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Abstract. Velocity, pressure, and temperature are the key variables for understand-

ing thermal convection, and measuring them all is a complex task. In this paper,

we demonstrate a method to reconstruct temperature and pressure fields based on

given Lagrangian velocity data. A physics-informed neural network (PINN) based

on a multilayer perceptron architecture and a periodic sine activation function is

used to reconstruct both the temperature and the pressure for two cases of turbu-

lent Rayleigh-Bénard convection (Pr = 6.9, Ra = 109). The first dataset is generated

with DNS and it includes Lagrangian velocity data of 150000 tracer particles. The

second contains a PTV experiment with the same system parameters in a water-filled

cubic cell, and we observed about 50000 active particle tracks per time step with the

open-source framework proPTV. A realistic temperature and pressure field could be

reconstructed in both cases, which underlines the importance of PINNs also in the

context of experimental data. In the case of the DNS, the reconstructed temperature

and pressure fields show a 90% correlation over all particles when directly validated

against the ground truth. Thus, the proposed method, in combination with particle

tracking velocimetry, is able to provide velocity, temperature, and pressure fields in

convective flows even in the hard turbulence regime. The PINN used in this paper

is compatible with proPTV and is part of an open source project. It is available at

https://github.com/DLR-AS-BOA/RBC-PINN.

1. Introduction

The velocity fields of flows can be measured precisely on temporal and spatial scales,

for example, by particle tracking velocimetry (PTV). PTV (Maas et al., 1993; Malik

et al., 1993; Schröder and Schanz, 2023) is a well-known optical measurement technique

in experimental fluid mechanics to obtain Lagrangian velocity vector fields within
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observation domains by tracking the movement of tracer particles within a moving fluid

over set time intervals. Many interesting flows in scientific or industrial contexts are

thermally driven, such as Rayleigh-Bénard convection (RBC) or the mixed convective

flow in the ventilation of closed passenger cabins (Schmeling et al., 2023). In both cases,

it is much more difficult to measure the temperature field with the same resolution

as the velocity fields, which can be achieved, for example, by using thermoliquid

crystals as tracer particles for PTV (Käufer and Cierpka, 2023). This method is

intriguing, but difficult to implement in general settings. Therefore, a more general

approach to determine unknown flow properties such as temperature and pressure

fields is to reconstruct them by enforcing the underlying governing equations, using

known velocity data, typically facilitating physics-informed neural network (PINN)

(Raissi et al., 2019). The PINN approach is rather new, but this topic has increased

research activity and interests in recent years (Cai et al., 2021a). Notable examples,

relevant for the present application to thermal convective flows, are the reconstruction

of velocities from temperatures for synthetic 2D flows (Clark Di Leoni et al., 2023),

the investigation of PINNs framework for full PDE modeling in turbulent convection

flows (Lucor et al., 2022) or for background-orient Schlieren measurements (Cai et al.,

2021b). The opposite reconstruction direction, temperature from velocities, is shown by

Mommert et al. (2024) for a synthetic (DNS) case of cubic Rayleigh-Bénard convection

and by Toscano et al. (2024) for a PTV measurement extended by temperatures from

particle image thermometry. Volk et al. (2025) further showed for a synthetic case that

this methodology can also be applied to the planar datasets of stereoscopic particle

image velocimetry. In this paper, we build on previous validation studies of PINNs

that reconstruct moderate turbulent Rayleigh-Bénard convection at medium Rayleigh

numbers (Mommert et al., 2024; Toscano et al., 2025; Volk et al., 2025) by presenting

an open-source PINN version, based on a multilayer perceptron architecture and a

periodic sine activation function to assimilate both temperature and pressure from

Lagrangian velocity data even in cases of fully turbulent Rayleigh-Bénard convection

at high Rayleigh numbers. Although our PINN methodology has been shown to be

effective at lower Rayleigh numbers, this elevated regime is a previously unexplored

parameter space in which complex, multiscale turbulent dynamics pose significant

computational challenges. We examine these difficulties and propose solutions to

improve the reconstruction accuracy in this flow regime. The method is tested on

two datasets in this paper: one generated with direct numerical simulations (DNS) and

the other covering a PTV experiment (Barta and Wagner, 2025) of turbulent RBC in a

cubic cell filled with water. Both datasets have Prandtl and Rayleigh numbers of Pr =

6.9 and Ra = 109, respectively.

RBC (Rayleigh, 1916) is a canonical system for studying thermal convection, in which

a fluid is confined in a container and heated from below and cooled from above, ideally

with adiabatic sidewalls. A unified theory that describes the scaling laws of the response

parameter (Reynolds and Nusselt number) based on the system parameters in RBC

was established by Grossmann and Lohse (2000). The set of flow-governing equations
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is given by the incompressible Navier-Stokes equation in the Oberbeck-Boussinesq

approximation and the energy equation for the temperature, both in normalized units.

∂u⃗

∂t
+ (u⃗ · ∇) u⃗ = −∇p+

√
Pr

Ra
∇2u⃗+ T e⃗Z , (1)

∂T

∂t
+ u⃗ · ∇T =

√
1

PrRa
∇2T, (2)

∇ · u⃗ = 0. (3)

Here, e⃗Z denotes the unit vector in the vertical direction. Each velocity in equations

(1)-(3) has been non-dimensionalized with the free-fall velocity uref =
√
λg∆TL, the

three spatial coordinates with the cell height L, the time coordinate with the free-fall

time tref = L/uref and the pressure with the reference pressure pref = ρu2
ref, where ρ is

the fluid density. The pressure is determined up to a constant value p0 because only its

gradient is present in equation (1), and in the following we set p0 = 0. The temperature

is always centered around the mean cell temperature and it is non-dimensionalized by

the temperature difference ∆T = Tw − Tc between the heating (Tw) and cooling (Tc)

plates, so that the non-dimensionalized temperature ranges between -0.5 and 0.5.

The two independent system parameters, Ra and Pr, are defined in the following way.

Ra =
g λ∆T L3

ν α
, Pr =

ν

α
. (4)

In equation (4) g is the absolute value of the gravitational acceleration on Earth, λ is

the coefficient of thermal expansion, ν is the kinematic viscosity and κ is the thermal

diffusivity.

The paper is organized as follows. Section 2 introduces the DNS and experimental

Rayleigh-Bénard convection datasets on which the PINN is applied. Section 3 explains

the general PINN methodology, including the network architecture and the training

routine. In section 4 the PINN is validated on DNS data and in section 5 the temperature

and pressure reconstruction with the PINN is tested on experimental data. Finally, in

section 6 a conclusion is drawn.

2. Rayleigh-Bénard convection datasets

In the following subsections, two datasets of turbulent Rayleigh-Bénard convection in

a cubic cell (Ra = 109 and Pr = 6.9) on which the PINN is tested are presented, both

containing particle tracks and providing velocities in the Lagrange frame. In the first

dataset, the particle tracks are generated in a direct numerical simulation (DNS). The

ground truth velocities, temperatures, and pressures are known exactly on the particle

positions. The DNS dataset is used to validate the reconstructed temperature and

pressure fields with the PINN. The second set contains particle tracks measured with

proPTV (Barta et al., 2023) in a cubic cell filled with water (Barta and Wagner, 2025).
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We choose a reconstruction interval for both data sets with a temporal length of at least

2 tref, which was shown to be sufficient in (Volk et al., 2025).

2.1. DNS

The DNS is performed in a cubic RBC cell with isothermal heating and cooling plates

and adiabatic side walls with Ra = 109 and Pr = 6.9. The DNS solves the dimensionless

transport equations for mass, momentum, and temperature for an incompressible

fluid using the Oberbeck-Boussinesq approximation, see equations (1)-(3). At all

walls, no-slip and impermeability boundary conditions are applied. Furthermore, the

dimensionless set of equation (1)-(3) are discretized spatially with fourth-order central

differences and in time using a second-order accurate Euler-leapfrog scheme (Wagner

et al., 1994). The DNS is performed similarly as discussed in more detail in (Barta

et al., 2023) but here for smaller Ra. For the present case of Pr > 1, the global mean

Batchelor length scale (Scheel et al., 2013):

ηB = η Pr−1/2 =
1

Ra1/4 (Nu− 1)1/4
, (5)

is smaller than the Kolmogorov length scale η, and thus more restrictive with respect

to the grid resolution. The Batchelor length ηB represents the smallest length scale

at which temperature fluctuations exist before being dissipated by thermal diffusion.

Therefore, the minimum grid spacing in the bulk flow region was estimated to resolve the

Batchelor scale according to Grötzbach (1983) and Scheel et al. (2013). Furthermore, the

minimum grid spacing in the thermal and viscous boundary layers has been estimated

according to Shishkina et al. (2010). For the grid estimation, the Nusselt number can be

estimated a priori from the Grossmann-Lohse theory (Grossmann and Lohse, 2000, 2001,

2002, 2004), resulting in Nu = 61, which is similar to the Nusselt number calculated a

posteriori:

Nu =

〈√
Ra PrT u⃗ · e⃗Z − ∂T

∂Z

〉
XY Zt

(6)

where ⟨·⟩XY Zt denotes averaging in time, as well as in the X, Y and Z directions,

resulting in Nu = 63.4. Table 1 summarizes the simulation parameters, including grid

spacing and the number of grid points in the thermal and kinetic boundary layer.

Ra Pr NX ×NY ×NZ ∆t ∆tout ∆Zmin/L ∆Zmax/L NlT NlU Nu

10 9 6.9 768× 768× 768 10−4 0.02 4.5 · 10−4 2 · 10−3 18 25 63.4

Table 1. Ra is the Rayleigh, Pr the Prandtl number. NX , NY and NZ are the number

of grid points in X, Y , and Z direction, respectively. ∆t is the temporal resolution

and ∆tout is the temporal output resolution of the particle tracks. ∆Zmin is the grid

spacing at the plates, ∆Zmax is the grid spacing at the center of the box. NlT is the

number of grid points in the thermal, NlU in the kinetic boundary layer. The Nusselt

number is computed a posteriori.
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After an initial transient, when the average Nusselt number computed reached a

statistically stationary state, instantaneous flow field realizations in the form of velocity,

pressure, and temperature fields are interpolated on 150000 massless tracer particle

positions (chosen randomly inside the cubic domain), which are tracked in time. Figure

1 shows all tracks colored by their vertical velocity. Every ∆tout = 0.02 dimensionless

time units, corresponding to a recording frequency of about 8 Hz in the experiment, a

particle file is saved for the following analysis, where 125 particle files are used.

Figure 1. All tracks generated with DNS colored by their vertical velocity.

2.2. PTV experiment

The PTV experiment is the same water-filled cubic Rayleigh-Bénard convection cell as

discussed in Barta and Wagner (2025), except here we use a temperature gradient

between the heating and cooling plate of ∆T ≈ 4K, and a recoding frequency of

f = 10Hz. The cell height of the cubic cell is L = 300 mm, and for the flow we

estimate the free fall velocity uref ≈ 50mm s−1 and the free fall time tref ≈ 6 s. For

the temperature difference considered, the Oberbeck-Boussinesq approximation (1)-(3)

is valid, as shown in Gray and Giorgini (1976); Weiss et al. (2024). We estimate Ra

≈ 109 and Pr ≈ 6.9 which is similar to the DNS, see Section 2.1. Figure 2 shows a

technical drawing of the experimental setup and the reference coordinate system. The

PTV sequence studied in this work consists of 150 time steps, and image acquisition

began after the flow reached equilibrium, approximately 10 hours after seeding tracer

particles. In total, 4 PCO Edge 5.5 cameras are observing the flow and each of them has

a resolution of 2560×2160 pixels. Polyamide particles manufactured by LaVision with
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a density of 1.03 g cm−3) are used as seeding material. PTV processing is performed

using the open source framework proPTV (Barta et al., 2023) and the backtracking

routine is used. The image processing detected about 110000 particles per camera.

Camera calibration is performed using the built-in Soloff calibration model (Herzog

et al., 2021; Soloff et al., 1997) with a calibration target of 19×19 imprinted markers

shifted through the cell at 5 depth positions relative to the cameras, see Barta and

Wagner (2025). Furthermore, a volumetric correction is applied using particle images

such as in Wieneke (2008) and a subpixel calibration error of less than 0.1 pixels per

camera is achieved.

Figure 2. Technical drawing of the Rayleigh-Bénard experiment. A cubic cell filled

with water and heated from below and cooled from above, four cameras observing the

flow and two LED arrays illuminating the flow. The green arrows indicate the reference

coordinate system.

Figure 3 provides an overview of the number of triangulated particles, initialized tracks,

active tracks, and broken tracks during PTV processing of the 150 time steps. Almost

all particles in the camera images are used to triangulate about 100000 particles per time

step, from which about 50000 active tracks per time step are reached after processing

the 25th time step. The new initialized tracks and broken tracks per time step are

each about 3000 tracks after the 25th time step, so that about 5% of the tracks break

each time step. All tracks obtained by processing the 150 time steps with proPTV are

visualized in figure 4, and are colored by their normalized vertical velocity. In units,

the maximum observed velocity is about ±10 m s−1. During processing, a track is only

accepted if it persists for at least 10 time steps. In total about 300000 particle tracks

are reconstructed. The track density is high in the bulk flow (about 0.046 ppp), but
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the track density decreases drastically near the sidewalls because it is observed that the

seeding material mostly sticks to the sidewalls when it enters the boundary layer and

no reasonable resolution of the flow near the boundaries is achieved.

Figure 3. The number of triangulated particles, initialized tracks, active tracks and

broken tracks per time step while processing the PTV dataset with proPTV.

Figure 4. All PTV tracks colored by their normalized vertical velocity.
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In figure 5 the track length histogram is shown and an average track length of 26 is

calculated.

In the experiment, the velocity field has full temporal resolution. This is verified because

the smallest velocity time scale is larger than the recording time: η/U = 0.16 s> 1/f ,

with the mean expected Kolmogorov length in the bulk of η = 1.6mm estimated using

equation (5) and the maximum measured velocity magnitude U ≈ 10 m s−1. A full

spatial resolution of the velocity field is not reached as it would require at least one

particle in each volume cell spanned by the Kolmogorov length, or (L/η− 1)3 ≈ 1863 =

6435856 particles. However, the most important structures are the large scale circulation

and the corner circulations, which are both integral flow structures and those are well-

resolved in our measurement.

Figure 5. Track length histogram. The average track length is about 26.

3. PINN Methodology

3.1. Architecture

A multi-layer perceptron (MLP) is used to reconstruct unknown flow fields, such as

temperature and pressure fields from known velocity fields. The MLP, shown in figure

6, consists of an input layer with 4 neurons corresponding to the time t and position

coordinates: X, Y, Z, NL fully-connected hidden layers each with a constant width of

NN neurons, and an output layer with 5 neurons corresponding to the approximated

velocity field components u, v, w, temperature field T and pressure field p. In this

paper, we use NL = 10 and NN = 256. The activation function used is the periodic sine

function: σ(·) = sin(·). Sine activation functions are resistant to the vanishing gradient

problem (Sitzmann et al., 2020), as their derivative is only close to zero in small periodic

regions. The sine activation function helps the MLP to quickly develop an approximation

Page 8 of 28AUTHOR SUBMITTED MANUSCRIPT - MST-127739.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



9

function as a superposition of a large number of wavenumbers, which helps identify

multiple structures in turbulent flows. The output layer is linearly activated and does

not use an activation function. It should be noted that the proposed PINN architecture

can be easily modified to reconstruct only the pressure if necessary.

Figure 6. Architecture of the MLP used as physics-informed neural network to

assimilate temperature and pressure with NN neurons per hidden layer, NL hidden

layers, and a sinus activation function: σ(·) = sin(·).

The network is an extension of the method introduced by Mommert et al. (2024),

and it was demonstrated (Mommert et al., 2024; Volk et al., 2025) that the PINN

can learn the temperature and pressure fields from the provided velocity fields in the

cases of RBC in the soft turbulence regime with low to medium Rayleigh numbers

and a moderately complex loss landscape, the multidimensional optimization manifold

representing how well the PINN satisfies physics constraints and data requirements,

spanned by the loss function (10). That the simultaneous temperature and pressure

reconstruction performs well in such cases is still remarkable because the model solves

an ambiguity in the fundamental equations, since both temperature and pressure are

unknown and both variables are in the same equation (1). However, the reconstruction of

both temperature and pressure becomes problematic in RBC at high Rayleigh numbers,

particularly in the hard turbulence regime Ra > 4 · 107 (Castaing et al., 1989), since

then the loss landscape becomes more complex due to many small-scale flow structures

that need to be reconstructed. Additionally, the high temperature gradients near the

heating and cooling walls such as the near zero temperature in the well-mixed bulk are

numerically difficult to resolve, and the reconstruction of both pressure and temperature

are extremely challenging for a PINN. We address this problem by introducing a mean
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temperature profile to the PINN, and only the correct temperature fluctuations in

addition to the pressure need to be learned. Thus, the temperature output of the

PINN is modified by:

T = Tmean(Z, a) +
(
Z2 − Z

)
T ′ (7)

with Tmean(Z, a) =
1

2− 2 e−0.5 a

{
e−aZ − e−0.5 a , if Z < 0.5

e−0.5 a − e a (Z−1) , if Z ≥ 0.5
(8)

representing a mean temperature profile along the vertical Z axis, T ′ represents the

temperature fluctuation field, and a is a user-defined parameter. A similar approach was

used by Toscano et al. (2024), but they proposed to prescribe a linear mean temperature

profile which turned out to be not helpful in the present case at Ra = 109. Equation (7)

is chosen empirically and ensures that the temperature boundary conditions are satisfied

exactly. The physical meaning of a is derived by evaluating equation (6) on the heating

or cooling plate where the velocity is zero, and using the derivative of equation (7) with

respect to Z. Thus, we can relate the parameter a with the Nusselt number:

Nu =
a

2− 2 e−0.5 a
≃ a

2
, if a ≫ 1 , (9)

and set a = 2Nu = 126 throughout the paper, because we know that the average

Nusselt number is Nu = 63 obtained from DNS in our case, see section 2.1. Figure 7

illustrates how the mean temperature profile evolves as the Nusselt number in terms

of the parameter a increases. Note that the parameter value a = 1 results in a linear

temperature profile, similar to the one used by Toscano et al. (2024).

Figure 7. The mean temperature profile as a function of the vertical cell direction

Z averaged with respect to time and the horizontal plane defined by the coordinates

X and Y predicted in the DNS for Ra = 109 and Pr = 6.9. The empirical function

Tmean(Z, a) is shown as dashed lines with increasing values of the parameter a.
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3.2. Training and optimization

The purpose of the PINN is to reconstruct the temperature and pressure fields based on

velocity fields obtained from experiments or flow simulations using the flow-governing

equations of RBC in dimensionless units (1)-(3). The training of the PINN over Nepoch

epochs is implemented in a Python framework using Tensorflow v.2.16 and Keras v.3.4

(Abadi et al., 2016; Chollet et al., 2015) with the MLP architecture described in section

3.1. Specifically, the Adam optimizer (Kingma and Ba, 2014) is used in the default

configuration, except for a learning rate schedule that starts with a learning rate, usually

lrmax = 10−3, and reduces it by a factor of 0.8 until it reaches a certain value, usually

lrmin = 10−4. The learning rate reduction is applied after Nlr epochs of training have

passed. A constant batch size of NB = 4096 data points is used, which is a small fraction

of the dataset studied. A smaller batch size means more optimization runs per epoch,

which accelerates convergence (Sankaran et al., 2022) at the cost of computing time.

The optimization of the internal PINN parameters is done by optimizing the following

total loss function.

Ltot = λdata Ldata + λNS LNS + λEE LEE + λdiv Ldiv + λC LC + λBC LBC (10)

Ldata =
1

3NB

NB∑
i=1

∥∥(u⃗i − u⃗∗
i )

2
∥∥ (11)

LNS =
1

NB

N col
B∑

i=1

∥∥∥∥∥∥
(
∂ u⃗i

∂ t
+ (u⃗i · ∇) u⃗i −

√
Pr

Ra
∆ u⃗i +∇ pi − Ti e⃗Z

)2
∥∥∥∥∥∥ (12)

LEE =
1

NB

N col
B∑

i=1

∥∥∥∥∥∥
(
∂ Ti

∂ t
+ (u⃗i · ∇)Ti −

√
1

Pr Ra
∆Ti

)2
∥∥∥∥∥∥ (13)

Ldiv =
1

NB

N col
B∑

i=1

∥∥(∇ · u⃗i)
2
∥∥ (14)

LC =
1

NB

NB∑
i=1

∥∥(pi)2∥∥ (15)

LBC =
1

NB

N
colX
B∑
i=1

∥∥u⃗(ti, 0, Yi, Zi)
2
∥∥+ ∥∥u⃗(ti, 1, Yi, Zi)

2
∥∥+ (16)

1

NB

N
colY
B∑
i=1

∥∥u⃗(ti, Xi, 0, Zi)
2
∥∥+ ∥∥u⃗(ti, Xi, 1, Zi)

2
∥∥+

1

NB

N
colZ
B∑
i=1

∥∥u⃗(ti, Xi, Yi, 0)
2
∥∥+ ∥∥u⃗(ti, Xi, Yi, 1)

2
∥∥
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The total loss function used to train the PINN is a sum of several mean squared error loss

contributions with their corresponding global weight factors λ. The loss contributions

are: the data loss Ldata, the pressure centering loss LC which restricts the pressure to be

centered around zero, the boundary loss LBC for the velocity, and physical losses: the

residual loss LNS of the momentum equations (1), the residual loss LEE of the energy

equation (2), and the loss Ldiv due to the incompressibility condition (3). The data given

in the data loss term equation (11), e.g. from a DNS or a measurement, are denoted by

an asterisk, e.g. u⃗∗ for a known velocity field. The physical loss terms LNS, LEE and Ldiv

are not evaluated at the same data points given by the batch NB as the data loss Ldata

and the pressure centering loss LC during training. Instead, a new collocated batch of

the same size as NB, called N col
B , is defined per training epoch, containing input data

points (ti, Xi, Yi, Zi) randomly uniform distributed within the cubic cell and across all

data time steps.

Thus, assuming a long enough training time, the physical loss terms are estimated

nearly everywhere in the domain, providing the spatial resolution necessary to capture

flow structures on a wide range of scales (Hou et al., 2023). Furthermore, three other

collocation batches N colX
B , N colY

B , and N colZ
B are defined. Each of them contains NB

randomly uniform distributed input data points, in each of the two pairs of opposite

sidewalls, e.g. X = 0 and X = 1 in the batch N colX
B and similarly for the batches with

superscript Y and Z. The three collocation batches on the sidewalls of the cube are

used to train the loss of the boundary condition LBC that suppresses the velocity to zero

at each sidewall. Following the idea of constant hierarchical weighting (Mommert et al.,

2024), we use fixed weight factors associated with the values shown in table 2. In this

approach, weighting factors are introduced for each loss term to control its importance

relative to a reference loss term. We choose the data loss with λdata = 1 as the reference

loss term.

λdata λNS λEE λdiv λC λBC

1.0 0.1 0.01 0.001 0.001 0.0001

Table 2. Global weights used in the total loss function of the PINN.

3.3. Evaluation metrics

Two metrics are used to monitor the PINN training process: the mean average error

MAEζ and the Pearson correlation coefficient PCCζ with ζ ∈ {u, v, w, T, p}, and they

are defined by:

MAEζ =
1

Ns

Ns∑
i=1

∥ζi − ζ∗i ∥ , (17)
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PCCζ =
Ns

∑Ns

i=1 ζiζ
∗
i −

∑Ns

i=1 ζi
∑Ns

i=1 ζ
∗
i√

Ns

∑Ns

i=1 ζ
2
i −

(∑Ns

i=1 ζi

)2√
Ns

∑Ns

i=1(ζ
∗
i )

2 −
(∑Ns

i=1 ζ
∗
i

)2 . (18)

Here, Ns denotes the number of samples used to calculate the individual metrics. The

terms denoted with an asterisk correspond to given data from a DNS or a measurement.

4. PINN validation using synthetic PTV data

The results obtained with the PINN are validated in comparison with results obtained

from 150000 synthetic particle trajectories generated in a DNS (section 2.1) of a hard

turbulent RBC with Ra = 109, Pr = 6.9, which was processed for 125 time steps

representing 2.5 free fall time units. The parameter a = 126 is chosen to mimic the

mean temperature profile and the temperature boundary conditions at the top and

bottom plates for the considered case with a Nusselt number Nu = 63. The PINN was

trained over 2500 epochs and the training process took about 55 seconds per epoch on

a NVIDIA GeForce RTX 4090.

The Pearson correlation coefficients (PCC) of the output fields computed in the course of

the training are shown in the left panel of figure 8. The correlation values of the velocity

components reach almost 100% with respect to the ground truth. It is noteworthy that

the reconstructed temperature and pressure fields also reach correlation values of about

90% with respect to the ground truth at the end of training. The correlation values are

not biased by the boundary conditions, since they are estimated at the particle positions,

and there are no particles at the boundaries in our dataset. Therefore, correlation values

are suitable for comparing the flow structures in the reconstructed fields with those of

the ground truth (DNS). Also, the mean average error (MAE) of the reconstructed flow

fields compared to the DNS fields are shown in the right panel of figure 8 for the course of

the training. The MAE of the velocity components, pressure, and temperature converge

to values of about 2 ·10−3, 1 ·10−3, and 1 ·10−2, respectively, after 2500 training epochs.

The MAE of the temperature is higher than in all other fields, but the MAE is biased

by the higher reconstruction errors in the boundary layers near the heating and cooling

plates, where temperature values are large. As we will see later when analyzing figure

14, the temperature reconstruction error is much smaller in the global bulk flow than

in the boundary layers. Thus, the temperature MAE does not provide a reasonable

value. Both the PCC and MAE values shown in figure 8 are estimated at time step 120

(≈ 2.4 tref ).
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Figure 8. Pearson correlation values (left) and MAE (right) of the velocity

components, temperature and pressure estimated from the reconstructed PINN fields

compared with the DNS fields over 2500 epochs of training.

Figure 9 shows the dynamic behavior of the PCC and MAE values of each flow field

at each time step of the dataset after 2500 epochs of training. The correlation of the

velocity fields is almost 100%, except at the beginning and end of the dataset. This is

due to a typical data fitting problem: the PINN uses a superposition of sine functions to

fit the time dynamics of the velocity fields by optimizing data loss, and an abrupt end to

the dataset causes higher fitting errors. The correlation of the temperature and pressure

fields increases in time until 2 tref where the PCC values converges to about 90%. This

behavior is known as PINN and presumably needs to be trained over a sufficient time

span to learn the dynamics of the flow, and a temporal length of at least 2 tref is needed,

which was shown by Volk et al. (2025).

Figure 9. Pearson correlation values (left) and MAE (right) of the velocity

components, temperature and pressure estimated from the reconstructed PINN fields

compared with the DNS fields at each time step after 2500 epochs of training.

The high correlation values of the reconstructed properties with respect to the ground

truth can be visually investigated in figure 10, which provides a visual comparison

of the instantaneous vertical velocity, temperature, and pressure fields at time step

120 (≈ 2.4 tref ) of the DNS and their reconstruction using PINN. It is difficult to see
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differences in velocity and pressure, by comparing the temperature fields color differences

can be seen near the cooling plate and in the smaller plume-like structures in the bulk.

DNS PINN

Figure 10. Colored Instantaneous vertical velocity (top), temperature (mid) and

pressure (bottom) at the time step 120. Left: DNS vertical velocity, temperature and

pressure on the particle positions. Right: reconstructed vertical velocity, temperature

and pressure on the particle positions using the PINN.

The differences in the reconstructed temperature field compared to the ground truth

temperature are analyzed by comparing their averaged temperature profiles as a function

of cell height Z, shown in figure 11. The averaging was performed with respect to
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the horizontal directions X and Y and over the whole dataset in time. The mean

temperature profiles with steep gradients at the walls and the nearly vanishing gradients

in the bulk are typical for the considered high Ra number flow with a well mixed bulk

region. In principle, the mean temperature profiles agree well, but the profile of the

reconstructed temperature deviates from the DNS profile in the boundary layers. To

mitigate boundary layer reconstruction errors, Volk et al. (2025) proposed an PINN

training approach that restricts collocation point placement in later epochs in regions

with higher reconstruction errors, particularly within the boundary layers themselves.

This method is not yet implemented in the current code version, but it will help to deal

with errors inside the boundary layer in the future.

Figure 11. Computed and reconstructed mean temperature profiles ⟨T ⟩XY t averaged

horizontally and with respect to time as a function of cell height determined from the

temperatures of the particles in the DNS and the PINN, respectively.

Figure 12 shows the flow field statistics by comparing the probability density function

(PDF) of the reconstructed velocity components, temperature, pressure, and heat flux

w T using PINN with those of the DNS dataset. All time steps are used to generate the

PDFs. In accordance with the high PCC values at the end of the training, the PDFs

of the velocity components obtained from the DNS and the PINN agree well. Also,

the PDFs of the temperature shown in figure 12 agree well. However, there are some

deviations with more frequent large reconstructed temperature values obtained with

the PINN than predicted in the DNS. The reason for this is that the PINN was trained

with the exact temperature boundaries, which required the PINN to learn a temperature

field that connects the bulk with the boundary values. Therefore, deviations from DNS

temperature values occur mainly in the boundary layers, where the absolute temperature

and its gradient are high. In contrast, the PDF of the reconstructed pressure shows
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differences for positive pressure values with the DNS pressure, which has a strongly

asymmetric distribution around zero, but at zero and negative pressures the PDFs

agree well.

Figure 12. PDFs of the three velocity components, temperature, pressure and heat

flux calculated from the synthetic PTV tracks from the DNS in green compared with

the PDFs obtained with the PINN results in red.

Compared to the overall picture of the flow given in figure 10, a direct comparison of the

reconstructed flow fields with the DNS in the diagonal plane of the cubic cell containing

the LSC is given next, since in this plane the most interesting dynamics in the flow

can be observed. The corresponding instantaneous DNS velocity components at the

particle positions, the reconstructed velocity components, and the difference between

these components at time step 120 (≈ 2 tref ) in the diagonal plane of the cubic cell

containing the LSC with a thickness of L/50 are shown in figure 13 to demonstrate the

visual correlation between these fields. Figure 14 shows the corresponding temperature

and pressure fields and their differences in the same way. As shown in the bottom row

of figure 13, the reconstructed velocity components differ only slightly from the ground

truth, consistent with the high PCC values of nearly 100% at the end of training. The

error distribution of all velocity components looks similar and only a few patches with

a maximum error of about 10% can be found, overall the average relative error with

respect to the maximum velocity of 0.3 is about 1% for all velocity components, which
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is a good result showing that the training of the PINN with respect to the data loss

worked perfectly.

Figure 13. Color contours of the three velocity components in the diagonal plane

of the cubic cell containing the LSC with a thickness of L/50 predicted in the DNS

uDNS , vDNS , wDNS (ground truth) in comparison with the reconstructed velocities

u, v, w computed from the synthetic PTV tracks using the PINN. The absolute error

between the fields of the same properties is visualized in the bottom row.

The reconstructed temperature and pressure show the highest error near the heating

and cooling plate compared to the ground truth, see the bottom row in figure 14. In the

bulk, both fields show small errors and the average relative error is about 5% for the

temperature and 10% for the pressure. The fact that the largest reconstruction errors

are in the boundary layers is consistent with previously discussed results and is due to

the lack of data from a well-resolved boundary layer and the lack of a method to correctly

reconstruct the boundary layers. Most importantly, the reconstructed temperature and

pressure fields behave realistically. The temperature field shows thermal plumes that

extend from the heating and cooling plates to the entire cell height, which are also

coupled to the motion of the LSC. The pressure field is characterized by pressure minima

at the positions of the secondary circulations in the corner and in the center of the LSC.
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Pressure maxima are correctly reconstructed at the position where the LSC interacts

with the boundaries.

Figure 14. Color contours of the pressure and temperature in the diagonal plane of

the cubic cell containing the LSC with a thickness of L/50 predicted in the DNS

TDNS , pDNS (ground truth) in comparison with the reconstructed properties T, p

computed from the synthetic PTV tracks using the PINN. The absolute error between

the fields of the same properties is visualized in the bottom row.

The physical response in RBC is measured by the Nusselt number, which describes
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the dominance of convective heat transport over conductive heat transport, and we

know that the time and space averaged Nusselt number in the DNS is approximately

Nu = 63.4 for system parameters Ra = 109 and Pr = 6.9. Thus, we can verify whether

the PINN reconstructs a flow with the correct physical heat flux over the cell height

by calculating the Nusselt number with equation (6), resulting in NuPINN = 61.8. The

resulting Nu deviates only a little from the Nu value obtained in the DNS. Thus, we

can expect that the PINN provides a realistic flow. Note that the averaging interval of

2.5 tref is not sufficient for complete statistical convergence of Nu in the current dataset.

5. Temperature and pressure reconstruction using experimental PTV data

In the following, the temperature and pressure reconstruction with the proposed PINN

is tested using the velocity fields of an experimental PTV dataset (Ra ≈ 109, Pr ≈ 6.9),

see section 2.2, consisting of nearly 300000 particle trajectories over 150 time steps, of

which about 50000 are active per time step. The dataset covers a similar time span

as the DNS dataset of 2.5 free fall time units. The parameter a = 126 is chosen to

mimic the mean temperature profile and temperature boundary conditions at the top

and bottom plates for the considered case with a Nusselt number Nu ≈ 63, known from

the DNS for similar system parameters. The PINN was trained over 2500 epochs and

the training process took about 38 seconds per epoch on a NVIDIA GeForce RTX 4090.

The particle positions and velocities measured in the PTV experiments are associated

with calibration and image processing errors. It is well known that the velocity

component u in the direction of the cameras is associated with the largest error.

Thus, reconstructing physical flow fields with a PINN provides a method for processing

experimental data while maintaining physical consistency with the governing equations

(1)-(3) and reducing measurement uncertainties, as shown in figure 15 where the

measured velocities (top row) are compared with the reconstructed velocity (middle

row) at the particle positions in the diagonal plane of the cubic cell containing the LSC

with a thickness of L/20 at time step 145. The bottom row shows the absolute error

of the reconstructed velocities with respect to the measured velocities. It is clear that

the experiment does not resolve boundary layers, since the particle density reduces to

zero near the sidewalls in figure 15. However, the PINN can reconstruct unmeasured

flow properties. In our case this means to construct the temperature and pressure fields,

which are shown in figure 16 in the diagonal plane of the cubic cell containing the LSC at

time step 145. The reconstructed temperature and pressure fields show realistic results

compared to figure 14. The temperature field features thermal plumes of integral length

that detach from the heating and cooling plates and are coupled to the motion of the

LSC. In addition, pressure minima are located in the center of the LSC, and in corner

circulations, while pressure maxima are constructed in regions where the LSC interacts

with the boundaries.
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Figure 15. Color contours of the three velocity components in the diagonal plane

of the cubic cell containing the LSC with a thickness of L/20 measured with PTV

experimentally uEXP , vEXP , wEXP in comparison with the reconstructed velocities

u, v, w computed using the PINN. The absolute error between the fields of the same

properties is visualized in the bottom row.

Figure 16. Temperature field T and pressure field p in the diagonal plane of the

cubic cell containing the LSC constructed with the PINN based on experimental PTV

tracks.
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Figure 17 shows the probability density function (PDF) of the constructed velocity

components, temperature, pressure, and heat flux w T using the PINN. In the top row

of figure 17 the PDFs of the velocity components are compared with those obtained from

the measured velocities. The PINN reconstructs a similar distribution for the velocity

components v and w as provided by the experiment.

Figure 17. PDFs of the three velocity components, temperature, pressure and heat

flux calculated from the experimental PTV tracks in blue compared with the PDFs

obtained with the PINN results in red, and the PDFs obtained from the DNS taken

from figure 12 are shown in green.

The PDF of u in the experimental data exhibits bias due to measurement uncertainties,

as this component corresponds to the depth direction X of the camera system. While the

PINN successfully denoises the experimental data while preserving physical consistency,

the reconstructed PDF of u shows a reduction in extreme values compared to the DNS

reference data. Given the inherent measurement uncertainties in the u-component,

improved reconstruction accuracy might be achieved by independently adjusting the

data loss weight for this velocity component during training, separate from the weighting

parameters applied to the other velocity components. However, preliminary testing of

this approach yielded no significant improvements, suggesting that a more systematic

investigation of optimal weight factor selection would be beneficial. The bottom row

of figure 17 presents the PDFs of the purely reconstructed quantities: temperature,

Page 22 of 28AUTHOR SUBMITTED MANUSCRIPT - MST-127739.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



23

pressure, and convective heat flux. The temperature PDF exhibits the expected

characteristic bimodal distribution, though with fewer high absolute temperature values

compared to the DNS reference. This discrepancy is attributed to the absence of well-

resolved boundary layers in the experimental data, which the PINN consequently cannot

reconstruct accurately. The pressure PDF demonstrates a similar trend of reduced

extreme values relative to the DNS data. The convective heat flux PDF maintains the

same overall shape as that obtained from PINN reconstruction of DNS data (Figure 12),

but similarly shows fewer high absolute values. Notably, both the reconstructed heat flux

PDFs lack the asymmetry toward positive values that characterizes the DNS reference

data, indicating potential limitations in capturing the full range of heat transport

dynamics.

The physical response of the reconstructed flow is evaluated using the reconstructed

vertical velocity and temperature to calculate the averaged Nusselt number using

equation (6), resulting in NuPINN = 34.6. Note that the averaging interval is not

sufficient for complete statistical convergence of Nu in the current dataset. The deviation

from the reference value at Nu ≈ 63 is explained by examining the color scales of the

particle tracks in figures 4 and 1, where it can be seen that the vertical velocity scale

of the DNS tracks is about a factor of 1.6 larger than that of the measured tracks. In

an ideal setup, such as the DNS, RBC involves adiabatic side walls, which are absent

in our experiment. Instead, we used glass sidewalls with 8 mm thickness to provide

optical access for PTV measurements. This configuration results in an estimated total

relative heat loss through the side walls of approximately 20%. This heat loss diminishes

a portion of the buoyancy forcing that drives the LSC, which consequently reduces

the maximum normalized vertical velocity compared to DNS. This reduction is clearly

observable: the maximum normalized vertical velocity is about 0.29 in the DNS versus

0.18 in the experiment. Applying the corrective factor of 1.6 to the estimated averaged

Nusselt number yields Nu = 55.3. The remaining discrepancy between this value and the

expected value of about 63 is based on measurement uncertainties in the experimental

procedure and reconstruction errors of the proposed method.

6. Conclusion

This study successfully demonstrates the application of a physics-informed neural

network (PINN) to reconstruct temperature and pressure fields from Lagrangian velocity

data in turbulent Rayleigh-Bénard convection (RBC) at Ra = 109 and Pr = 7, utilizing

both synthetic direct numerical simulation (DNS) and experimental particle tracking

velocimetry (PTV) datasets. The PINN, employing a multilayer perceptron architecture

with a periodic sine activation function, incorporates a modification by adding a mean

temperature profile to the temperature output, as defined in equation (7). This

profile, parameterized by a = 2Nu, ensures exact satisfaction of the temperature

boundary conditions and facilitates accurate reconstruction of temperature fluctuations,

particularly in the well-mixed bulk region, thus addressing the numerical challenges

Page 23 of 28 AUTHOR SUBMITTED MANUSCRIPT - MST-127739.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



REFERENCES 24

posed by high temperature gradients in the hard turbulence regime.

In the DNS case, the PINN is able to reconstruct temperature and pressure fields with

a correlation of 90% with respect to the ground truth. For this high correlation factor

the associated flow fields consist of thermal plumes, large-scale circulation, and pressure

variations at the correct locations as the comparison with DNS data shows. However,

the reconstruction effectiveness is limited in the thermal and viscous boundary layers

due to insufficient particle data near the walls and the PINN’s lack of specialized training

for these regions. This limitation results in deviations in the temperature profiles near

the boundaries, as observed in figure 11. When applied to experimental PTV data, the

PINN not only constructs physically consistent temperature and pressure fields but also

reduces measurement uncertainties in the velocity fields, demonstrating its robustness

in handling noisy experimental data. The reconstructed Nusselt number profile in the

bulk flow deviates from the expected value due to heat losses through non-adiabatic

glass sidewalls, which diminish buoyancy-driven flow compared to the ideal DNS setup.

In future experiments, the thickness of the side walls should be increased to compensate

this effect. However, PINN reproduces realistic integral flow structures, such as thermal

plumes and pressure minima in circulatory regions, highlighting its ability to assimilate

unmeasured flow properties in complex convective systems. The compatibility of the

PINN with the open-source proPTV framework represents a significant advancement,

enabling comprehensive flow analysis without direct measurements of all flow quantities.

The PINN code, available at https://github.com/DLR-AS-BOA/RBC-PINN, supports

further development and application across diverse flow scenarios. While the proposed

methodology excels in reconstructing bulk flow dynamics, future improvements should

focus on enhancing boundary layer reconstruction, potentially by adopting and refining

the boundary-focused training strategies proposed by Volk et al. (2025) or incorporating

additional physical constraints to account for experimental non-ideal, such as non-

adiabatic boundaries. These advancements will further strengthen the applicability

of PINNs in studying turbulent thermal convection and other complex flow systems.
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