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We present information flow fuzzing, an approach that guides fuzzers towards detecting information leaks—
information that reaches a third party, but should not. The approach detects information flow by means of
mutations, checking whether and how mutations to (secret) data affect output and execution:

o First, the fuzzer uses information flow as a leak oracle. To this end, for each input, the fuzzer first runs
the program regularly. Then, it mutates secret data such as a certificate or a password, and re-runs the
program giving the original input. If the output changes, the fuzzer has revealed an information leak.

e Second, the fuzzer uses information flow as guidance. The fuzzer not only maximizes coverage, but
also changes in coverage and changes in data between the two runs. This increases the likelihood that a
mutation will spread to the output.

We have implemented a tool named FLOWFUZZ that wraps around a C program under test to provide information-
flow based oracles and guidance, allowing for integration with all common fuzzers for C programs. Using a set
of subjects representing common information leaks, we investigate (1) whether oracles based on information
flow detect information leaks in our subjects; and (2) whether guidance based on information flow improves
over standard coverage guidance. All data and tools are available for replication and reproduction.
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1 INTRODUCTION

Information leaks—the unintentional release of information to an untrusted environment—are
among the most dangerous software vulnerabilities. The 2012 HeartBleed vulnerability [11] allowed
arbitrary parties to obtain data from the memory of an SSL server, including password and certificate
data. SQL injection [17] and script injection [24] are used by attackers to have the server execute
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Fig. 1. How FLOWFUZZ works. For each input, FLOWFUZZ runs the program twice, once in the original state,
and one with secret data mutated @. Both runs take the same (system) input from the fuzzer @. The mutation
in the secret propagates throughout program state ®. Differences in state and coverage are passed on to the
fuzzer like new coverage @, effectively maximizing these. If the mutation reaches the output ®, FLOWFUZZ
detects the difference ® and reports it as a failure.

specific commands, often to exfiltrate data. The 2021 Log4Shell vulnerability [22], the “greatest
vulnerability ever” allows third parties to execute commands on a server, again used to access
sensitive data.

In principle, all such issues can be found through systematic testing. However, fuzzers—software
that automatically tests systems using randomly generated data—do not detect information leaks by
default. That is because fuzzers only check for generic errors such as crashes or hangs. A sanitizer
that checks for invalid memory accesses or unexpected control flow can extend this range of
generic errors. The HeartBleed vulnerability, for instance, can be easily detected using a address
sanitizer: The out-of-bounds memory access triggers the sanitizer, which in turn aborts execution.
SQL and script injection, however, do not manifest themselves through an illegal memory access or
unexpected control flow; and are thus not detected.

Earlier approaches to detect information leaks include data flow analysis [2, 33]. The main
problem with both data flow analysis, however, is that it is limited to the program under test—if any
data is processed by a third party program, information about its past or future flow will be lost.

In this paper, we follow an alternate route to have fuzzers precisely detect information leaks,
named information flow fuzzing. Rather than analyze or track data flows in code, we check whether
mutations to secret data impact the program’s execution—that is, they change program state, traces,
or output. Notably, if the fuzzer can find an input such that the output unintentionally changes
with the data mutation applied, then it has produced proof for an information leak. For instance,
when testing for HeartBleed, we apply mutations to the stored certificates and passwords. If the
server were secure, no client input request should see the response output changed because of the
mutation.

We have created a fuzzer named FLOWFUZZ that implements such mutation-based flow tracking
to detect unexpected information leaks (Figure 1). FLOWFUZZ effectively runs the program twice
and compares the resulting program states (including outputs) to detect state differences induced
by the mutation and thus information flow. This concept of duplicating functions and variables is
an instance of self-composition, introduced by Barthe et al. [4]. While self-composition so far has
been mostly studied in the context of symbolic verification of small programs, FLOWFUZZ raises
self-composition to full-fledged C programs of nontrivial complexity.

FLOWFUZZ uses information flow tracking both as an oracle and for guidance:

Using information flow tracking as fuzzing oracle. FLOWFUZZ takes a program under test P
and a specification of the secret data H. It creates a wrapper around P that takes an input I
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and then runs P twice: One run R with H unchanged, and one run R’ with the same input I,
but with H mutated. If the output changes between the two runs, then the wrapper induces a
crash. FLOWFUZZ then runs a fuzzer (by default AFL), replacing P with the wrapper created,
thus effectively introducing an oracle for information leaks.

To the best of our knowledge, this is the first work leveraging mutation-based flow tracking
as oracle and guidance for fuzzing software, enabling common, unchanged fuzzers to detect
information leaks and be guided by information flow.

Using mutation-based flow tracking as fuzzing guidance. Besides leveraging mutation-based
flow as an oracle, FLOWFUZZ can also guide the fuzzer towards information leaks. To this
effect, the wrapper compares the coverage as well as the final memory contents of R and R’: If
the coverage has changed, then we have an information flow from the secret towards the
functions now executed (or not executed); the more memory contents have changed, the
higher the chances of the information propagating to the output.

Our wrapper sends the coverage and data change as an additional coverage signal to the
fuzzer. This guides the fuzzer to not only maximize coverage, but also to maximize coverage
and data changes induced by the mutated secret—increasing the chances that these changes
will make it to the output as well.

To the best of our knowledge, this is the first work leveraging mutation-based information
flow tracking as guidance for fuzzing.

The remainder of this work is organized as follows. Section 2 details the implementation of
FLOWFUZZ. Section 3 outlines strategies to control information flows in order to avoid false alarms.
Section 4 describes mutation-based information flow tracking using our FLOWFUZZ prototype.
Section 5 details how we evaluate our approach, both checking the usefulness of mutation-based
information flow as an oracle and as guidance during fuzzing. Section 6 contains the experimental
results and answers our research questions. Section 8 relates our approach to other techniques
leveraging fuzzing and/or information flow. Section 9 closes with conclusion and future work.

2 THE FLOWFUzz FUZZER

In the following, we explain the fundamentals of our mutation-based information flow fuzzer, called
FLOWFUZZ. First, we address the input specification. Then, we describe the general structure of
FLOWFUZZ and how it works. Finally, we detail the implementation of the oracle and guidance.

2.1 Input Specification
FLOWFUZZ requires the following inputs:

Secret Data and Output
Our approach investigates the existence of information flow between some secret data and an
output. Both the secret data and the output are provided by the user, who can select relevant
combinations based on their knowledge of the system. Through a relevant selection, the user
can avoid the detection of intentional information flows, described in Section 3. In addition to
system-specific secrets, potential examples encompass passwords, certificates, and configurations.
Alongside manual inspection, automated procedures can be employed to generate a list of possible
outputs [1]. Furthermore, it is possible to mutate multiple secrets and examine multiple outputs
simultaneously. This significantly increases efficiency as only one fuzzing campaign needs to
be conducted. However, it is no longer uniquely determinable which secret has been leaked,
necessitating manual investigation.

Mutation Function
The user is responsible for implementing a mutation function that introduces a mutation to the
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secret data. The implementation depends on the nature of the secret data. For instance, this
might involve modifying a file, overwriting a variable, or altering a configuration. Depending
on the kind of secret, the mutation could be a simple bit flip or secret-specific. As a simple
example, we have a variable containing a plain text password. Initially, this variable contains
an incorrect password, and we use the mutation function to transform the string into another
incorrect password, as we do not anticipate any differences in the program’s response. The same
approach can be applied to certificate files. More detailed examples of such implementations can
be found within our experiments.
Fuzzing Harness

As for every fuzzing campaign, a fuzzing harness is necessary, providing an entry point into the
program under test. The fuzzing harness sets up the necessary program-specific preconditions,
receives input from the fuzzer, and forwards it to the program. This harness also integrates
the previously mentioned mutation function. Moreover, it utilizes the interface provided by
FLOWFUZZ to return the output value. This is an opportunity for users to intercept and manage
intentional information flow, thereby preventing FLOWFUZZ from generating an alert.

2.2 Concept and Structure

We have implemented a fuzzer named FLOWFUZZ that uses mutation-based information flow tracking
as oracle and as guidance. Following the sketch given in Section 1, its central characteristics are:

e Take a C program and create a wrapper around it, executing the program twice, once with
and once without mutation applied, and if the output differs, crash.
e Be configurable regarding which (secret) data to mutate and how.

To run the program twice, we apply the principle of self-composition [4]. We effectively duplicate its
functions and variables, appending _prime to all duplicated identifiers, indicating the run R’. This
is done by employing the 'nm' Unix command to extract pertinent global variables and functions
of the program from the symbol table of the object files. Finally, we use the macro #define to
append _prime to the variables and functions.

Listing 1. Pseudocode of FlowFuzz-Wrapper

int main(int argc, char =*xargv[])

{
main_r (argc, argv);
mutate(); // apply mutation(s) to secret data
main_r_prime(argc, argv);
assert(outputs_are_equal()); // must track this
compare_globals(); // see below

3

The wrapper, containing the implementation of the oracle assert(outputs_are_equal()) and
the guidance compare_globals(), is autonomously generated by FLOWFUZZ. It can then be plugged
into any coverage-guided fuzzer that takes an executable C program; besides AFL++, these can also
be grammar-based fuzzers [3, 19] or symbolic fuzzers like KLEE [9].

2.3 Oracle

The oracle compares the output of two runs and triggers an alarm if they differ. The oracle is
included within the FLOWFUZZ wrapper, presenting an interface through which the fuzzing harness
can transfer the output. It is assumed that the passed value is of type string. The received outputs
are compared element by element.
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2.4 Guidance

Attaining mutation-based guidance requires the transformation of data differences into coverage
differences. We achieve this comparing the values of (duplicated) global variables var_1_r, var_2_r,
and so on. In this context, we exclusively consider global variables that are writable and hence
not constant. No further selection of global variables is done, as we assume non-well-behaved
programs.

We reuse the extracted global variables from the nm command described in Section 2.2 and
leverage the Clang library LibTooling to get the corresponding data types. Finally, these variables
are imported into the FLOWFUZZ wrapper to perform the comparison.

Listing 2. Pseudocode of the function to compare global variables.

void compare_globals () {
int x = 0;

if (var_1_r != var_1_r_prime)
X++;

if (var_2_r != var_2_r_prime)
X++;

if (var_3_r != var_3_r_prime)
X++;

// and so on for all global vars...

}

The whole purpose of this code is to guide the fuzzer: Common fuzzers such as AFL++ attempt to
increase edge coverage in code, including compare_globals(), and thus find inputs that execute as
many x++ lines as possible. This guides the fuzzer to a maximum difference in program state.

C primitive types such as int, long, and short are compared directly. Global variables with type
union or struct are not considered. For pointers and arrays, we compare their contents, making
each byte difference another coverage target. For each pointer p (or array p this is the same in C),
we proceed as follows: (1) If the size of p[] is known at compile time, we assume p is an array and
compare all elements; (2) If p is of type char *, we assume a \@-terminated string and compare
all characters; (3) Otherwise, we assume a pointer and compare one element (xp or p[0]) being
pointed to. We implement this approximation in order to make FLOWFUZZ as lightweight and fast
as possible. A complete comparison would otherwise have to be generated at runtime for each
invocation, negatively impacting the performance.

To preserve as many memory contents as possible, FLOWFUZZ provides an option to disable calls
to free(), keeping heap memory intact (also across the two runs).

With this, the fuzzer favors inputs that increase differences between global variables, and thus
propagation of mutated data (the “coverage bonus”). Additionally, the fuzzer also favors inputs that
cover code only in the code associated with R and R’, and thus increase coverage differences, too.

This way, FLOWFUZZ plugs into any coverage-guided fuzzer that accepts a C program, such as
AFL++ [14].

3 CONTROLLING INFORMATION FLOWS

Executing a program twice can result in false alarms—that is, changes in state that are not induced
by changes to secret data:

e Operating system interaction, notably time and random operations, trivially change state
across invocations. FLOWFUZZ addresses this by recording and resetting time and random
state between the two executions.
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e Shared state in libraries can lead to state changes across invocations. FLOWFUZZ addresses
this by filling the stack and respective heap with zero bytes before each execution. This also
addresses differences by reading uninitialized memory (which should be treated as a bug and
can induce information leaks by itself).

e Finally, persistent state across multiple executions can lead to differences in execution. At
this point, FLOWFUZZ has no special provision against this issue; users must modify the
self-composed code manually to clear up the file system or other parts of the environment.
Fortunately, spotting such effects is fairly easy, as persistent state changes typically affect
several variables.

All these issues affect other fuzzers and dynamic analyses as well. However, FLOWFUZZ at least
allows users to mitigate these issues by altering the generated self-composed code.

In designing the mutate() function, users also must distinguish expected from unexpected
information flows. If we mutate the password of some user U, and then find the login procedure
now produces an “access denied” output, we have detected an information leak from U’s password
to U—but this would be expected and tolerable. If we mutate the password of another user V,
though, then this should never affect the output to U; if it happened, that would be unexpected.

We emphasize that through careful selection of secret information, output, and mutation function,
it is possible to reduce intentional information flows. Furthermore, expected information flows can
be handled within the fuzzing harness to avoid false alarms. In this paper, we carefully document
for each subject how such concerns affect the design of the mutate() function, and report the
associated effort.

4 INFORMATION FLOW FUZZING: AN EXAMPLE

Let us illustrate information flow fuzzing with FLOWFUZZ on a real-world example. OpenSSL is
an open-source C library, which provides basic cryptographic and utility functions, including
implementations of the Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols.
This library is used by applications to provide secure communications including confidentiality,
integrity, and authenticity. It is used in the majority of HTTPS web servers as well as for E-Mail
transfer, Instant-Messaging and Voice-Over-IP.

The utilization of TLS mandates that the library handles authentication information, including
usernames, passwords, and certificates. This information is particularly sensitive, and it must not
be accessible to third parties.

TLS has the Heartbeat extension [43], which allows the connection between two communication
parties to be maintained even if no data is sent for a certain period of time. This process operates
through one communicating party sending a heartbeat request, accompanied by a specific payload,
to the other party. The reciprocating party responds by transmitting the same payload in return. In
the following, we investigate this extension using FLOWFUZZ.

4.1 Setting up FLOWFUZZ

To explore the Heartbeat information flow, we make use of FLOWFUZZ together with its default
fuzzer, namely AFL++ [14]. AFL++ is a coverage-guided fuzzer for C code that invokes a given
function f with a string containing random bytes. We have set up OpenSSL such that FLOWFUZZ
can invoke any OpenSSL function f without having to run a server. To do so, we initialize the
library, create a context and simulate an incoming request.

For every new input AFL++ produces, it calls the wrapper generated by FLOWFUZZ, as described in
Section 2. This wrapper invokes f twice: once with (R’), and once without (R) a mutation applied to
the secret. The mutation function is provided by the user (who thus implicitly specifies the secret
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data that should not leak out). In our case, we can mutate certificates, passwords, and usernames
from the service that uses OpenSSL. Moreover, FLOWFUZZ supports the user by inherently overriding
heap and stack memory areas automatically with a constant after the first run. This makes it even
easier to detect information leaks caused by memory mishandling.

If the return value of f changes between the two runs R and R’, indicating a leak from the heap
memory, the wrapper throws an exception, signaling a crash to AFL++. The return value of f is the
response’s payload in our example. Notice that to detect this information flow, we only need to
check the effect of the mutation—neither dynamic nor static information flow analysis is required.

4.2 Using Information Flow as Oracle

Running our FLOWFUZZ prototype on the OpenSSL Heartbeat extension revealed a leak from the
heap memory to the response’s payload after roughly one second. As seed input, we provided the
payload "heartbeat test" and the length "14".

The “crash” (the leak) takes place if the length of the actual payload is shorter than the length
stated in the request. If the heartbeat request has the parameter "sent_payload_len = 20" and
"payload = heartbeat test" the payload response can appear as follows

e "heartbeat testaaaaaa" in R and
e "heartbeat testbbbbbb" in R’.

In this response, "aaaaaa" and "bbbbbb" represent out-of-bounds memory that is likely overwritten
by FLOWFUZZ with a constant value, as discussed in Section 3.

How does this leak come to be? In the process of responding to the Heartbeat request, the function
dtls1_process_heartbeat is responsible for creating the response, including copying the payload
from the request into the response. To accomplish this, the payload length provided in the request
is utilized. However, this length is not checked, thereby permitting intentionally exaggerated length
specifications. These result in not only the copying of the payload from the request but also the
incorporation of additional heap memory. An attacker could exploit this vulnerability to access
data residing within the heap. Such data might be sensitive information like usernames, passwords,
or certificates.

The leak above is known as CVE-2014-0160 [10], was not found by us, and we knew where to
search. Still, our experiment demonstrates that our approach can successfully detect leaks
through mutations—at a low overhead and without any need for static or dynamic data flow
analysis.

4.3 Using Information Flow as Guidance

We also have explored if information flow can be used to guide the fuzzer towards data flow. To
this end, after the execution of each fuzzed function, we extract all values of all global variables
and compare them across the original run R and the mutated run R’.

Again, a difference between variable values would indicate a flow from the mutated heap memory
towards the response. As discussed earler, we maximize such flows using a coverage bonus: the
compare_globals() function sets up FLOWFUZZ that any input that causes such a difference is
treated as if it had covered an additional line.

In our OpenSSL example, the HeartBleed vulnerability can be detected at the same pace, with or
without the coverage bonus. The secret information is leaked upon being accessed and immediately
identified by the oracle within the same run. Therefore, the coverage bonus cannot improve the
detection process in this example. The bonus efficacy is thoroughly investigated in subsequent
experiments. The bonus is expected to be beneficial to subjects in which the secret information is
not leaked immediately upon reading but only under certain conditions.
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Table 1. Evaluation Subjects

CVE-ID Subject Description

CVE-2021-22898 Curl Uninitialized data leads to sensitive data exposure
CVE-2017-15924 Shadowsocks-libev Command injection through improper neutralization
CVE-2020-26298 Redcarpet Improper neutralization enables injection and CSS
CVE-2021-22876 Curl Leak from mishandling the HTTP Referer header
CVE-2018-18778 ACME mini_httpd Path traversal through improper input validation
CVE-2022-29869 Cifs-utils Mishandling invalid credentials causes leaks
CVE-2014-9938  Git Remote code execution due to unsanitized variables
CVE-2013-7448  Didiwiki Path traversal through improper input validation
CVE-2014-0160  OpenSSL Out of bounds read through improper validation
CVE-2020-5221  Uftpd Path traversal through improper input validation

5 EVALUATION

To evaluate FLOWFUZZ, we pose the research questions already explored in our OpenSSL exam-
ple (Section 4):

RQ1. Can information flow oracles detect common information leaks during fuzzing?

RQ2. How useful is the guidance provided by information flow?

Let us first describe the subjects and setup, and then proceed to the actual research questions.

5.1 Evaluation Subjects

We evaluate FLOWFUZZ on a set of ten C subjects with varying complexity, which are listed in Table 1.
The subjects are selected from the National Vulnerability Database (NVD). The criteria for
selection encompass the requirement that the subject is developed using the C programming
language and that its corresponding source code is available. Moreover, each of these has a known
CVE concerning a potential information leak and a known input that triggers this very leak.

As we only need simple instrumentation (notably duplicating global variables for guidance), these
subjects can be of high complexity, including the use of persistent storage or external programs.
For each subject, we set up a dedicated mutation function mutate() that mutates the secret given
in the CVE in a way such that an input exists that leaks the information.

In the Table 2, an overview of the selected secrets and the applied mutations is provided. For
CVE-2021-22898 (Curl) and CVE-2014-0160 (OpenSSL), the secret information consists of process
memory, which may contain sensitive data. The mutation involves overwriting the heap and stack
with a constant value, which FLOWFUZZ does. In the case of CVE-2017-15924 (Shadowsocks-libev)
and CVE-2014-9938 (Git), both vulnerabilities enable remote code execution. For simplicity, this
example focuses on environment variables; however, it should be noted that remote code execution
has the potential to leak significantly more information. During the mutation process, the value of
an environment variable is modified.

CVE-2021-22876 (Curl) and CVE-2022-29869 (Cifs-utils) lead to a leakage of passwords. Therefore,
passwords are chosen as secret information, with their values altered during mutation process. The
vulnerabilities CVE-2018-18778 (ACME mini_httpd) and CVE-2013-7448 (Didiwiki) enable path
traversal attacks. The secret information is the content of a file located outside the applications
home directory. In a Linux system, this file could be, for example, the password file passwd. The
mutation involves changing the content of the file.

For CVE-2020-26298 (Redcarpet), which enables injection attacks, the cookie content is used as the
secret information, and the mutation modifies the cookie’s value. Finally, for CVE-2020-5221 (Uftpd),
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Table 2. Summary of Secret Information and Mutation Operations for Each Evaluation Subject

CVE-ID Secret Information Mutation

CVE-2021-22898 Content of process memory Overwritten with constant value

CVE-2017-15924 Environment variables Change environment variable "user" from "admin" to "user2"

CVE-2020-26298 Cookie content Change cookie content from "BankSession=123456" to "BankSession=ABCDEFG"
CVE-2021-22876 User Password Change password from "pass" to "secret”

CVE-2018-18778 Content of file "i" Change content of file i from "This is secret" to "Another secret”
CVE-2022-29869 User password Change password from "123456" to "secret”

CVE-2014-9938  Environment variables Change environment variable "user" from "admin" to "user2"

CVE-2013-7448  Content of file "i" Change content of file i from "This is secret" to "Another

CVE-2014-0160  Content of process memory Overwritten with constant value
CVE-2020-5221  Content of the file system Create a new file

which also enables path traversal, the secret information is the content of the filesystem, and the
mutation involves creating a new file in the filesystem.

These selections of secrets and mutations illustrate the broad spectrum of scenarios that FLOWFUZZ
can handle. A specific type of mutation is demonstrated in example CVE-2021-22876 (Curl), where
the secret is replaced with a string of a different length. Such mutations are applicable in cases
where information leaks are not caused by memory management errors.

For each subject, we also determine a set of seed inputs that all are typical, yet do not expose the
leak. We report the used seed inputs for each subject.

Based on our experience, we provide a rough estimate of the manual effort required to apply
FLOWFUZZ to a program under test. As outlined in Section 2, a harness is required. Reusing an existing
harness, such as one written for use with tools like AFL++ or LIBFUZZER is possible. Expanding such
a harness is estimated to take approximately two to four hours. For each subject, it is necessary
to identify the secrets, which we estimate will take about one hour. Additionally, implementing a
mutation function to modify the secret is estimated to require another hour. Finally, adjusting the
build process to integrate FLOWFUZZ with the program under test takes approximately one to two
hours.

5.2 Evaluation Setup

We assess FLOWFUZZ in conjunction with the popular AFL++ fuzzer [14]. For each of the subjects
listed in Section 5.1, we perform the following. After FLOWFUZZ has created the wrapper, we run
AFL++ on the wrapper for 24 hours and assess whether and when its oracle detects the information
leak. FLOWFUZZ and AFL++ are run with their default options. For FLOWFUZZ, this means that it
provides guidance through data differences inducing coverage bonuses, as shown in Section 2. We
repeat all runs ten times to account for randomness during fuzzing, and report averages.

Given the unique nature of our task, involving information leaks that occur only under specific
input conditions, it is notable that our research field lacks methods for direct comparison. In the
context of fuzzing techniques, the most comparable approach involves the combination of a fuzzer
and a sanitizer. To evaluate the effectiveness of our methodology, we conduct comprehensive
assessments by executing our experiments with and without the utilization of an address sanitizer.
This allows us to assess whether the sanitizer can find the information leak.

5.3 RQ1: Usefulness of Oracle

To evaluate RQ1, the usefulness of the oracle, we use the exact setup as described in Section 5.2
and for each subject, report

e how often the FLOWFUZZ oracle (based on mutation leaks) has detected the leak; and
o if the leak is also found via the address sanitizer ASan [40].
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Table 3. The table indicates whether the information leak is detected by FLOWFUZZ and the Address Sanitizer
(ASan). The first three columns pertain to FLOWFUZZ with different guidance strategies as explained in
Section 5.4: (2) standard guidance; (1) coverage differences + standard guidance; full guidance that further
enhances the previous strategy by including data differences.

CVE-ID Subject Full Guidance Coverage Diffs + Standard Standard Guidance ASan
CVE-2021-22898 Curl v v v -
CVE-2017-15924 Shadowsocks-libev v v v -
CVE-2020-26298 Redcarpet v v v -
CVE-2021-22876 Curl v v v -
CVE-2018-18778 ACME mini_httpd v v v -
CVE-2022-29869 Cifs-utils v v v -

CVE-2014-9938 Git v v v -
CVE-2013-7448 Didiwiki v v v -
CVE-2014-0160 OpenSSL v v v v
CVE-2020-5221 Uftpd v v v -

For HeartBleed, for instance, we would expect that the leak would be quickly detected by an address
sanitizer (even before the FLOWFUZZ oracle can detect it). For leaks that do not manifest themselves
via illegal memory accesses, only the FLOWFUZZ oracles would be effective. We state that leak-based
oracles are effective if the leak is found in the majority of subjects; notably in cases where address
sanitizers are ineffective.

5.4 RQ2: Usefulness of Guidance

To evaluate RQ2, the usefulness of guidance, we perform an ablation study. We repeat the experi-
ments from Section 5.3 with

(1) guidance through coverage in R and coverage differences between R and R’. To disable guidance
through data differences, we comment out the compare_globals() functionality.

(2) guidance through coverage in R only. This corresponds to the feedback of a standard fuzzing
setup. To achieve this, we turn duplication off, and thus have no guidance through data or
coverage differences.

For each alternative, we determine

(1) how long and how many invocations it takes to find the leak. We define an invocation as
each instance of the fuzzer, in our case AFL++, invoking either the program under test or the
FLOWFUZZ wrapper.

(2) the final (code) coverage obtained on the original code

We state that data differences and coverage differences are effective if it takes less time or
invocations to find leaks, or if the final code coverage is higher. This help to establish the individual
benefits of data and coverage differences.

6 EXPERIMENTAL RESULTS

In the following, we answer our two research questions based on the results of our experiments. We
assess the oracle in the first research question and evaluate the guidance in the second. The seed
inputs used in the experiments, as well as the mutate() functions, are included in the replication
package.
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Table 4. This table presents the average execution time in milliseconds until the information leak is detected
by FLOWFUZZ and the address sanitizer (ASan). The first three columns pertain to FLOWFUZZ with different
guidance strategies as explained in Section 5.4: (2) standard guidance; (1) coverage differences + standard
guidance; and full guidance, which further enhances the previous strategy by including data differences.

CVE-ID Subject Full Guidance Coverage Diffs + Standard Standard Guidance ASan
CVE-2021-22898 Curl 9,061,810 2,040,425 6,759,551 -
CVE-2017-15924 Shadowsocks-libev 15,845,786 7,020,257 8,737,520 -
CVE-2020-26298 Redcarpet 4,486,116 2,893,487 9,158,561 -
CVE-2021-22876 Curl 181,101 17,238 325,439 -
CVE-2018-18778 ACME mini_httpd 129,858 543,757 545,796 -
CVE-2022-29869 Cifs-utils 17 15 13 -

CVE-2014-9938 Git 126,484 93,398 89,174 -
CVE-2013-7448 Didiwiki 1,677,554 1,051,109 2,067,678 -
CVE-2014-0160 OpenSSL 33 35 18 49
CVE-2020-5221 Uftpd 1,072 802 1,338 -

6.1 RQ1: Usefulness of Oracle

To determine the usefulness of the oracle, we examine ten different subjects containing various
types of vulnerabilities that enable information leaks (see Section 5) using FLOWFUZZ and the address
sanitizer ASan. Table 3 shows if the information leaks were detected in ten trials. FLOWFUZZ can
identify the information leak in all subjects and every trial. In comparison, the address sanitizer can
only detect the information leak in the case of the Heartbleed vulnerability in OpenSSL, as it special-
izes in detecting accesses to memory addresses outside the allocated range. FLOWFUZZ demonstrates
its capability to detect information leaks across a wider range of underlying vulnerabilities, such as
uninitialized memory, buffer overflow, path traversal, and command injection.

When examining the Heartbleed vulnerability in detail, the address sanitizer required an average
of 32 executions to detect the leak, which is fewer than FLOWFUZZ with its full guidance, which
required an average of 44 executions. However, FLOWFUZZ, due to its lightweight approach, was
still faster on average with 33ms compared to address sanitizers 49ms.

While all ten information leaks could be detected independently of the chosen guidance, there
are differences in execution time and the number of invocations. The next research question
investigates these differences in detail.

Answer to RQ 1: FLOWFUZZ successfully identified all information leaks in the subjects, thus
confirming the usefulness of the oracle, in contrast to the address sanitizer, which only succeeded
in one out of ten cases.

6.2 RQ2: Usefulness of Guidance

To address this research question, we conduct an ablation study using three guidance strategies as
explained in Section 5.4 (1) standard guidance through edge coverage in R; (2) coverage differences
between R and R’ + standard guidance; and full guidance, which further enhances the previous
strategy by incorporating data differences between R and R’.

Table 4 provides an overview of the average execution time, measured in milliseconds. No
strategy consistently performs best across all subjects. However, the coverage differences + standard
guidance strategy takes the shortest execution time in six subjects, followed by standard guidance
with three subjects and one subject in the case of full guidance.
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Table 5. This table presents the average number of invocations until the information leak is detected by
FLOWFUZZ and the address sanitizer (ASan). The first three columns pertain to FLOWFUZZ with different
guidance strategies as explained in Section 5.4: (2) standard guidance; (1) coverage differences + standard
guidance; and full guidance, which further enhances the previous strategy by including data differences.

CVE-ID Subject Full Guidance Coverage Diffs + Standard Standard Guidance ASan
CVE-2021-22898 Curl 10,832,314 2,413,785 7,924,090 -
CVE-2017-15924 Shadowsocks-libev 13,783,801 5,881,359 7,582,584 -
CVE-2020-26298 Redcarpet 17,068 10,885 34,859 -
CVE-2021-22876 Curl 49,350 1,958 7,575 -
CVE-2018-18778 ACME mini_httpd 568,085 2,329,233 2,482,000 -
CVE-2022-29869 Cifs-utils 33 34 32 -

CVE-2014-9938 Git 5,046 3,880 3,565 -
CVE-2013-7448 Didiwiki 6,557,509 4,052,282 8,122,314 -
CVE-2014-0160 OpenSSL 44 36 32 32
CVE-2020-5221 Uftpd 353 453 527 -

The previous results are also reflected in Table 5, which presents the average number of invo-
cations. Here, the coverage differences + standard guidance strategy has the lowest number of
invocations for five subjects, followed by standard guidance with three subjects, and full guidance
with two subjects.

When comparing coverage illustrated in Table 6, all three methods perform approximately
equally, achieving the same coverage on five subjects. In the remaining five subjects, coverage
differences + standard guidance and standard guidance each achieve the best coverage in two
subjects, and full guidance achieves the best coverage in one subject. It is important to note that
our experiments do not aim to optimize coverage but rather focus on detecting information leaks.

In summary, coverage differences + standard guidance strategy demonstrates the best average
performance compared to the other strategies. However, the experiments reveal a high standard
deviation in execution time and the number of invocations across the ten trials. To conclusively
determine the superiority of one strategy over another, a significance test is necessary. This, however,
requires more than ten trials per experiment, which exceeds our computational resources, given
the extensive number of experiments conducted. Therefore, based on our current experiments, we
can recommend the coverage differences + standard guidance strategy. Nevertheless, all guidance
strategies successfully detected the information leaks. Furthermore, the choice of the optimal
guidance strategy depends significantly on the specifics and structure of the information leak. This
includes factors such as the number of global variables used in the project, the extent to which
these variables accurately represent the global state of the program, and whether the secret impacts
the program’s global state.

Answer to RQ 2: In our experiments, the guidance strategy coverage differences + standard
guidance performs the best, on average, in terms of execution times and invocations compared
to both the standard and the full guidance.

7 THREATS TO VALIDITY

Our evaluation is subject to common threats to validity, which we address in common ways.
The biggest threat, as always, is external validity, notably whether the subjects and leaks we
selected would be representative of all programs and all leaks. Given that nobody knows all
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Table 6. This table presents the average coverage that is achieved when the information leak is detected
by FLOWFUZZ and the address sanitizer (ASan). The first three columns pertain to FLOWFUZZ with different
guidance strategies as explained in Section 5.4: (2) standard guidance; (1) coverage differences + standard
guidance; and full guidance, which further enhances the previous strategy by including data differences.

CVE-ID Subject Full Guidance Coverage Diffs + Standard Standard Guidance ASan
CVE-2021-22898 Curl 0.5 0.5 0.5 -
CVE-2017-15924 Shadowsocks-libev 1.2 1.2 1.2 -
CVE-2020-26298 Redcarpet 27.5 27.6 35.9 -
CVE-2021-22876 Curl 2.6 2.6 2.6 -
CVE-2018-18778 ACME mini_httpd 17.4 18.0 17.1 -
CVE-2022-29869 Cifs-utils 4.7 4.8 4.6 -

CVE-2014-9938 Git 64.2 64.2 64.2 -
CVE-2013-7448 Didiwiki 15.7 15.7 15.7 -
CVE-2014-0160 OpenSSL 3.2 3.1 3.0 3.0
CVE-2020-5221 Uftpd 5.3 5.1 5.5 -

programs and all of their leaks, this threat is a concern. We counter this threat by making FLOWFUZZ
publicly available, such that any users and researchers can apply it to subjects of their choice.

The second threat to validity is the reliance on human knowledge. For each subject, we as experts
determined the secret to be preserved, and designed the mutate () function accordingly. This expert
knowledge influences the performance of FLOWFUZZ. On the other hand, any fuzzer requires some
expert knowledge to be set up (such as providing a seed of initial inputs, or determining the means
to feed input into the program under test). Furthermore, for detecting unwanted information flow,
it is necessary to specify in some form which information flow would be unwanted and which
would be tolerated.

Regarding internal validity, there is the risk of false alarms from other sources (Section 3), which
we assume the user to be able to identify and mitigate. Any such manual steps are documented in
Section 6. Having said this, once such issues are mitigated, detecting information leaks through
mutations would be considered a gold standard, as it undoubtedly shows the presence of interference
(Section 8).

8 RELATED WORK
8.1 Information Flow

The concept of Information Flow Control, ensuring that secret information does not leak to third par-
ties, is a pillar of security research. FLOWFUZZ directly implements the principle of non-interference [39],
distinguishing secret (“high”) and public (“low”) data; a security policy would prevent that the (low)
input controlled by a third party interferes with the (high) secret.

In the past decades, research in the field has mainly focused on static analysis and symbolic verifi-
cation. In these domains, showing the absence of interference is often too strict to be practical [38],
introducing the need for elaborated declassification schemes. In testing, however, it suffices to show
the presence of interference. The MUTAFLOW approach [29] can detect information flow between a
source and a sink in cases where static analysis would fail. It employs a mutation of the source
and examines the sink for changes. However, this method relies on the existing test cases, limiting
its capability to identify only those information flows covered by the given test cases. FLOWFUZZ
addresses this limitation by combining mutation-based information flow detection with a fuzzing
approach supported by additional guidance.
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Using oracles for the detection of information leaks is investigated in a black box differential
testing setup by Jung et al. [25]. They change the user information going into the black box system
and look for changes in the network data leaving the system. In contrast, FLOWFUZZ is a white-box
approach that aims to identify input combinations through fuzzing, potentially leading to the
unintended leakage of secret information to the output. Furthermore, information leak oracles are
used in the hardware domain, specifically in the context of testing CPU Register-Transfer Level
(RTL) designs [23].

Pan et al. [34] investigates Web APIs to identify instances of excessive data exposure. This
involves comparing the Document Object Models (DOMs) produced based on simply mutated
server-supplied JSON objects.

FLOWFUZZ leverages mutations using self-composition, introduced by Barthe et al. [4], to duplicate
functions and variables and to compare state. But while self-composition has been mostly studied
in symbolic verification of small-scale programs, FLOWFUZZ provides a general framework designed
to detect information leakage within software systems and to guide the fuzzing process towards
potential leakages.

8.2 Data Flow

Rather than checking information flow through mutations, one can make use of data flow analy-
sis [26] to approximate information flow. During analysis, sensitive data is marked with a tag (a
taint) which is then later passed on to any data that reads the sensitive data. If such a taint reaches
the output to the attacker, the information has leaked.

In the field of static taint analysis there exist various methods, including LeakMiner [44], PiOS [12],
Amandroid [42] and FlowDroid [2]. The disadvantage of these static approaches is that they cannot
exploit runtime information, suffer from overapproximation, and do not scale for real-world projects.

Alternatively, dynamic methods can be leveraged, as presented by Newsome and Song [33] or
Enck et al. [13]. However, these methods are subject to potential overapproximation—the fact that a
secret is read or that an output is written does not necessarily mean that the secret can also alter
state or output. This restriction also affects static information flow analysis [7]. Recent efforts
combine static analysis with machine learning [21] or dynamic analysis [16] to take advantage
of both techniques. Most of the aforementioned approaches focus on the area of smartphone
applications and relate to the Android and iOS platforms.

The mentioned analysis methods are based on data dependencies: If some instruction reads a
sensitive variable H and writes some variable L, then L inherits the taint from H. In testing, data
flow is often used as coverage criterion—for instance, for each value definition, tests should cover
all uses of this value. The DatAFLow fuzzer [18] uses lightweight data flow coverage as guidance,
detecting some bugs other fuzzers cannot find.

As it comes to detecting information leaks, however, data flow analysis has important limitations.

(1) Data flow analysis can produce false positives, as some operations read sensitive data and
write other data, but do actually not spread information. InL := H * 0, as H is read and
L is written, a data flow analysis would assume information flow from H to L. Assuming
absence of nondeterminism (Section 3, mutation-based information flow tracking has only
true positives; in the example, a change in the value of H will not propagate to L.

(2) Data flow analysis does not extend to data processing outside of the tracked program: If some
data is processed externally (say, stored in a database or processed by an external program),
its taint is lost. In contrast, mutations easily survive data processing outside of the tracked
program; any change in the result of the external processing indicates an information leak.

On top, dynamic data flow analysis has a few additional problems:
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(3) Dynamic data flow analysis does not capture implicit information flow through control flow,
asinif H then L := true else L := false. This is not a problem with mutation-based
information flow tracking.

(4) Dynamic data flow analysis slows down the program under test, as it need to track all read
and write operations; the DatAFLow authors report a factor of 10x [18]. In contrast, running
the program with and without mutated secret data, as with FLOWFUZZ, induces an overhead
of only 2x for the execution of R and R’ plus a constant expense for the comparison of the
global variables.

All these reasons make FLOWFUZZ and information flow fuzzing an important contribution to
the state of the art. In future work, however, data flow analysis could prove useful as alternate or
additional guidance within tools such as FLOWFUZZ.

8.3 Fuzzing

Fuzz testing or “fuzzing” was introduced by Miller et al. [32] as a technique sending random inputs
to programs, testing their robustness. Today’s main approaches include:

Evolutionary fuzzing such as search-based testing [30, 31] starts with a population of valid seed
inputs which are then randomly mutated; inputs that get closer towards the testing goal
(typically coverage) are preserved and evolved further. The popular AFL [45] and LIBFUZZER [28]
tools implement this concept with high efficiency; AFL++ is also the default underlying
fuzzer in FLOWFUZZ. Central research directions focus integrating program analysis beyond
coverage [37], as well as strategies to direct the fuzzer towards targets of interests [5, 6].

Analysis-based fuzzing makes use of program code to determine conditions required to reach
specific locations; Seminal representatives include Java Pathfinder [41], KLEE [9], and SAGE [15].

Language-based fuzzing uses language specifications such as grammars for producing test in-
puts [8, 36]; modern implementations include LANGFUZZ [20], PEACH [35], and GRAMMARINA-
TOR [19]. NAUTILUS [3] combines grammar production with code coverage feedback.

The mentioned fuzzing approaches have been adapted and applied in various domains, such as
configuration fuzzing [27]. However, they are incapable of identifying information leaks, as their
primary focus is solely on detecting crashes and hangs. FLOWFUZZ easily integrates with any of
these approaches, as it merely wraps around the program under test and enables the identification
of information leaks.

9 CONCLUSION

Fuzzers are great in detecting crashes and hangs, but may miss other serious issues. We present
information flow fuzzing, a novel approach to have a fuzzer detect information leaks. It is superior
to static and dynamic data flow analysis because it does not suffer from overapproximation and
scalability problems.

Our approach is based on the idea that one can mutate secret data and checking whether and
where the mutation propagates; if there is an input that causes the mutation to spread to the output,
then we have detected a potential leak. We show that such data mutations can be effective as oracle
detecting leaks, but also to guide the fuzzer towards maximizing the spread of such mutations,
increasing the chances of information leaks.

Based on our experiments, we demonstrate that FLOWFUZZ can detect all ten information leaks in
the subjects with varying underlying vulnerabilities. In contrast, the address sanitizer ASan is only
able to identify the information leak in one subject. Furthermore, we found that the guidance strategy
coverage differences + standard guidance performs the best on average concerning invocations
and execution time in our experiments.
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Using a wrapper technique to detect data differences and turning them into coverage differences,
our FLOWFUZZ prototype for C programs integrates with all common fuzzers, including AFL++ [14].
Due to extensive automation, FLOWFUZZ can be easily applied to other C programs. All data and
tools are available for replication and reproduction.

Our future work will focus on the following topics:

e Improving the Guidance Strategy: Since the global state is not equally well represented
by global variables across all subjects, it could be beneficial to monitor the corresponding
state changes in more detail, for instance, by tracking the input and return values of methods
in the program under test.

e Expand Experiment Scope: With increased computational resources, the scope of the
experiments could be expanded. On the one hand, additional subjects with different char-
acteristics could be included to test FLOWFUZZ’s versatility. On the other hand, the existing
experiments could be repeated more frequently to perform a significance test, which would
allow a definitive determination of whether one guidance strategy is significantly better than
the others.

10 DATA AVAILABILITY
The complete replication package for this article is available on GitLab:
e https://gitlab.com/dlr-dw/automated-threat-modeling/flowfuzz

The replication package includes the FLOWFUZZ prototype and, for each subject, a Singularity
definition file along with all additional artifacts required to recreate the environment necessary
to conduct the experiments described in this paper. For further details regarding the replication
package, please refer to the replicated computational results (RCR) report of this work.
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