A NOVEL TOOL FOR ADAPTING LAND ATMOSPHERIC CORRECTION TO WATER

ESA Living Planet Symposium 2025, Vienna, Austria, 23-27 June 2024

Peter Gege

DLR, Remote Sensing Technology Institute, Germany

Atmospheric correction

Land vs. water

DLR

Top of atmosphere radiance

Level 1

Atmospheric correction

Bottom of atmosphere reflectance

Level 2A

EnMAP Level 1 image from Chesapeake Bay 2022-07-22

Level 2A Land Product

Level 2A Water Product

Atmospheric correction

Software for land satellite sensors to create Level-2A data

Software used by sensor operators to convert data from Level-1 to Level-2A

Sensor	Operator	Land AC	Water AC
Sentinel-2	ESA	Sen2Cor (Modtran)	-
Landsat-8/9	NASA / USGS	LaSRC (Internal)	-
PRISMA	ASI	LUT (Modtran)	-
DESIS	DLR / Teledyne	PACO (Modtran)	-
EnMAP	DLR	PACO (Modtran)	MIP (FEM)

Software used by scientists or companies to convert Level-1 to Level-2A water

ACOLITE, C2RCC, DSF, hGRS, L2gen, POLYMER, iCOR, MIP, ...

Software used here to convert Level-2A land to Level-2A water

WASI [1] [2]

^[1] Gege, P. (2004): The water colour simulator WASI: An integrating software tool for analysis and simulation of optical in-situ spectra. *Computers & Geosciences 30*, 523–532.

^[2] Gege, P. (2014): WASI-2D: A software tool for regionally optimized analysis of imaging spectrometer data from deep and shallow waters. Computers & Geosciences 62, 208-215.

WASI Rrs tool

Download:

https://ioccg.org/resources/software/

Glint model

Glint is the ratio of reflected sky radiance ($L_{sky}(\lambda)$) to downwelling irradiance ($E_d(\lambda)$):

$$R_{rs}^{surf}(\lambda) = \rho_L \frac{L_{sky}(\lambda)}{E_d(\lambda)}.$$

 ρ_L : Fresnel reflectance

Reflected sky radiance is treated as sum of three "light sources" with known spectral dependencies $E_i(\lambda)$ and potentially unknown relative contributions g_i :

$$L_{sky}(\lambda) = g_{dd} E_{dd}(\lambda) + g_{dsr} E_{dsr}(\lambda) + g_{dsa} E_{dsa}(\lambda).$$

dd: direct downwelling from direction of Sun (Sun glint)
dsr: diffuse downwelling from Rayleigh scattering (Rayleigh glint)
dsa: diffuse downwelling fromaersosol scattering (Aerosol glint)

D:\KONFERENZEN\2025_ENMAP\TECHPLOT\GLINT.WTP | 31.3.2025

Simulation of glint for the following conditions:

$$SZA = 40^{\circ}$$

 $H_{oz} = 0.3 \text{ cm}$
 $WV = 2 \text{ cm}$
 $AOT = 0.1$
 $Angström exponent = 1.32$
 $g_{dd} = 0.1 \text{ sr}^{-1}$
 $g_{dsr} = 1/\pi$
 $g_{dsg} = 1/\pi$

Glint model

 $E_i(\lambda)$ are computed using model of Gregg and Carder ^[3] and spectral atmospheric data of Gege ^[4] which were derived using Modtran-3.

g_{dd} is usually fit parameter

 g_{dsr} and g_{dsa} are usually set $1/\pi$, representing isotropic irradiance

Spectral shapes of sun glint and sky glint are complementary

- → errors of path radiance can be corrected by glint correction
- → "glint" = surface reflections + remnants of path radiance

D:\KONFERENZEN\2025_ENMAP\TECHPLOT\GLINT.WTP | 31.3.2025

Simulation of glint for the following conditions:

$$SZA = 40^{\circ}$$

 $H_{oz} = 0.3 \text{ cm}$
 $WV = 2 \text{ cm}$
 $AOT = 0.1$
 $Angström exponent = 1.32$
 $g_{dd} = 0.1 \text{ sr}^{-1}$
 $g_{dsr} = 1/\pi$
 $g_{dsg} = 1/\pi$

^[3] Gregg, W.W., Carder, K.L. (1990). A simple spectral solar irradiance model for cloudless maritime atmospheres. *Limnology and Oceanography 35*, 1657–1675. [4] Gege, P. (2012). Analytic model for the direct and diffuse components of downwelling spectral irradiance in water. *Applied Optics 51*, 1407-1419

Glint correction

Steps: [5]

1. Apply inverse modelling to $\rho(\lambda)$ with fitting g_{dd} and few fit parameters for $R_{rs}(\lambda)$ Bio-optical model of Albert [6] [7] for remote sensing reflectance, $R_{rs}(\lambda)$. Large path radiance errors may further require to adjust or fit g_{dsr} and/or g_{dsa}

$$\frac{1}{\pi}\rho(\lambda) = R_{rs}(\lambda) + R_{rs}^{surf}(\lambda). \qquad \qquad \rho(\lambda): \text{Surface reflectance from Level 2A land processor}$$

2. Subtract fit result for $R_{rs}^{surf}(\lambda)$ from surface reflectance:

$$R_{rs}(\lambda) = \frac{1}{\pi}\rho(\lambda) - R_{rs}^{surf}(\lambda).$$

^[5] Gege, P., Grötsch, P. (2016): A spectral model for correcting sunglint and skyglint. Proc. Ocean Optics XXIII, 23.-28. Okt. 2016, Victoria, Kanada. https://elib.dlr.de/108100/

^[6] Albert, A., Mobley, C.D. (2003): An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters. Optics Express 11, 2873-2890.

^[7] Albert, A. (2004): Inversion technique for optical remote sensing in shallow water. Ph.D. Dissertation, Universität Hamburg, Hamburg, Germany, 188pp.

Sentinel-2B: Lake Junin, Peru, 2023-06-24

L2A product from Sen2Cor

Station

Glint + Path radiance

Result of Rrs tool

- Conditions: Water is very dark, lake at 4080 m a.s.l.
- Sen2Cor: Overcorrection leads to negative Rrs in band 1
- Validation: correspondence with field data is bad for bands
 1 and 2, but very good for all other bands

Sentinel-2B: Lake Junin, Peru, 2023-06-24

L2A product from ACOLITE

Glint + Path radiance

Result of Rrs tool

- Conditions: Water is very dark, lake at 4080 m a.s.l.
- ACOLITE: Much better than Sen2Cor
- Rrs tool: Glint pattern is removed
- Validation: Good correspondence with field data for all bands

Landsat-8: Lake Junin, Peru, 2023-07-14

DLR

L2A product from **ACOLITE**

Station

Glint + Path radiance

Result of Rrs tool

- Conditions: Water is very dark, glint comparable to Rrs
- Rrs tool: Glint pattern is completely removed
- Validation: Good correspondence with field data

Landsat-9: Lake Constance, Germany/Austria/Switzerland, 2022-08-02

L2A product from ACOLITE

Glint + Path radiance

Result of Rrs tool

- Conditions: Glint very low in most parts of the lake
- Rrs tool: Minor corrections
- Validation: Good correspondence with field data

DESIS: Tam Giang Lagoon, Vietnam, 2023-05-03

DLR

L2A product from PACO

Glint + Path radiance

Result of Rrs tool

Rrs tool: Glint pattern is completely removed

Validation: no in-situ data available

PRISMA: Lake Constance, Germany/Austria/Switzerland, 2022-08-02

L2A product from ACOLITE

Glint + Path radiance

Result of Rrs tool

Conditions: Glint medium

ACOLITE: Path radiance overcorrected

Rrs tool: Glint pattern is completely removed

Validation: Excellent correspondence with field data

EnMAP: Chesapeake Bay, USA, 2022-07-22

L2A product from PACO

Glint + Path radiance

Result of Rrs tool

- Conditions: Glint at station much larger than Rrs
- Rrs tool: Glint pattern is completely removed
- AC comparison: Good correspondence with MIP
- Validation: Excellent correspondence with field data

EnMAP: Venice Lagoon, Italy, 2022-07-16

DLR

L2A product from PACO

Glint + Path radiance

Result of Rrs tool

- Conditions: Glint much larger than Rrs
- PACO: Modified version (aerosol retrieval different)
- Rrs tool: Glint pattern is completely removed
- AC comparison: Excellent correspondence with MIP
- Validation: Excellent correspondence with field data

Outlook

- Quantitative validation and comparison with different AC softwares for water is ongoing for EnMAP data (ACIX-III Aqua)
 - > See presentations by A. Bracher and C. Giardino in Session B.02.09, June 26, 14:00-15:30 h
- Algorithm will be adopted to ESA's CHIME-L2A processor
 - AC for land is based on ATCOR/PACO
 - Python version of Rrs tool ready
 - Automatization ongoing
 - Fine-tuning ongoing
 - > See presentation by R. De Los Reyes in Session C.03.03, June 25

Summary

- Rrs tool corrects for sky glint, sun glint and path radiance errors of AC software
- Based on combined spectral model of water and surface; no geometry parameters
- Developed to adapt land AC software to water
- Can also be used to improve results of water AC software
- Good correspondence of derived Rrs with field measurements except for large errors of input L2 data

Thank you for your attention!