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Abstract
Camera calibration is a key component of three-dimensional particle tracking velocimetry
(PTV) experiments, and its proper implementation is key to the success of the method. In this
paper, we review and compare four different camera calibration models used in PTV
experiments without volumetric refinement. One of the calibration models is new and provides
an analytical inversion of the Soloff polynomial. The other three calibration models are taken
from three established open source PTV frameworks: OpenPTV, MyPTV and proPTV. In
particular, we present a general formulation of calibration models that allows their rigorous
comparison and evaluation with respect to their 3D-to-2D projection errors and 2D-to-3D
reconstruction errors. We compare the models and the calibration errors in three different tasks,
including extrapolation and interpolation of marker points, using a realistic calibration of an
experimental camera setup. In the end, we conclude with the pros and cons of each method in
order to be able to choose the most suitable one for individual needs.

Keywords: experimental methods, fluid mechanics, camera calibration,
particle tracking velocimetry, open-source

1. Introduction

Particle tracking velocimetry (PTV) is the name of a method
in experimental fluid mechanics that uses stereo photography
to measure fluid velocity fields in the Lagrangian view by
tracking the moment of individual tracer particles. A central
aspect of this method is the calibration of the camera setup,
which involves finding a way to transform a 3D physical world
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coordinate system into one or more 2D camera coordinate
systems and vice versa [1]. Calibration is crucial in the con-
text of PTV as it allows us to accurately determine corres-
pondences between the triangulated 3D position and the 2D
centroid position of the imaged tracer particles [2–4]. In fact,
camera calibration is used in numerous other measurement
methods, both in experimental fluid mechanics, e.g. in tomo-
graphic particle image velocimetry [5], but also in other fields,
such as aerial remote sensing [6], and 3D shape measure-
ment [7]. As with any scientific measurement system, accur-
acy and error quantification are the key to the successful
implementation of PTV, and, since positioning uncertainties
are derived from calibration errors, it is necessary to achieve
high-quality camera calibration always. In particular, minim-
izing calibration errors is essential for distinguishing close or
overlapping particle intensity distributions, and thus reducing

1 © 2025 The Author(s). Published by IOP Publishing Ltd
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errors in the reconstruction of 3D particle positions [8]. In this
work, we review and compare four different methods for cam-
era calibration in the context of PTV experiments.

Camera calibration generally comprises two main com-
ponents: (1) a calibration model with a transformation func-
tion from the 3D physical world coordinates into 2D image
coordinates of a camera, and (2) an optimization routine to
determine the model parameters. There are various types of
calibration models that can be broadly divided into two cat-
egories.Models of the first category rely on physical optics and
always try to model the physical camera device, e.g. the Tsai
camera model (also known as the pinhole model) with various
corrections for aberration of the image [9–14]. These models
aim to accurately model various optical effects, such as mul-
timedia light refraction, however, they are often complex to
set up and optimize due to their demand on an already accur-
ate initial guesses of model parameter like the focal length,
magnifications, and camera positions. The second category
relies on the purely mathematical fitting of the optical cor-
respondence from 2D to 3D coordinates via non-linear func-
tions such as polynomials in the case of the Soloff method
[15, 16]. Methods in this category tend to be more straight-
forward to apply because they only require a mapping of 3D
physical world coordinates into 2D camera coordinates, and
there are no extrinsic or intrinsic camera parameters or cor-
rections due to refraction or lens distortion that need to be
taken into account. However, such camera calibration models
come with the drawback of being analytically non-invertible,
meaning that 3D positions cannot be directly estimated from
2D camera coordinates, which is an important aspect of every
PTV algorithm. This limitation can be addressed using numer-
ical techniques, such as the iterative triangulation method dis-
cussed in [17]. Another drawback is that, when using purely
mathematical camera models, information about the camera’s
physical parameters, such as the position of the camera in the
3D world, is lost.

In section 2 we introduce in detail four camera models
taken from the two categories. As for model optimization,
this operation is usually achieved by capturing images of an
object with known dimensions, called the calibration target,
and finding the calibration model parameters that minimize
the discrepancy between the view of the calibration target as
captured by the camera and the projection of the calibration
target on the images using the 3D model (this is defined in
equation (3), below). The root mean square (RMS) of the dis-
crepancy between the image and the projection of the cal-
ibration target is called the calibration error, and this is the
quantity that is usually minimized, often through optimiza-
tion routines such as the least squares method [18]. Typical
calibration targets are checkerboard plates [19], calibration
dumbbells [20, 21], and multi-plane calibration bodies [12]
or calibration plates [22, 23] with marker points imprinted
on them. An optional subsequent part of model optimization
is a step, often called volumetric calibration [24–26], which
uses experimental results to further minimize the calibration
error. However, in this paper, we will not focus on this topic,
since our main comparison is to quantify the calibration errors

of the calibration models themselves, using an imperfect and
realistic initial calibration of a complex optical experimental
setup. All in all, any calibration model with a mathematically
sound 2D to 3D mapping and back from 3D to 2D can be used
for PTV, but each one has its own advantages and disadvant-
ages. The realization of this fact is the starting point of this
work and our primary goal is to compare the different cam-
era calibration models of three established open-source PTV
frameworks: OpenPTV [11], MyPTV [27], and proPTV [17]
in terms of applicability and precision. To achieve that, we
focus on analyzing the spatial distribution of their calibration
errors [28, 29], and their ability to extrapolate and interpolate
around calibration markers. In addition, this study initiates a
collaborative project aimed at making these open-source PTV
frameworks compatible for future use, to eliminate the draw-
backs of each camera calibration model by its own. One of the
main results of this project is a new camera calibration model,
called the inverse Soloff model, which consists of an invertible
polynomial camera calibration method (section 2).

The paper is organized as follows. Section 2 introduces
the fundamental definition of a camera calibration model and
reviews four specific models in detail. Section 3 describes
the experimental setup and the calibration procedure used
for the model comparison. In section 4, we compare the
calibration errors of the different calibration models using
the experimental test case. Finally, in section 5 a conclusion
is drawn.

2. Camera calibration models

In what follows, we begin by introducing the general notion
of a camera calibration model and the ways in which it could
be evaluated. Following that, we introduce four specific mod-
els that will be compared later in this work: the multime-
dia Tsai model [11], the polynomial Tsai model [27], the
Soloff polynomial model [17] and the inverse Soloff polyno-
mial model that is first reported in this work. In practice, each
model was operated using a different open-source PTV soft-
ware: OpenPTV [11], MyPTV [27], proPTV [17], and again
MyPTV, respectively, for each model. All methods rely on
the same definition of the coordinate system as provided in
figure 2.

2.1. General formulation of a camera calibration model

At a fundamental level, any camera calibration model can be
viewed as a transformation between the 2D camera coordin-
ates xi,yi and the 3D physical world coordinates X,Y,Z and
backward. The index i in the camera coordinate system rep-
resents a specific camera. Thus, a 3D to 2D transformation,
the so-called forward transformation, is denoted as[

xi
yi

]
= TM

(
X, Y, Z, t1i , . . . , t

NM
i

)
, (1)

where TM is the transformation function of the calibration
modelM and contains NM parameters: t1i , . . . , t

NM
i . The inverse
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transformation, from 2D back to 3D coordinates, is denoted
asXY
Z

= T −1
M

(
x1, y1, t

1
1, . . . , t

NM
1 , . . . , xNc , yNc , t

1
Nc , . . . , t

NM
Nc

)
,

(2)

whereNc is the number of cameras in the experimental system.
Transformation T −1

M requires Nc ⩾ 2, as at least two views
are needed to triangulate the position of an object in a 3D
space. From a practical point of view, Nc is usually taken to be
more than 2, since redundancy helps to resolve uncertainties
due to optical occlusions in particle-dense experiments and
increases the accuracy of the positioning. In this work, we use
Nc = 4 cameras. Optimizing the parameters of a given calibra-
tion model is usually done using images of a calibration target
(e.g. figure 3) which is shifted by known distances at multiple
positions throughout the measurement volume. The target has
numerous points imprinted on it at known 3D distances, so
the image of the target is used to generate a list that maps the
known 3D marker positions to their estimated centroid posi-
tions on the camera images. Let us denote the 3D position of
the marker j as X⃗j and its 2D position as x⃗j. The discrepancy
between the 2D marker position on camera i and the reprojec-
tion of the 3D marker position on the same camera by a given
calibration model is then denoted by the 2D calibration error:

δ⃗ 2D
M,i

(
X⃗j
)
= TM

(
X⃗j, t

1
i , . . . , t

NM
i

)
− x⃗j . (3)

Optimizing the parameters of a camera calibration model is
performed by searching for the set of NM parameters that min-
imizes the sum

∑
j||δ⃗ 2D

M,i(⃗xj)||2 over all calibration markers. In
addition to that, the quality of a calibrated system of cameras
can be evaluated by considering the discrepancies in 3D world
coordinates, defined as the 3D calibration error:

δ⃗ 3D
M

(
X⃗j
)
= T −1

M

(⃗
xj,1, t

1
1, . . . , t

NM
1 , . . . , x⃗j,Nc , t

1
Nc , . . . , t

NM
Nc

)
− X⃗j .

(4)

In particular, the significant difference between δ⃗ 2D
M,i and δ⃗

3D
M is

that the former is defined per camera while the latter pertains
to the reconstruction capabilities of a system comprising sev-
eral cameras, and both quantities provide insightful informa-
tion of the calibration errors of a given calibration model. Note
that the 3D calibration error should always be displayed with
respect to the smallest length scale in the system, which is the
Kolmogorov length η in turbulent flows.

2.2. Multimedia Tsai model

The multi-media calibration method used in OpenPTV [11]
is explained in full detail in the original work of Maas
et al [3]. The model relies on the so-called pinhole camera
optics and includes rigorous corrections of various non-linear
optical phenomena such as barrel or pillow lens distortions.
Furthermore, when measuring through multiple media with

varying index of refraction (such as air, glass, water, which is
common in PTV experiments), light refraction causes objects
to appear at positions different from their actual locations, and
this effect must be corrected to achieve a physical representa-
tion of the optical system. The mathematical model consists of
three interconnected components that work together to provide
accurate mappings TM and TM−1. The first component is the
scaled pinhole camera modelxi − xh

yi − yh
−f

= λi ·R ·

X−X0

Y−Y0
Z−Z0

 , (5)

which is expressed through the collinearity condition,

xi = xh− f
r11 (X−X0)+ r21 (Y−Y0)+ r31 (Z−Z0)
r13 (X−X0)+ r23 (Y−Y0)+ r33 (Z−Z0)

,

yi = yh− f · r12 (X−X0)+ r22 (Y−Y0)+ r32 (Z−Z0)
r13 (X−X0)+ r23 (Y−Y0)+ r33 (Z−Z0)

.

(6)

The equations above contain the first eight model paramet-
ers. The parameters X0, Y0, and Z0 represent the position of
the camera in 3D physical coordinates, f is the focal length
of the camera, λi the scale factor, xh and yh denote the prin-
cipal point of the image, and rij denote the elements of the
3D rotation matrix R that is described by three independent
angle components θX,θY,θZ, which define the orientation of
the camera. The second component is the multimedia cor-
rection, which accounts for light refraction through different
media (figure 1). Note that this correction is simplified and
assumes that light rays are usually incident on the air-glass
interface and that the glass slab is thin compared to the other
dimensions of the problem. In amore general case, the calcula-
tion would involve more complex geometry and trigonometry
[30–32]. In OpenPTV, similarly to the original work [3], only
a radial shift of each object point relative to the axis of projec-
tion of the camera center pointO (marked by a vertical dashed
line) is estimated, as demonstrated in figure 1. The multimedia
correction starts by calculating the radial distance R from the
camera axis for a given point with 3D coordinates X, Y, Z

R=

√
(X−X0)

2
+(Y−Y0)

2
, (7)

and the refraction angles using Snell’s law:

n1 sin(β1) = n2 sin(β2) = n3 sin(β3) , (8)

to finally calculate the actual radial distance R̂ and the appar-
ent radial distance R. The following equations are used with
the refractive indices of air, glass, water: n1, n2, n3, the thick-
nesses of the medium air, glass, and water: Z1, Z2, Z3 and the
refraction angles of air, glass, and water: β1, β2, β3

R̂= Z1 tan(β1)+ Z2 tan(β2)+ Z3 tan(β3) (9)

R= (Z1 +Z2 +Z3) tan(β1) . (10)

3
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Figure 1. Multi-media correction to the Tsai model due to air-glass-water interfaces. Point p= (x,y) in the image space is a projection of
real point P= (X,Y,Z) in the physical space or a virtual point P̂= (X̂, Ŷ, Ẑ) in the homogeneous media (n1 = n2 = n3) model. Z3 is the
distance from the origin (0,0,0) to the glass interface from the waterside, Z2 is glass thickness, Z1 is the air distance from the outer surface
to the image plane center, O= (X0,Y0,Z0). On the image plane, the multi-media model also has a definition of image space pixel
coordinates, x,y, located at the top left corner of the sensor and the metric coordinates with an imaging center O and coordinate system x̂, ŷ.
Vector R is a radial position of the point P in orthographic projection.

The apparent position is then calculated as

X̂= X0 +(X−X0)
R̂
R

,

Ŷ= Y0 +(Y−Y0)
R̂
R

and Ẑ= Z . (11)

In general, the multimedia correction comprises six model
parameters: the three refraction indices and the three media
thicknesses. The third and final component of the multimedia
Tsai model accounts for corrections to barrel or pillow lens
distortions that are especially relevant when using high mag-
nification lenses [33]. The compensation of these effects is
obtained by a set of additional parameters which non-linearly
correct the 2D image coordinates,

x̂i = xi + xi
(
k1d

2
i + k2d

4
i + k3d

6
i

)
+ p1

(
d2i + 2x2i

)
+ 2p2xi yi,

ŷi = yi + yi
(
k1d

2
i + k2d

4
i + k3d

6
i

)
+ 2p1xi yi + p2

(
d2i + 2y2i

)
,

d2i = x2i + y2i .
(12)

Here, k1, k2, and k3 denote radial distortion coefficients and p1,
and p2 tangential distortion coefficients. Furthermore, to com-
pensate for additional aberrations due to lower-quality lenses,
an additional affine transformation is performed [3] with para-
meters x0, y0, sx, sy, γ, and δ as follows. sx and sy are the scaling
factors that account for any difference between the physical
dimensions of the pixels and the assumed square pixel dimen-
sions, and x0 and y0 are the coordinates of the principal point,
which is the intersection of the optical axis with the image
plane,

4
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x̂i = x0 + sxx̂i (cosγ)− syŷi (sin(γ+ δ)) ,

ŷi = y0 + sxx̂i (sinγ)+ syŷi (cos(γ+ δ)) .
(13)

Thus, the third component of the multimedia Tsai model con-
tains eleven additional model parameters.

Overall, the multimedia Tsai model contains 29 optim-
izable parameters per camera. Using this model in practice
requires two essential processes. The forward transformation,
TM, takes a 3D point (X, Y, Z), applies the multimedia correc-
tion to get the apparent position (X̂, Ŷ, Ẑ), uses the collinear-
ity equation (6) to project to image coordinates (xi, yi), and
finally applies lens distortion correction and aberration cor-
rection. The backward transformation T −1

M starts with image
coordinates, removes lens distortion, uses the collinearity con-
dition equation (6) to get ray direction, applies inverse multi-
media correction, and intersects corrected rays from multiple
cameras to obtain a particle’s 3D position.

The calibration of this model requires a carefully designed
process (see [9] for detailed information) that involves two
steps: first, the camera position and rotation (X0, Y0, Z0, θX , θY ,
θZ) and interior orientation parameters (f, xh, yh) are determ-
ined using the collinearity condition (equation (6)). Second,
the multimedia parameters (Z1, Z2, Z3, n1, n2, n3, β1, β2,
β3) and distortion coefficients (k1, k2, k3, p1, p2, x0, y0, sx,
sy, γ, δ) are optimized using a bundle adjustment approach.
This nonlinear optimization minimizes the RMS of the dis-
crepancy between the projection of the calibration target using
the model, TM and its image captured by the camera. Notably,
finding the optimal solution for this problem is a challen-
ging task, as the non-linear components of the model render
it a non-convex optimization problem that might converge
to sub-optimal local minima for inappropriate initial guesses.
The camera calibration model just described has been used in
numerous works in the past and within many different research
groups since the introduction of OpenPTV in the 1990s, for
example, [12, 14, 34–40] among many others.

2.3. Polynomial Tsai model

The polynomial Tsai model uses a mixed approach that com-
bines the pinhole camera model with a non-linear polyno-
mial correction term e⃗. The non-linear polynomial correction
is meant to account for any non-linearity in the imaging sys-
tem without adhering to any physical model, similar to the
approach used in [16, 41]. The advantage of this approach is
that it retains information regarding the physical optical setup
used in an experiment, while adhering to a simpler account
of the non-linear distortions as compared to the multimedia
model, yet its drawback is that one is never certain that the
shape of the correction term is sufficient to fully account for all
the aberrations of a given system. The polynomial Tsai model
was implemented here using MyPTV software [27].The trans-
formation from 3D physical world coordinates to 2D image
coordinates in the camera i is described by the following
relation, xi − xh

yi − yh
−f

= R ·

X−X0

Y−Y0
Z−Z0

+ e⃗(xi, yi) . (14)

The model parameters are X0, Y0, Z0, f,R, xh, and yh, being the
camera position coordinates, the focal length, the camera rota-
tionmatrix described by three angle components θX, θY, θZ and
the two offset corrections of the imaging center. The apparent
similarity to equation (6) is due to the fact that both use pinhole
camera optics. The main difference between the models stems
from the vector e⃗ that contains the non-linear correction terms.
Here, the correction is taken as the second-order polynomial

e⃗(xi, yi) = E · P⃗(xi, yi) =

E11 E12 E13 E14 E15

E21 E22 E23 E24 E25

0 0 0 0 0

 ·


xi
yi
x2i
y2i
xi yi

 ,

(15)

where Eij are the polynomial coefficients stored in the polyno-
mial coefficient matrix E. The row Ei3 is equal to zero because
it is assumed that the focal length is not affected by the image
coordinates xi and yi.

The polynomial Tsai model contains 19 parameters per
camera. The cameras are calibrated by taking images of a
calibration target and solving for the camera parameters that
minimize the RMS of the discrepancy between the projection
and the captured images. The minimization is performed via
the numerical Nelder–Mead scheme implemented in the Scipy
package [42], and it runs in separate iterations for the linear
and non-linear parts of the model. Equation (14) comprises
the transformation from 3D to 2D coordinates, TM. Therefore,
given a particle whose position is (X, Y, Z), equation (14) can
be used to calculate its camera coordinates, that is, its projec-
tion on the camera sensor (xi, yi) of the camera i. To obtain
the inverse transformation, T −1

M , equation (14) is rearranged to
define a line of sight in the 3D coordinates, connecting the cen-
ter of the camera (X0, Y0, Z0) and the position of the particles
(X, Y, Z). If a particle is seen by two ormore cameras simultan-
eously, we can estimate its 3D position by the intersection (or
the point that most closely approximates the intersection) of
such lines of sight. This operation comprises the inverse trans-
formation, T −1

M . This approach has been used in several recent
works that have investigated Lagrangian statistics of turbulent
flows [43, 44].

2.4. Soloff polynomial model

The Soloff polynomial model, implemented here in proPTV,
uses a polynomial projection model that takes 3D phys-
ical world coordinates, (X, Y, Z), and outputs the 2D camera
coordinates (xi, yi) of camera i, thus comprising the forward
transformation TM. The mapping function, equation (16), is
based on the Soloff model [15], which uses a 3rd order poly-
nomial in X and Y and a 2nd order polynomial in the depth
direction of the camera view, Z:

[
xi
yi

]
= Ai · S⃗(X,Y,Z) . (16)

5
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Here, the matrix Ai contains the polynomial coefficients for a
given camera i, comprising a total of 19× 2 individual coeffi-
cients,

Ai =

[
a(i)0x a(i)1x a(i)2x · · · a(i)18x

a(i)0y a(i)1y a(i)2y · · · a(i)18y

]
. (17)

The vector S⃗ stores the variables of the polynomial mapping
function based on the Soloff model,

S⃗(X,Y,Z) =
[
1, X, Y, Z, X2, Y2, Z2, XY, YZ, XZ,X3, Y3, X2Y,

X2Z, XY2, Y2Z, XZ2, YZ2, XYZ
]T

. (18)

The polynomial coefficients of each camera, Ai, are individu-
ally estimated byminimizing the following loss function of the
sum of squares of the discrepancy between the projection of
the calibration target (equation (16)) and the estimated marker
centroids on the camera i,

Li =
N∑
k=1

∣∣∣∣∣∣∣∣[xiyi
]
k

−Ai · S⃗k
∣∣∣∣∣∣∣∣2 . (19)

The Soloff model in equation (16) is not invertible analyt-
ically, so a numerical approach is taken to obtain the back-
ward transformation T −1

M . This problem is solved by an iter-
ative reconstruction algorithm, which is explained in [17] in
more detail. In summary, a gradient descent algorithm is used
that estimates the correction h⃗ to an initial 3D position, which
is always in the middle of the measurement domain, until con-
vergence to floating precision is reached in the re-projection
error of the 3D position onto the camera images of multiple
cameras. Usually, five iterations are enough. Following the
concept of [45], the gradient descent problem is stated as an
iterative multi-camera optimization problem at iteration n+ 1
by:

X⃗n+1 = X⃗n− h⃗n , h⃗n =G−1
n

(
X⃗n

)
· g⃗n

(
X⃗n

)
, (20)

with the Jacobi matrix of the Soloff projection G for all Nc
cameras at iteration n

Gn =


A1 · ∂X S⃗n A1 · ∂Y S⃗n A1 · ∂Z S⃗n
A2 · ∂X S⃗n A2 · ∂Y S⃗n A2 · ∂Z S⃗n

...
...

...
ANc · ∂X S⃗n ANc · ∂Y S⃗n ANc · ∂Z S⃗n

 , (21)

and the reprojection error g⃗ for all Nc cameras at iteration n

g⃗n =


A1 · S⃗n− x⃗1
A2 · S⃗n− x⃗2

...
ANc · S⃗n− x⃗Nc

 . (22)

The size of matrix G and vector g⃗ depends on the number of
cameras used for the reconstruction. When only a single cam-
era is used, a 3D position along the line of sight of that camera

is estimated for the given image coordinate x⃗i = (xi,yi). The
usage of two or more cameras results in the reconstruction of
a concrete 3D particle position X⃗= (X,Y,Z) and thus inverts
the Soloff projection function.

Overall, the Soloff polynomial method is a flexible and
simple calibration method with a high degree of non-linear
correction, ideal for multi-media experiments because it is just
a fit between the 3D world and its 2D representation on a cam-
era. However, its main drawback is that the physical camera
parameters, such as the camera position of the imaging sys-
tem, are not retained in the calibration, as these parameters do
not carry any physical information. Usually in PTV and with
proPTV, these parameters are not needed, so it is just a draw-
back in other applications. Interestingly, the main contribution
to the calibration error of the Soloff model comes from uncer-
tainties in the position of the 3D markers, which are related
to the experimental procedure of moving the plate through
the volume. This is fundamentally different frommodel-based
calibrations, such as those using the Tsai model, because the
calibration models attempt to model the optics of a camera
device, which are always approximations to the real world, and
the model parameters contain various error contributions, for
example from lens errors, depth of field blur, alignment to the
experiment, etc. The Soloff polynomial model and its applic-
ation to PTV is tested successfully in [17, 23].

2.5. Inverse Soloff polynomial model

The last calibration model that we consider is a hybrid
approach that combines features of the Soloff model used
in section 2.4 and the pinhole camera approach used in
sections 2.2 and 2.3. As shown in the previous section, an
inherent difficulty of the Soloff polynomial model is that it
is not invertible because the polynomials in equation (16) are
non-linear. On the other hand, an inherent difficulty of the
two modified Tsai models introduced before is that the pro-
cess used to find optimal camera parameters is challenging as
it involves solving a non-convex optimization problems with
numerous parameters. To alleviate these issues, we searched
for a hybrid calibration model that relies on the advantages of
all methods described above to overcome their limitations, a
search that had culminated in the inverse Soloff polynomial
model described as follows.

For the forward transform from 3Dworld coordinates to 2D
camera coordinates, TM, the new model uses exactly the same
method as the Soloff model, namely, equation (16). Thus, the
calibration procedure for TM uses the same least squares min-
imization scheme as described in section 2.4. This is because
the Soloff model can be easily applied in the forward direc-
tion (projection from 3D to 2D). For the inverse transforma-
tion, T −1

M , the new model uses the laws of the pinhole cam-
era optics. In particular, each camera is associated with an
optical center (which does not necessarily coincide with the
camera’s physical position), and each 2D image point is asso-
ciated with a line of sight whose orientation is defined through
polynomials of order 3. Specifically, intrinsic to this model is
the assumption that each 2D camera position (xi, yi) is asso-
ciated with a (linear) line of sight and that all lines of sight
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cross at some point in the 3D physical world, O⃗= (X0, Y0, Z0).
Therefore, points along the 3D line of sight are given by

l⃗i (xi, yi, µ) = O⃗i +µ U⃗i (xi, yi) , (23)

where µ is a free parameter that determines the position along
the line and U⃗i represents the unit vector associated with each
2D image coordinate of the camera i, defined as

U⃗i (xi, yi) = Bi · u⃗(xi, yi)T . (24)

Here, the matrix Bi stores the polynomial coefficients of the
camera i and the vector u⃗ defines the polynomial based on the
2D camera coordinates.

Bi =

b
(i)
0X b(i)1X b(i)2X · · · b(i)9X
b(i)0Y b(i)1Y b(i)2Y . . . b(i)9Y
b(i)0Z b(i)1Z b(i)2Z . . . b(i)9Z

 (25)

u⃗(xi, yi) =
(
1,xi, yi, x

2
i , y

2
i , xiyi, x

3
i , y

3
i , x

2
i yi, xi y

2
i

)T
. (26)

In total, each camera in the inverse Soloff polynomial
model is characterized using the 19× 2 coefficients stored in
matrix Ai for the forward transformation TM. The backward
transformation T −1

M includes three coordinates of the optical
center, O⃗i, plus the 10× 3 coefficients stored in matrix Bi.
This gives a total of 71 parameters per camera, but they are
divided into 38 and 33 parameters for each transformation dir-
ection, respectively. The calibration parameters in the forward
direction are calculated in the same way as described for the
Soloff model in section 2.4. Themodel parameters in the back-
ward direction are determined by associating a line of sight for
each marker position, by numerically searching for two 3D
positions, that when projected using TM fall on the same 2D
image coordinates of the marker centroids. Then, we estim-
ate (X0, Y0, Z0) as the point that best approximates the cross-
ing of all lines of sight as the camera position in 3D world
coordinates. Finally, we find the optimal solution for Bi by
least squares optimization. All these steps were implemented
in MyPTV [27] by using the Scipy package [42]. This is the
first work to describe the inverse Soloff polynomial model and
it was not tested before.

3. Experimental apparatus

The calibration models are evaluated using raw calibration
images taken during the calibration of an experimental PTV
setup designed to study Rayleigh–Bénard convection in a
cubic cell filled with water [23]. The experimental setup
is optically complex, involving transitions between several
media with different refractive indices (air, glass, and water),
which is typical for laboratory PTV experiments. Figure 2(a)
shows a picture of the experimental apparatus. The cubic cell
has an internal side length of L= 300mm and consists of four
8mm thick glass sidewalls for optical access to the measure-
ment volume, glued together with silicone and glued to a black
anodized aluminum plate heated from below with an elec-
tric heating mat. A black anodized aluminum cooling cover

is placed on top of the cell. Four PCO Edge 5.5 cameras with
a pixel size of 6.5× 6.5µm, a resolution of 2560× 2160 pixels
and a sensor diagonal of 21.8mm are mounted approximately
1m from one of the outer glass sidewalls of the cube to study
the motion of seeding particles in a PTV measurement, and
LED arrays are placed on the side at 90 ◦ to the cameras, to
illuminate the interior of the cell. Each of the four cameras was
mounted with a 21mm objective.

The camera system is calibrated to the coordinate system
shown in figure 2(b) using a square solid calibration platemade
of aluminum with 19× 19 imprinted marker dots. The dia-
meter of each marker point is d= 1.5mm and they are sep-
arated by D= 15mm in the X–Y plane. The origin of the
coordinate system is placed on the inside of the cell in the
lower left corner from the camera view farthest away from
the cameras. Calibration involves removing the cooling lid
and placing a socket on the top of the cell to which the cal-
ibration plate can be attached. The calibration plate is moved
through the cell at five depth positions at approximately Z ∈
{274,212,150,88,26}mm and a distance of ∆Z= 62 mm is
achieved between the marker positions. Figure 3 shows the
calibration images of camera 4 for all depth positions of the
calibration target.

4. Model comparison

In this section, we compare the four calibration models intro-
duced in section 2 based on their 2D and 3D calibration errors.
The experiment described in section 3 provides us with a
marker list including the 3D marker positions and their 2D
marker centroid for all four cameras. The 3D positions of the
markers are approximated and given based on the convection
of our coordinate system. The 2D positions are estimated using
the proPTV marker centroid search tool on the camera images
of the calibration target shown in figure 3. The unchanged
marker list is used to calibrate each of the four camera mod-
els. In what follows, we report three test cases to compare the
2D and 3D calibration errors of the models. First, all marker
plate positions at Z ∈ {274,212,150,88,26}mm shown in
figure 4(a) are used to estimate the calibration parameters of
each model. The second test case compares the models in their
‘interpolation accuracy’, namely their ability to infer the 3D
positions of points that do not lie on the locations of the mark-
ers used for the calibration. This is achieved by using the calib-
ration markers only at Z ∈ {274,150,26}mm (figure 7(a)) to
calibrate the different models and then estimating the positions
of the markers placed at all the positions of the plate. The third
case refers to the ‘extrapolation accuracy’ of the models using
only marker planes with Z ∈ {212,150,88}mm (figure 10(a))
for calibration while calculating the calibration errors on the
marker positions of all planes. In the following, most of the
time, we refer to an averaged calibration error in 2D and 3D
calculated by averaging the error magnitude along the mark-
ers per plane. The average 2D and 3D calibration errors are
denoted by ⟨δ 2D

M,i⟩XY and ⟨δ 3D
M ⟩XY, respectively. The individual

components of the 3D calibration error in each direction are
indicated by: δ3DX , δ3DY , δ3DZ . Note that theKolmogorov length of
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Figure 2. (a) Photograph of the Rayleigh–Bénard apparatus, comprising a cubic cell filled with water. Four cameras observing the flow are
shown to the right and side, and an LED array is placed on the side wall of the cube to the left of the cameras. (b) Definition of coordinate
systems: capital letters X,Y,Z are used for the 3D physical world with its origin at the lower left rear corner from the camera viewpoint.
Lowercase letters xi,yi with index i are used for the pixel coordinate systems in image space with top left as origin, for i = 1, . . . ,Nc
cameras, typically Nc = 4. Reproduced with permission from [23]. © 2024 The Author(s). Published by Informa UK Limited, trading as
Taylor & Francis Group. CC BY-NC-ND 4.0

Figure 3. The calibration target used to evaluate the models in this work, shown at five depth positions with Z ∈ {274,212,150,88,26}mm
imaged by camera 4.

the flow studied with the experimental setup used here is about
η= 0.5mm. This will help characterize the order of magnitude
of the 3D calibration error.

4.1. All markers

The 3D marker points used for calibration and the result-
ing average 3D calibration errors per plane for each model
are shown in figures 4(a) and (b), respectively. Furthermore,
component-wise 3D calibration errors per marker point for

each model are shown in figure 5. The average 2D cal-
ibration errors per camera for each plane and each model
are shown in figure 6. The average 3D calibration error is
less than 1 mm for all planes and all models, but only the
Soloff and multimedia Tsai model provide errors always
below the Kolmogorov length scale given by η= 0.5mm and
thus both methods could reconstruct the flow at its smal-
lest length scale. The Soloff model provides the lowest aver-
age 2D and 3D calibration error compared to the other
models.
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Figure 4. (a) The 3D marker positions used to calibrate each model. (b) Averaged 3D calibration error of the marker points of four
calibration models along each plane position.

Figure 5. Components of the 3D calibration error of all models (rows) and the three directions. The components of the calibration error:
δ3DX (first column), δ3DY (second column), and δ3DZ (third column), are shown using the respective color maps.

Furthermore, for all but the Soloff model, the 3D calibra-
tion error tends to have larger values on the outside of the cal-
ibrated volume, while the Soloff model provides result with
a uniform distribution of the similar 3D errors throughout the

calibration markers. Figure 5 shows that the calibration error
in the Z direction of the coordinate system contributes themost
to the overall 3D error and is much higher than the errors in
the X or Y direction. This is mainly because there are more
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Figure 6. The averaged 2D calibration error using all markers for calibration of all camera models with respect to each of the four cameras:
(a) camera 1, (b) camera 2, (c) camera 3, (d) camera 4.

calibration markers given in the X–Y plane than in the depth
direction Z and also the positional uncertainty of determin-
ing the marker coordinates in X and Y is easier because their
distance is fixed along the plane. The plates move through
the volume and are fixed in certain places with screws, which
provides some experimental uncertainty in the actual position
of the plates Z. A tilt in the orientation of the plates from
one position to the other is not expected with our calibration
device. The higher calibration errors obtained in the depth dir-
ection are a common occurrence in PTV experiments. The
highest 3D calibration errors are seen to occur for the poly-
nomial Tsai and the inverse Soloff method at the extremities
of the calibration region. The common feature for the two is
that they use quadratic non-linear corrections, which may not
be enough to express the 2D–3D correspondence near the glass
sidewalls.

4.2. Interpolation

The 3D marker points used for calibration in the interpolation
comparison and the resulting averaged 3D calibration errors
for each model are shown in figures 7(a) and (b), respectively,
and the distribution of the various components of the 3D calib-
ration errors are shown in figure 8. The average 2D calibration

errors per camera for each plane and each model are shown in
figure 9.

Figure 7(b) shows two different behaviors of the calib-
ration errors for the four models. The multimedia and the
Soloff model show the same error distribution and both have
their maximum error at the marker plane with Z= 212mm
which is one of the interpolation positions. The error in this
plane of both models is above the Kolmogorov length scale
of η≈ 0.5mm but smaller than 1mm, which is still enough
to reconstruct small structures in the flow. For the two mod-
els, the errors on all other four plane positions are below the
Kolmogorov length scale and thus provide good reconstruc-
tion results. On the other hand, the polynomial Tsai and the
inverse Soloff model show a completely different behavior.
Both of their average 3D calibration errors have a V shape
and are maximal in the outer plane positions and minimal at
the middle plane. The same picture is found by comparing
the individual 3D calibration error components, see figure 8.
The average 2D calibration errors per camera for each plane
and each model are shown in figure 9. Expect for the plane at
Z= 212mm the Soloff method provides the best results with
an average error always about 0.5 pixels. The polynomial Tsai
model shows strong reprojection errors of up to 5 pixels in
the first camera. Overall, the multi-media model shows the
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Figure 7. (a) The 3D marker positions used to calibrate each model in the interpolation case. (b) Averaged 3D calibration error of the
marker points of four calibration models along each plane position.

Figure 8. Components of the 3D calibration error of all models (rows) and the three directions for the interpolation case using only planes
with Z ∈ {274,150,26}mm for calibration. The components of the calibration error: δ3DX (first column), δ3DY (second column), and δ3DZ (third
column), are shown using the respective color maps.
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Figure 9. The averaged 2D calibration error in the interpolation case using only planes with Z ∈ {274,150,26}mm for calibration of all
camera models with respect to each of the four cameras: (a) camera 1, (b) camera 2, (c) camera 3, (d) camera 4.

best performance together with the Soloff method except for
Z= 212mm where the Soloff method provides a higher error.

4.3. Extrapolation

The 3D marker points used for the calibration in the extra-
polation comparison and the resulting averaged 3D calibra-
tion errors for each model are shown in figures 10(a) and (b),
respectively, and the distribution of the various components
of the 3D calibration errors are shown in figure 11. Except
for the first plane position at Z= 274mm, the 3D calibra-
tion errors of all models are always below the Kolmogorov
length scale of about 0.5mm and good reconstruction results
can be expected. At the first plane position at Z= 274mm,
which is also one of the extrapolation planes, all models have

a higher calibration error, but most dramatically for the Soloff
method with 2.5mm. The components of the 3D calibration
error, shown in figure 11, provide a similar picture in addi-
tion to the higher errors of the polynomial Tsai and the inverse
Soloff method near the outside of the calibrated volume, as
we discovered earlier. The average 2D calibration errors per
camera for each plane and each model are shown in figure 12.
Expect for the plane at Z= 274mm the Soloff model provides
the best results with an average error at the given planes always
of about 0.5 pixels. The polynomial Tsai model shows repro-
jection errors always above 1 pixel for all cameras. Overall,
the Soloff model shows the best performance in the compar-
ison of 2D and 3D calibration errors except for the plane at
Z= 274mm where the Soloff method provides the highest
error.
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Figure 10. (a) The 3D marker positions used to calibrate each model in the extrapolation case. (b) Averaged 3D calibration error of the
marker points of four calibration models along each plane position.

Figure 11. Components of the 3D calibration error of all models (rows) and the three directions for the extrapolation case using only planes
with Z ∈ {212,150,88}mm for calibration. The components of the calibration error: δ3DX (first column), δ3DY (second column), and δ3DZ (third
column), are shown using the respective color maps.
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Figure 12. The averaged 2D calibration error in the extrapolation case using only planes with Z ∈ {212,150,88}mm for calibration of all
camera models with respect to each of the four cameras: (a) camera 1, (b) camera 2, (c) camera 3, (d) camera 4.

5. Conclusion

In this work, we investigate and compare four different camera
calibration models used in PTV with respect to their 2D and
3D calibration errors on an optically complex experimental
setup. No post-processing or additional error minimization
as in volumetric calibration is performed in order to under-
stand how the models themselves behave and what are the
most important error sources in realistic experiments in differ-
ent test cases, including interpolation and extrapolation tasks.
Note that volumetric calibration is recommended prior to any
PTV processing. In general, camera calibration models are
divided into two categories: models that attempt to model the
optics of a camera (Tsai models) and models that rely purely
on a mathematical fit between the 2D–3D correspondence of a
camera (Soloff model). Camera models that model the optics
of a camera, such as the multimedia or polynomial Tsai model,

provide the user with useful camera parameters such as focal
length, camera positions, etc but they are analyticalmodels and
cannot be used to model the optics of a camera, but they are
analytical models and cannot be used for all possible setups,
e.g. the multimedia Tsai model needs to be modified in dif-
ferent scenarios, e.g. when the geometry changes or curved
glass walls cover the experiment as in thick cylindrical tubes
[30–32], and furthermore the optimization of camera paramet-
ers relies heavily on a good initial guess, which often makes
it difficult to calibrate a foreign camera setup using shared
measurement data from experiments that may no longer be
available. On the other hand, polynomial-fit calibrationmodels
like the Soloff model provide a fast and easy method to obtain
camera calibration parameters because a simple least-square
optimization using the 2D–3D correspondence of the calib-
ration marker points is enough to calibrate the system. The
method is by itself generalized and can be used for all possible
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Figure 13. 3D calibration error of the Soloff polynomial for all three test cases as a green dotted line and the 3D calibration error of the
Soloff polynomial by changing the Z position of each plate by a small amount from Z ∈ {26,88,150,212,274}mm to
Z ∈ {28.8,87.15,150.45,212.4,276}mm during calibration.

setups. However, the Soloff model is not invertible analytically
and it returns calibration parameters which are not physically
meaningful and information like the focal length or camera
position are lost. There are many error sources which limit the
precision of the camera calibration using a certain model, for
example: depth of field and blurred imaging errors, marker
centroid detection uncertainties, lens errors, underestimated
higher non-linear correction factors, inaccurate estimation or
guess of the 3D marker positions. The latter mainly contrib-
utes to the calibration error using the Soloff model. This is
verified by simply changing the given Z position [mm] of each
plate by a small amount from Z ∈ {26,88,150,212,274} mm
to Z ∈ {28.8,87.15,150.45,212.4,276}mm and the resulting
averaged 3D calibration errors for the three cases decreases
drastically, as it is shown in figure 13. Also, the unsymmet-
rical error shape, e.g. in the case of extrapolation at marker
Z= 26mm and Z= 274mm, is now symmetrical. Therefore,
it is recommended to use the Soloff method if one is able to
control the marker movement precisely in the experiment, if
one knows all 3D marker positions, and if one is not inter-
ested in the camera position or camera-related parameters at
all. The uncertainty in the Z position of the marker plates con-
tributes most to the Soloff model because it is a fit of the
2D–3D correspondence and other errors besides the negligible
centroid estimation error cannot play a role, which is different
for the model-based Tsai calibration methods. The polynomial
order of the Soloff model is another point of consideration,
but increasing the order of the polynomial requires observing
the marker plane at more marker planes, and as we have seen,
the position of the marker plate in depth may not be precisely
estimable in experiments and will build up a high error, which
is even more drastic for higher order polynomials. It is recom-
mended to use the minimum polynomial degree in all direc-
tions which are still able to cover all non-linear corrections
needed in the imaging process.

Although the cameramodels studied in this work use differ-
ent approaches, they are based on a fundamental formulation
presented in section 2. Based on this formulation, it is cru-
cial to evaluate both the 2D projection calibration error and
the 3D reconstruction calibration error to fully understand the

accuracy of each camera model. Both properties are compared
for three cases, including the use of all marker planes for cal-
ibration and an interpolation and extrapolation case using only
three of the five marker planes. The most realistic case is the
use of all five marker planes, which gives the best results. In
this case, the Soloff and the multimedia model provide 3D
calibration errors always below the smallest length scale in
the studied RBC convection, which is the Kolmogorov length
η≈ 0.5mm, and good reconstruction results can be expected;
see figure 5. The inverse Soloff model and the polynomial
Tsai model show higher errors, up to a maximum error of
1mm, which is still good enough to reconstruct small scales
in the flow. Comparing the 2D calibration errors, the Soloff
method shows a constant error of less than 0.5 pixels for all
cameras; see figure 6. All other models show higher 2D repro-
jection errors, which also vary from camera to camera, sug-
gesting that model-based calibrations and their optimization
are highly dependent on initial conditions and some lens errors
or wrong camera position guesses affect the calibration results
for each camera individually, and it is a tough task to calib-
rate all cameras with the same precision. Thus, we find that
the critical result of our collaboration is to work on the com-
patibility of different software using the calibration models
studied, in order to minimize the drawbacks of any of them.
For example, in the presented PTV experiment, if the cam-
era position and focal length of the cameras are not known,
the experiment is difficult to calibrate using the multimedia
model, but the system can still be calibrated using the Soloff
model if only the 2D and 3D marker positions are known and
a direct conversion of the Soloff calibration to the multimedia
model is possible. Another helpful example is the use of the
well-established checkerboard calibration in multiple views at
different angles by OpenPTV or MyPTV, while the method
used in proPTV is not able to calibrate this setup because it
requires exactly known plane positions. A third example is
the use of a dumbbell or wand calibration in cases where the
calibration target cannot be inserted, where the Soloff model
also fails to calibrate the system, but the other models do not.
Thus, learning to combine the different advantages of different
open source packages, possibly through a unified framework
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optimized from a software architecture point of view, could
be a good future direction for the experimental fluid mechan-
ics community.
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