of definiteness with respect to
the sum of two positive semi-definite tensors

Tensor X and tensor Y are positive semi-definite, which means
Vn € R", n’'Xn > 0, n'Yn>0. (5.19)
The sum of X and Y can be distributed based on the laws of tensor multiplication
vne R nT (X+Y)n=n"Xn+nTYn>0. (5.20)

Consequently, the sum of two positive semi-definite tensors is positive semi-definite as
well.

Appendix 5.C Interpolation properties of two scaled tensor
with respect to its location in barycentric
coordinates

Let Ay > Aoy > A3y be the eigenvalues of the anisotropic part of the 3x3-tensor X and

Ay = A2y > A3y be the eigenvalues of the anisotropic part of the 3x3-tensor Y. The
eigenvalues of the summation of the scaled tensors

Z=(1-f)X+fY (5.21)
are )‘iz = (1 - f) Aix + fAiY-
The barycentric coordinates are
3
Tz :I:lc P‘lz )\QZ] + xo¢ [)\QZ — )‘32] + x3¢ |:2)‘3z + 1:| (5.22)

—$1C [( 1- ))‘1x+f)‘1y) ((1_f))‘2x+f/\2Y)]
(1 ))‘2x+f)‘2y) - ((1_f) )\3X+f>\3Y)] (5.23)

3
+ x3¢ [2 f)Asx + fAsy) + 1:|

+ xoc

(
I¢
=Tic; [((1 F) Ak + fAay) = (1= f) Aax + fAay)]
((1 ))\QX + f)\2Y> ((1 - f) )‘3x + f/\3y)] (5.24)

e [ (L 1)+ Py +1- £ +1]

+ x2C
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:xlcé (1= f) (Mix — Aax)]

+ x2c [(1 - f) ()‘2x - >‘3x)]

b |30 1) Ouy +1)

! (5.25)
txicg [f Ay = Aey)]
+ @ac [f (A2y — Asy)]
+z3c [gf (Asy + 1)]
=(1-flzx + fey . (5.26)

Consequently, the projection onto barycentric coordinates preserves the ability to inter-
polate linearly between two initial states in the ABM.

Appendix 5.D Example tensors used in this paper
The positive semi-definite tensor A is defined as

2 05 —05
A=[05 25 —05]|, (5.27)
—05 —05 15

with a set of eigenvalues §;, and eigenvectors v;, .
Tensor C, that is also positive semi-definite and features identical trace as A, reads

1 05 15
c=(05 2 o0|. (5.28)
15 0 3

The respective set of eigenvalues is §; and eigenvectors are v;.
Tensor B is constructed using the PCS defined by the eigenvectors of A and the eigenvalues
of C

fig 0 0 219 055 —1.11
B=uin, | 0 &o 0 |uy,~| 055 302 —083] . (5.29)
0 0 &g ~1.11 —0.83 0.79
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Abstract

Aerospace design is increasingly incorporating DUU-based approaches to lead to more
robust and reliable optimal designs. These approaches require dependable estimates of
uncertainty in simulations for their success. The key contributor of predictive uncertainty
in CFD simulations of turbulent flows are the structural limitations of RANS models,
termed model-form uncertainty. Currently, the common procedure to estimate turbulence
model-form uncertainty is the EPF, involving perturbations to the modeled Reynolds
stress tensor within physical limits. The EPF has been applied with success in design and
analysis tasks in numerous prior works from the industry and academia. Owing to its
rapid success and adoption in several commercial and open-source CFD solvers, in-depth
Verification and Validation of the EPF is critical. In this work, we show that under certain
conditions, the perturbations in the EPF can lead to Reynolds stress dynamics that are not
physically realizable. This analysis enables us to propose a set of necessary physics-based
constraints, leading to a realizable EPF. We apply this constrained procedure to the
illustrative test case of a converging-diverging channel, and we demonstrate that these
constraints limit physically implausible dynamics of the Reynolds stress tensor, while
enhancing the accuracy and stability of the uncertainty estimation procedure.

6.1. Introduction

As computational resources continue to advance, the aerospace industry is experiencing
a notable increase in the degree of digitization, leading to faster design cycles with the
help of CFD. In order to accelerate the optimization of designs and streamline virtual
certification procedures, numerical approximations of the RANS equations is a judicious
choice. This choice not only upholds an acceptable level of fidelity but also computa-
tional efficiency for its purposes in design. However, the RANS equations necessitate the
modeling of the second-moment Reynolds stress tensor 7. Closure models, commonly
referred to as turbulence models, attempt to express the Reynolds stresses as a function
of measured quantities such as the local mean rate of strain. While turbulence modeling
offers practicality and facilitates efficient simulations, it also imposes inherent limitations

'Licensed under a Creative Commons Attribute (CC BY) license
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in achieving high levels of accuracy. Moreover, the assumptions made in the functional
representation of turbulence models introduce model-form (epistemic) uncertainties as
soon as their applicability range is exceeded [29, 169]|. This is particularly relevant for
complex engineering flows such as the ones encountered in turbomachinery components.
To provide a few examples, the prediction accuracy of common LEVMs suffers in flows
characterized by adverse pressure gradient, separation and reattachment, surface curva-
ture and secondary flow. Due to the definition of the Reynolds stresses in LEVMs (see
also introduction of Boussinesq approximation in Section 6.2), the tensor only carries
information on the mean rate of strain, hence the model is unable to account for rotational
effects and streamline curvature [146, 23]. Additionally, in the isotropic eddy viscosity
hypothesis, excluding representation of any anisotropic normal Reynolds stresses hinders
the accurate consideration of secondary flow [109].

Accounting for the inherent uncertainties in simulations is key towards robust designs.
That is why approaches to quantify the uncertainties associated with turbulence closure
models play an important role, especially in industrial applications with turbulent flows.
The only approach capable of addressing the epistemic uncertainty inherent in turbulence
closure modeling is the EPF that was initially proposed by Emory [33]. This methodology
builds upon the limited functional relationship of the Reynolds stresses. Selective pertur-
bation of the Reynolds stress tensor within physical bounds combined with sampling from
the resulting CFD solutions is an innovative model-form UQ approach [34, 52, 36, 66].
The underlying modeling structure of the tensor perturbation involves perturbations in
both eigenvalues and eigenvectors, which is comprehensively described in Section 6.2.
These perturbations can be interpreted as altering the shape and the orientation of
the Reynolds stress tensor ellipsoid [66, 106, 96]. Due to its unique characteristics and
persuasive interpretability of its simulation outcomes, the EPF has been used in various
engineering applications [45, 35, 105, 56, 80, 22, 125, 108, 113, 64, 31, 152, 19, 51, 49|.
For this reason, the ability of perturbing the eigenspace of the Reynolds stresses has been
integrated into numerous CEFD solvers 30, 107, 56, 99]. In addition to that, the emergence
of machine learning strategies guided the path towards data-driven enhancements of the
EPF [30, 61, 32, 99].

As there is the need for V&V of novel CFD methods, this paper addresses the underlying
modeling rationale of this framework. Recently, we have already proposed a novel ad-
vancement in the context of the EPF that focuses on ensuring realizable Reynolds stresses
and consistency between the envisioned conceptual and the implemented computational
model [96]. While the theoretical modeling structure and limitations of the eigenvalue
perturbation have been exhaustively discussed [106], the analysis of the eigenvector
perturbation remains incomplete so far.

In this article, we undertake a detailed examination of the foundation and ramifications
of the eigenvector perturbations. This thorough analysis of the Reynolds stress tensor’s
eigenvector perturbation in the context of RANS equations, enables us to show that
eigenvector perturbation, as they are currently implemented, may lead to non-realizable
Reynolds stress tensor dynamics. Moreover, we highlight numerical stability issues that
may arise as a consequence, potentially preventing broader application of this approach.
Therefore, we derive and propose a novel idea to prevent implausible Reynolds stress
tensor dynamics in the current paper.
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6.2. Accounting for turbulence modeling uncertainty using
the tensor perturbation framework

Despite the ongoing increase in computational resources, solving the set of Navier-Stokes
equations for turbulent flows by SRS in the design phase for industrially relevant devices
operating at high Reynolds numbers cannot be expected in the near future. As engineers
and system designers are rather interested in rapid iteration cycles, the ability to make
decisions based on statistical consideration of the mean flow is still industrial practice.
Hence, all flow quantities can be split into a mean and a fluctuating part, according to
¢ = ¢+ ¢'. To accommodate this need for compressible flows, a density weighted average
(Favre-average) is performed, whereby

¢=0¢+¢" and 56 = po (6.1)

holds for all instantaneous quantities except density p and pressure p. In the scope
of this paper, we will use the term RANS for the Favre-averaged Navier-Stokes equa-
tions, although Reynolds-averaging was initially developed for incompressible flows. The
statistically Favre-averaged momentum equation

g(ﬁ@wrai(p@@): op 9 (05 - it

— — 2
ot .’L‘j 8.7}1 ij <6 )

describes the change of the mean momentum in both time and space, attributed to
acting mean forces such as pressure gradients and divergence of viscous stresses (for the
sake of simplicity, gravitational forces and forces due to rotating frames of reference are
neglected).

To shorten and simplify the notation, we denote the mean velocities by a capital letter
u; — U; and omit the overline for density p — p and pressure p — p. Additionally, we
use x, v, z for x1, 22, x3 in the following.

Based on Stokes’ hypothesis the mean viscous stresses o depend on the strain-rate tensor

5@‘;':%(

gg? + %) and kinematic viscosity denoted as v:
7 1

1
045 = 2pV <SZ] — 3Skk5w> . (63)

In addition to these stresses, the right hand side of the equation contains unknown

correlations of fluctuating velocities 7;; = uju7, called the turbulent stresses or Reynolds

stresses [123]. To close the set of equations and facilitate computational simulations,
there exist numerous approximation methods. A widely used modeling assumption is the
representation of Reynolds stresses as an isotropic function of the scalar eddy viscosity vt
and the mean rate of strain tensor, drawing an analogy to the representation of viscous
stresses

1 2
Tij = —2vT <Sij — 3Skk5ij> + gk(si]’ . (6.4)

The equation mentioned above, also known as the Boussinesq approximation, ensures
that the trace of the resulting tensor is twice the turbulent kinetic energy k = %Tu State-
of-the-art two-equation turbulence models, such as the Menter SST k — w model [104],
typically solve additional partial differential transport equations for the turbulent kinetic
energy and the turbulent dissipation rate and reconstruct the eddy viscosity afterwards to
close the set of equations. The assumed linear relationship between Reynolds stresses and
strain-rate tensor, however, is not universally valid, as already discussed in Section 6.1.
Consequently, any simulation using the Boussinesq assumption contains inherent epistemic
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uncertainty. The perturbation of Reynolds stress tensor’s eigenspace [33] is the method
of choice in order to account for turbulence modeling uncertainty on Qol. The underlying
methodology is described in the following.

The symmetric, positive semi-definite Reynolds stress tensor 7;; can be decomposed into
an anisotropy tensor a;; and an isotropic component

2
Tij = k (aij + 351J> . (6.5)

Eddy viscosity based turbulence models assume that the tensorial characteristics of the
anisotropy tensor are solely dictated by the mean rate of strain tensor (see Eq. (6.4))

vr 1
aij = *2? (S” — 35]9]@(51]) . (66)
The epistemic discrepancy in the evaluation of Reynolds stresses can be represented by
the tensor D;;, such that the true Reynolds stresses are

true __ _modeled o
Tij = Tij + Dij

1 Ouy, 2
= —2uT <S¢~ — 3m5ij) + gkéij + Dy (6.7)

2
= lmij + gk:éij + Dij .

Building upon the concept of the eigenspace perturbation approach, the structural
uncertainty of the Reynolds stress tensor can be split into contributors of shape, alignment
and amplitude of the tensor. Therefore, the anisotropy tensor can be represented by an
eigenspace decomposition

Qi5 = UinAnlUjl . (68)

The orthonormal eigenvectors form the matrix v, while the traceless diagonal matrix A,;

contains the corresponding ordered eigenvalues A\p. When the Boussinesq approximation

is used, the eigenvectors of the anisotropy tensor coincide with those of the strain-rate

tensor, while the eigenvalues \; are solely dependent on the strain-rate tensor’s eigenvalues

1); and its trace

tr (S)
3

Evidently, the Reynolds stress tensor features identical eigenvectors as well, however the
eigenvalues of the Reynolds stress tensor are

A= —2”% <¢(4_i) - > fori=1,2,3. (6.9)

g:k(,w;) . (6.10)

Inserting Eq. (6.8) into Eq. (6.7) leads to:
2
73" = k (VinApvjt) + §k5ij + Dij . (6.11)
Because of the tensorial properties, the tensor D can be decomposed into

Dyj = Ak (Avt, AN% AV + %Akéij, (6.12)

whereby A describe the discrepancy terms for turbulent kinetic energy (amplitude),
alignment (eigenvectors) and shape (eigenvalues).



6.2. Accounting for turbulence modeling uncertainty using the EPF 89

As precisely quantifying the uncertainty of the turbulence model in representing the
modeled Reynolds stress tensor is a challenging task, the developers and founders of the
methodology rather try to estimate the uncertainty by sampling from possible solution
space. Hence, it is not the aim to apply a correct Reynolds stress tensor Titjrue but a
perturbed, physically realizable one, which is called 7;; [99]. Following the line of argument
above, the EPF, considered in this work, creates a perturbed state of the Reynolds stress

tensor defined as
2
T{? =k (afj + 3(51])

5 (6.13)

— (s + 20 )
where a;; indicates the perturbed anisotropy tensor, AY, represents its perturbed eigenvalue
matrix and v}, is the perturbed eigenvector matrix. Adhering to the procedure established
in the majority of previously published works, there is no explicit modification of the
turbulent kinetic k energy. Instead, the level of turbulence is manipulated indirectly by
altering the production of turbulence due to affirmative perturbations of eigenvalues and
eigenvectors, as will be clarified in subsequent sections.

6.2.1. Eigenvalue perturbation

As the components of the symmetric anisotropy tensor are bounded according to the
realizability constraints [136]?, the respective eigenvalues can be transformed into barycen-
tric coordinates [4]. By defining the vertices @ic, €ac, 3¢ of an equilateral triangle,
representing the componentiality of turbulence (three-component, isotropic limit (3C),
two-component axisymmetric limit (2C) and the one-component limit (1C)) [151], the
mapping from anisotropy eigenvalues to barycentric coordinates is defined as

1

3
T :§$1C (A1 — A2) + xac (A2 — A\3) + x3¢ <2)\3 + 1>

x=QX with Ay > Ao > A3.

(6.14)

The perturbation of the eigenvalues of the anisotropy tensor within physically permissible
limits is grounded on shifting the barycentric state within the borders of the barycentric
triangle [33]. Using the pseudoinverse of Q, any perturbed eigenvalues are expressed
through remapping

A =Q 'z, (6.15)

where the relocated position x* results from linear interpolation between starting point
x and target point x(;) € {x1c, T20, T3C}

ot =+ Ap (zy) —x) . (6.16)

The relative distance Ap € [0, 1] controls the magnitude of eigenvalue perturbation as
presented in Fig. 6.1. Traditional eddy viscosity-based turbulence models assume that
this eddy viscosity is a scalar, known as the isotropic eddy viscosity. Thus, turbulence
behaves as an isotropic medium. The eigenvalue perturbation modulates this to an
orthotropic medium, where turbulence behaves differently along each eigen-direction [106],
accounting for the sensitivity of the model with respect to the anisotropic characteristics
of turbulence?.

2See Section 5.2.1 for details in this thesis.
3See Section 3.5.1 and Appendix C for details in this thesis.
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Figure 6.1.: Representation of the eigenvalue perturbation within the barycentric triangle
and its effect on the shape of the Reynolds stress tensor ellipsoid.

6.2.2. Eigenvector perturbation

Given that LEVMs rely on the Boussinesq approximation in Eq. (6.4), the Reynolds
stress, the anisotropy and the strain-rate tensor share identical eigendirections, as already
discussed in Section 6.2. However, this relationship results in inaccuracies in predicting
certain flows, e.g. involving flow separation and reattachment. Nevertheless, even for
simple turbulent boundary layer flows there is a significant misalignment between SRS
(such as DNS) and RANS model predicted eigenvectors of the Reynolds stress tensor [95].
Hence, the eigenspace perturbation idea adds a perturbation to the eigenvectors. In
contrast to the eigenvalues, there are no actual bounds for the orientation of the Reynolds
stress tensor ellipsoid. To address this issue, Iaccarino et al. [66] suggest to make use of
the boundedness of the Frobenius inner product of the Reynolds stress and the strain-rate
tensor, called the turbulence production Py of the turbulent kinetic energy transport
equation. Based on the relationship of the strain-rate and Reynolds stress tensor for
LEVMs (see Eq. (6.4)), the bounds of the turbulence production term can be written in
terms of their eigenvalues 1; and &;|[83]:

P, = —TijngZ: € [§1vhs + &atha + E3hn, &ihr + S + E39h3] (6.17)
J

As the Reynolds stress and the strain-rate tensor share the same eigenvectors for LEVMs,
the lower bound of the turbulence production term can be obtained by commuting the
first and third eigenvector of the Reynolds stress tensor that manipulates the relationship
between eigenvalues and respective eigendirections. The permutation of first and third
eigenvector results in a reconstructed Reynolds stress tensor based on Eq. (6.13), which
is equivalent to the one obtained by rotating the eigenvector matrix v around the second
eigenvector by 7/2, see Appendix 6.A. Whereas keeping the ordering of eigenvectors in
case of LEVMs evidently leads to the upper limit of the turbulence production. In the
subsequent section, we outline, why the eigenvector perturbation can lead to implausible
dynamics of the Reynolds stress tensor combined with an unrealistically derived turbulence
production term.
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6.3. Adherence to realizable Reynolds stress tensors and
realizable Reynolds stress tensor dynamics

6.3.1. Insights from the Reynolds stress tensor’s eigenspace perturbation
and implications for turbulent boundary layers

The significant advantage of the EPF lies in its ability to generate a perturbed and
realizable Reynolds stress tensor from an unperturbed one. This is accomplished by
ensuring that the realizability condition, saying that the Reynolds stress tensor must
be positive semi-definite, is met [136]. To illustrate, when perturbing the eigenvalues
of the modeled Reynolds stress tensor, choosing A < 1 (see Fig. 6.1) inevitably leads
to fulfillment of the realizability condition as the perturbed Reynolds stress anisotropy
eigenvalues remain inside the barycentric triangle. Recently, we addressed an appropriate
way to incorporate eigenvector perturbations in a self-consistent manner in order to obtain
the desired realizable Reynolds stresses [96]. However, while the current formulation of the
realizability principle is valuable, it is not comprehensive or adequate in ensuring that the
evolution of the Reynolds stress, from one physically permissible state to another, remains
physically plausible. Indeed, under certain conditions, the realizable Reynolds stress
tensor, obtained through eigenspace perturbation, may become physically implausible
leading to turbulent stress dynamics, which are rather unrealizable.

An exemplary case to illustrate these conditions is the turbulent boundary layer, whereby
we consider the flow to be steady, 1D and fully developed. This is equivalent to analyzing
half of a symmetric infinite channel flow, as sketched in Fig. 6.2. Hence, by setting %—? =0,
Uy =Us =0, %—E = %—E = 0 (except % #0), Eq. (6.2) simplifies to

dp 0

or Oy
The diffusion based on viscous stresses has to be balanced by a source term, associated
with a streamwise pressure gradient. Applying the isotropic eddy viscosity assumption
(see Eq. (6.4)), the Reynolds stress tensor for 1D boundary layer flow becomes

(012 — pT12) - (6.18)

%]{ _VT% 0
T=|-mGr k0. (6.19)
0 0 2k

The eigenvalues & = %k + VT%—(Z]}, & = %k, & = %k: — I/T%—va1 come along with the

. - -1 1 T T 11 T
respective eigenvectors vy = <ﬁ’ ﬁ,O) , v2 = (0,0,1)" and vg = (ﬁ’ W,O) . By

A
Yy
Ui >0
au
- T;>0
o122 0
712 <0
—>
x

Figure 6.2.: Schematics of steady, fully developed 1D boundary layer flow.
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means of the eigenspace decomposition 7;; = v;,E,v; and employing the eigenvector
matrix v = (v1, vz, v3), the shear stress component of the Reynolds stress tensor can be
reformulated

T12 = V1101281 + V2102282 + 13103283 . (6.20)

Inserting the unperturbed eigenvectors and eigenvalues of the Reynolds stress tensor,
as outlined above, into Eq. (6.20) results in a strictly negative Reynolds shear stress
component Tio = % (€3 — &1) <0 as & > &3. However, when perturbing the eigenspace
orientation according to the approach of Iaccarino et al. [66], we obtain 775 = % (& — &) >
0 as & > &% Hence, the simple permutation of first and third eigenvector leads to
different sign of the relevant shear stress shaping the boundary layer profile. At first
glance, this already seems to violate obvious flow physics.

Nevertheless, we aim to present a conceptual explanation for this phenomenon. In order to
qualitatively assess the physical relationships related to a change in sign of the Reynolds
shear stress, we insert Stokes’ hypothesis (see Eq. (6.3)) and the eddy viscosity hypothesis
(see Eq. (6.4)) into Eq. (6.18)

op 0 U,

Consequently, a change in sign of the Reynolds stress component 72 would equate to
an effective negative turbulent eddy viscosity vr. Negative eddy viscosity means that
the momentum flux from regions of lower momentum is transported to regions of higher
momentum. This implies a countergradient transport that is physically implausible.
Additionally, this phenomenon is associated with positively correlated Reynolds stresses
and mean velocity gradients. Following the example of steady, fully developed 1D

boundary layer, the turbulence production P, = —TingU; = —Ti2 aal{/ L5 will be negative,

if 719 becomes positive because of eigenvector permutation. Such negative turbulence
production denotes transferring energy from the turbulent scales to the mean kinetic
energy, a process that is deemed physically implausible in fully developed boundary
layers and especially in the entire computational domain (which would result from the
described eigenvector permutation) [46]%. In contrast to the eigenvector perturbation,
a pure eigenvalue perturbation is incapable of inducing a change in the sign of 7o for
fully developed boundary layer flow. Indeed, Fig. 6.3b additionally serves to illustrate the
observation that applying eigenvector perturbation leads to negative turbulence production
and, consequently, negative effective eddy viscosity for any eigenvalue perturbation that
falls within the bounds of the barycentric triangle. As depicted in Fig. 6.3, the absolute
value of the turbulence production reaches its maximum at the one-component limiting
state of turbulence, whereas it becomes zero” for an isotropic Reynolds stress tensor, which
is in accordance to the finding of Gorlé et al. [56]8. This illustrative example demonstrates
that, in the context of wall-bounded, boundary layer like flows, the suggested eigenvector
permutation of first and third eigenvector can give rise to non-realizable Reynolds stress

“As already described in Section 5.2.2: Taccarino et al. [66] propose to permute the first and third
eigenvectors of the Reynolds stress tensor. This is equivalent to changing the order of the respective
eigenvalues.

®As 88—[;1 > 0 for the sketched boundary layer flow in Fig. 6.2.

6 Although negative production of turbulent kinetic energy can occur e.g. at leading edges featuring
separation and reattachment areas [20].

"This is only valid for this specific type of flow.

8Details can be found in Appendix B.
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(a) Turbulence production under (b) Turbulence production under
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Figure 6.3.: Comparison of the effect of the eigenspace perturbation on the turbulence
production term P in case of fully developed boundary layer flow. Effect of
pure eigenvalue perturbation is shown in (a), while (b) presents the effect,
when combining the permutation of the eigenvectors v1 and vg and eigenvalue
perturbation within the barycentric triangle.

tensor dynamics in the set of RANS equations. Therefore, there is the need for a physics-
based constraint that ensures not only realizable Reynolds stresses but also plausible
Reynolds stress tensor dynamics. Subsequently, we derive this constraint, verify its
validity and suggest its future usage within the EPF.

6.3.2. Simplified derivation of realizable eigenvector perturbation dynamics
for wall-bounded flows

As the second eigenvector of the Reynolds stress tensor in Eq. (6.19) is vg = (0,0,1)7,
the rotation matrix for any rotation around this eigenvector simplifies to

cos(a) —sin(a) 0
R=|(sin(a) cos(a) O (6.22)
0 0 1

(choosing o = 7/2 results in laccarino’s permutation of first and third eigenvector [66]
see Appendx 6.A). The general rotation of the Reynolds stress tensor ellipsoid around its
second eigenvector is sketched in Fig. 6.4a.

The objective is to derive a condition that evidently causes a change of sign for the shear
Reynolds stress component 712, ultimately resulting in non-realizable Reynolds stress
tensor dynamics. Therefore, we formulate the rotated eigenvector matrix based on the
unperturbed eigenvector matrix v for 1D boundary layer flow

v =Rv
| [—sin(@) —cos(a) 0 cos(a) —sin(a) (6.23)
= — | —sin(a) +cos(a) 0 cos(a)+sin(«a)

V2 0 V2 0
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Figure 6.4.: Rotation of the eigenvector matrix of the Reynolds stress tensor around
second eigenvector vg by «a. The schemtical impact of the rotation on
the Reynolds stress tensor ellipsoid is shown in (a). (b) shows the effect
of eigenvector rotation on the Reynolds shear stress component and the
turbulence production. This plot is created based on assuming 1D boundary
layer flow, as sketched in Fig. 6.2. The eigenvectors of 7;; presented in
Eq. (6.19) are rotated by a. The resulting 712 and Py (see Eq. (6.17)) are
evaluated subsequently.

Hence, the resulting Reynolds shear stress based on Eq. (6.20) becomes

iy = % (& — &1) cos (20) =0 . (6.24)

Consequently, Eq. (6.24) holds true for isotropic turbulence, as £; = &3 and any rotation
angle o = §n — 7 with n € N. The relationship of the rotation angle and the shear stress
component is verified by a step-by-step analysis presented in Fig. 6.4b. The resulting
dependency of the Reynolds shear stress component is exactly the analytically derived
one in Eq. (6.24). As the rotation of the Reynolds stress tensor is symmetric to 7/2,
which means that any rotation around 7/2 — § results in the same tensor as any rotation
around 7/2 4 0, o = w/4 is the appropriate choice as the smallest angle at which a sign
change occurs.

The mean of the cosine in Fig. 6.4b has to be zero in order to obtain zero crossing of
the turbulence production at exactly o = 7/4. In other words, it is required that the
maximum and the minimum value of the turbulence production have equal absolute
magnitude but opposite signs. Equating the lower and upper bound of the inner Frobenius
product Eq. (6.17) leads to

_Pkmzn = Pk‘ma:c
=193 — S22 — §391 = §1901 + S22 + 373 (6.25)
&1 (V1 +3) + 28 + &3 (Y1 +1P3) =0 .

Thus, rotating the orthogonal eigenvectors around the second eigenvector by an angle
of 7/4, results in zero turbulence production if ¢); = —3 and 99 = 0. This conditions
always holds true for fully developed 1D boundary layers, as there is only a single velocity
gradient present in the flow. However, any 2D flow featuring vanishing divergence of the
velocity field does also satisfy Eq. (6.25). This means that % = —‘98—[;2, given that Us is
the vanishing velocity component.
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6.3.3. A posteriori validation of the suggested constraint on the
eigenvector perturbation

To corroborate our findings, we analyze another generic flow scenario, which is the 2D
converging-diverging channel flow [85]. This test case consists of viscous walls with and
without curvature as sketched in Fig. 6.12a. Our numerical setup uses inlet boundary
conditions extracted from a fully developed turbulent boundary layer at Re, = 617.
The derived mass flow rate is forced using a boundary controller, which adjusts the
static pressure at the outlet of the computational domain. We conducted a RANS grid
independence study (not shown here) using a low-Reynolds resolution (y* < 1) at solid
walls and by applying the Menter SST k& —w LEVM [104]. Based on this, we conduct
analyses in post processing for the finest mesh featuring a resolution of 242x242x1 grid
points (see Fig. 6.12b). The resulting velocity gradients, the eddy viscosity and the
turbulent kinetic energy are used to determine the Reynolds stress tensor following
Boussinesq’s approximation (see Eq. (6.4)). According to our derivation above, the
eigenvectors of these Reynolds stress tensors are rotated around the second eigenvector
by a = 7/4 in the entire domain as a first step. The rotated Reynolds stress tensors
are composed using Eq. (6.13). Subsequently, we can compare the resulting turbulence
production term (see Eq. (6.17)) after rotating the eigenvectors with the one based on the
initial Reynolds stress tensor. The comparison, presented in Fig. 6.5, reveals a reduction
in the effective turbulence production due to the rotation as expected. This observation
confirms the exemplarily derived relationship of the turbulence production term with
respect to eigenvector rotation of the Reynolds stress tensor. Nevertheless, due to the
existing divergence of the velocity field in this configuration, a rotation around /4 may
also lead to negative turbulence production in the converging section of the channel?. As
a second step, we further validate the derivations by solving an optimization problem for
achieving zero turbulence production by an eigenvector rotation of the Reynolds stress
tensor given the velocity gradients of the previously performed RANS simulation of the
2D converging-diverging channel. Figure 6.6 shows the appropriate rotation angle a|p,—o
relative to /4 that would lead to zero turbulence production term. The deviations from
to the derived « under idealised conditions of a 1D boundary layer flow, can be ascribed to
the fact that the flow is not fully divergence-free in the outer parts of the boundary layers.
The regions indicating a|p,—o # 7/4 are directly related to the areas shown in Fig. 6.5
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Figure 6.5.: Distribution of the turbulence production term Py . ., when rotating the
eigenvectors of the Reynolds stress tensor around the second eigenvector by
a = 7 /4. For better interpretability the resulting production is scaled by the
unperturbed turbulence production Py. The magenta line indicates U; = 0.

9This refers to the fact, that o = 7/4 might have to be smaller to achieve zero production. As
discussed in the next section (Section 6.4), the rotation needs to be mitigated anyway because of stability
issues. A reduction of a makes the production rather stay positive.
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Figure 6.6.: Rotation around the second eigenvector of the Reynolds stress tensor by
a|p,=o leads to zero turbulence production. In order to better classify the
discrepancy from /4, the determined angle a|p, —o is presented as a fraction
of m/4. The magenta line indicates U; = 0.

where the production term under rotation does not exactly equal zero'®. However, as the
optimized «|p,—¢ differs by only 10% at maximum from 7/4, we believe that restricting
the eigenvector rotation of the Reynolds stress tensor to 7/4 is a reasonable choice also
for more complex flows.

To sum up, we have shown through mathematical analysis that a simple eigenvector
perturbation involving permuting the first and third eigenvector may lead to implausible,
unrealizable Reynolds stress tensor dynamics. Based on that, a constraint that facilitates
physically meaningful Reynolds stress tensor perturbations with respect to rotation of the
eigenspace has been derived for wall-bounded, boundary layer like flows. Additionally, we
have substantiated the derivations by presenting illustrative proofs. In the next section,
we apply the proposed eigenvector rotations in the EPF!!.

6.4. Application of physically constrained eigenvector
perturbation

The idea of the EPF is to sample from the possible solution space for certain Qol
attributed to perturbing the Reynolds stress tensor within the discussed physical bounds.
The entire framework was implemented in DLR’s in-house CFD solver TRACE [47].
TRACE is a parallel Navier-Stokes flow solver that has been developed at DLR’s Institute
of Propulsion Technology in close cooperation with MTU Aero Engines AG. In the present
work, we use the finite-volume method to discretize the compressible RANS equations.
The EPF and can be subdivided in several steps within each pseudo-time step of steady
simulations:

1. Determine the anisotropy tensor (see Equation Eq. (6.5)).

2. Perturb the eigenvalues of the anisotropy tensor by choosing the relative perturbation
strength Ap (cf. Eq. (6.15) and Eq. (6.16)).

10The unperturbed turbulence production is always positive.

1 Although, as described, negative turbulence production and derived negative turbulent eddy viscosity
can happen in unsteady flows, it remains desirable to prevent negative production and countergradient
transport of momentum in the entire computational domain. Additionally, a negative turbulence
production term would result in a rapid destruction of the turbulence level, ending up in laminar solutions
only.
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3. Perturb the eigenvectors of the anisotropy (Reynolds stress) tensor by choosing the
rotation angle a. The rotation is done by rotating the eigenvector matrix around
the second eigenvector v = Rv with R according to Eq. (6.26).

4. Reconstruct the perturbed Reynolds stress tensor 75 according to Eq. (6.13).

5. Update of the viscous fluxes using 7;;.

6. Update of the turbulence production term Py = —Ti’; ggj

The simulations of the flow within a converging-diverging channel serve to exemplify the
application of the EPF and further validate the proposed constraint on the eigenvector
perturbation. We compare against DNS data by Laval and Marquillie [85]. The two-
equation Menter SST k —w [104] LEVM is chosen to be the baseline model in the present
investigation. Hence, the uncertainty estimates presented subsequently based on the EPF
can be attributed to the structural uncertainties within this particular turbulence model.
As the amount of considered structural uncertainty increases with increasing eigenvalue
perturbation, the most conservative estimation of the modeling uncertainty is obtained
by choosing Ap = 1. Nevertheless, according to latest publications [99], intense Reynolds
stress tensor perturbations may cause numerical convergence issues.

Following the approach proposed in our previous work [96], the relative perturbation
magnitude with respect to the relative shift in barycentric coordinates Ap has to be
adjusted as a consequence of the convergence issues. In the present study, we seek to
apply Ap as large as possible by steps of 0.1. Consequently, while the full Reynolds stress
tensor perturbation could be used for the 2C and 1C corners, the perturbation towards
the isotropic corner had to be adjusted by Ap < 1, as approaching the isotropic state
results in a reduction of turbulent kinetic energy production.

Although, we have just derived that the maximum eigenvector rotation angle has to be
a < m/4, this constraint is necessary but not sufficient for practical applications. The
eigenvector modification by applying o < 7/4 may result in states of the Reynolds stress
tensor that are indeed realizable and physically plausible but still lead to numerical stabil-
ity issues. Therefore, we iteratively decrease the rotation angle by fractions of 10% with
respect to the maximum value of 7/4. Besides examining the overall residuals and conver-
gence of the static outlet pressure (controlled to maintain the prescribed mass flow outlet
boundary condition) of each simulation, we evaluate the evolution of the the streamwise
velocity. Therefore, we record iterative data at x/H € [0.5,1,2,3,4,5,6,7,8,9,10,11, 12]
every 1000 iterations and evaluate the relative error (standard deviation divided by the
mean) over the last 100 snapshots. In order to distinguish between an unacceptable
unstable and an acceptable converged solution, we use a maximum tolerable relative error
of 1.5% in each considered location. The numerically achievable perturbations leading to
converged RANS results for this study of the convergence-divergence channel flow are

Table 6.1.: Selected turbulent target states (componentiality), Ap for the eigenvalue
modifications and « for the eigenvector rotations of the Reynolds stress tensor
perturbation applied to the flow within the converging-diverging channel.

simulation |41 #2 #3 #4 #5 #6
target turbulent state| 1C 1C 2C 2C 3C 3C
Ap 1.0 1.0 1.0 1.0 0.2 0.2

a 0.0 £ 00 T 00 &
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Figure 6.7.: Estimated turbulence model uncertainty for the streamwise velocity inside
the converging-diverging channel based on the EPF. Uy, .. is the maximum
streamwise velocity of the baseline simulation at 2z/H=0. The settings for
every eigenspace perturbation of the Reynolds stress tensor can be found in
Table 6.1.

summarized in Table 6.1. In order to verify that the eigenvector perturbation proposed
by laccarino et al. [66] leads to unstable CFD simulations as a result of non-realizable
Reynolds stress tensor dynamics, we have conducted one exemplary simulation, presented
in Appendix 6.C, applying eigenvector permutation without any eigenvalue perturbation.

In the subsequent section, we discuss the resulting estimated uncertainty intervals based
on the eigenspace perturbation. The analysis refers to the presented Qol in Fig. 6.7 to
Fig. 6.10. The estimated uncertainty for the streamwise velocity field is shown in Fig. 6.7.
Perturbing the eigenspace of the Reynolds stress tensor has minor effect upstream of
the diverging section (x/H =~ 5), where the baseline RANS simulation closely aligns
with the DNS data. Due to the increased turbulence production at the one- and two-
component limiting state of turbulence (as can be observed in the turbulent kinetic
energy distributions in Fig. 6.10), the velocity profiles become sharper with an increased
gradient at the wall. This is also reflected in higher friction coefficients in Fig. 6.8 at the
bottom and top wall compared to the baseline simulation. Conversely, the simulations
featuring more isotropic Reynolds stresses (simulation #5 and #6 with Ap = 0.2), lead
to rounder velocity profiles and reduced friction coefficients. Larger deviations between
RANS and DNS results arise, when the flow experiences the adverse pressure gradient in
the diffusor section. This is further reflected in an increased sensitivity of the velocity
field with respect to the shape and orientation of the Reynolds stress tensor. Due to the
indirectly manipulated turbulence production behaviour, the turbulent kinetic energy
evolves differently in the simulation domain for every perturbation (see Fig. 6.10). This
is also in accordance with the described dependency of the production term of turbulent
kinetic energy on the eigenvalues in the front section of the diffusor (see also Section 6.2.1).
The turbulent kinetic energy production significantly affects the size of the separation
bubble due to the adverse pressure gradient. While the simulations aiming for the one-
and two-component turbulence state completely suppress the separation zone at the lower
wall, the simulations #5 and #6, featuring more isotropic turbulence both separate early
and overpredict the reattachment length (see Fig. 6.8). While the static wall pressure
reduction in the converging section is not affected by the eigenspace perturbation, the
pressure recovery in the diffusor section shows growing turbulence model uncertainty
(see Fig. 6.9). These uncertainty intervals on the pressure coefficient, underline the
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Figure 6.8.: Turbulence model uncertainty based on the EPF for the friction coefficient

cf = Tw/ (% ponO’max) at upper and bottom wall of the converging-diverging
channel. The quantities with subscript 0 indicate that they are extracted at
x/H = 0. The settings for every eigenspace perturbation of the Reynolds
stress tensor can be found in Table 6.1.
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Figure 6.9.: Turbulence model uncertainty based on the EPF for the pressure coeflicient

¢p = (p—po)/ (%ponO mx) at upper and bottom wall of the converging-

diverging channel. The quantities with subscript 0 indicate that they are
extracted at x/H = 0. The settings for every eigenspace perturbation of the
Reynolds stress tensor can be found in Table 6.1.

increased model-form uncertainty when it comes to adverse pressure gradient flows. The
reduced turbulence production of the simulations #5 and #6 in the converging section
x < 5 results in increased turbulent kinetic energy in the massively separated section (see
Fig. 6.10). As already described in the theoretical parts of this paper (see Section 6.2.2
and Section 6.3), the rotation of the eigenvector matrix mainly affects the turbulence
production process indirectly. This is especially highlighted by decreased turbulent kinetic
energy patterns in the upstream section of the domain.

It is noticeable that the simulations aiming for the two-component limiting state of the
Reynolds stress tensor show the best agreement with the DNS data in the diffusor section
for the considered Qol. Additionally, the DNS data are included in the turbulence model
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Figure 6.10.: Evolution and comparison of the turbulent kinetic energy within the
converging-diverging channel between DNS data [85] (a), RANS baseline
(b) and EPF simulations applying perturbed Reynolds stress tensors (c)-(h)
(see Table 6.1).

uncertainty estimates in most of the plots, which also validates the EPF to a certain
extent, although the authors are aware of the fact that this is not the main goal of
the perturbation methodology. The interested reader is referred to the discussion on
the restrictions and capabilities of the framework in Matha et al. [99]. Regarding the
potentially large uncertainty intervals concerning the considered Qol, we must note that
the eigenspace perturbations of the Reynolds stress tensor were chosen to be sufficiently
large, allowing the CFD solver to handle it just well enough to produce a convergent
solution. On the one hand, this enables exploring the capabilities of the considered EPF,
and on the other hand, it represents the most conservative estimate of turbulence model
uncertainty. For upcoming design decisions considering this framework, design engineers
would likely aim for a non-overly conservative estimate of turbulence model uncertainty,
as they may introduce expert knowledge into the analysis.
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6.5. Conclusion & outlook

Uncertainty estimation in the context of RANS turbulence modeling is crucial in industrial
applications as it provides a quantifiable measure of the reliability of CFD simulations. Ac-
curate assessment of physically plausible uncertainties ensures the credibility of simulation
results, allowing engineers and designers to make informed decisions under uncertainty.
The EPF has established itself as the only physics-based UQ approach for turbulence
model uncertainty. It has been applied to problems in aerospace, civil, environmental and
mechanical Engineering. It is widely used in leading CFD software. This underscores the
need to ensure V&V of this framework. However, due to its newness, in-depth verification
of the rationale and application of this framework have not been conducted. This need is
addressed by our investigation.

In this work, our primary focus centers on the eigenvector perturbation of the Reynolds
stress tensor that has received limited attention in the literature. We systematically
analyze that the eigenvector perturbation may violate Reynolds stress tensor dynamics
under specific conditions. The present study derives and introduces physics-based con-
straints for eigenvector perturbations, adhering to the realizability and stability of the
uncertainty estimation procedure. The application of these constraints to the flow within
a converging-diverging channel illustrates improved stability and accuracy in capturing the
turbulent behavior. The flow characteristics of this case encompass turbulent boundary
layer, separation and reattachment regions, revealing deviations of RANS and DNS results.
Applying the EPF unveils significant sensitivity of the considered Qol based on Reynolds
stress anisotropy and its eigenvector alignment with the strain-rate tensor. Based on the
present paper and our previous research [96], we have successfully identified challenges
in the application and interpretability and proposed potential solutions. Our future
investigations will focus on implications of the physics-constrained Reynolds stress tensor
perturbation method for more complex engineering flows, such as those encountered
in turbomachinery components. This will provide valuable insights into the method’s
practical utility.

Appendix 6.A Rotation properties of eigenvector
permutation

In this section, we show that the eigenvector permutation (first and third eigenvector)
according to laccarino et al. [66] is identical to the rotation around second eigenvector
with 7/2. Any rotation around an arbitrary vector v = (v1,v2,v3)" by o can be described
via the rotation matrix
cos(a) +v?(1 — cos(a))  v1v2(1 — cos(a)) — v sin(a)
R = | vjv2(1 — cos(a)) + vgsin(a)  cos(a) + v3(1 — cos(a))
v1v3(1 — cos(a)) — vesin(a) wvou3(1l — cos(ar)) + vy sin(a)
v1v3(1 — cos(a)) + ve sin(«)
vou3(1l — cos(a)) —vrsin(a) | . (6.26)
cos(a) + v3(1 — cos(a))

The eigenvector matrix contains column-wise orthogonal, normalized eigenvectors vy, va, v3

V11 V21 V31
vV = V12 V22 V32 . (6.27)
V13 V23 V33
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Figure 6.11.: Comparison of modifying eigenvectors of the Reynolds stress tensor.

The eigenvectors are ordered with respect to the respective eigenvalues in descending
order. Rotating v around ve with a = 7/2 leads to:

v =Rv
2
(1] V21U22 — V23  V21U23 + V22 V11 V21 V31
_ 2
= | v21v22 + V23 V39 V22V23 — V21 V12 V22 V32
2
V21V23 — V22  V22U23 + V21 V53 V13 V23 V33

(v21 (V2 - v1) = (V1 X v2)))  (var|vaf?) (021 (V2 ws) + (V2 X v3)1)\  (6.93)
= | (v22 (w2 - v1) + (V1 X v2)y)  (v22|v2l’)  (v22 (v2 - ws) — (v2 X v3),)
(va3 (v2 - v1) — (V1 X v2)3)  (vas|va]?)  (va3 (V2 - vs) + (V2 X v3)3)
—vV31 V21 V11
— —UV32 V22 V12
—U33 V23 V13

As it can be seen in Eq. (6.28), the rotation results in permuting v; = —v3 and v3 = v;.
This is illustrated in Fig. 6.11 and compared with the formerly proposed eigenvector
permutation. In contrast to rotating the eigenvectors, simple permutation of v; and wvg
evidently leads to a left-handed oriented eigenvector matrix. The resulting Reynolds
stress tensor, when reconstructed based on Eq. (6.13), is identical due to the characteristic
of the spectral decomposition.
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Appendix 6.B Schematics of converging-diverging flow
example
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(a) Relative dimensions and sketch of the flow based on DNS data [85]
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(b) Mesh consisting of 242x242x1 grid points (every fourth line in streamwise direction and every twentieth
line in wall normal direction shown) and boundary conditions; slip conditions/inviscid walls are
applied in spanwise direction
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(c) Streamwise velocity based on the RANS baseline computation using the Menter SST turbulence
model and the mesh presented in (b)

Figure 6.12.: Introduction of the converging-diverging setup.

Appendix 6.C Instability introduced by former eigenvector
permutation

We apply the eigenvector permutation [66] in the former implementation of the EPF
without any eigenvalue perturbation (Ap = 0). When checking the evolution of the outlet
pressure in Fig. 6.13 (specified mass flow rate is specified as outlet boundary condition), it
becomes evident that the simulation is unstable. As a consequence, the streamwise velocity
reveals significant variations at each snapshot in Fig. 6.14. Additionally, the application
of non-realizable Reynolds stress tensor dynamics, creates non-physical countergradient
transport (see Section 6.3), which results in the zigzag like velocity profiles. In contrast,
the streamwise velocity snapshots of the perturbed simulations, used in Section 6.4,
converge over runtime of the simulations (Fig. 6.15 presents one example).
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Figure 6.13.: Evolution of the area averaged outlet pressure over iteration count for the

simulation using eigenvector permutation without any eigenvalue perturba-
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Figure 6.14.: Streamwise velocity inside the converging-diverging channel based on pure

eigenvector permutation without any eigenvalue perturbation. The snapshots
are taken every 1000 iteration, while the mean U; ., and the standard
deviation std(U;) are determined between 400.000 to 500.000 iterations.

2.0 1 j \
1.5 ‘\ \ \ \
snapshot
T, — Uiyean
> Ulmean$ std(U37)
—— Baseline
0.5
0.0 /

5 6 7 8 9 10 11 12
U1/U1, e + XIH

Figure 6.15.: Streamwise velocity inside the converging-diverging channel for simulation

#2 (see Table 6.1) using moderated eigenvector perturbation and eigenvalue
modification towards the one-component limiting state. The snapshots
are taken every 1000 iteration, while the mean Uy, .. and the standard
deviation std(U;) are determined between 400.000 to 500.000 iterations.
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Abstract

In this paper, we quantify the turbulence modeling uncertainty for the transonic TUDa
compressor. The present work applies the EPF, as it is the only published physics-
based framework capable of addressing the model-form uncertainty in turbulence closure
modeling. To sample from the possible solution space and obtain the modeling uncertainty,
we perform simulations perturbing the eigenvalues of the Reynolds stress tensor in addition
to simulations using an unperturbed turbulence model. We show that the shape of the
Reynolds stress tensor ellipsoid has significant impact on the evolution of turbulence,
flow separation, vortex systems, shock-boundary layer interaction and finally the overall
performance of the compressor. We compare the estimated uncertainties with available
measurements and transitional DDES. This allows us to assess the confidence of the
chosen turbulence model and to evaluate the sharpness and coverage of the resulting
uncertainty bounds. Thus, the EPF is comprehensively validated and suggestions for its
future applicability with respect to turbomachinery components are made.

7.1. Introduction

The design of turbomachinery components is heavily dependent on the prediction capa-
bilities of RANS simulations. However, the RANS equations require the modeling of the
second-moment Reynolds stress tensor 7. While Reynolds stress tensor modeling, known
as turbulence modeling, provides practicality and enables efficient simulations, it also
comes with inherent limitations that hinder the attainment of high levels of accuracy.
Over the last decade, researchers have highlighted the limitations of the commonly applied
LEVM assumption for flow situations not covered by the calibration cases [146, 109, 23, 89).

!Copyright @QASME
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Due to the lack of knowledge, these LEVMs are characterized by modeling assumptions
derived from data observation, engineering intuition and computational pragmatism,
leading to a significant degree of model-form (epistemic) uncertainty. This is in contrast
to potential errors in CFD that are not due to the general lack of knowledge, such as
discretization or round-off errors, which could in principle be reduced by exploiting extra
resources [119]. Theoretically, epistemic uncertainties could also be mitigated through a
better understanding of turbulent processes, facilitating the development of advanced
models. This contrasts with aleatory uncertainties, such as manufacturing tolerances or
uncertain operating conditions, which cannot be reduced and are not within the scope of
the present study. In the past, efforts in engineering design applications aimed to address
uncertainties in CFD simulations through the use of safety margins, levels of redundancy
and similar heuristic approaches. As computational resources continue to increase, the
turbomachinery industry is undergoing substantial advancements in digitization. Method-
ologies such as robust design or reliability-based design offer the potential to supersede
the traditional approaches for addressing uncertainties in CFD. In recent years, there
has been a growing interest in UQ, paving the way for more reliable simulation-based
designs [71].

The usage of turbulence closure models represents a major source of the overall uncer-
tainty observed in RANS simulations, assuming a known set of boundary conditions and
precise geometry information. In addition, the quantification of model-form uncertainty
is described to be the ’greatest challenge’ in CFD [172]. Following Duraisamy’s cate-
gorization, the uncertainty is introduced at several modeling levels [29]. These include
uncertainties arising from information loss during the averaging of the Navier-Stokes
equations, uncertainties associated with representing Reynolds stress as a function of
mean flow quantities, uncertainties stemming from the selection of a particular function
(mainly transport equations) and uncertainties associated with choosing and calibrating
certain parameters. Two broad categories are recognized: parametric and non-parametric
approaches. Parametric uncertainties originate from the selection and calibration of
closure coefficients, whereas non-parametric methodologies explore uncertainties related
to the mathematical relationships for representing the Reynolds stress tensor [169]. As
the modeled Reynolds stress tensor is the only term that links the turbulence model
equations to the RANS equation, it plays a unique role. Hence, our current research
focuses on the appropriate estimation of turbulence modeling uncertainty related to
the functional representation of Reynolds stresses (non-parametric approach). In this
paper, we introduce selective perturbed states of the Reynolds stress tensor based on the
concept of realizability. This physics-based approach developed by Emory et al. [34] is
able to address the epistemic uncertainty inherent in turbulence closure modeling. As the
modifications of the Reynolds stress tensor rely on perturbing its eigenspace (described
in Section 7.2), the entire framework is called the EPF.

Due to its unique characteristics and persuasive interpretability of its simulation outcomes,
the EPF has been used in various engineering applications, such as aircraft design [113],
civil structural design [80], wind farms [64, 31| and turbomachinery flows [35]. For this
reason, the EPF has also been integrated into TRACE [47, 99], which is developed by
the DLR in strong cooperation with MTU Aero Engines AG. We have already verified
the conceptual idea behind the methodology and its computational implementation and
applied the EPF to generic test cases in recent publications [96, 97]. Although the
aforementioned applications of the EPF have provided some validation of the framework,
this paper applies and consequently validates the methodology to the most complex
configuration related to turbomachinery applications to date. The capabilities of the EPF
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are demonstrated on the TUDa compressor [74]. The TUDa-GLR-OpenStage compressor
is a single-stage, transonic axial compressor, which is introduced in Section 7.3.

Hence, the novelty of this paper lies in the application of the Reynolds stress tensor
perturbation to a complex rotational multi-row test case on the one hand. With respect
to physical flow phenomena, this means shock-boundary layer interaction in the rotor
section, formation of a rotor tip vortex and general rotor-stator interaction. On the
other hand, the current research offers the physically constrained estimation of the
turbulence modeling uncertainty for RANS simulations of this test case. Hereby this
paper contributes to the ongoing assessment of the overall uncertainties of simulating the
TUDa compressor |60, 168, 59].

7.2. Eigenspace perturbation method

State-of-the-art LEVMs close the RANS equations by introducing a scalar turbulent eddy
viscosity vt to express the Reynolds stress tensor

1 Juy, 2
Tij = —2UT (Sz” - 38%&7‘) + gk (7.1)
where k = %m represents the turbulent kinetic energy and the strain-rate tensor is

denoted as S;;. This modeling assumption, known as the Boussinesq assumption, assumes
turbulence to behave as an isotropic medium. Hence, LEVMs are not able to account
correctly for the anisotropy of Reynolds stresses by definition, leading to a significant
degree of epistemic uncertainty. Following the modeling assumption in Eq. (7.1), the
eigenspace of the Reynolds stress tensor only depends on the eigenspace of the strain-rate
tensor (identical eigenvectors and linear dependency between eigenvalues). The EPF,
described in the following, assesses this uncertainty within physical constraints. The
underlying methodology is based on the spectral decomposition of the anisotropic part,
represented by the anisotropy tensor a, of the Reynolds stress tensor

2 2
Tij =k <az’j + 3%') =k <vanzvjz + 351'3') : (7.2)

The eigenvectors vy, of a;; are contained column-wise in v;;,, while the traceless diagonal
matrix A,,; contains the corresponding eigenvalues Ag.

Generally speaking, perturbing the Reynolds stress tensor means changing the amount of
turbulent kinetic energy (k), the spectral energy distribution of the anisotropy tensor (\x)
and the orientation of the principal components of the anisotropy tensor (vy,) [33, 66].
The eigenspace perturbation, considered in this study, modifies solely the shape of the
Reynolds stress tensor ellipsoid by creating perturbed states of the eigenvalues A}, while
the other two attributes of the Reynolds stress tensor are kept constant. Changing the
shape of the Reynolds stress tensor ellipsoid means modifying the turbulence model
to an orthotropic eddy viscosity model, where turbulence behaves differently along
each eigendirection [106]2. This is equivalent to assigning different turbulent eddy
viscosities along every eigendirection. Consequently, the uniform linear dependency
between the eigenvalues of the strain-rate tensor and the Reynolds stress tensor is
overridden. Accordingly, the perturbed Reynolds stress tensor is defined as

2
T;; =k (UinA:Ll'Ujl + 352']') . (73)

2See Section 3.5.1 and Appendix C for details in this thesis.
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Figure 7.1.: Representation of the Reynolds stress tensor’s eigenvalue perturbation within
the barycentric triangle. Its effect on the shape of the Reynolds stress tensor
is shown by the ellipsoid visualizations, when approaching the vertices of the
triangle.

The realizability constraints manifest limits for the eigenvalues of the Reynolds stress
tensor and the anisotropy tensor, respectively [136]. The mapping of eigenvalues onto
barycentric coordinates, based on Banerjee et al. [4],

1 3
T = —T1C ()\1 — )\2) + xoc ()\2 — )\3) + x3¢ (2)\3 + 1) (7.4)

2

is used to explore the realizable eigenvalue space within a 2D projection, where x1¢, T2c, 3C
are the coordinates of the vertices of an equilateral triangle, as illustrated in Fig. 7.1. The

states of the Reynolds stress tensor that are defined by these vertices represent the limiting

states of turbulence componentiality based on the number of non-zero eigenvalues of the

Reynolds stress tensor: the three-component, isotropic limit (3C), the two-component

axisymmetric limit (2C) and the one-component limit (1C). As the representation of

eigenvalues in barycentric coordinates enables linear interpolation between two states,

Emory et al. [33] propose to obtain the perturbed location as a relative shift towards the

vertices x(y) € {®1c, T2c, T3¢} according to

x* =x+ Ap (z) — ) with Ap € [0,1]. (7.5)

This is shown by way of example in Fig. 7.1 for the perturbation towards the 2C state. As
Eq. (7.4) can be expressed as * = QA, the resulting perturbed eigenvalues are determined
via

A= (1-Ap) A+ ApA) , while (7.6)
Ay € {A1c, Aacs Asc} = {(%, —%, —%)T , (%, %, —%)T , (O,O,O)T} depends on the chosen
componentiality of the target state [106]. While the choice of Ap = 0 results in unaltered
eigenvalues, Ap = 1 changes the eigenvalues to the ones of the target state A). Whereas
previous studies tried to account for spatially varying perturbations [34, 52, 61, 99],
we assume a uniform distribution of the relative perturbation magnitude Ap in the
computational domain. Although LEVMs produce sufficiently accurate predictions in the
majority of the computational domain, except for separation, reattachment, secondary
flows and wakes, we are exploring the worst case scenario by applying uniform, non-local
perturbations. This procedure results in the most conservative uncertainty estimates.
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The eigenspace perturbation takes place in every grid point within each pseudo-time step
of the steady simulations. The coupling with the RANS equations is done by updating
the viscous fluxes via the perturbed Reynolds stress tensor. To incorporate the effect on
the turbulence model’s turbulent kinetic energy transport equation, the production of
turbulent kinetic energy is computed according to

. U,

Py = —Tz‘j% )
J

(7.7)
incorporating the perturbed Reynolds stresses explicitly. Finally, the uncertainty on
certain Qol attributed to the uncertainty of the turbulence model can be determined by
propagating the perturbed Reynolds stress tensors in additional RANS simulations and
sample from the attainable possible solution space.

7.3. TUDa-GLR-OpenStage compressor

7.3.1. Test case description

The single stage transonic axial compressor is an open test case of the Global Power
and Propulsion Society (GPPS) providing detailed information on the geometry and a
comprehensive set of measurement data by the Technical University of Darmstadt |74].
The original stage consists of 16 rotor blades, 29 stator blades and 5 outlet guide vanes.

At the corrected? design speed of ncorr = Nreal ;{1151‘*5 = 20000 rpm and a corrected mass

flow rate of Meorr = Myeal 252 4 / %;j = 16.00kg/s, a total pressure ratio of 1.5 is achieved.

Pt,15

7.3.2. CFD setup

TRACE is a parallel Navier-Stokes flow solver. In the present work we use the finite-
volume method to discretize the compressible RANS equations. We apply Roe’s upwind
scheme combined with MUSCL extrapolation to ensure second-order accuracy [129, 158].
Large gradients are smoothed using a van Albada-type flux limiter [157]. This ensures the
total variation diminishing property of the scheme, which is important for transonic flows.
The attainment of steady-state solutions is facilitated through the utilization of an implicit
time-marching algorithm. Furthermore, for the transport equations governing turbulence
quantities, we apply a segregated solution method that is second-order accurate and
conservative [112|. The two-equation Menter SST k — w [104] LEVM is chosen to be
the underlying turbulence model in the present investigation. As already described in
Section 7.2, the viscous fluxes and the turbulence production term are modified when
applying the EPF.

We simulate a single passage of the compressor without considering the outlet guide vanes
(see Fig. 7.2). Previous studies already presented a comprehensive analysis of various
important aspects when simulating the compressor stage [60, 168]. Based on recent
adjustments of the geometry provided by the GPPS, our numerical setup incorporates the
latest hub and shroud contour, the rotor tip gap of 0.75 mm, a constant fillet radius at the
rotor hub of 5 mm and approximated fillet radii at stator hub and tip. We stick to using
16 rotor blades but scale to 32 stator blades in order to compare the RANS uncertainty
estimates with the transitional DDES data of Moller et al. [114]. By comparing CFD with
CFD results, we are able to eliminate potential geometrical errors. The inlet section of the

3Corrected with reference to International Standard Atmosphere (ISA) conditions.



110 7. UQ applied to the TU Darmstadt compressor stage

ME21 ME30

Outlet
J

Inlet MEL5

\

Figure 7.2.: 3D illustration of the considered TUDa compressor configuration. The
simulated single passage is colored in pink, while reference locations are
highlighted as well.

Table 7.1.: Number of grid points / 10% used for the RANS grid convergence study
presented in Fig. 7.3.

‘Total Rotor Stator
Ultra-coarse| 0.70 0.30 0.29

Coarse 1.87 0.78 0.80
Medium 3.97 164 1.69
Fine 538 2.21 2.30

Ultra-fine |18.06 7.35 7.76

computational domain is located 3% upstream of ME15 with respect to the compressor
core axial length (ME20 to ME30). Experimentally measured total temperature and
pressure profiles based on the experiment by Klausmann et al. [74] are prescribed at the
inlet. Similar to previously published RANS studies (e.g. by He et al. [60]), we assume
axial inflow direction, while the level of turbulence intensity is set to 4% and the turbulent
length scale is assumed to be Lt = \/E/w = 0.09mm. The rotor-stator interface is
accomplished by a mixing plane approach [134]|. The domain’s outlet is located at +58%
downstream of ME30 with respect to the compressor core axial dimension. In order to
compare RANS results at the experimental operating points, the respective mass flow
rates are realized by using a boundary controller that adjusts the static pressure at the
outlet of the computational domain. If the simulation, enforcing a certain mass flow rate,
does not converge, an iterative process decreasing the backpressure in steps of 100 Pa
is conducted. Hereby, we are able to examine the numerical stall limit of the RANS
simulations appropriately?.

Finally, given the geometry information by GPPS, the low-Reynolds mesh is generated
using our in-house tool PyMesh. A grid convergence study based on five grids helps
to identify the influence of grid resolution on the prediction of design relevant integral
quantities. The considered grids are summarize in Table 7.1. As the goal of the conducted
grid study is only to select a resolution that serves practical purposes for subsequent UQ
simulations while still remaining computationally feasible, all simulations are based on
the mass flow controller aiming for the experimental mass flow rates. Figure 7.3 shows

4Klausmann et al. [76] proved experimentally that rotating stall occurs for the actual TUDa compressor
configuration.
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Figure 7.3.: Effect of the grid resolution on the prediction of the total pressure ratio (top)
and the isentropic efficiency (bottom) by RANS simulations at design speed.

the sensitivity with respect to the chosen grid resolution on the total pressure ratio

Pt,30
I 5015 = — (7.8)
Pt,15

and on the isentropic efficiency

me = 23015 ’ (79)

Gt,30-15 = 7 - (7.10)

These integral quantities are computed using the area-averaged total pressure and total
temperature at ME30 and ME15.

The general trend indicates that mesh refinement results in an increase in both total
pressure ratio and isentropic efficiency. Simultaneously, this is reflected in the ability
to approach the experimentally determined stall limit. It also becomes evident that
coarser meshes increase the matching with absolute values of the total pressure ratio and
the isentropic efficiency ascertained in the experiment by Klausmann et al. [74]. This
is in accordance with the observed grid analysis by He et al. [60]. Nevertheless, as we
want to choose an appropriate level of grid convergence, we choose the fine mesh for the
subsequent analysis and call the obtained results to be the baseline simulation in the
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following sections. Choosing the fine mesh leads to a 0.17% deviation in predicting the
total pressure ratio and 0.13% difference in predicting the isentropic efficiency compared
with the ultra-fine mesh at the design (peak efficiency) operation point. When we compare
the prediction of the fine with the ultra-fine mesh resolution across all considered mass
flow rates, the mean relative deviation is 0.26% for II; 30—15 and 0.2% for 7.

7.3.3. Creating uncertainty estimates based on Reynolds stress tensor
perturbation

We perform simulations propagating Reynolds stresses that are perturbed towards the one-
component (1C), two-component (2C) and isotropic limit of turbulence (3C). Following
the approach proposed in our previous work [96, 97|, the relative perturbation magnitude
with respect to the relative shift in barycentric coordinates Ap (see Fig. 7.1) is adjusted
as a consequence of occurring convergence issues. Selecting a uniform Apg for 1C, 2C and
3C perturbation would be a conceivable and equally valid approach. Furthermore, it is
also possible to moderate the Ap based on expert knowledge, marker functions [34] or
machine learning [61, 99|. In the present investigation, we apply Ap as large as possible
non-uniformly towards xic, 2c, €3¢ in order to obtain the worst case scenario with
respect to the inherent turbulence modeling uncertainty and to account for physically
plausible variation in perturbation magnitude across the limiting states. As already
described in Section 7.3.2, we aim for approaching the experimental operating points
(in terms of mass flow rates) at the design rotational speed. As previous studies (e.g.
[36, 56]) reveal, there is a general trend indicating more conservative uncertainty estimates
when increasing the eigenvalue perturbation strength, we seek for the largest possible
Ap for each individual operation point. Considering that, we limited the iterative search
to gradually decreasing Ap by 0.1 for Ag € [0.1,1.0] and by 0.01 for Ag € [0,0.1].
Additionally, we employ an initially arbitrarily chosen search points at Ap = 0.25. As
soon as we switch the boundary condition at the outlet from mass flow controller to
constant backpressure for approaching the stall limit (described in Section 7.3.2) and some
near choke operation point beyond the design point, we keep the relative perturbation
magnitude constant and evaluate the attainable backpressure adjustment.

064 = 0 o————mmmm— -
0.5 A ) -== 2C
0.4 X

4 03 +—f————T———k \
o2 d L T —

\
0.1 — SOV

0.0

13.5 14.0 14.5 15.0 15.5 16.
Meorr [kg/s]

Figure 7.4.: Attainable relative perturbation magnitude Ap over corrected mass flow rate
for eigenvalue perturbation of the Reynolds stress tensor towards the three
limiting states of turbulence.
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7.4. Turbulence model uncertainty for a multi-row
compressor application

7.4.1. Perturbation magnitude and effect on anisotropy

Following the procedure described in Section 7.3.3, Fig. 7.4 shows the attainable per-
turbation magnitude for each speedline simulation of 1C, 2C and 3C. Throttling the
compressor enables increased perturbation magnitude for 1C and 2C perturbations, while
Ap needs to be reduced for 3C simulations. To give an idea of what perturbing the
eigenvalues means for the converged states of the Reynolds stress tensor, Fig. 7.5 presents
the analysis of the Reynolds stress anisotropy at ME30 with respect to RGB coloring in
Fig. 7.5a and the barycentric coordinates in Fig. 7.5b. Evaluating the anisotropy tensor
for the unperturbed baseline simulation using the Menter SST k& — w LEVM reveals the
Reynolds stress tensor to be rather isotropic aligning the barycentric coordinates around
the plane-strain line [4]. Except for the wakes and the secondary flow structures (see later

3C

Baseline Baseline

2C 1C
(a) Red Green Blue (RGB) coloring (b) Barycentric coordinates

Figure 7.5.: llustration of the turbulent state of the Reynolds stress tensor at ME30 and
Meorr = 14.78 kg/s. (a) presents the RGB coloring according to the location
of each data point inside the barycentric triangle, which is shown in (b).
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analysis on secondary flows referring to Fig. 7.10 and Fig. 7.11), where some areas tend
towards the two-component corner of the barycentric triangle (green regions in Fig. 7.5a).
At the chosen mass flow rate meor = 14.78kg/s, Ap is 0.25, 0.6 and 0.09 for 1C, 2C
and 3C perturbation respectively (cf. Fig. 7.4). This results in the expected shift of the
barycentric coordinates in the direction of the respective vertex. The perturbation of the
eigenvalues of the Reynolds stress tensor has to be done iteratively, allowing the mean
flow quantities to change over simulation time until converged states are reached. The
same holds true for the unperturbed state of the Reynolds stress tensor derived from the
respective velocity gradients, turbulent kinetic energy and turbulent eddy viscosity (see
Boussinesq assumption in Eq. (7.1)). Since the perturbation of the eigenvalues depends
on the unperturbed state of the current iteration step, each converged perturbed data
point in Fig. 7.5b is not simply shifted towards the corners by the relative perturbation
magnitude starting from the baseline computation.

7.4.2. Overall compressor performance

Changing the eigenvalues of the Reynolds stress tensor towards the one- and two-
component limiting state of turbulence, stabilizes the RANS for low mass flow rates, as
can be seen in Fig. 7.6. This leads to the possibility of further throttling the compressor
compared with the baseline and 3C simulation. Unfortunately, we were not able to
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Figure 7.6.: Estimated turbulence modeling uncertainty for the global compressor perfor-
mance quantities total pressure ratio (top) and isentropic efficiency (bottom)
at 100% speedline and comparison with experimental data. The mass flow
rates for subsequent detailed analysis are highlighted by magenta dashed
lines (1heorr € [14.78 kg/s,15.12 kg /s, 15.84 kg/s,16.00 kg/s]).
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achieve converged steady-state RANS solutions significantly above the design mass flow
rate, when perturbing the Reynolds stress tensor. On the one hand, this was already
looming for 1C and 2C simulations, as we had to reduce Ap when approaching the
design point to achieve converged solutions. On the other hand, 3C perturbation beyond
the design point lead to undesired instabilities, which may potentially be identified as
choking. The predictions of the compressor performance based on the 3C simulations
show reduced total pressure ratios and isentropic efficiencies over the entire speedline.
Overall, the chosen perturbation magnitude seems to be too large for 3C. However, as
mentioned in Section 7.3.3, we are aiming for worst case scenarios of the attainable tur-
bulent states rather than accurate sharpness (appropriate bounding of CFD predictions)
of the uncertainty estimation. Consequently, we continue to analyze the obtained results
based on the isotropic perturbations throughout this paper. Generally, the estimated
uncertainty intervals for the integral compressor performance parameters include most
of the experimental measurements, constituting a good coverage of the considered EPF.
Applying the unperturbed (baseline) turbulence model yields mostly increased efficiency
and total pressure ratios compared with the considered perturbed ones. However, close
to the numerical stall limit the baseline simulation reveals a rather abrupt reduction
in compressor performance, whereas perturbing the Reynolds stress tensor towards the
one- and two-component turbulence allows stable operations of the compressor with
increased efficiency. Increased performance of the compressor enables a shift of the
numerical stall limit to reduced mass flows by "corr; ¢ yan — Meorrse sran = —1-33kg/s.
Thus, perturbing towards 1C is beneficial for the prediction of the compressor’s stall
limit, as the difference between experimental and numerical stall mass flow rate becomes
Mecortexp stann — Meorrosan ~ —0-01kg/s. The performance maps in Fig. 7.6 also show the
considered operation points by Moéller et al. [114] using transitional DDES modeling.
Besides the increased number of grid points, the applied geometrical model of the com-
pressor is identical to the one used in the present RANS study. However, the transitional
DDES are combined with the stagnation point anomaly fix by Kato and Launder |72] and
the rotational effects extension by Bardina et al. [5], which is per se a numerical setup
deviating from the one used in the current study. Since conducted preliminary RANS
studies (not shown in this paper) indicate that especially the rotational effects extension
lead to increased isentropic efficiencies, the observed performance improvement near the
stall limit predicted by the DDES can be attributed to this modification.

7.4.3. Details on local flow physics

For further comparison with experimental measurements by Klausmann et al. [74], we
analyze the flow at the reference locations ME21 and ME30. Figure 7.7 and Fig. 7.8
show the effect of turbulence modeling uncertainty on the total pressure and temperature
ratios and draw the comparison with experimental data at ME30 downstream of the
stator. The baseline simulation underpredicts the total pressure ratio for the design mass
flow rate in Fig. 7.7 between 30% and 80% span, while an overprediction can be seen
at the hub and tip. This overprediction of the total pressure ratio in the hub region is
also present with decreasing mass flow rates from Fig. 7.7b to Fig. 7.7d. The baseline
simulation rather coincides with the measurements at the mid-range mass flows, but
tends to overpredict the total pressure ratio for mcey = 14.78kg/s. The contour plots
in Fig. 7.8, showing the total pressure ratio at ME30 with reference to the integral
area-averaged value at ME15, reveals that none of the RANS simulations is able to
reproduce the corner separation in the hub region, which is observed in the experiments.
This is in accordance with the RANS studies by He et al. [60]. Recently Klausmann
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Figure 7.7.: Uncertainty estimates for predicting radial profiles of the total pressure ratio
((a), (b), (c), (d)) and the total temperature ratio ((e), (f), (g), (h)) at ME30
for four different operating points. The total pressure and temperature ratio
is computed using circumferentially area-averaged quantities at ME30 and
the integral area-averaged quantities at ME15.
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Figure 7.8.: Comparison of total pressure wake losses at ME30 for two different operating
points. The total pressure and ratio is computed using the integral area-
averaged total pressure at ME15. Red dashed lines indicate the radial
measurement window in the experimental setup.

et al. [75] have shown experimentally that the stator hub cavity increases the hub corner
separation and is a contributor to the total pressure losses. As the current CFD setup
neglects this cavity completely, it is not expected to match the experiments in this region.
This is also addressed in Section 7.4.6, where we highlight capabilities and limitations of
the applied UQ framework. Additionally, the wakes of the baseline, 1C and 2C simulation
are predicted to be too sharp in comparison to the experiment, as can be observed in
Fig. 7.8. It is important to acknowledge that the measured data are constrained by the
spatial resolution inherent in the experiment. In general, 1C and 2C perturbations tend
to reduce the overpredicted pressure rise in all considered operating points but especially
in the hub region for lower mass flow rates (see Fig. 7.7a to Fig. 7.7d), which indicates
that the corner separation is characterised by anisotropic rather than isotropic Reynolds
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Figure 7.9.: Uncertainty estimates for predicting radial profiles of the total pressure
ratio ((a), (b)) and the flow angle ((c), (d)) at ME21 for two different
operating points. The total pressure ratio is computed using circumferentially
area-averaged total pressure at ME21 and the integral area-averaged total
pressure at ME15. Note: The experimental data presented in (b) and (d)
were obtained by personal communication with Fabian Klausmann. As the
underlying operation point (7heory = 14.66kg/s) varies slightly from the
numerical one (1Meorr = 14.78 kg/s), the markers are grayed out.

stresses. Perturbing the Reynolds stress tensor towards the isotropic state, massively
affects the total pressure increase for higher mass flow rates. This means that the
overprediction at the hub becomes larger, while the tip region is massively underpredicted,
indicating near-tip trailing edge separation. This is supported by Fig. 7.13b presenting
increased circumferentially area-averaged turbulent kinetic energy in the upper half of the
annulus at ME30. Approaching the numerical stall limit, the over- and underprediction of
experimental data by 3C simulation is reduced. Although the near hub regions seems to
be sensitive to Reynolds stress tensor perturbation and, as already mentioned before, the
3C perturbation produces actual worst case total pressure, there is almost no coverage of
the experimental and the DDES predicted total pressure ratios at ME30. Consequently,
the turbulence model seems to be over-confident based on the total pressure prediction.
Considering the total temperature ratio (;30-15 at ME30 in Fig. 7.7e to Fig. 7.7h, the
variation by means of tensor perturbations is small. Therefore, we can conclude that the
effect of eigenvalue perturbation on the prediction of the total temperature is moderate.

ME21 enables us to analyze the flow directly behind the rotor. Unfortunately, radial
measurement data are not available for 1o = 14.78 kg/s at ME21, that is why Fig. 7.9b
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Figure 7.10.: Comparison of secondary flow structures indicated by the streamwise vor-
ticity at ME21 for two different operating points. The local streamwise
vorticity was normalized using the maximum absolute value of the stream-
wise vorticity occurring at ME21 in the baseline simulation.

and Fig. 7.9d show experimental measurements at meor = 14.66kg/s. Although the
simulation results align well with the experimentally measured flow angle at the design
speed in Fig. 7.9¢, the total pressure ratio in Fig. 7.9a is overpredicted above 60% span by
the RANS baseline simulation, due to the representation of the rotor tip vortex. Between
10% and 60% span the total pressure profiles are in accordance with the measurements.
Nevertheless, the transitional DDES proves the existence of the total pressure increase due
to the representation of the tip-leakage flow (see discussion on that by Moller et al. [114]).
RANS also overpredicts the pressure increase in the very near hub region. Except for the
tip and hub region at 1oy = 14.78 kg /s, perturbing the Reynolds stress tensor towards
1C and 2C lead to a minor decrease of the total pressure ratio, while the flow angle is
rather unaffected by this modification. Keeping in mind that the relative perturbation
magnitude for 1C and 2C is significantly higher for the lower mass flow rate compared
to the design point, we can conclude that the tip-leakage flow and the separation in
the hub region (similarly to ME30) is prone to changes in the Reynolds stress tensor’s
anisotropy. The 3C perturbation leads to a pressure increase at the design mass flow rate
in Fig. 7.9a. As opposed to this, the usage of Ap = 0.09 at o = 14.78 kg/s results
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Figure 7.11.: Comparison of secondary flow structures indicated by the streamwise vor-
ticity at ME30 for two different operating points. The local streamwise
vorticity was normalized using the maximum absolute value of the stream-
wise vorticity occurring at ME30 in the baseline simulation.

in almost unaffected total pressure ratio for 3C perturbation in Fig. 7.9c. Moreover, all
considered eigenspace perturbations have moderate effect on the flow angle. This seems
plausible as the turbulence modeling is not expected to have significant impact on the
flow turning.

The streamwise vorticity
ou
U:€; 1. 5k
i%ijk P,

enables an analysis of the secondary flow structures in the reference planes ME21 and
ME30. The vortex system behind the rotor is mainly dominated by a strong passage
vortex on the SS, which originates from the leading edge (LE) (see Fig. 7.10). The flow
at the tip gap of the rotor travels from PS to SS, merging with the passage vortex. The
overpredicted total pressure ratio at 90% span, as discussed above (see Fig. 7.9), can be
attributed to this secondary flow structure. Additionally, there are two vortices coming
from the PS near the trailing edge (TE). The rotor’s SS separation covers large parts of
the entire span (cf. Fig. 7.12a), causing increased streamwise vorticity in all considered

(7.11)
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Figure 7.12.: The effect of perturbing the eigenspace of the Reynolds Stress tensor on
static surface pressure and surface streamtraces on the hub and SS at
Meorr = 14.78 kg /s.

simulations. On the one hand, the 1C and 2C simulations only have limited effect on the
vortex system at the design operation point. This is in accordance with the observations
in Fig. 7.9, keeping in mind that the perturbation magnitude is rather small. On the other
hand, 1C and 2C perturbations lead to mitigated secondary flows with the SS separation
reduced in radial direction at oy = 14.78kg/s (see Fig. 7.10b and Fig. 7.12a). In
contrast to the 1C and 2C perturbations, the perturbation towards the isotropic limiting
state does not alter the secondary flows at the near stall operation point. However, 3C
perturbation leads to the formation of a separated vortex structure from the tip wall and
increases the vorticity formed by the TE vortices at mcorr = 16.00kg/s.

Figure 7.11 presents the secondary flow at ME30. The flow behind the stator reveals
the existence of two corner separations at hub and tip, which can be also identified
in Fig. 7.12b. Furthermore, the flow past the TE causes the formation of vortices at
hub and tip. Throttling of the compressor leads to a massive increase of streamwise
vorticity (e.g. see baseline simulation in Fig. 7.11b). Moreover, additional concentrated
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(b) Circumferentially area-averaged 2D turbulent kinetic energy distribution in the core part of

the compressor (zoom)

Figure 7.13.: Comparison of turbulent kinetic energy distribution throughout the com-

pressor for three different operating points. Reference planes are shown by
dotted gray lines, while the mixing plane interface between rotor and stator
is marked in light green. White lines in (b) indicate the contours of rotor
and stator.
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secondary flow structures occur, if the simulation is close the achievable numerical stall
limit (e.g. baseline and 3C). These additional structures can be also identified on the SS
in Fig. 7.12b. The eigenvalue perturbations of the Reynolds stress tensor generally follow
similar trends as already described for ME21. To emphasize, one clearly sees that 3C
perturbation underestimates the total pressure ratio in Fig. 7.7 and Fig. 7.8 above 40%
span by producing massive vortex structures at ME30.

7.4.4. Effect of anisotropy on turbulent kinetic energy level

The reason for the observed behavior is the impact of the anisotropy on the actual level
of turbulence. The resulting distribution of the turbulent kinetic energy is presented in
Fig. 7.13 for three operating points oy = 14.78 kg /s, mcorr = 15.12kg/s and 1oy =
15.84kg/s. Following the theoretically derived relationship between the production of
turbulent kinetic energy and the componentiality of turbulence [56, 97|%, the turbulence
production will be minimized by approaching the isotropic limit and maximized for the
1C stateS. This can be observed in the upstream section before the rotor (relative axial
dimension < 0.58) in Fig. 7.13a, as the turbulence production is altered accordingly in
the boundary layers at hub and tip. The circumferentially and radially area-averaged
distribution of k is mostly unaffected by the eigenspace perturbation in the rotor section,
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Figure 7.14.: Analysis of shock position and wake width prediction by illustrating the
relative Mach number distribution for three constant relative span levels at
Meorr = 14.78 kg /s. Dashed lines indicate Ma = 1.

®Details can be found in Appendix B.
This is only valid if the velocity gradients are identical (cf. Eq. (7.7) and [97]).
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as the increase of turbulence is mainly attributed to the superposition of occurring
flow phenomena such as the formation of tip-leakage flow. The effect of a modified
componentiality of the Reynolds stress tensor can be observed in the stator section
again, where 3C turbulence creates large separation zones (cf. Fig. 7.12b) leading to
increased turbulent kinetic energy. Compared with the baseline simulation, the one- and
two-component perturbation tends to decrease the turbulence level close to ME30 due to
the suppression of separation zones at the near stall operation point (cf. Fig. 7.12b).

7.4.5. Shock-boundary layer interaction

Additionally, we analyze the Mach number distributions across several constant radial
planes. Figure 7.14, presenting the Mach number for o, = 14.78 kg/s, confirms the
previously described observations. Both the baseline and 3C simulation lead to massive
separation in the stator tip region (relative span—=0.9) (cf. Fig. 7.12b), while the one-
and two-component perturbations result in sharper wakes with less losses. The region
covering transient flow increases from hub to tip, which can be also seen in Fig. 7.12a.
The position of the shock in the passage of the rotor section is unaffected, whereas the
shock’s interaction with the boundary layer shows noticeable effects due to the eigenspace
perturbation. Unfortunately, there is no measurement data available to judge the shock
location predicted by RANS. That is the reason, why we included the numerical results
based on the DDES at least for the design point in Fig. 7.15, showing the isentropic Mach
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Figure 7.15.: Uncertainty estimates for the isentropic Mach number distribution at 90%
span of the rotor for two different operating points.
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at 90% of the rotor span. Comparing the baseline RANS with the high-fidelity DDES
simulation reveals some differences in shock-location onset and steepness of the SS pressure
increase. Nevertheless, the estimated uncertainty based on the EPF almost envelopes the
DDES predicted drop in Majs. In accordance to the observations by Emory et al. [33],
the isotropic perturbation lead to an earlier shock, while the 1C and 2C perturbations
postpone the shock-location. This becomes especially noticeable in off-design points
(see Fig. 7.15b), when the relative perturbation magnitude increases for the 1C and 2C
eigenvalue perturbations.

number

7.4.6. Capabilities and limitations of the EPF

The aim of the EPF is to quantify the epistemic uncertainties of LEVMs. Indeed, a
turbomachinery designer is interested in attributing the effect of the turbulence model’s
uncertainty on certain design Qol. In the current work, this is achieved by perturbing
the Reynolds stress tensor towards three limiting states of turbulence, propagating
these states and observing the influence on Qol. However, the relation between the
1C-, 2C- and 3C limiting state of the Reynolds stress tensor and some Qol is anything
but linear. Consequently, the EPF seeks to estimate the uncertainty intervals rather
than create extreme states for some Qol. Furthermore, we need to discuss the obvious
judgment of the presented uncertainty intervals with respect to certain high-fidelity or
measurement data, which is often done. There is no guarantee that the simulation
results, obtained by the EPF, overlap with reference data. The main reason is that the
eigenvalue perturbation is only able to account for epistemic uncertainties limited to
the turbulence model’s representation of the turbulent state. Nevertheless, the LEVM’s
assumption that the Reynolds stress and strain-rate tensor have identical eigendirections
(cf. Eq. (7.1)) is not necessarily valid. Thus, the incorporation of physically constrained
eigenvector perturbations, as done in previous work [97], aiming to account for any
misalignment with the eigenspace of the strain-rate tensor, is missing in the current
analysis. Furthermore, other sources of uncertainties related to RANS simulations are not
considered by the Reynolds stress tensor perturbations. In the current configuration of the
TUDa-GLR-OpenStage compressor these might include the neglect of certain components
(e.g. cavity), the inaccurate representation of the geometry (such as tip gap and fillet
radii), the assumption of steady-state flow conditions, the application of the mixing plane
approach at rotor-stator interface, the use of 32 instead of 29 stator blades and, last but
not least, the choice of the boundary conditions. Although we compare the RANS data
with transitional DDES based on the research of Moller et al. [114] in order to mitigate
geometrical uncertainties, there are still notable disparities in the simulation setups.
These include variances in the approach to steady versus unsteady simulations, different
numerical schemes and the application of multiple turbulence modeling modifications.
Consequently, these simulations are not fully comparable. Therefore, it cannot be expected
that the estimated uncertainties based on the EPF envelope the high-fidelity DDES. This
is yet another illustration of the EPF’s potential, as well as its limitations. Additionally,
the achievable uncertainty intervals on Qol such as the total pressure ratio or the overall
isentropic efficiency of the compressor, are mainly affected by the prescribed amount of
relative perturbation Ag. In the current study, we seek for worst case scenarios attributed
to the maximum perturbation of the Reynolds stresses while still assuring convergence of
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the simulations. For this very reason, the presented uncertainties show the general trends
of each individual eigenvalue perturbation. In a real-world application, a designer would
probably not try to perturb as much as possible across the entire speedline. Based on
expert knowledge or machine learning strategies, a sensible strategy for future applications
may be the application of non-uniform, more moderate eigenspace perturbations, both
spatially in the computational domain and across multiple operating points.

7.5. Conclusion

We have presented the first multi-row turbomachinery application of the Reynolds stress
tensor EPF to assess turbulence modeling uncertainty for the design speedline of the
transonic TUDa-GLR-~OpenStage compressor. Through comparison with measurement
and transitional DDES data, we validate the ability of the EPF to quantify the epistemic
uncertainties, showcasing its potential for complex turbomachinery simulations. In pursuit
of worst case scenarios to ascertain the most conservative estimation of inherent turbulence
modeling uncertainties, it is imperative to apply non-uniform relative perturbation
magnitudes across the various operating points of the compressor and across different
states of turbulence componentiality (1C, 2C and 3C). The flow characteristics of the
compressor allowed greater eigenvalue perturbation for 1C and 2C close to the numerical
stall limit, whereas the perturbation towards the isotropic state could be increased near
the design point.

Our current investigation underscores the sensitivity of determining the numerical stall
limit of the compressor to the anisotropy of the Reynolds stress tensor, presenting a
significant enhancement in accordance with the experimental stall limit compared to the
baseline LEVM simulation. Consequently, orthotropic eddy viscosity models have the
potential to provide stability improvements similar to conventional turbulence modeling
enhancements. We postulate that this phenomenon can be attributed to the influence of
turbulence componentiality on the turbulence production. The evaluated radial profiles
of total pressure also demonstrate that corner separations, and to some extent, the tip-
leakage flow, are susceptible to changes in the shape of the Reynolds stress tensor ellipsoid.
Although the baseline RANS model accurately captures the flow physics in the midsection,
regions near the hub and tip consistently reveal deviations from measurements and pose
challenges to designers. Therefore, the shown results based on the eigenvalue perturbation
might be of great interest for turbomachinery designers and the turbulence modeling
community. Finally, it was found that introducing substantial levels of anisotropy to
the Reynolds stress tensor influences the dynamics of shock-boundary layer interaction,
specifically affecting the location of the shock. The emphasized impacts of physically
constrained perturbations to the shape of the Reynolds stress tensor offer new insights
for future turbulence modeling approaches. The aim of these insights is to eliminate the
need for non-physically constrained adjustments (often referred to as tweaking) to the
model in order to achieve a more accurate representation of compressor flow physics.

Last but not least, the current research paper, contributes to the evaluation of the
epistemic turbulence modeling uncertainties for multi-row turbomachinery configurations,
with a specific focus on the TUDa compressor. In future research, the inclusion of
physically constrained eigenvector perturbations could complete the view of the true
model-form uncertainty in the representation of the Reynolds stress tensor. As we have
made the most conservative estimates, we believe that the next plausible step is to
incorporate local perturbations in areas where LEVMs tend to fail while reducing the
perturbation where the models are known to perform well.



8. Discussion

This research centered around the quantification of epistemic model-form uncertainty for
RANS turbulence closure models. After the term uncertainty in CFD has been clarified
in Chapter 2, the origin of uncertainty in RANS turbulence modeling was introduced
in Chapter 3. Following the derived need to account for the model-form uncertainty
of turbulence models, a framework incorporating physics-based perturbations to the
eigenspace of the Reynolds stress tensor was presented. This EPF has been implemented
in DLR’s turbomachinery research and design solver TRACE that is developed and
utilized in strong cooperation with MTU Aero Engines AG. Thus, this integration adheres
to high quality standards with respect to testing and validation, ensuring consistent and
reliable results. The implementation of the EPF into the existing solver required several
adjustments with respect to appropriate user control, correct treatment of boundary
conditions and adequate schedule of the perturbations in the iteration of the steady
RANS approach. This thesis presents the review of the implementation of the EPF
based on its conceptual idea and subsequent adaptations of the methodology. Besides the
successful application of random forests to predict the expected deviations in Reynolds
stress anisotropy in Chapter 4 and the application of eigenspace perturbation for a
multi-row compressor application in Chapter 7, this thesis exemplifies the necessary
V&V in Chapter 5 and Chapter 6. Although, the EPF has been extensively applied in
academia and industry-partnered research, the conducted V&V revealed that there are
some shortcomings and limitations that have been addressed in this research. Hereby,
the framework has been improved to produce physics-constrained and consistent results
for its future applications. The application of the framework to the turbulent boundary
layer flow in a 1D channel, the separating flow in a converging-diverging channel, the
flow around the NACA 4412 airfoil and finally the flow of the TUDa-GLR-OpenStage
compressor served to validate the current implementation. The obtained results have
been presented in the form of a cumulative dissertation, consisting of previously published
peer-reviewed research.

8.1. Methodological coherence and development across
publications

One of the key challenges of this dissertation lies in addressing the methodological
coherence across the four underlying publication. While all these studies are based on a
shared methodology, which is the eigenspace perturbation of the Reynolds stress tensor,
each publication incorporates specific modifications, extensions and applications tailored
to its research questions and contextual requirements. Although these adaptations were
necessary to increase the scientific and applied insights of each study, it might give the
impression that the methodological implementation of the EPF and its application exhibit
a certain lack of coherence.

Consequently, the following section provides an analysis of the methodological commonal-
ities, difference and the rationale behind each decision made. This discussion aims to
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demonstrate how the shared EPF was adapted and applied in every publication and still
aligns with the overall research objectives of this thesis.

The simulation results presented in Chapter 4 are based on the implementation of the
EPF as outlined by laccarino et al. [66] and Mishra et al. [107]. Key differences between
this initial implementation and the final version of the framework in TRACE are the
usage of a moderation factor (see Eq. (4.11)) for addressing the convergence issue of the
perturbed simulations and the permutation of first and third eigenvector, which at that
time reflected the prevailing approach in the literature. The main purpose of this research
was to explore a data-driven, local perturbation of eigenvalues on the basis of the existing
and validated implementation of the EPF!.

However, as issues in application of the initially formulated EPF persisted, an initiated
verification of the implementation laid the foundation for subsequent investigations,
presented in Chapter 5 and Chapter 6, following a progressive research structure. Initially,
Chapter 5 identifies the lack of self-consistency of the earlier implementation, which
relied on the moderation factor by Mishra et al. [107], and suggests a novel approach
to converged simulation results. Building on this, Chapter 6 derives a new constraint
for the eigenvector perturbation replacing the eigenvector permutation by laccarino
et al. [66]. These two formulations supersede the initial implementation as applied in
Chapter 4 and only rely on uniform perturbation in the entire computational domain.
This change in approach was motivated by the findings of the research in Chapter 4,
which demonstrated the challenges in training a generalizing machine learning model
to predict inaccuracies in the Reynolds stress anisotropy combined with the fact, that
even a perfect model prediction still suffers from the limitations of the EPF (see detailed
discussion in the following section). Additionally, it became evident that the application of
non-local perturbations can be insightful for the turbulence modeling community without
necessitating extensive training of machine learning models in advance (as will be also
discussed in the following summarizing Section 8.2).

In the context of assessing the EPF regarding its capabilities for turbomachinery applica-
tions, the study of the multi-row compressor test case in Chapter 7 mainly intends to
provide practical guidance and analyze the resulting uncertainties. While this research
builds upon the implementation developed in Chapter 5 and Chapter 6, it does not
consider distinct perturbation of eigenvectors. This decision was partly due to the need
to first establish and present an approach to handle eigenvalue perturbations across the
entire speedline of a compressor, which, per se, required substantial effort and focus. In
addition, retrospective analysis of Chapter 6 revealed that excluding eigenvector perturba-
tions would have led to nearly identical uncertainty intervals for the converging-diverging
test case (see also study in Section 3.5.2). This observation underscores the potential
for meaningful insights, although relying solely on eigenvalue perturbations, as further
elaborated in the subsequent section.

8.2. Summary of the research findings

The novel contributions offered by this thesis are listed in Section 1.4.1. While these
contributions are relevant from a theoretical and researching point of view, this section
aims to highlight important findings for practical application purposes and to provide

! At the time, validation referred to the agreement of the results between the implementation in
TRACE and those reported in the literature for identical test cases.
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guidance for CFD practitioners and turbomachinery designers, willing to use the EPF in
the future.

8.2.1. Additional six perturbed simulations required and effects on
attainable solution space for Qol

Due to the modification to the EPF, presented in this thesis, it requires six? simulations

in addition to the baseline RANS simulation featuring an unperturbed turbulence model
to assess the uncertainty of the turbulence model. Three of them result from targeting
the eigenvalues at the corners of the barycentric triangle associated with the turbulence
componentiality (1C, 2C, 3C). Each of them can be supplemented by perturbing the
orientation of the principal axes of the Reynolds stress tensor ellipsoid by rotating the
eigenvectors, resulting in three additional simulations. While the eigenvalue perturbation
is controlled via a relative perturbation Ap € [0, 1], the angle for the eigenvector rotation
was found to be a € [0, 7/4] (see derivation of this limit in Chapter 6).

Aligning with the initially postulated idea of aiming for enveloping uncertainty bounds by
creating limiting states of the Reynolds stress tensor, the user of the EPF is encouraged
to perturb the eigenspace to these limiting states, Ap = 1 and a = 7/4. This procedure
is driven by the plausible observation that the more the Reynolds stress tensor is altered
from its native form (which is restricted by the Boussinesq approximation in LEVMs),
the more the obtained result for a certain Qol changes (see Section 3.5.2). However,
the relationship between any perturbation to the Reynolds stress tensor’s eigenspace
and the solution of the RANS equations is strongly non-linear. Consequently, it cannot
be ensured that a certain output Qol changes proportionally to these perturbation. In
other words, choosing the perturbations of eigenvalues and/or eigenvectors as strong as
possible, does not necessarily lead to upper or lower limits for Qol. Nonetheless, it is a
good approximation that could also be observed in this thesis and by other researchers,
such as Emory [36], Gorlé et al. [56] and Zeng et al. [173].

Moreover, it is just a sophisticated guess that the 1C, 2C or 3C state of the Reynolds
tress tensor, really results in an extreme state for certain Qol. Similarly, although the
derivations for rotating the eigenvector matrix of the Reynolds stress tensor around
the second eigenvector are based on physical observations in this thesis, the resulting
eigenvector matrix is only one out of an infinite number of possible realizations, represented
by the specific rotation axis (axes) and the respective rotation angle(s) (see Mishra and
Taccarino [106] for details). The following ramifications are threefold. Firstly, analyzing
the results of the EPF can and will show areas for some Qol, where the unperturbed
baseline RANS simulation forms the bound. In order to accurately assess the sensitivity of
the RANS result with respect to the eigenspace of the Reynolds stress tensor, an infinite
set (or at least a significant number) of simulations, representing any location inside
the barycentric triangle and any possible rotation of eigenvectors, would be required.
Additionally, it might be also not suffice to assume that all eigenvalues and eigenvectors
have to be perturbed to identical directions with identical perturbation strength to obtain
the most conservative estimations for Qol. Nevertheless, as this is not feasible, especially
for industrial purposes, this thesis demonstrates by example the provision of reasonable
intervals for certain Qol based on the proposed EPF compared with excessive sampling

2The set of additional simulations reduces to five if Ag = 1 for the 3C (isotropic) perturbation due
to the degeneration of the Reynolds stress tensor into a sphere making a rotation of its eigenvectors
unnecessary. However, this perturbation is hardly possible due to upcoming convergence issues, discussed
in the following.
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of the possible solution space of the anisotropy tensor in Section 3.5.2. Consequently,
targeting for the three corners of the barycentric triangle represents an appropriate
approach leading to sufficient information on the uncertainty. Secondly, the resulting
bounds of the EPF do not necessarily overlap with reference data, based on high-fidelity
simulations or experimental measurements. This can be concluded directly from the
fundamentals of the RANS equations, as certain Qol is not necessarily a linear combination
of the limiting states of turbulence. Moreover, there are always other uncertainties and
errors involved, which are not addressed by the EPF, potentially preventing the coverage
of reference data. Thirdly, although the true eigenvalues of the Reynolds stress tensor
are a convex combination of the eigenvalues at these limiting states [170] and the true
eigenvectors can also be determined by transforming the strain-rate tensor’s eigenbasis
(as shown in e.g. Matha and Morsbach [95]), the EPF is not designed to represent the
true (correct) eigenspace. Thus, the EPF does not per se prohibit states of the Reynolds
stress tensor, which contradict real-world observations, such as 3C turbulence in boundary
layers.

Given that the perturbation of the Reynolds stress tensor within the limits of the eigenspace
does not inherently guarantee to obtain the limiting state for Qol and a frequent complete
sampling from the physically permissible space of the Reynolds stress tensor is unfeasible,
this thesis recommends incorporating the unperturbed RANS results to mark the final
model-form uncertainty. This strategy balances the required computational resources and
the practical necessity of assessing uncertainty comprehensively while making reasonable
assumptions within the EPF3.

8.2.2. Convergence issues and their consequences

As discussed in detail in Chapter 4 to Chapter 7, the extreme states of the Reynolds stress
tensor, are often not feasible in practical simulations. Upcoming numerical convergence
issues, when altering the shape and orientation of the Reynolds stress tensor, prevent the
attainment of the promising special states using Ap = 1 and/or a = w/4. Consequently,
the strategy in this thesis was to always find the largest possible perturbations (eigenvalue
and/or eigenvector) that still result in stable steady-state solutions (referring to not
applying data-driven eigenvalue perturbations as in Chapter 4). Following this approach,
the intervals controlling the eigenvalue (Ap € [0,1]) and eigenvector (a € [0,7/4])
perturbations have to be discretized with a reasonable number of sampling points and
applied iteratively in reversed order in CFD simulations. Subsequently, this procedure
requires the appropriate definition of convergence criteria. In the current thesis, integral
values at interfaces, such as outlet pressure or blade forces, as well as local surface
quantities, such as pressure and friction coefficients, and locally probed mean flow
quantities, such as mean velocity, have been used to decide on appropriate convergence.
Consequently, the results obtained in this thesis can be considered as worst case yet
converged results. Nevertheless, there is no unique general metric to assess convergence
in this context, and it is in the user’s responsibility to conduct this analysis appropriately.
Otherwise, the obtained results derived from the EPF are considered to be futile. Indeed,
there are a couple of publications that have applied the EPF for DUU task [108, 51, 87|.
These researchers have had to use a great set of simulations in order to find the attainable
perturbation for each design, applied only minimum amount of perturbations (such they
can be sure that all perturbed simulations for every design converge) or managed to

3The assumptions in the EPF are referred to as best guesses you can make without usage of additional
resources or data-informed enhancements.
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deal with an excessive number of non-converged runs (if no iterative procedure to find
attainable perturbation parameters is conducted). Contrary to the approach of finding
the largest possible perturbations, turbomachinery designers willing to use the EPF to
add credibility to their RANS simulations could already benefit from adding at least some
amount of perturbation to get an indication regarding the sensitivity of the analyzed
Qol. Additionally, incorporating non-local perturbations (as already mentioned in the
conclusion section of Chapter 7) may also be beneficial for DUU tasks. The latter is
discussed in the following section with a focus on the turbulence modeling community.

8.2.3. Local vs. non-local perturbations and derived insights for the
turbulence modeling community

In general, the EPF is motivated by the expectation that an accurate representation of
the Reynolds stress tensor inevitably leads to accurate predictions for mean flow field
quantities* and concurrently the prevailing inaccurate modeling assumptions, such as the
linear eddy viscosity hypothesis, leading to inherent flaws for certain flow conditions. But
these modeling assumptions are not uniformly violated across the entire flow field, instead
they vary in extent and magnitude. To address these local inaccuracies, researchers have
developed methods that introduce local perturbations through marker functions [33, 34,
54, 56]. Such markers are often limited to the considered data set and lack universality,
unless they are directly measurable characteristics, such as the deviation from parallel
shear flow. Furthermore, designing these markers or sensors requires profound knowledge
of the turbulence model’s flaws, which might also be limited to a specific flow phenomenon
of the considered application. That is the reason, why data-driven machine learning
approaches have emerged as effective alternative using existing high-fidelity data to
improve the prediction of model-form uncertainty by predicting regions suffering from
potential turbulence model deficits [30, 61, 32].

In this thesis, random forest regression was applied to introduce and moderate pertur-
bations to the Reynolds stress tensor in areas, where a discrepancy in its anisotropy
(represented by the eigenvalues) was expected. The application of local perturbations
was found to significantly reduce the estimated uncertainty interval, resulting in less
conservative estimations by the framework. As highlighted in Section 1.4.1, Chapter 4
adopts the approach of Heyse et al. [61], extends the number of test cases, completes the
methodology by considering eigenvector perturbation and adds extensive model valida-
tion. Nevertheless, the study also revealed the challenge of training a universal machine
learning model to predict the discrepancy in representing the Reynolds stress tensor
anisotropy. This difficulty arises mainly due to the vast amount of well-resolved data
required, encompassing different geometries, flow phenomena and operation conditions.
Given the inherent limitation in data availability, an extrapolation metric was evaluated
to estimate the a prior: confidence of the prediction. Furthermore, there is no guarantee
that a perfect prediction for the deviation of the true anisotropy tensor would result in
an overlap with Qol of reference data, following the identical line of argumentation as in
Section 8.2.1 referring to the non-linearity of the system.

However, although the turbulence modeling assumptions are not fully satisfied everywhere
in the computational domains featuring different flow physics, the results obtained for
Qol are often predicted sufficiently accurately for practical CFD purposes. Otherwise,
turbulence models would not have been utilized for such a long period, contributing signif-
icantly to advancements in turbomachinery designs [25]. There is always the possibility of

4In practise, correct Reynolds stresses may have to be specially treated in the RANS approach,
because of the potential ill-conditioning of the equations [167, 13].
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obtaining accurate results using RANS turbulence models, especially when remembering
the distinction between error and uncertainty (see Chapter 2) - where uncertainty repre-
sents a potential inaccuracy. A prominent example is the error/uncertainty cancellation
often cited by engineers and CFD practitioners.

As a result of the described experiences, observations and inferred analyses, this thesis
suggests to apply the methodology using non-local perturbations in order to enable the
turbulence modeling community to identify areas in the flow that are most sensitive
to the eigenspace of the Reynolds stress tensor, coinciding with the chosen approach
for the most conservative UQ in this thesis. For example, the simulation results in the
present dissertation show the greatest sensitivity to Reynolds stress tensor perturbation
in the separation and reattachment region of the converging-diverging channel, or in areas
close to the hub and tip contour and in the region of shock-boundary layer interaction
for the TUDa compressor. An illustrative but simple example is the turbulent channel
flow in Section 5.2.4. When comparing RANS and DNS data, the discrepancy with
respect to the anisotropy of the Reynolds stress becomes most noticeable close to the
wall. However, almost any baseline RANS turbulence model is able to predict the velocity
profile accurately. When applying uniform perturbations by the EPF, the velocity profiles
are not notably affected in the region close to the wall. Greater sensitivity with respect
to the eigenspace can be observed in the outer part of the boundary layer®. Consequently,
the key takeaway for the turbulence modeling community, referring to the example of the
turbulent boundary layer would be, if there would be some differences between RANS
results and high-fidelity data, anisotropic Reynolds stress tensor modeling could modify
the agreement just in this outer part of the velocity profile.

8.2.4. Eigenspace perturbation and its effect on the turbulence production

This research focused on the appropriate perturbation of the orientation of the Reynolds
stress tensor ellipsoid, referring to the perturbation of the eigenvectors, motivated by
two key considerations. On the one hand, the Boussinesq approximation postulates
identical eigendirections for the strain-rate tensor and the Reynolds stress tensor, which
was proven to be incorrect for many cases. On the other hand, the perturbation of the
eigenvectors enables to indirectly modify the turbulence level once the eigenvalues have
already been perturbed. This thesis proposes a perturbation of the eigenvectors, relying
on a tensor rotation around the second eigenvector. Based on derivations for 1D boundary
layer flow, it was concluded that the rotation angle should be between 0 and 7/4 in
order to ensure realizable dynamics resulting from the perturbed Reynolds stress tensor.
Since wall-bounded flows are present in any relevant turbomachinery configuration, the
derivation remains valid under the chosen strategy of applying uniform perturbations. The
rotation approach is mathematically equivalent to the eigenvector perturbation approach
by Iaccarino et al. [66] and setting the angle to /2, which was identified to result in
negative eddy viscosity, countergradient transport of momentum and negative turbulence
production. The eigenvector rotation in combination with the eigenvalue perturbation
impact the turbulence level due to the incorporation of perturbed Reynolds stresses in
the turbulence production term (cf. details in Appendix B).

Although the actual values of the turbulence production term vary case by case, there are
two states of turbulence that should be highlighted, as they contribute massively to the
overall uncertainty estimation. While 1C perturbations (without altering the eigenvector

5The predicted uncertainty is acknowledged to be exaggerated from a turbulence modeling and
engineering point of view, as the baseline RANS model is capable of matching the reference data quite
well.
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alignments) increase the turbulence production term, 3C perturbations (with and without
eigenvector perturbation) tend to create the smallest turbulence production term under the
challenge of achieving converged simulation results, as mentioned in Section 8.2.2. These
simulations establish the envelope for Qol most commonly, highlighting the importance
of turbulence level adjustments for the prediction of the uncertainty interval. This is
consistent with other studies that have directly introduced a discrepancy term for the
turbulent kinetic energy in Eq. (3.24) [19].

Hence, there is a potential for reducing the set of additional simulations to obtain similar or
at least sufficient information regarding the potential turbulence model uncertainty. Due
to the strong impact of the perturbation on the turbulence production term and the actual
level of turbulence, an enveloping model for Qol could, in principle, be reduced to the 1C
and 3C simulations in most of the cases, also making any perturbation of eigenvectors
obsolete. This strategy might seem contradictory to the objective of targeting for extreme
states of the Reynolds stress tensor. Especially as highlighted by Mishra and Iaccarino
[106], who derived that only the combination of eigenvalue and eigenvector perturbation is
able to really extend the isotropic eddy viscosity model to an orthotropic and anisotropic
one (see Appendix C). However, setting aside these theoretical considerations and focusing
on the actual impact of the perturbations on the solutions of the RANS equations, this
reduction in the required number of simulations could facilitate more frequent usage of
the EPF in simulation-based optimization and certification tasks.






9. Conclusions and outlook

The EPF is currently the only published framework for addressing physics-constrained
uncertainty estimation of the Reynolds stress tensor representation in RANS turbulence
models. This underscores its importance for building up credibility in CFD simulations.
However, to explore the future potential of this framework it is imperative to conclude
several key aspects. Drawing on the conducted research and outlined observations, this
chapter aims to provide recommendations regarding the usability of the EPF, as well as
to derive conclusions for its future applications and related research. Additionally, this
sections seeks to emphasize the potential benefits and limitations of the methodology,
aligning with the research objectives in Section 1.2. Many of these considerations are
directly connected to the highlighted novel contributions of this thesis mentioned in
Section 1.4.1 and the summarized research findings presented in Section 8.2.

9.1. Conclusions

First and foremost, considering all the examined and highlighted aspects of this thesis,
the application of the eigenspace perturbations to the Reynolds stress tensor should be
regarded as an uncertainty estimation approach rather than an uncertainty quantification
methodology, aligning with considerations by others researchers, such as Emory |[36]
and Xiao et al. [170]. Since the EPF is primarily motivated and explicitly designed to
introduce physics-constrained perturbations to the Reynolds stress tensor, this research
has contributed significantly to preserving its physical foundations while integrating the
framework into the flow solver TRACE. The theoretical analysis and conceptual review
of the implementation was successfully completed. The considerations, analyses and
suggestions presented in this thesis are important for attaining appropriate estimation
of turbulence modeling uncertainty using the EPF in the future. The novel derived
implementation in TRACE differs from the one in any other flow solver up to date,
addressing shortcomings that previously violated physical principles and conceptual ideas
of the eigenspace perturbation methodology.

Beyond advancing the methodology itself, this thesis has also enriched the understanding
of epistemic uncertainties in RANS turbulence models and refined their interpretation
when estimated using the EPF. Leveraging recent advancements presented in Chapter 5
and Chapter 6, the EPF can now be applied without concerns about the meaningfulness of
the obtained intervals and violating the initial underlying physical motivation. However,
selective perturbation of eigenvalues and eigenvectors of the Reynolds stress tensor,
coupled with the presence of additional other uncertainties in CFD, means that the
resulting intervals are far from providing rigorous bounds.

Currently, the EPF is not yet ready for seamless integration into everyday industrial
workflows. Challenges, such as convergence issues and the necessity to identify the
greatest perturbation possible, hinder its practical utility in automated design iteration
cycles. Nonetheless, this thesis has demonstrated the readiness of the EPF for complex
turbomachinery applications. Notably, dealing with the convergence issues has culminated
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in the identification of a worst case scenario approach - perturbing as much as possible while
retaining steady-state converged results. The described usage concludes the suggested
application of the EPF, underscoring the practical guidance offered by this thesis. When
applied to the multi-row compressor test case, the approach enabled exploration of how
individual perturbations affect the compressor’s stability and performance, providing
valuable insights into its behavior under turbulence modeling uncertainty. These findings
enhance the utility of the EPF as a diagnostic and exploratory tool, shedding light on
the sensitivity with respect to the Reynolds stress tensor’s anisotropy.

If users and developers of this framework remain aware of its limitations, while adhering
to its conceptual principles, linked to its capabilities, the application of the EPF will help
to explore the possible solution space of the RANS approach, moving beyond the linear
eddy viscosity assumption. Focusing solely on the turbulence model uncertainty by using
the interval approach of the EPF offers plausible numerical results based on deterministic
model predictions on the one hand, without the underlying requirement to create bounds
that bridge the gap between high-fidelity simulations or experimental measurements and
RANS simulations on the other hand. Consequently, the EPF is unsuitable for CFD
practitioners and designers, who are interested in enveloping certain reference data or
establishing any probability distribution. Likewise, the application of the EPF alone
is not sufficient to explore the comprehensive uncertainty associated with the RANS
approach, as it represents only a partial uncertainty.

Finally, the insights gained from increased sensitivity to the Reynolds stress tensor’s
eigenspace can provide estimates on the potential impact of future turbulence model
enhancements, fostering improved predictive capabilities and enhanced reliability of CFD
simulations.

9.2. Outlook

The focus of this thesis has been set on fully turbulent setups, while turbomachinery flows
are also characterized by laminar flows and in particular by the phenomenon of laminar to
turbulent transition necessitating dedicated transition modeling [102]. Chu et al. [18, 19|
have begun examining the impact of the EPF on the coupling of turbulence and transition
modeling for transitional flows. However, most prominent transition models, such as the
one proposed by Langtry and Menter [82], modify the turbulence generation in the k
transport equation of the turbulence model by scaling Py, that is also influenced by the
eigenspace of the Reynolds stress tensor, with an additional term called intermittency. A
sophisticated study is needed to compare the application with and without additional
transition modeling, particularly when applying the provided consistent implementation
of the EPF in TRACE, in order to determine whether combining a transition model with
the eigenspace perturbation enhances information gain or not.

Furthermore, the applications of the Reynolds stress tensor perturbations and the derived
inferences for uncertainty estimations are performed for steady RANS simulations in
this thesis. However, turbulent flows, particularly turbomachinery flows, are unsteady
by definition. As time-consuming SRS are not expected to enter daily industrial design
processes, (unsteady) RANS or harmonic balance methods representing the highest level
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of modeling unsteady effects in turbomachinery [44, 3, 70]. Therefore, it may be the next
step to evaluate the capabilities of the EPF focusing on unsteady turbomachinery flows!.

Besides the frequently discussed perturbations of the Reynolds stress tensor and its effects
on Qol, researchers are encouraged to evaluate the effects on the budget terms of the
turbulence model’s transport equations besides the turbulence production term, as current
literature lacks insights into this aspect. These analyses may be especially interesting for
the turbulence modeling community and to gain a deeper understanding of the indirect
effects of the EPF on the transport equations.

All presented EPF results in this thesis are conducted on simulation grids that showed
sufficiently mesh-independent solutions for the baseline RANS simulation. It was inferred
that the chosen mesh must be reasonably well resolved to obtain appropriate results using
the EPF. This practical choice aimed to minimize the computational effort in finding an
appropriate grid for each and every perturbation. However, there is a need for future
research and publications dedicated to address this topic especially for turbomachinery
applications?.

Early studies analyzing the sign of the turbulence production term under eigenvector
perturbation for complex configurations, similar to the presented compressor flow in
Chapter 7, indicate that the constraints derived in Chapter 6 can be also applied in
similar manner to 3D test cases. Nevertheless, there needs to be a detailed discussion
on the eigenvector rotation approach in upcoming research. Besides, future research
should compare the resulting uncertainty estimates that are created with and without
eigenvector perturbation and by relying on the full set of six versus a conceivable set
of only two eigenspace perturbations for a broad range of test cases (see discussions in
Section 8.2.4). However, if meaningful insights can be achieved with only two additional
simulations, the application of the EPF becomes drastically more feasible in future DUU
tasks.

Studies like the ones from Gorlé et al. [55]3 or Emory [36]* underscore the necessity of
integrating multiple uncertainties to develop credibility in CFD frameworks for future
design tasks. Besides inflow condition uncertainties, other simplifications, such as the
overall usage of RANS, the steady-state assumption, the usage of mixing planes in
turbomachinery configurations, the neglect of surface roughness and manufacturing
tolerances were accepted and not accounted for in terms of uncertainty consideration
in this thesis. In order to provide a complete perspective for simulation-driven design
and certification, future research activities are encouraged to build upon the verified and
validated EPF in TRACE and to incorporate several sources of uncertainty in a mixed
manner, similar to the approach of Granados-Ortiz and Ortega-Casanova [57].

LGori et al. [50] has already analyzed the sensitivity of the eigenspace perturbation with respect to
the time-step size for flow around an airfoil using the SU2 solver, no applications have been made to
more complex turbomachinery flows featuring inherent unsteady but periodic effects.

2Gori et al. [50] demonstrated that one should not expect identical trends for the grid resolution
dependency between the baseline (unperturbed) and every single simulation featuring any perturbation
of the Reynolds stresses. However, their conclusion that was primarily based on the onset of instabilities
during stall for the NACA 0012 airfoil, a scenario notoriously difficult to predict for RANS models in a
steady simulation, leaves a number of questions unanswered.

3Gorlé et al. [65] emphasized that combining multiple sources of uncertainties, such as inflow and
turbulence model uncertainty, is challenging but can provide a comprehensive view of the overall
uncertainty for wind flows in urban environments.

4Emory [36] investigated a large set of inflow uncertainty mixed with the combustor model uncertainty
and the eigenvalue perturbation of the Reynolds stress tensor for a scramjet.






Nomenclature

Abbreviations

1C

1D

2C

2D

3C

3D
ABM
AIAA
AIM
ASME
CFD
CFL
DDES
DLR
DNS
DUU
EPF
GLR
GPPS
ISA
KDE
LE
LES
LEVM
ME
NACA
OEM
PCS
PS
Qol
RANS
RGB
RMSE
RSM
SAF
SRS
SS

TE

One-component turbulence
One-dimensional

Two-component axisymmetric turbulence
Two-dimensional

Three-component, isotropic turbulence
Three-dimensional

Anisotropy Barycentric Map

American Institute of Aeronautics and Astronautics
Anisotropy Invariant Map

American Society of Mechanical Engineers
Computational Fluid Dynamics
Courant-Friedrichs-Lewy

Delayed Detached-Eddy Simulation
German Aerospace Center

Direct Numerical Simulation

Design Under Uncertainty

FEigenspace Perturbation Framework
Fachgebiet Gasturbinen, Luft- und Raumfahrtantriebe
Global Power and Propulsion Society
International Standard Atmosphere
Kernel Density Estimation

Leading edge

Large Eddy Simulation

Linear Eddy Viscosity Model
Measurement plane (German: Messebene)
National Advisory Committee for Aeronautics
Original Equipment Manufacturer
Principal Coordinate System

Pressure side

Quantity of Interest

Reynolds-averaged Navier-Stokes

Red Green Blue

Root Mean Square Error

Reynolds Stress Model

Sustainable Aviation Fuels
Scale-Resolving Simulation

Suction side

Trailing edge
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TRACE Turbomachinery Research Aerodynamics Computational Environment
TUDa Technische Universitdt Darmstadt

uQ Uncertainty Quantification

V&V Verification and Validation

Latin symbols

a Reynolds stress anisotropy tensor

A Reciprocal of the probability density with respect to uniform distribution
inside a cuboid

A B, C, X,Y,Z Exemplary Reynolds stress tensors

c Chord length; symbolic for constants of turbulence model
cr Skin friction coefficient
Cp Pressure coefficient; heat capacity at constant pressure
Cy Heat capacity at constant volume
Cic Barycentric weights for ith componentiality
d Wall distance; number of features for KDE
dKDE Extrapolation distance based on KDE
D Epistemic discrepancy between Tirue and Tmodeled
e Internal energy
f Moderation factor
JKDE Probability density function based on KDE
G Shortened notation: G = v Rv
h Enthalpy
H Height
I, 11, 11 Tensor invariants
k Turbulent kinetic energy
K (k) Gaussian kernel with ¢ as symbolic input quantity
K Shortened notation: K = T/S™
L Characteristic length
Lt Turbulent length scale
m Symbolic for variables of the turbulence model
m Mass flow rate
Ma Mach number
M Symbolic for turbulence model
n Number; rotational speed
n Arbitrary test vector (Vn € R™)
Ny My, Ny Number of grid cells in each cartesian coordinate direction
N Trees Number of regressions trees for random forest
N Symbolic for the Navier-Stokes equations
P Pressure; perturbation magnitude in barycentric coordinates
P Turbulence production term
Pr Prandtl number
Heat flux vector
q; ith physical flow feature
Q Transformation tensor from eigenvalues to barycentric coordinates: = QA

Union of raw input quantities
R Gas constant
R Rotation tensor
Re Reynolds number
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Re. Reynolds number based on chord ¢

Reny Reynolds number based on channel height H

Re- Reynolds number based on friction velocity w.,

S Strain-rate tensor

T Symbolic for functional form of turbulence model

t Time

T Temperature

T Shortened notation: T = VA(t)VT

Tu Turbulence intensity

u Cartesian velocity vector u = (uq, ug, U3)T

Ur Friction velocity

U Favre-averaged cartesian velocity vector U = (Uy, Us, Ug)T

Up Bulk velocity based on U;

\% Eigenvector matrix of Reynolds stress (anisotropy) tensor v = (v1, vz, v3)

v; ith Eigenvector of Reynolds stress (anisotropy) tensor

T Cartesian coordinate vector x = (x,y,2)7 = (21,22, 23)T; barycentric
coordinate vector & = (z,y)"

Greek symbols

« Rotation angle for eigenvector perturbation; flow angle; exemplary element
in normalization

I} Normalization factor

5y Heat capacity ratio

4] Characteristic dimension; arbitrary delta

0ij Kronecker delta

Ap Relative perturbation magnitude for eigenvalue perturbation

€ Turbulent dissipation rate

€ijk Levi-Civita symbol

(T Total temperature ratio

MNis Isentropic efficiency

0; ith eigenvalue of K

C Eigenvalue matrix of K

L Arbitrary delta

K Heat conductivity

A ith eigenvalue of Reynolds stress anisotropy tensor

A Eigenvalue vector of Reynolds stress anisotropy tensor

A Eigenvalue matrix of Reynolds stress anisotropy tensor

I Molecular viscosity

W Turbulent eddy viscosity multiplied with density

v Kinematic viscosity

vT Turbulent eddy viscosity

& ith eigenvalue of Reynolds stress tensor

& Eigenvalue vector of Reynolds stress tensor

= Eigenvalue matrix of Reynolds stress tensor

IIt Total pressure ratio

P Density

o Bandwidth for KDE

o Viscous stress tensor

Tw Wall shear stress
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T Reynolds stress tensor

0] Symbolic quantity for averaging

P; ith eigenvalue of strain-rate tensor

v Eigenvalue matrix of strain-rate tensor
w Specific turbulent dissipation rate

Wew Streamwise vorticity

Q Rotation-rate tensor

Decorations and operators

O Reynolds-average quantity, time-averaged quantity

O’ Fluctuating part of a Reynolds-averaged quantity

0 Favre-averaged quantity

0 Fluctuating part of a Favre-averaged

O Perturbed quantity

O+ Nondimensionalized quantity based on friction velocity u,
O~ Traceless tensor or property of traceless tensor

-1 Inverse/pseudoinverse of a tensor

? Normalized quantity & = m

O Test data sample

m Absolute-value norm

[1O]] Euclidean norm

(O1,09) Frobenius inner product between tensor [J; and tensor [y
det(0O) Determinant of a tensor

diag() Diagonal tensor

tr(0) Trace of a tensor

Al Difference, discrepancy

\Y% Nabla operator

001 /00, Partial derivative of [J; with respect to s

# Number (of)

Sub- and superscripts

0 Reference location 0

1C One-component turbulence

2C Two-component turbulence

3C Isotropic turbulence

15 Quantity at ME15 of TUDa stage
21 Quantity at ME21 of TUDa stage
30 Quantity at ME30 of TUDa stage
a Reynolds stress anisotropy tensor

A B, C,X,Y,Z Property of exemplary Reynolds stress tensors
aa, BB, ab, vy Tensor entry

corr Corrected quantity to ISA conditions
DNS Based on DNS

exp Experimentally determined value

f Moderated with factor f

(7) ith training data sample

ij,in,nl, jl Tensor entry
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o0
is

ISA
max
mean
min
modeled
pred
PCS
PCSg
real

ref
rotated
RANS
stall

S

(t)

1,7, k,q
t

test
train
true

T

Free stream

Isentropic

Quantity at International Standard Atmosphere
Maximum

Mean

Minimum

Modeled

Predicted

In the Principal Coordinate System

In the Principal Coordinate System of strain-rate tensor
Real quantity

Reference

Rotated

Based on RANS

Quantity at compressor stall

Strain-rate tensor

Target barycentric state

Vector entry or index

Total quantity

Based on test data

Based on training data

True

Turbulent quantity; transpose of a vector or tensor






List of Figures

1.1.

2.1.

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.

Schematic representation of key aspects of turbulence. . . . . . ... ... 2
Overview of errors and uncertainties in CFD. . . . . . .. ... ... ... 11
Sources of uncertainty in RANS turbulence models at different levels

according to Duraisamy et al. [29]. . . . .. ... ... 18
Conceptual difference of non-parametric and parametric approaches for
assessing the uncertainty of RANS turbulence modeling to explore the
possible solution space of the Reynolds stress tensor, inspired by Xiao and
Cinnella [169] and Soize [142]. . . . . . . . ... ... L 19
Schematic representation of the relationship between anisotropy a (gray)

and the traceless strain-rate tensor S~ (orange) in the eigenbasis defined

by the eigenvectors v;. As a and S™ are not positive semi-definite, the
magnitude of the eigenvalues A\; and ;" is plotted according to Kratz et al.

[79]. The Reynolds stress tensor featuring identical principal axes as the
anisotropy tensor behaves in similar manner as the anisotropy tensor. . . . 25
Representation of the eigenvalue perturbation within the ABM and its
effect on the shape of the Reynolds stress tensor ellipsoid. The eigenvalue
perturbation towards the 2C limiting state is shown exemplarily. . . . . . 26
Effect of Ap when targeting for the 1C limiting state on the solution of
the converging-diverging channel without modifying the eigenvectors of
the Reynolds stress tensor; legend in (b) applies also for (a), (c), (d) and (e).
Effect of sampled states inside the barycentric triangle on the solution of
the converging-diverging channel without modifying the eigenvectors of
the Reynolds stress tensor; legend in (b) applies also for (c), (d) and (e). . 29
Effect of a@ when perturbing the eigenvalues to the 1C limiting state on

the solution of the converging-diverging channel; legend in (a) applies also

[\]

8

for (b). . . . . o 30
Flow chart of the final implemented version of the EPF in TRACE. . . . . 33
Schematic representation of the eigenvalue perturbation approach. . . . . 40
Implementation of the UQ framework within the CFD solver suite TRACE 45
Schematic turbulent channel flow setup. . . . . . ... ... .. ... ... 48
Schematic periodic hill setup. . . . . . . ... ... oL 48
Schematic wavy wall setup. . . . . . . .. .. .. ... ... ... 49
Schematic converging-diverging setup. . . . . . . . . .. ... ... ... 50
Schematic NACA 4412 setup. . . . . . . . . . . . . o 51
Training accuracy (solid / left) and testing accuracy (dashed / right) based

on RMSE for selection of hyperparameters in scenario I. . . . . . . . . .. 53

145



146

List of Figures

4.9. Relationship between the RMSE of the prediction for the converging-
diverging channel and the mean value of the KDE extrapolation metric
(standard deviation of the extrapolation metric is shown as the horizontal
bars). All 56 input features are considered for the prediction and training
of the random forest models, while only ¢1, q2, g3, g7 and gg are used to
compPute dKDE: - « « « o o e e e e e e e e e e

4.10. Barycentric coordinates for the selected flow cases; legend of (b) corresponds
to(a)and (c)aswell. . .. ...

4.11. Frequency of the target quantity p for the selected flow cases; vertical axis
correspond to (a), (b) and (¢). . . . . . . ...

4.12. Verification of extrapolation metric based on converging-diverging channel.

4.13. Evaluated metric and perturbation magnitude for the NACA 4412 profile.
4.14. Surface quantities for the flow around NACA 4412 including data-free
evaluation of the uncertainty estimates for the Menter SST k—w turbulence
model; legend in (a) applies also for (b). . . . ... ... ... .. ...
4.15. Comparison of the effect of identical model predicted perturbation magni-
tude p on the relative perturbation magnitude Ag. . . . . . . ... .. ..
4.16. Surface quantities for the flow around NACA 4412 including data-driven
evaluation of the uncertainty estimates for the Menter SST k& —w turbulence
model; legend in (a) applies also for (b). . . . . ... ... ... ... ...

5.1. Representation of the Reynolds stress tensor as an ellipsoid; eigenvalues &;
and eigenvectors v; are highlighted. . . . . . . . ... ... ... ... ...
5.2. AIM of the Reynolds stress tensor comparing second and third invariant
of respective anisotropy tensor. The corners of the triangle (1C, 2C, 3C)
represent the componentiality of turbulence (see Table 5.1). . . . . .. ..
5.3. ABM representing the eigenvalues of the anisotropy tensor and its effect
on the shape of the Reynolds stress tensor ellipsoid. The eigenvalue
perturbation towards the two-component limiting state of turbulence is
shown schematically. . . . .. .. ... ... .o L
5.4. Comparison of the perturbation trajectory for RANS channel flow data
at Re; = 1000 (blue dots) in barycentric coordinates. The trajectories
for selected RANS data points (7;;) are created by increasing f = 0...1
with and without eigenvector perturbation targeting the one-component
limiting state of turbulence 7;; = 7;; ., (orange dot).. . . . .. ... .. ..
5.5. Transition from tensor A to B (defined in Appendix 5.D) featuring identical
eigenvectors by increasing f = 0...1 (see Eq. (5.16)). The intermediate
brown-colored states in (a), (b) and (c) correspond to the states with
£€100.2,04,0.6,0.8] in (d) and (e). . . . . . . ...
5.6. Transition from tensor A to C (defined in Appendix 5.D) featuring different
eigenvector by increasing f = 0...1 (see Eq. (5.16)). The intermediate
brown-colored states in (a), (b) and (c) correspond to the states with
f€100.2,04,0.6,0.8] in (d) and (e). . . . . . .. ...
5.7. Schematic turbulent channel flow setup. . . . . . ... ... ... .....
5.8. Barycentric coordinates of DNS data and RANS simulation using the
Menter SST k-w model. Data points are colored according to their distance
fromthewall. . . . . . . . . ... ..
5.9. Comparison of the resulting uncertainty bounds for the streamwise velocity
profile of turbulent channel flow simulation derived by the EPF. . . . . . .
5.10. Comparison of the resulting barycentric coordinates of the perturbed
Reynolds stress tensors for the turbulent boundary layer profiles. . . . . .

56
o7
o7

61

72



List of Figures

147

6.1.

6.2.
6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

6.9.

6.10.

6.11.
6.12.
6.13.

Representation of the eigenvalue perturbation within the barycentric tri-
angle and its effect on the shape of the Reynolds stress tensor ellipsoid. . .
Schematics of steady, fully developed 1D boundary layer flow. . . . . . . .
Comparison of the effect of the eigenspace perturbation on the turbulence
production term Py in case of fully developed boundary layer flow. Effect
of pure eigenvalue perturbation is shown in (a), while (b) presents the
effect, when combining the permutation of the eigenvectors v1 and vs and
eigenvalue perturbation within the barycentric triangle. . . . . .. . . ..
Rotation of the eigenvector matrix of the Reynolds stress tensor around
second eigenvector ve by a. The schemtical impact of the rotation on
the Reynolds stress tensor ellipsoid is shown in (a). (b) shows the effect
of eigenvector rotation on the Reynolds shear stress component and the
turbulence production. This plot is created based on assuming 1D boundary
layer flow, as sketched in Fig. 6.2. The eigenvectors of 7;; presented in
Eq. (6.19) are rotated by a. The resulting 712 and Py (see Eq. (6.17)) are
evaluated subsequently. . . . . .. ... ... L
Distribution of the turbulence production term Py . ., when rotating the
eigenvectors of the Reynolds stress tensor around the second eigenvector
by a = /4. For better interpretability the resulting production is scaled
by the unperturbed turbulence production Pg. The magenta line indicates
Up=0. . e
Rotation around the second eigenvector of the Reynolds stress tensor by
a|p,=o leads to zero turbulence production. In order to better classify
the discrepancy from /4, the determined angle a|p,—¢ is presented as a
fraction of /4. The magenta line indicates Uy =0. . . . . . ... ... ..
Estimated turbulence model uncertainty for the streamwise velocity inside
the converging-diverging channel based on the EPF. Uy, .. is the maximum
streamwise velocity of the baseline simulation at x/H=0. The settings for
every eigenspace perturbation of the Reynolds stress tensor can be found
in Table 6.1. . . . . . . . . .
Turbulence model uncertainty based on the EPF for the friction coeffi-

cient ¢y = 7,/ (%poU%O’maJ at upper and bottom wall of the converging-

diverging channel. The quantities with subscript 0 indicate that they are
extracted at x/H = 0. The settings for every eigenspace perturbation of
the Reynolds stress tensor can be found in Table 6.1. . . . . . . .. .. ..
Turbulence model uncertainty based on the EPF for the pressure coefficient

cp=({P—po)/ (%ponO mx) at upper and bottom wall of the converging-

diverging channel. The quantities with subscript 0 indicate that they are
extracted at z/H = 0. The settings for every eigenspace perturbation of
the Reynolds stress tensor can be found in Table 6.1. . . . . . ... .. ..
Evolution and comparison of the turbulent kinetic energy within the
converging-diverging channel between DNS data [85] (a), RANS baseline
(b) and EPF simulations applying perturbed Reynolds stress tensors (c)-(h)
(see Table 6.1). . . . . . . ...
Comparison of modifying eigenvectors of the Reynolds stress tensor.
Introduction of the converging-diverging setup. . . . . . . . .. ... ...
Evolution of the area averaged outlet pressure over iteration count for the
simulation using eigenvector permutation without any eigenvalue pertur-
bation. . . . . . .

90
91

98

99

99



148

List of Figures

6.14.

6.15.

7.1.

7.2.

7.3.

74.

7.5.

7.6.

7.7.

7.8.

7.9.

Streamwise velocity inside the converging-diverging channel based on
pure eigenvector permutation without any eigenvalue perturbation. The
snapshots are taken every 1000 iteration, while the mean U;__, and the
standard deviation std(U;) are determined between 400.000 to 500.000
iterations. . . . . . ...
Streamwise velocity inside the converging-diverging channel for simulation
#2 (see Table 6.1) using moderated eigenvector perturbation and eigenvalue
modification towards the one-component limiting state. The snapshots
are taken every 1000 iteration, while the mean U; and the standard

mean

deviation std(U;) are determined between 400.000 to 500.000 iterations.

Representation of the Reynolds stress tensor’s eigenvalue perturbation
within the barycentric triangle. Its effect on the shape of the Reynolds
stress tensor is shown by the ellipsoid visualizations, when approaching
the vertices of the triangle. . . . . . . . .. ... ... o
3D illustration of the considered TUDa compressor configuration. The

simulated single passage is colored in pink, while reference locations are

highlighted as well. . . . . . . . . . ... ... .. ... .. ... ...
Effect of the grid resolution on the prediction of the total pressure ratio

(top) and the isentropic efficiency (bottom) by RANS simulations at design

speed. . ..o
Attainable relative perturbation magnitude Apg over corrected mass flow

rate for eigenvalue perturbation of the Reynolds stress tensor towards the

three limiting states of turbulence. . . . . . . ... ... ... ... ....
Ilustration of the turbulent state of the Reynolds stress tensor at ME30

and Moy = 14.78 kg/s. (a) presents the RGB coloring according to the

location of each data point inside the barycentric triangle, which is shown

in(b). . ..
Estimated turbulence modeling uncertainty for the global compressor
performance quantities total pressure ratio (top) and isentropic efficiency
(bottom) at 100% speedline and comparison with experimental data. The
mass flow rates for subsequent detailed analysis are highlighted by magenta
dashed lines (rcorr € [14.78 kg/s,15.12 kg /s, 15.84 kg/s,16.00 kg/s]). . .
Uncertainty estimates for predicting radial profiles of the total pressure
ratio ((a), (b), (c), (d)) and the total temperature ratio ((e), (f), (g),
(h)) at ME30 for four different operating points. The total pressure
and temperature ratio is computed using circumferentially area-averaged
quantities at ME30 and the integral area-averaged quantities at ME15. .
Comparison of total pressure wake losses at ME30 for two different oper-
ating points. The total pressure and ratio is computed using the integral
areca-averaged total pressure at ME15. Red dashed lines indicate the radial
measurement window in the experimental setup. . . . . . ... ... ...
Uncertainty estimates for predicting radial profiles of the total pressure ratio
((a), (b)) and the flow angle ((c), (d)) at ME21 for two different operating
points. The total pressure ratio is computed using circumferentially area-
averaged total pressure at ME21 and the integral area-averaged total
pressure at ME15. Note: The experimental data presented in (b) and (d)
were obtained by personal communication with Fabian Klausmann. As
the underlying operation point (1corr = 14.66 kg/s) varies slightly from
the numerical one (1corr = 14.78 kg/s), the markers are grayed out. . . .

104

. 104

. 114

. 116

. 118



List of Figures

149

7.10.

7.11.

7.12.

7.13.

7.14.

7.15.

Comparison of secondary flow structures indicated by the streamwise
vorticity at ME21 for two different operating points. The local stream-
wise vorticity was normalized using the maximum absolute value of the
streamwise vorticity occurring at ME21 in the baseline simulation.
Comparison of secondary flow structures indicated by the streamwise
vorticity at ME30 for two different operating points. The local stream-
wise vorticity was normalized using the maximum absolute value of the
streamwise vorticity occurring at ME30 in the baseline simulation.

The effect of perturbing the eigenspace of the Reynolds Stress tensor on
static surface pressure and surface streamtraces on the hub and SS at
Meorr = LAT8KE/S. © o o o
Comparison of turbulent kinetic energy distribution throughout the com-
pressor for three different operating points. Reference planes are shown
by dotted gray lines, while the mixing plane interface between rotor and
stator is marked in light green. White lines in (b) indicate the contours of
rotor and stator. . . . .. ..o
Analysis of shock position and wake width prediction by illustrating the
relative Mach number distribution for three constant relative span levels
at Meorr = 14.78 kg/s. Dashed lines indicate Ma=1. . . . . ... ... ..
Uncertainty estimates for the isentropic Mach number distribution at 90%
span of the rotor for two different operating points. . . . . . . . .. .. ..

. 119

. 120






List of Tables

1.1.

4.1.
4.2.
4.3.

4.4.

4.5.

5.1.

6.1.

7.1.

Summary of the considered articles in this thesis. . . . . . . . .. .. ... 6
Raw flow features for constructing the invariant basis. . . . . . . .. ... 43
Physical flow features. . . . . . . . . ..o 44
Scenarios for hyperparameter study: x means part of training data, o

means testing data. . . . . ... 52

Prediction accuracy of random forest: x means part of training data, o
means not part of training data, red highlights data sets used for evaluation
of RMSE. . . . . . . 54
Moderation factor f for every perturbed UQ simulation of NACA 4412. Ap-
plication of Ag <1 in the data-driven approach necessitates a distinction
between Py . and P . for3C.. . ... ... ... 59

max

Turbulence componentiality and limiting states of turbulence with respect
to the eigenvalues of the Reynolds stress tensor &; and the anisotropy tensor

Selected turbulent target states (componentiality), Ap for the eigenvalue
modifications and « for the eigenvector rotations of the Reynolds stress
tensor perturbation applied to the flow within the converging-diverging
channel. . . . . . . L 97

Number of grid points / 10% used for the RANS grid convergence study
presented in Fig. 7.3. . . . . . .. oo 110

151






Bibliography

[1] AIAA. Guide: Guide for the Verification and Validation of Computational Fluid
Dynamics Simulations. In ATAA G-077-1998. 2002.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’
Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third
edition, 1999.

[3] G. Ashcroft, C. Frey, H.-P. Kersken, E. Kiigeler, and N. Wolfrum. On the Simulation
of Unsteady Turbulence and Transition Effects in a Multistage Low Pressure Turbine:

Part I Verification and Validation. volume 2C: Turbomachinery of Turbo Expo:
Power for Land, Sea, and Air, page V02CT42A042, 2018.

[4] S. Banerjee, R. Krahl, F. Durst, and C. Zenger. Presentation of anisotropy properties
of turbulence, invariants versus eigenvalue approaches. Journal of Turbulence, 8:
N32, 2007.

[5] J. Bardina, J. H. Ferziger, and R. S. Rogallo. Effect of rotation on isotropic
turbulence: computation and modelling. Journal of Fluid Mechanics, 154:321-336,
1985.

[6] B. Basara. Employment of the second-moment turbulence closure on arbitrary
unstructured grids. International Journal for Numerical Methods in Fluids, 44(4):
377407, 2004.

[7] O. Bidar, S. R. Anderson, and N. Qin. Sensor placement for data assimilation of
turbulence models using eigenspace perturbations. Physics of Fluids, 36(1):015144,
2024.

[8] B. Blais and F. Bertrand. On the use of the method of manufactured solutions
for the verification of CFD codes for the volume-averaged Navier—Stokes equations.
Computers & Fluids, 114:121-129, 2015.

[9] J. Blazek. Computational Fluid Dynamics: Principles and Applications (Third
Edition). Butterworth-Heinemann, Oxford, third edition edition, 2001.

[10] A. Bleh, C. Morsbach, and J. Backhaus. Investigating the Nature and Invariance of
Field Inversion based on Transition in a Turbine Cascade. In ASME Turbo Ezpo
2022: Turbomachinery Technical Conference and Exposition, GT 2022, 2022.

[11] L. Breiman. Random Forests. Machine Learning, 45:5-32, 2001.
[12] L. Breiman. Bagging predictors. Machine Learning, 24:123-140, 2004.

[13] B. P. Brener, M. A. Cruz, R. L. Thompson, and R. P. Anjos. Conditioning and
accurate solutions of Reynolds average NavierStokes equations with data-driven
turbulence closures. Journal of Fluid Mechanics, 915:A110, 2021.

153



154

Bibliography

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

M. Breuer, N. Peller, C. Rapp, and M. Manhart. Flow over periodic hills — Numerical
and experimental study in a wide range of Reynolds numbers. Computers & Fluids,
38(2):433 — 457, 2009.

S. L. Brunton, B. R. Noack, and P. Koumoutsakos. Machine learning for fluid
mechanics. Annual Review of Fluid Mechanics, 52:477-508, 2020.

H. Choi and P. Moin. Grid-point requirements for large eddy simulations: Chap-
man’s estimates revisited. Physics of Fluids, 24:011702, 2012.

K.-S. Choi and J. L. Lumley. The return to isotropy of homogeneous turbulence.
Journal of Fluid Mechanics, 436:59-84, 2001.

M. Chu, X. Wu, and D. E. Rival. Quantification of Reynolds-averaged-Navier—Stokes
model-form uncertainty in transitional boundary layer and airfoil flows. Physics of
Fluids, 34(10):107101, 2022.

M. Chu, X. Wu, and D. E. Rival. Model-form uncertainty quantification of Reynolds-
averaged Navier—Stokes modeling of flows over a SD7003 airfoil. Physics of Fluids,
34(11):117105, 2022.

A. Cimarelli, A. Leonforte, E. De Angelis, A. Crivellini, and D. Angeli. On negative
turbulence production phenomena in the shear layer of separating and reattaching
flows. Physics Letters A, 383(10):1019-1026, 2019.

D. Coles and A. J. Wadcock. Flying-Hot-wire Study of Flow Past an NACA 4412
Airfoil at Maximum Lift. AIAA Journal, 17(4):321 — 329, 1979.

L. W. Cook, A. A. Mishra, J. P. Jarrett, K. E. Willcox, and G. laccarino. Optimiza-
tion under turbulence model uncertainty for aerospace design. Physics of Fluids, 31
(10):105111, 2019.

T. Craft, B. Launder, and K. Suga. Development and application of a cubic eddy-
viscosity model of turbulence. International Journal of Heat and Fluid Flow, 17(2):
108-115, 1996.

L. F. Cremades Rey, D. F. Hinz, and M. Abkar. Reynolds Stress Perturbation for
Epistemic Uncertainty Quantification of RANS Models Implemented in OpenFOAM.
Fluids, 4(2), 2019.

J. D. Denton. Some Limitations of Turbomachinery CFD. volume 7: Turboma-
chinery, Parts A, B, and C of Turbo FExpo: Power for Land, Sea, and Air, pages
735-745, 2010.

Divisional Board Aeronautics. Towards zero-emission avaition - How DLR’s Aviation
Reasearch Strategy supports the European Green Deal 2050. Aeronatics programme
strategy, German Aerospace Center (DLR), 2021.

DLR, German Aerospace Center, Institute of Propulsion Technology. TRACE User

Guide. http://www.trace-portal.de/userguide/trace/index.html, accessed
April 2022.

E. Dow and Q. Wang. Quantification of Structural Uncertainties in the k -w
Turbulence Model. In 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference. 2011.

K. Duraisamy, G. laccarino, and H. Xiao. Turbulence Modeling in the Age of Data.
Annual Review of Fluid Mechanics, 51:357-377, 2019.


http://www.trace-portal.de/userguide/trace/index.html

Bibliography 155

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

W. Edeling, G. Iaccarino, and P. Cinnella. Data-Free and Data-Driven RANS
Predictions with Quantified Uncertainty. Flow, Turbulence and Combustion, 100:
593-616, 2018.

A. Eidi, R. Ghiassi, X. Yang, and M. Abkar. Model-form uncertainty quantification
in RANS simulations of wakes and power losses in wind farms. Renewable Energy,
179:2212-2223, 2021.

A. Fidi, N. Zehtabiyan-Rezaie, R. Ghiassi, X. Yang, and M. Abkar. Data-driven
quantification of model-form uncertainty in Reynolds-averaged simulations of wind
farms. Physics of Fluids, 34(8):085135, 2022.

M. Emory, R. Pecnik, and G. Iaccarino. Modeling Structural Uncertainties in
Reynolds-Averaged Computations of Shock/Boundary Layer Interactions. In /9th
AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace
Ezposition. 2011.

M. Emory, J. Larsson, and G. laccarino. Modeling of structural uncertainties in
Reynolds-averaged Navier-Stokes closures. Physics of Fluids, 25(11):110822, 2013.

M. Emory, G. laccarino, and G. M. Laskowski. Uncertainty Quantification in
Turbomachinery Simulations. volume 2C: Turbomachinery of Turbo Exrpo: Power
for Land, Sea, and Air, page VO2CT39A028, 2016.

M. A. Emory. FEstimating model-form uncertainty in Reynolds-averaged Navier-
Stokes closures. Dissertation, Stanford University, Department of Mechanical
Engineering, 2014.

European Commision and Directorate-General for Research and Innovations. Fly
the Green Deal: Europe’s vision for sustainable aviation. Publications Office of the
European Union, 2022.

L. Eca, M. Hoekstra, A. Hay, and D. Pelletier. On the construction of manufactured
solutions for one and two-equation eddy-viscosity models. International Journal
for Numerical Methods in Fluids, 54(2):119-154, 2007.

L. Ega, M. Hoekstra, A. Hay, and D. Pelletier. Verification of RANS solvers with
manufactured solutions. Engineering with Computerss, 23:253-270, 2007.

M. H. Faber. On the Treatment of Uncertainties and Probabilities in Engineering
Decision Analysis. Journal of Offshore Mechanics and Arctic Engineering, 127(3):
243-248, 2005.

J. Faragher. Probabilistic Methods for the Quantification of Uncertainty and Error
in Computational Fluid Dynamics Simulations. Aeronatics programme strategy,
Defence Sciency and Technology Organisation, Air Vehicle Division of the Australian
Government, Victoria (Australia), 2004.

N. Fard Afshar, D. Kozulovic, S. Henninger, J. Deutsch, and P. Bechlars. Turbulence
anisotropy analysis at the middle section of a highly loaded 3D linear turbine cascade

using Large Eddy Simulation. Journal of the Global Power and Propulsion Society,
7:71-84, 2023.

G. G. Fleming, I. de Lépinay, and R. Schaufele. Environmental Trends in Aviation
to 2050. In Innovation for a green transition, pages 24-31. 2022.



156

Bibliography

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

M. Franke, T. Rober, E. Kiigeler, and G. Ashcroft. Turbulence Treatment in Steady
and Unsteady Turbomachinery Flows. In V FEuropean Conference on Computational
Fluid Dynamics ECCOMAS CFD 2010, 2010.

C. Garcia-Sanchez, D. Philips, and C. Gorlé. Quantifying inflow uncertainties for
CFD simulations of the flow in downtown Oklahoma City. Building and environment,
78:118-129, 2014.

B. Gayen and S. Sarkar. Negative turbulent production during flow reversal in a
stratified oscillating boundary layer on a sloping bottom. Physics of Fluids, 23(10):
101703, 2011.

G. Geiser, J. Wellner, E. Kiigeler, A. Weber, and A. Moors. On the Simulation and
Spectral Analysis of Unsteady Turbulence and Transition Effects in a Multistage
Low Pressure Turbine. 141(5), 2019.

S. Geman, E. Bienenstock, and R. Doursat. Neural Networks and the Bias/Variance
Dilemma. Neural Computation, 4:1-58, 1992.

G. Gori. Estimating Model-Form Uncertainty in RANS Turbulence Closures for
NICFD Applications. In Proceedings of the 4th International Seminar on Non-Ideal
Compressible Fluid Dynamics for Propulsion and Power, pages 72-81, Cham, 2023.
Springer Nature Switzerland.

G. Gori, O. Le Maitre, and P. Congedo. On the sensitivity of structural turbulence
uncertainty estimates to time and space resolution. Computers & Fluids, 229:
105081, 2021.

G. Gori, O. Le Maitre, and P. Congedo. A confidence-based aerospace design
approach robust to structural turbulence closure uncertainty. Computers & Fluids,
246:105614, 2022.

C. Gorlé and G. Taccarino. A framework for epistemic uncertainty quantification
of turbulent scalar flux models for Reynolds-averaged Navier-Stokes simulations.
Physics of Fluids, 25(5):055105, 2013.

C. Gorlé, M. Emory, J. Larsson, and G. laccarino. Epistemic uncertainty quan-
tification for RANS modeling of the flow over a wavy wall. Center for Turbulence
Research Annual Research Briefs, Stanford Univ., Stanford, CA, pages 81-91, 2012.

C. Gorlé, J. Larsson, M. Emory, and G. laccarino. The deviation from parallel
shear flow as an indicator of linear eddy-viscosity model inaccuracy. Physics of
Fluids, 26(5):051702, 2014.

C. Gorlé, C. Garcia-Sanchez, and G. Iaccarino. Quantifying inflow and RANS
turbulence model form uncertainties for wind engineering flows. Journal of Wind
Engineering and Industrial Aerodynamics, 144:202-212, 2015. Selected papers from
the 6th International Symposium on Computational Wind Engineering CWE 2014.

C. Gorlé, S. Zeoli, M. Emory, J. Larsson, and G. laccarino. Epistemic uncertainty
quantification for Reynolds-averaged Navier-Stokes modeling of separated flows
over streamlined surfaces. Physics of Fluids, 31(3):035101, 2019.

F.-J. Granados-Ortiz and J. Ortega-Casanova. Quantifying & analysing mixed
aleatoric and structural uncertainty in complex turbulent flow simulations. Interna-
tional Journal of Mechanical Sciences, 188:105953, 2020.



Bibliography 157

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

|66]

67]

[68]

[69]

[70]

[71]

[72]

73]

Z. Hao and C. Gorlé. Quantifying turbulence model uncertainty in Reynolds-
averaged Navier—Stokes simulations of a pin-fin array. Part 1: Flow field. Computers
& Fluids, 209:104641, 2020.

X. He and F. Klausmann. RANS Capabilities for Transonic Axial Compressor: A
Perspective from GPPS CFD Workshop. 2023.

X. He, M. Zhu, K. Xia, K. S. Fabian, J. Teng, and M. Vahdati. Validation and
verification of RANS solvers for TUDa-GLR-~OpenStage transonic axial compressor.
Journal of the Global Power and Propulsion Society, 7:13-29, 2023.

J. F. Heyse, A. A. Mishra, and G. laccarino. Estimating RANS model uncertainty
using machine learning. Journal of the Global Power and Propulsion Society, (May):
1-14, 2021.

C. Hirsch. Numerical Computation of Internal and External Flows (Second Edition).
Butterworth-Heinemann, Oxford, second edition edition, 2007.

J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky. Bayesian model
averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George,
and a rejoinder by the authors. Statistical Science, 14(4):382 — 417, 1999.

S. D. Hornshgj-Mgller, P. D. Nielsen, P. Forooghi, and M. Abkar. Quantifying
structural uncertainties in Reynolds-averaged Navier—Stokes simulations of wind
turbine wakes. Renewable Energy, 164:1550-1558, 2021.

7. Huang, A. Mishra, and G. laccarino. A Nonuniform Perturbation to Quantify
RANS Model Uncertainties. Center for Turbulence Research Annual Research
Briefs, Stanford Univ., Stanford, CA, pages 223-232, 2020.

G. Taccarino, A. A. Mishra, and S. Ghili. Eigenspace perturbations for uncertainty
estimation of single-point turbulence closures. Phys. Rev. Fluids, 2:024605, 2017.

IEA. World Energy Outlook 2023. Technical report, International Energy Agency
(IEA), 2023.

M. Thme, W. T. Chung, and A. Mishra. Combustion machine learning: Principles,
progress and prospects. Progress in Energy and Combustion Science, 91:101010,
2022.

C. Jiang, R. Vinuesa, R. Chen, J. Mi, S. Laima, and H. Li. An interpretable
framework of data-driven turbulence modeling using deep neural networks. Physics
of Fluids, 33(5):055133, 2021.

L. Junge. A new harmonic balance approach using multidimensional time. Disser-
tation, German Aerospace Center, Ruhr-Universitdt Bochum, Bochum, Germany,
2023.

G. Karniadakis. Quantifying Uncertainty in CFD. Journal of Fluids Engineering-
transactions of the ASME, 124(1):2-3, 2002.

M. Kato and B. Launder. The Modelling of Turbulent Flow Around Stationary and
Vibrating Square Cylinders. In 9th Symposium on Turbulent Shear Flows, pages
10.4.1-10.4.6, 1993.

A. D. Kiureghian and O. Ditlevsen. Aleatory or epistemic? Does it matter?
Structural Safety, 31(2):105-112, 2009. Risk Acceptance and Risk Communication.



158 Bibliography

[74] F. Klausmann, D. Franke, J. Foret, and H.-P. Schiffer. Transonic compressor
Darmstadt - Open test case Introduction of the TUDa open test case. Journal of
the Global Power and Propulsion Society, 6:318-329, 2022.

[75] F. Klausmann, N. Kilian, X. He, D. Franke, B. Schmidt, and H.-P. Schiffer. Transonic
Compressor Darmstadt Open Test Case: Experimental Investigation of Stator
Secondary Flows and Hub Leakage. Journal of Turbomachinery, 146(10):101007,
2024.

[76] F. S. Klausmann, D. Spieker, and H.-P. Schiffer. Transonic compressor Darmstadt
Open Test Case — unsteady aerodynamics and stall inception. Journal of the Global
Power and Propulsion Society, 8:52-61, 2024.

[77] A. N. Kolmogorov. Equations of turbulent motion in an incompressible fluid.
Proceedings of the USSR Academy of Sciences, 30:299-303, 1941.

[78] D. Kozulovic and T. Rober. Modelling the Streamline Curvature Effects in Tur-
bomachinery Flows. In Proceedings of the ASME Turbo Ezxpo, 2006. Paper No.
GT2006-90265.

[79] A. Kratz, C. Auer, M. Stommel, and I. Hotz. Visualization and Analysis of Second-
Order Tensors: Moving Beyond the Symmetric Positive-Definite Case. Computer
Graphics Forum - State of the Art Reports, 1:49 — 74, 2013.

[80] G. Lamberti and C. Gorlé. Uncertainty Quantification for RANS Predictions of
Wind Loads on Buildings. In Proceedings of the XV Conference of the Italian Asso-
ciation for Wind Engineering, pages 402-412, Cham, 2019. Springer International
Publishing.

[81] L. Langston. Secondary Flows in Axial TurbinesA Review. Annals of the New York
Academy of Sciences, 934(1):11-26, 2001.

[82] R. B. Langtry and F. R. Menter. Correlation-Based Transition Modeling for
Unstructured Parallelized Computational Fluid Dynamics Codes. AIAA Journal,
47(12):2894-2906, 20009.

[83] J. B. Lasserre. A trace inequality for matrix product. IEEE Trans. Automatic
Control, 40(1500), 1995.

[84] B. E. Launder, D. P. Tselepidakis, and B. A. Younis. A second-moment closure
study of rotating channel flow. Journal of Fluid Mechanics, 183:63-75, 1987.

[85] J. Laval and M. Marquillie. Direct Numerical Simulations of Converging—Diverging
Channel Flow. In Progress in Wall Turbulence: Understanding and Modeling, pages
203-209, 2011.

[86] M. Lee and R. D. Moser. Direct numerical simulation of turbulent channel flow up
to Re, ~ 5200. Journal of Fluid Mechanics, 774:395-415, 2015.

[87] A. Li, T. Wang, J. Chen, Z. Huang, and G. Xi. Adjoint Design Optimization Under
the Uncertainty Quantification of Reynolds-Averaged Navier-Stokes Turbulence
Model. AIAA Journal, pages 1-12, 2024.

[88] J. Li, T. Liu, G. Zhu, Y. Li, and Y. Xie. Uncertainty quantification and aerodynamic
robust optimization of turbomachinery based on graph learning methods. Energy,
273:127289, 2023.



Bibliography 159

[89] F. Lien and M. Leschziner. Assessment of turbulence-transport models including
non-linear rng eddy-viscosity formulation and second-moment closure for flow over
a backward-facing step. Computers & Fluids, 23(8):983-1004, 1994.

[90] J. Ling and J. Templeton. Evaluation of machine learning algorithms for prediction
of regions of high Reynolds averaged Navier Stokes uncertainty. Physics of Fluids,
27(8):085103, 2015.

[91] G. Louppe. Understanding Random Forests: From Theory to Practice. Dissertation,
2014.

[92] J. L. Lumley. Computational Modeling of Turbulent Flows. In Advances in Applied
Mechanics, volume 18, pages 123 — 176. Elsevier, 1979.

[93] J. L. Lumley and G. R. Newman. The return to isotropy of homogeneous turbulence.
Journal of Fluid Mechanics, 82(1):161-178, 1977.

[94] M. Matha and K. Kucharczyk. Applicability of machine learning in uncertainty
quantification of turbulence models. Technical report, Summarizing white paper on
recent findings, 2022.

[95] M. Matha and C. Morsbach. Extending turbulence model uncertainty quantification
using machine learning. In NeurlPS - Thirty-fifth Conference on Neural Information
Processing Systems | Fourth Workshop on Machine Learning and the Physical
Sciences, 2021.

[96] M. Matha and C. Morsbach. Improved self-consistency of the Reynolds stress tensor
eigenspace perturbation for uncertainty quantification. Physics of Fluids, 35(6):
065130, 2023.

[97] M. Matha and C. Morsbach. Physically constrained eigenspace perturbation for
turbulence model uncertainty estimation. Physics of Fluids, 36(2):025153, 2024.

[98] M. Matha, K. Kucharczyk, and C. Morsbach. Assessment of data-driven Reynolds
stress tensor perturbations for uncertainty quantification of RANS turbulence
models. In ATAA AVIATION 2022 Forum, 2022.

[99] M. Matha, K. Kucharczyk, and C. Morsbach. Evaluation of physics constrained
data-driven methods for turbulence model uncertainty quantification. Computers
& Fluids, 255:105837, 2023.

[100] M. Matha, F. Méller, C. Bode, C. Morsbach, and E. Kiigeler. Advanced Methods for
Assessing Flow Physics of the TU Darmstadt Compressor Stage: Part 2 - Uncertainty
Quantification of RANS Turbulence Modeling. volume 12C: Turbomachinery Design
Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and Component
Interactions of Turbo Expo: Power for Land, Sea, and Air, page V12CT32A013,
2024.

[101] M. Matha, F. M. Méller, C. Bode, C. Morsbach, and E. Kiigeler. Advanced Methods
for Assessing Flow Physics of the TU Darmstadt Compressor Stage: Uncertainty
Quantification of RANS Turbulence Modeling. Journal of Turbomachinery, 147(8):
081004, 2025.



160

Bibliography

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

R. E. Mayle. The Role of Laminar-Turbulent Transition in Gas Turbine Engines.
volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and
Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar
Award; General of Turbo Fxpo: Power for Land, Sea, and Air, page VO0O5T17A001,
1991.

F. Menter. Zonal Two Equation k-w Turbulence Models for Aerodynamic Flows.
In 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. 1994.

F. Menter, M. Kuntz, and R. Langtry. Ten years of industrial experience with the
SST turbulence model. Turbulence, Heat and Mass Transfer, 4:625 — 632, 2003.

A. A. Mishra and G. laccarino. Uncertainty Estimation for Reynolds-Averaged
Navier—Stokes Predictions of High-Speed Aircraft Nozzle Jets. AIAA Journal, 55
(11):3999-4004, 2017.

A. A. Mishra and G. laccarino. Theoretical analysis of tensor perturbations for
uncertainty quantification of Reynolds averaged and subgrid scale closures. Physics
of Fluids, 31(7):075101, 2019.

A. A. Mishra, J. Mukhopadhaya, G. Taccarino, and J. Alonso. Uncertainty Esti-
mation Module for Turbulence Model Predictions in SU2. AIAA Journal, 57(3):
1066-1077, 2019.

A. A. Mishra, J. Mukhopadhaya, J. Alonso, and G. Iaccarino. Design exploration
and optimization under uncertainty. Physics of Fluids, 32(8):085106, 2020.

G. Mompean, S. Gavrilakis, L. Machiels, and M. Deville. On predicting the
turbulence-induced secondary flows using nonlinear k-e models. Physics of Fluids,
8(7):1856-1868, 1996.

J.-F. Monier, N. Poujol, M. Laurent, F. Gao, J. Boudet, S. Aubert, and L. Shao. LES
Investigation of Boussinesq Constitutive Relation Validity in a Corner Separation

Flow. volume 2C: Turbomachinery of Turbo Exzpo: Power for Land, Sea, and Air,
page V02CT42A023, 2018.

F. Montomoli. Future Developments. In Uncertainty Quantification in Computa-
tional Fluid Dynamics and Aircraft Engines, pages 195-196. Springer International
Publishing, Cham, 2019.

C. Morsbach. Reynolds Stress Modelling for Turbomachinery Flow Applications. Dis-
sertation, German Aerospace Center, Technische Universitat Darmstadt, Darmstadt,
Germany, 2017.

J. Mukhopadhaya, B. T. Whitehead, J. F. Quindlen, J. J. Alonso, and A. W. Cary.
Multi-fidelity modeling of probabilistic aerodynamic databases for use in aerospace
engineering. International Journal for Uncertainty Quantification, 10(5):425-447,
2020.

F. M. Moller, P. G. Tucker, Z.-N. Wang, C. Bode, C. Morsbach, M. Matha, and
P. Sivel. Advanced Methods for Assessing Flow Physics of the TU Darmstadt
Compressor Stage: Part 1 Transitional Delayed Detached-Eddy Simulation. volume
12C: Turbomachinery Design Methods and CFD Modeling for Turbomachinery;
Ducts, Noise, and Component Interactions of Turbo Expo: Power for Land, Sea,
and Air, page V12CT32A037, 2024.



Bibliography 161

[115] H. N. Najm. Uncertainty Quantification and Polynomial Chaos Techniques in
Computational Fluid Dynamics. Annual Review of Fluid Mechanics, 41:35-52,
20009.

[116] NASA, National Aeronautics and Space Administration. Turbulence modeling
resource database. https://turbmodels.larc.nasa.gov/index.html, accessed
April 2022.

[117] M. J. Nauta. Separation of uncertainty and variability in quantitative microbial
risk assessment models. International Journal of Food Microbiology, 57(1):9-18,
2000.

[118] N. Nigam, S. Mohseni, J. Valverde, S. Voronin, J. Mukhopadhaya, and J. J. Alonso.
A toolset for creation of multi-fidelity probabilistic aerodynamic databases. In
AIAA Scitech 2021 Forum, page 0466, 2021.

[119] W. Oberkampf and C. Roy. Verification and Validation in Scientific Computing.
Cambridge University Press, 2010.

[120] W. L. Oberkampf and T. G. Trucano. Verification and Validation in Computational
Fluid Dynamics. Progress in aerospace sciences, 2002.

[121] W. L. Oberkampf, S. M. DeLand, B. M. Rutherford, K. V. Diegert, and K. F.
Alvin. Error and uncertainty in modeling and simulation. Reliability Engineering &
System Safety, 75(3):333-357, 2002.

[122] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research, 12:2825-2830, 2011.

[123] S. B. Pope. Turbulent Flows. Cambridge University Press, 2000.

[124] S. V. Poroseva, M. Y. Hussaini, and S. L. Woodruff. Improving the Predictive
Capability of Turbulence Models Using Evidence Theory. AIAA Journal, 44(6):
1220-1228, 2006.

[125] N. Razaaly, G. Gori, G. Iaccarino, and P. M. Congedo. Optimization of an orc
supersonic nozzle under epistemic uncertainties due to turbulence models. In GPPS
2019-Global Power and Propulsion Society, 2019.

[126] O. Reynolds. IV. On the dynamical theory of incompressible viscous fluids and the
determination of the criterion. Philosophical Transactions of the Royal Society of
London. (A.), 186:123-164, 1895.

[127] P. J. Roache. Verification and validation in computational science and engineering,
volume 895. Hermosa Albuquerque, NM, 1998.

[128] S. Rochhausen. Modellierung des turbulenten Warmeflusses in Turbomaschinen-
stromungen. Dissertation, Dissertation Ruhr-Universitdt Bochum, 2018.

[129] P. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes.
Journal of Computational Physics, 43(2):357-372, 1981.

[130] R. Rossi. Passive scalar transport in turbulent flows over a wavy wall. Dissertation,
Universita degli Studi di Bologna, Bologna, Italy, 2006.


https://turbmodels.larc.nasa.gov/index.html

162

Bibliography

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

U. Sahlin, I. Helle, and D. Perepolkin. “This Is What We Don’t Know”: Treating
Epistemic Uncertainty in Bayesian Networks for Risk Assessment. Integrated
Environmental Assessment and Management, 17(1):221-232, 2020.

S. Salvadori. Uncertainty Quantification in CFD: The Matrix of Knowledge. In
Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines,
pages 33-66. Springer International Publishing, Cham, 2019.

R. D. Sandberg and V. Michelassi. The Current State of High-Fidelity Simulations
for Main Gas Path Turbomachinery Components and Their Industrial Impact. Flow,
Turbulence and Combustion, 102:797-848, 2019.

D. Schliifs, C. Frey, and G. Ashcroft. Consistent Non-Reflecting Boundary Conditions
For Both Steady And Unsteady Flow Simulations In Turbomachinery Applications.
In 7th European Congress on Computational Methods in Applied Sciences And
Engneering, pages 7403-7422, 2016.

F. G. Schmitt. About Boussinesq’s turbulent viscosity hypothesis: historical remarks
and a direct evaluation of its validity. Comptes Rendus Mécanique, 335(9):617-627,
2007. Joseph Boussinesq, a Scientist of bygone days and present times.

U. Schumann. Realizability of Reynolds-Stress Turbulence Models. Physics of
Fluids, 20:721-725, 1977.

D. Scott. Multivariate density estimation: Theory, practice, and visualization:
Second edition. 2015.

R. Senge, S. Bosner, K. Dembczyniski, J. Haasenritter, O. Hirsch, N. Donner-
Banzhoff, and E. Hiillermeier. Reliable classification: Learning classifiers that
distinguish aleatoric and epistemic uncertainty. Information Sciences, 255:16-29,
2014.

A. P. Singh and K. Duraisamy. Using field inversion to quantify functional errors
in turbulence closures. Physics of Fluids, 28(4):045110, 2016.

A. P. Singh, K. Duraisamy, and Z. J. Zhang. Augmentation of Turbulence Models
Using Field Inversion and Machine Learning. In 55th AIAA Aerospace Sciences
Meeting. 2016.

R. C. Smith. Uncertainty Quantification: Theory, Implementation, and Application.
Society for Industrial and Applied Mathematics, USA, 2013.

C. Soize. A comprehensive overview of a non-parametric probabilistic approach of
model uncertainties for predictive models in structural dynamics. Journal of Sound
and Vibration, 288(3):623-652, 2005. Uncertainty in structural dynamics.

P. Spalart and M. Shur. On the sensitization of turbulence models to rotation and
curvature. Aerospace Science and Technology, 1(5):297-302, 1997.

A. Spencer and R. Rivlin. Isotropic integrity bases for vectors and second-order
tensors. Archive for Rational Mechanics and Analyis, 9:45 — 63, 1962.

C. G. Speziale. On turbulent secondary flows in pipes of noncircular cross-section.
International Journal of Engineering Science, 20(7):863-872, 1982.

C. G. Speziale. Analytical Methods for the Development of Reynolds-Stress Closures
in Turbulence. Annual Review of Fluid Mechanics, 23(1):107-157, 1991.



Bibliography 163

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

157]

[158]

[159]

[160]

[161]

Stanford University, Aerospace Design Lab of the Department of Aeronautics
and Astronautics. SU2 code (version 7.4.0 "Blackbird"). https://github.com/
su2code/SU2, accessed December 2022.

F. Stern, R. V. Wilson, H. W. Coleman, and E. G. Paterson. Comprehensive
Approach to Verification and Validation of CFD Simulations—Part 1: Methodology
and Procedures . Journal of Fluids Engineering, 123(4):793-802, 2001.

W. Sutherland. LII. The viscosity of gases and molecular force. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 36(223):
507-531, 1893.

C. Tebaldi and Knutti. Philosophical transaction of the royal society A: mathematical,
physical and engineering sciences, 365:2053-2075, 2007.

L. Terentiev. The Turbulence Closure Model Based on Linear Anisotropy Invariant
Analysis. Dissertation, Friedrich-Alexander-Universitiat Erlangen-Niirnberg (FAU),
2006.

R. L. Thompson, A. A. Mishra, G. laccarino, W. Edeling, and L. Sampaio. Eigenvec-
tor perturbation methodology for uncertainty quantification of turbulence models.
Phys. Rev. Fluids, 4:044603, 2019.

B. Tracey, K. Duraisamy, and J. Alonso. Application of Supervised Learning to
Quantify Uncertainties in Turbulence and Combustion Modeling. In 51st ATAA
Aerospace Sciences Meeting including the New Horizons Forum and Aerospace
Ezposition. 2013.

P. Tucker. Computation of unsteady turbomachinery flows: Part 1 - Progress and
challenges. Progress in Aerospace Sciences, 47(7):522-545, 2011.

P. Tucker. Trends in turbomachinery turbulence treatments. Progress in Aerospace
Sciences, 63:1-32, 2013.

J. Tyacke, N. Vadlamani, W. Trojak, R. Watson, Y. Ma, and P. Tucker. Turboma-
chinery simulation challenges and the future. Progress in Aerospace Sciences, 110:
100554, 2019.

G. D. van Albada, B. van Leer, and W. W. Roberts, Jr. A comparative study of
computational methods in cosmic gas dynamics. Astronomy and Astrophysics, 108
(1):76-84, 1982.

B. van Leer. Towards the ultimate conservative difference scheme. V. A second-order
sequel to Godunov’s method. Journal of Computational Physics, 32(1):101-136,
1979.

J.-X. Wang, R. Sun, and H. Xiao. Quantification of uncertainties in turbulence
modeling: A comparison of physics-based and random matrix theoretic approaches.
International Journal of Heat and Fluid Flow, 62:577-592, 2016.

J.-X. Wang, J. Wu, J. Ling, G. Iaccarino, and H. Xiao. A comprehensive physics-
informed machine learning Framework for predictive turbulence modeling. 2018.

D. Wilcox. Turbulence modelling for CFD. DCW Industries, La Cafiada, USA, 3rd
edition edition, 2006.


https://github.com/su2code/SU2
https://github.com/su2code/SU2

164

Bibliography

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

S. Wojtkiewicz, M. Eldred, J. R. Field, A. Urbina, and J. Red-Horse. Uncertainty
quantification in large computational engineering models. In 19th AIAA Applied
Aerodynamics Conference. 2001.

J.-L. Wu, J.-X. Wang, and H. Xiao. A Bayesian Calibration—Prediction Method for
Reducing Model-Form Uncertainties with Application in RANS Simulations. Flow,
Turbulence and Combustion, 97:761 — 786, 2016.

J.-L. Wu, J.-X. Wang, H. Xiao, and J. Ling. A Priori Assessment of Prediction Con-
fidence for Data-Driven Turbulence Modeling. Flow, Turbulence and Combustion,
99(1):25-46, 2017.

J.-L. Wu, H. Xiao, and E. Paterson. Physics-informed machine learning approach
for augmenting turbulence models: A comprehensive framework. Phys. Rev. Fluids,
3:074602, 2018.

J.-L. Wu, R. Sun, S. Laizet, and H. Xiao. Representation of stress tensor perturba-
tions with application in machine-learning-assisted turbulence modeling. Computer
Methods in Applied Mechanics and Engineering, 346:707-726, 2019.

J.-L. Wu, H. Xiao, R. Sun, and Q. Wang. Reynolds-averaged Navier—Stokes
equations with explicit data-driven Reynolds stress closure can be ill-conditioned.
Journal of Fluid Mechanics, 869:553-586, 2019.

K. Xia, X. He, M. Zhu, F. S. Klausmann, J. Teng, and M. Vahdati. Endwall
geometric uncertainty and error on the performance of TUDA-GLR-OpenStage
transonic axial compressor. Journal of the Global Power and Propulsion Society, 7:
113-126, 2023.

H. Xiao and P. Cinnella. Quantification of model uncertainty in RANS simulations:
A review. Progress in Aerospace Sciences, 108:1-31, 2019.

H. Xiao, J.-L. Wu, J.-X. Wang, R. Sun, and C. Roy. Quantifying and reducing
model-form uncertainties in Reynolds-averaged Navier—Stokes simulations: A data-
driven, physics-informed Bayesian approach. Journal of Computational Physics,
324:115-136, 2016.

H. Xiao, Wang, and R. G. Ghanem. A random matrix approach for quantifying
model-form uncertainties in turbulence modeling. Computer Methods in Applied
Mechanics and Engineering, 313:941-965, 2017.

T. Zang, M. Hemsch, M. Hilburger, S. Kenny, J. Luckring, P. Maghami, S. Padula,
and W. Stroud. Needs and Opportunities for Uncertainty-Based Multidisciplinary
Design Methods for Aerospace Vehicles. 2002.

F. Zeng, T. Zhang, D. Tang, J. Li, and C. Yan. Structural uncertainty quantification
of Reynolds-averaged Navier—Stokes closures for various shock-wave /boundary layer
interaction flows. Chinese Journal of Aeronautics, 2023.



A. RANS equations implemented and
solved within this thesis

The following equations are implemented and solved in TRACE using the RANS approach:

g;’ 83 (pU;) =0 (A.1)
%(pU) + ai (pU;U;) = g 5t 88% [2M (5 - ;Skk%) - pTij:| (A.2)
il (7 57 )] i [ (o + 52|
_ g [ Sl a{ﬂ (A.3)
J

2 M(S suss) =)

The specific heat capacity at constant volume and pressure are replaced by

R

cy=——andcp=——-, (A.4)
R Py -1
while the dynamic viscosity is determined using Sutherland’s constants and relation-
ship [149]
3
T 2 Thef + Sref
= —_— ] . Ab
a firel <Tref> T+ Sref ( )

By applying an unperturbed turbulence model, the Reynolds stress tensor 7;; is determined
according to Eq. (3.17) and the simplifications of neglecting the main diagonal entries,
as described in Section 3.5.4. The turbulent heat conductivity xt is modeled using the
turbulent Prandtl number and the introduction of the turbulent eddy viscosity. As this
thesis only focuses on the steady RANS equations, the derivative with respect to the
physical time 0C1/9t must vanish. The equations simplify to

81 (pUi) =0 (A.6)
aa (pU;U;) = g ai [ (b + pr) <Sij —~ ;Skkaijﬂ (A.7)
g [0 (575 ﬂ "

(A.8)

L) ]
2 oot (5~ )]

If the eigenspace perturbation is used to account for the model-form uncertainties of
the underlying turbulence model, the Reynolds stresses can be taken directly from the
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166 A. RANS equations implemented and solved within this thesis

perturbed stresses obtained via perturbed eigenvalues and eigenvectors based in Eq. (3.24).

0
O (pUi) =0 (A.Q)
dp 0
o, - (pU;Ui) = t 5 [QM <Sij Skk%) - 2]:| (A.10)
J

A G )] o
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B. Relationship between the turbulence
production and the eigenspace of the
Reynolds stress tensor

The turbulence production term can be expressed as the Frobenius inner product between
the Reynolds stress and the strain-rate tensor

oU;
—Tij

al‘j
According to Lasserre [83], the bounds of the Frobenius inner product based on two
hermitian tensors can be written in terms of their respective eigenvalues. Since the

Reynolds stress and the strain-rate tensor are real symmetric', the turbulence production
term is limited according to

Py € [§19h3 + &2 + &3¢1, S1901 + Savba + §3903] (B.2)

with & (representing the eigenvalues of the Reynolds stress tensor) and v; (representing
the eigenvalues of the strain-rate tensor) arranged in decreasing order.

The Frobenius inner product essentially measures the alignment of two tensors. This
means, that for a given set of eigenvalues £; and );, the turbulence production term gets
maximized, if the eigenvectors of 7 and S are identical. Minimum turbulence production
would require the permutation of the first and last eigenvector of the Reynolds stress
tensor?, thereby aligning the eigenvectors of strain-rate and Reynolds stress tensor in the
least favorable configuration.

P, = = -7y Sij = —(T,8)F . (B.1)

As the relationship between eigenvalues of the anisotropy tensor and the Reynolds stress
tensor is defined as ¢

2
A=>_2 B.3
-2 (.3)

finding the limiting states of turbulence that lead to either maximum or minimum
turbulence production is equivalent to determine the states that maximize Aj11 + Aotbo +
A3t3 and minimize A3 + Aots + A31p1. Since the trace of the anisotropy vanishes per
definition, A\; + Ay + A3 = 0 — A3 = — (A1 + A2). Based on the idea of Gorlé et al. [56],
the ordering of the eigenvalues ¥ > 19 > 13 requires
Y2 =11 —0 (B.4)
Y3 =11 — 9 — ¢ with §,6 >0 . (B.5)
Hence finding the maximum of A\1ty1 + A9tbg + A3tb3 can be simplified to
max (191 + Aaa + A31b3)
max (A191 + A2 (Y1 = 8) — (M1 + A2) (Y1 — 6 — 1))

max (A1 (6 +¢) + Aat) .

—~
o)
(@)

=

simplifies to

simplifies to

'Thus, they satisfy the requirement for being hermitian.
2Permuting the eigenvalues directly would violate & > £ > &3; however, the identical effect with
respect to the obtained tensor ellipsoid (see e.g. Fig. 6.4a) can be achieved by permuting the eigenvectors.
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168 B. Relationship between the turbulence production and the eigenspace

Inserting the eigenvalues of the anisotropy tensor at the limiting states of turbulence (cf.
Table 5.1) into the expression of Eq. (B.8) leads to:

° 1C—>%5+%L
° 20—)%54—%
e 3C =0 .

As Eq. (B.8) aims for the maximum, é(5+%L > éé—l—%b >0 — 1C > 2C > 3C. Consequently,
1C turbulence is able to maximizes the turbulence production term, if the Reynolds stress
and strain-rate tensor share identical eigenvectors, while at the isotropic limit (3C) the
smallest value of turbulence production is expected?.

In similar manner, finding the minimum of A\j1)3 + A2tbs + A31); is equivalent to

min (A193 + Aoth2 + A3¢1) (B.9)
min ()\1 (7,/)1 -0 — L) + A9 (wl — (5) — (Al + )\2) wl) (B.lO)
min (—A1 (6 +¢) — A20) . (B.11)

simplifies to

simplifies to

Inserting the eigenvalues of the anisotropy tensor at the limiting states of turbulence (cf.
Table 5.1) into the expression of Eq. (B.11) leads to:

° 1C—>—%5—%L
° 2C—>—%5—%L
e 3C —0 .

As Eq. (B.11) aims for the minimum, —%6 — %L < —%(5 — %L <0— 1C < 2C < 3C.
Thus, 1C turbulence creates the smallest (potentially negative) turbulence production
term, if the first and third eigenvectors of the Reynolds stress tensor are permuted.

In addition, Chapter 6, in particular Fig. 6.3, highlights, that the amount of turbulence
production changes linearly when altering the state of the eigenvalues on a parallel
trajectory to the connecting line from state 1C to 3C for the example of a fully developed
boundary layer flow (the contour level of Fig. 6.3 are orthogonal on the connecting line
from 1C to 3C). As the sampled states of the barycentric coordinates in Fig. 3.6a are
chosen such, that they also form orthogonal lines on 1C-3C, e.g. sample 28, 38, 49 or
samples 6, 12, 19 and 27, combined with the fact, that the converging-diverging channel
contains boundary layer like flows in large parts of the domain, one can also observe
identical turbulence production terms at these lines of samples. The resulting streamwise
velocity profiles in Fig. 3.6b show the strong impact of the turbulence production term,
as the profiles belonging the states on these perpendicular lines show identical results,
although the entries of the perturbed Reynolds stress tensor differ due to the different
states of anisotropy. However, this observation was only possible due to the boundary
layer like flow topology in the converging-diverging channel.

3Tt is disagreed with the conclusions drawn by Gorlé et al. [56], who argued, that 3C always leads to
zero turbulence production. Although it is shown in Section 6.3 that zero turbulence production occures
at 3C for certain specific flow scenarios.



C. Physical rationale of the eigenspace
perturbations of the Reynolds stress
tensor

The theoretical foundation of the EPF was initially described by Mishra and Iaccarino
[106]. This section tries to clarify and extend the derivations for compressible flows.

In general, the anisotropy tensor can be decomposed into eigenvalues and eigenvectors
according to
Q5 = UinAnlUjl . (Cl)

If the Boussinesq assumption in Eq. (3.17) is applied for LEVMs, the anisotropy is defined
via the strain-rate tensor and its eigenspace

v 1
aij = —QT;F (SU — 3Skk5ij) (02)
1% _
= —Q%Sij (C.3)
1%
= —2%%11‘1’;[03'1 ; (C.4)

whereby Si; represents the traceless strain-rate tensor and ¥~ consists of the strain-rate

tensor’s eigenvalues ¢, = 1¢; — % While the relationship between the eigenvalues of

the anisotropy and the traceless strain-rate tensor is defined as
vr .
A = _2?@0(4—1‘) fori=1,2,3, (C.5)

given the ordered anisotropy tensor’s eigenvectors v;.

C.1. Eigenvalue perturbation

The anisotropy tensor under eigenvalue perturbation (according to Eq. (3.25)) can be

written as
a* = vA*vT (C.6)
A(t)l 0 0
=V (1*AB)A+AB 0 )\(t)z 0 vl (07)
0 0 Aw;
=(1—Ap)vAvT + ABVA(t)VT (C.8)
= —2% (1 - AB) v —vT + ABVA(t)VT (Cg)
- —2”% (1-Ap)S™ +ApT. (C.10)



170 C. Physical rationale of the eigenspace perturbations of the Reynolds stress tensor

In the principal axes of the strain-rate tensor (eigenvectors) the perturbed anisotropy
tensor can be expressed via

* vt —
a ‘PCSS = —2? (1 - AB) v+ ABA(t) . (Cll)
A tensor K;j = % = Vi Opvj; is introduced, which has to have identical eigendirections,

J
resulting in K, T and S being simultaneously diagonalizable. Hence, the relationship
between the diagonal eigenvalue tensors is

_Aw

® T

(C.12)

which is only valid if ¢, # 0. Consequently, the perturbed Reynolds stress anisotropy
tensor in the principal axes of the strain-rate tensor can be expressed as

vt

a'lposs = —25-(1-Ap) ¥+  Ap® @7, (C.13)
——
scalar diagonal tensor

This expression shows that the eigenvalue perturbation is able to assign different scalars
(comparable to the turbulent eddy viscosity) along the orthogonal axes of the Reynolds
stress tensor, changing the turbulent medium to an orthotropic one. However, this is true
for any perturbation of the eigenvalues with the except of approaching the 3C state, as
©® results being the zero matrix.

C.2. Eigenvector perturbation

The anisotropy tensor under eigenvector perturbation (according to Eq. (3.28)) can be
written as

a* = v*A (v (C.14)
= RvA (Rv)” (C.15)
= RvAvIRT (C.16)
= —Q%RV\II_VTRT . (C.17)

In the principal axes of the strain-rate tensor S defined by the unperturbed eigenvectors
v, the anisotropy tensor becomes

a*|pcsg = —2%VTRV‘I/_VTRTV (C.18)
- —Q%VT Rv¥~ (vIRv)" (C.19)
— —z%TG\I:—GT . (C.20)

The tensor G represents the tensor containing the rotated eigenvectors in the original
principal axes. As G is typically not a diagonal matrix, the anisotropy tensor in the
principal axes of the strain-rate tensor contains off-diagonal elements under eigenvector
perturbation. Consequently, the relationship between the strain-rate tensor and the
anisotropy tensor shows that the eigenvector perturbation turns the turbulence model
into an anisotropic eddy viscosity model.
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