Boil-off recovery of LH2 infrastructure using metal hydrides

Inga Bürger*¹, Annika Eskens¹, Jonina Felbinger ¹

¹Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Technische Thermodynamik Stuttgart *inga.buerger@dlr.de;

Motivation

Background:

- H₂ Infrastructure is increasing (e.g., "Hydrogen Backbone")
- For high density storage, liquid H₂ (LH2) is an option

Challenge:

- As H₂ production is energy intensive, this energy carrier is very valuable and should be used as efficiently as possible
- However, filling, transport and storage of LH2 are related to heat input and thus to the occurrence of Boil-off H₂ (BOH)

Idea:

 Using a metal hydride to capture Boil-off H₂ at the point of release and compress it to a useful pressure level by thermal compression [1].

Concept: Thermal compression of Boil-off H₂ (BOH) using metal hydrides (MH)

Generic process:

- H₂ gas is provided at low pressure level
- Using heat at elevated T (e.g. FC), thermal energy is provided to the system
- H₂ is released at increased pressure level

Lab-scale testing setup:

- 345 g of LaNi₅
- Boundary conditions with two pressure levels: $P_{\text{high}}/P_{\text{low}} = 3$
- Temperature swing btw: T_{high} T_{low} = 70
 - →cycling abs/des induced
 - →absorption of H₂ below 1 bar proven (not shown here)

10800

[2]

Feasibility and evaluation of system with re-electrification of Boil-off H₂ using a fuel cell

Results for this use-case:

3600

- For 1 g/s BOH, 60 kW_{el} can be produced in a FC
- ΔT = 70 K btw. T_{low} and T_{high} required

time in s

- Thermal energy for compression:
 - ΔH of MH material: 12.5 MJ/kg_{H2} \rightarrow 10% of LHV_{H2}
 - o $\dot{Q}_{\rm sens}$ for switching MH and reactor mass between $T_{\rm amb}$ and $T_{\rm high} \rightarrow 5-10 \%$ of LHV_{H2}

Conclusion & Outlook

- Metal hydride based compression can enable re-electrification of BOH using a fuel cell
- Waste heat with ΔT =70 K to ambient required
- 10-20% of LHV of H₂ required for compression

Future work:

- Integration in different applications possible, $P_{high}/P_{low} \sim 5$
 - E.g. Tank (LH2) to H₂-Pipeline
- Transfer of technology to extraction of H₂ from gas mixtures
 - E.g., exhaust gas of fuel cells or gas turbines