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Development of a G-Seat Force Cueing Algorithm for Motion
Simulation

Davide Nazzaro

Abstract

Motion simulators aim to replicate the sensation of movement to enhance
realism in flight training and research applications. To achieve this goal, motion
cues, including but not limited to vestibular, pressure, and visual, are typically
employed. By combining the motion of robotic platforms such as hexapods and
robotic arms, combined with visual and sensory feedback, motion simulators
create highly immersive experiences that mimic real-world vehicle dynamics.

G-seats, equipped with pressure-based actuators to simulate acceleration and
maneuvering forces, play a crucial role in these type of systems, especially when
large-scale motion platforms are unavailable or have limited mobility.

Due to workspace constraints, motion simulators are unable to reproduce
low-frequency sustained accelerations. To overcome this limitation, prototype
flap actuators integrated into the seat have been designed to provide localized
pressure cues, aiming to enhance the fidelity of perceived pressure.

This thesis focuses on the design of an optimal washout algorithm for motion
cueing (also known as force cueing), tailored for the actuators to be integrated
into the Robotic Motion Simulator (RMS) system at the German Aerospace
Center (DLR). Specifically, a somatosensory pressure model is integrated into
an LRQ-based control strategy to generate the optimal signal for the actuators,
aiming to accurately replicate the pressure a pilot would experience in a real
vehicle.

The effectiveness of the algorithm was evaluated through software simulations
and compared with a classical washout algorithm highlighting the improvement
that can be obtained.
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Introduction

Motion simulation plays a crucial role in the research and development of tech-
nologies in the aerospace and automotive fields, as well as in other transportation
domains. The human brain processes motion through several sensory channels:
visual stimuli, the vestibular system, and the somatosensory system. Simulations
based solely on visual stimuli are often insufficient: in fact, the mismatch between
motion cues received from these channels can cause discomfort called "motion
sickness" [6].

Moving platforms, such as parallel robots or capsules controlled by a robotic
arm, are the most widely used methods to simulate real aircraft movements by
stimulating human perception through the vestibular system.

Simulators aim to minimize the difference between the generated motion
cues and the dynamics of the actual aircraft. Motion systems struggle to
replicate low-frequency accelerations because of hardware constraints. One
way to overcome this problem is to build larger motion systems to extend the
operational bandwidth to lower frequencies, but this leads to a cost increase.
Therefore, it is necessary to replicate the desired accelerations in a way that
the simulator remains within its operational limits, providing the pilot with
accelerations as realistic as possible. A possible approach is to design motion
cues based on somatosensory perception to be integrated into the sensed cues
perceived by the vestibular system. G-seat is a technology that takes advantage
of this approach by simulating accelerations through somatic cues such as skin
pressure. This can be achieved by using actuators like active seat belts (ASB),
movable flaps, or air-inflatable padding placed in the seat ([7],[27]). In this
context, the process of defining motion cues that provide the desired perceived
pressures is called force cueing.

This thesis builds upon previous research work [15], which commissioned
a prototype system and developed an initial control algorithm for the system.
The objective of this work is to enhance that algorithm by integrating a tactile
perception model, further improving the realism of force cueing.

In this thesis work, realized in collaboration with CNR-IEIIT and DLR, an
optimal control algorithm has been developed for actuators to be embedded
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Introduction

in a G-seat for the DLR Robotic Motion Simulator (RMS), to simulate the
movements associated with low-frequency accelerations. The actuators used are
movable flaps, integrated under the seating surface and in the backrest.

As previously mentioned, motion simulation is utilized in multiple transporta-
tion sectors; however, this research is especially pertinent to the aviation industry.
Therefore, any reference to a vehicle in this context will specifically refer to an
aircraft.

The rest of the thesis is structured as follows.

Chapter 1 provides an overview of the architecture of the DLR RMS, high-
lighting the main features and functionalities. It includes a summary of the most
used force cueing algorithms and a description of the anatomical mechanism of
tactile perception.

Chapter 2 describes the simulation environment and the tools used to model
the system. It also delves into the modeling of the somatosensory perception
system and describes the implementation procedure of the force cueing algorithm.

Chapter 3 contains the description of the methodology used to test the
performance of the developed model and covers the tuning process used to
optimize the response of the actuators. Additionally, this chapter presents the
results obtained.

Finally, Chapter 4 summarizes the key findings of the project, discussing the
implications of the results and potential improvements and suggesting possible
directions for further research and optimization in G-seat technology for motion
simulation.



Chapter 1

State of the art

Motion simulation plays an important role in the aviation industry. Flight testing
is expensive and complex and is often conducted in the final stages of development
when most of the budget is already allocated; thercfore, exploiting simulated
models is paramount for aircraft manufacturers. To ensure the reliability of the
simulation environment, it is crucial that it accurately represents the interactions
between the aircraft systems and provides the pilot with feedback that closely
resembles real-life scenarios [26]. This allows pilots to train in a controlled
environment while providing them the ability to perform high-risk maneuvers
that would be difficult or dangerous to attempt in real-flight conditions.

This chapter describes the hardware platform employed for this work, a
definition of motion cueing and the most commonly used algorithm techniques
to implement it. Lastly: an overview of the perceptual models useful for this
thesis is provided.

1.1 Motion platform

1.1.1 The Robotic Motion Simulator (RMS)

The Robotic Motion Simulator [19] is a 7 degree of freedom (DOFs) motion
system developed by DLR, and it’s the simulation framework on which this study
is based. The robotic arm, i.e. KUKA KR 500 TUV, features six DOFs, while
an additional DOF is created by the 10m linear track on which it’s mounted.
The simulator capsule (gondola) is attached to the robotic arm, enabling infinite
yaw and roll motions, whereas the pitch motion is restricted between —216° and
93°. Figure 1.1 and Figure 1.2 show an overview of the RMS joint DOFs and
an image of the simulator in action. Figure 1.3 shows the simulator cockpit,
which is modular and can host different systems to increase the simulation
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fidelity. Translational movement is constrained by a 3m limit, which can be
extended using the linear axis, 2m on the longitude axis, and 1m vertically.
Manufacturer-imposed constraints on torque, acceleration, and velocity limit
the simulator’s drives. The RMS presents several unique benefits compared
to traditional simulators that utilize a Steward platform. Notably, it boasts
an extensive rotational and translational workspace, positioning the RMS as
one of the most agile serial kinematic simulators on the market. Additionally,
it provides significant flexibility in accommodating various modular cockpit
components and input devices. However, it is important to note that the RMS
has lower payload capacity and acceleration capabilities in comparison to its
Steward-platform based alternatives, with a maximum payload limit of 500kg.

Figure 1.1. Joint Locations and TurningFigure 1.2. Robotic Motion Simulator
Directions of the Robotic Platform [5] (RMS) at the German Aerospace Center [19]

Inside the RMS, the pilot receives flight visual information through a display
or virtual reality headset. Interaction between the pilot and the simulator is
enabled by control devices such as a joystick, thrust lever, and pedals, which
directly influence the flight dynamics model. The resulting accelerations, rota-
tional velocities, and orientations are processed through a washout filter, which
optimizes workspace utilization while maintaining realistic motion perception.
An optimization approach based on inverse kinematics allows the position and
orientation of the robotic arm to match the desired ones, ensuring that the
joints’ angles, velocities, and accelerations meet the required values. By incor-
porating sophisticated motion control technology, the simulator can deliver an
exceptionally realistic and interactive setting for both pilot training and aircraft
evaluation. This approach offers a viable substitute for conventional flight testing
while maintaining the complexity and fidelity for such advanced stages.
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Figure 1.3. Gondola, RMS cockpit simulator [19]

1.1.2 G-seat

The G-Seat technology represents a groundbreaking advancement in the simula-
tion of motion and acceleration for seat-based simulators, including those used
in airplanes, helicopters, cars, boats, and spacecraft. Its mechanism employs
a sophisticated combination of seat movement, pressure-applying components
within the seat, and a tensioning harness to deliver immediate, rapidly reversible,
and enduring sensations of motion and acceleration across all three spatial
dimensions.

Research [2] indicates that G-seats serve as a valuable enhancement for
motion simulators and, when paired with a moving platform, can significantly
enhance the sensation of motion. In the investigation conducted by Chung
et al. [11], various configurations of a simulator incorporating a G-seat were
evaluated. Pilots operated Blackhawk military transport helicopters within a
motion simulator that utilized both a G-seat independently and a G-seat in
conjunction with platform movement. The pilots noted that the combination of
the G-seat and platform movement provided a more pronounced sense of motion
than the platform alone.

For this reason, G-seat technology was evaluated as a viable option to improve
RMS performance. Metal flaps were selected to serve as actuators to be integrated
within the seat cushioning.

Each flap is controlled by an electric motor, specifically a Nanotec Electronic
DF45, which receives the target position in degrees. The driver (Somanet Node)
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Figure 1.5. Actuator prototype [Credit to:
Figure 1.4. Actuator CAD model ~ DLR Institute of Dynamics and Control]

gets the actual position by an incremental encoder, the Same Sky AMT10, as
an input and controls the motor to reach the desired position. Then, a cam
disc moves the motor through a planetary gear, ensuring a linear relationship
between the rotation of the motor and the angle of the disc. As the disc rotates,
it pushes against the metal plate from below, causing it to deflect. The disk is
mounted inside the actuator housing, allowing it to rotate around its axis. The
amplitude of the flap deflection depends on the size of the disk. In this case, the
selected disk allows a maximum fin deflection of about 16.5°, corresponding to
a disk rotation of 136.5°. Since the relationship between disk motion and fin
deflection is nonlinear, it can be mapped by interpolating the measured data
points.

The actuators are engineered for installation beneath the seat, allowing them
to apply pressure to the buttocks against the seat back. The actuator is shown
in Figure 1.4 and Figure 1.5, while their configuration is depicted in Figure 1.6.

A Hall sensor tracks the position of the motor; in this way, position feedback
is guaranteed. The initial position must be defined at the beginning of the
operation, and this is achieved by a reference run each time the motor is switched
on, during which the motor rotates in one direction until it detects a stop. The
stop is identified when the motor current exceeds a predefined threshold, at
which the zero point position is set. The Hall sensor has a resolution of only 7.5°.
However, since the motor completes over 10 full rotations (3675°) to move the
seat flap from 0° to its maximum deflection of 16.5°, the resulting 7.5° position
deviation corresponds to an average flap deflection error of just 0.03°. This
margin is negligible and does not impact operations.
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Figure 1.6. Configuration of flaps, modeled using the DLR SimVis software. [15]

1.2 Motion cueing alogrithms

In the field of flight simulation, motion cueing refers to the creation of stimuli that
must be conveyed to the pilot. To achieve this, several components are essential:
a physics model, a motion platform, and a Motion Cueing Algorithm (MCA)
[9]. The physical model interprets the operator’s control inputs, assesses the
dynamics of the aircraft, and computes the simulated physical state by solving
the differential equations governing motion. Then, the simulator replicates this
physical state at the operator’s location. This process is facilitated by MCAs,
which convert the simulated physical state into corresponding motion for the
simulator whenever feasible. Motion cueing involves the creation of sensory stim-
uli designed to replicate realistic movements within a virtual environment. The
vestibular system is generally given precedence in the transmission of information
due to its heightened sensitivity to alterations in movement. Conversely, the
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other components of the simulator can be engineered to produce stimuli across
multiple perceptual channels, like visual, auditory, and somatosensory ones.

The primary objective of MCAs is to mimic the motion of an actual aircraft
while adhering to the limitations imposed by the simulator. The area in which it
can move is referred to as the workspace. In addition, simulated vehicles often
generate very high accelerations, which cannot be replicated by the simulator.
Therefore, the goal is to mislead the operator’s senses, emphasizing the impor-
tance of perceived validity to ensure that the experience of controlling the vehicle
feels authentic rather than merely physically accurate. Various techniques are
implemented in MCA to trick the operator’s sensory perception.

The MCA receives specific physical quantities (computed by the physics
model) from the simulated aircraft as input and the desired motion platform
pose as output. The pose is represented as a six-components vector that defines
the position and the orientation of the motion platform. The inputs may
vary depending on which MCA is used, although they typically include linear
acceleration (expressed as specific force) and angular velocity, as these are sensed
by the human vestibular system. Other parameters, such as the vehicle position,
orientation, or angular acceleration may also be used.

A detailed summary of motion cueing algorithms is provided by Fischer [16]
and Born [5]. The following sections recall the most commonly used MCA
approaches.

1.2.1 Classical Washout

The first MCA was originally designed by NASA engineers Schmidt and Conrad
in 1969 [13], and then modified and improved by other groups of researchers.
However, the basic ideas remained the same [17]. This algorithm has come
to be known as the classical algorithm or classical washout and is still widely
used. There are some variations from different implementations, but the general
principles are similar. The key features of the classical washout are:

e Scaling down the inputs relative to the physical state of the simulator in
order to minimize the generated motion and reduce the risk of exceeding
the platform’s workspace;

e Removing low-frequency acceleration that could lead to large displacement
and cause the reaching of the hardware constraints;

« Using tilt to simulate low-frequency accelerations that were filtered out
since the vestibular system is not able to distinguish between translational
acceleration and a tilted head position for sufficiently small angles;
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o Ensuring the algorithm returns the motion platform to its neutral position
for constant input, which is why the algorithm is called "washout".

Figure 1.7 shows a classical washout filter algorithm structure.

Figure 1.7. Classical Washout structure

The classical algorithm is the predominant choice in commercial simulators. It
is defined by a combination of linear high-pass and low-pass filters, the parameters
of which, including break frequencies and damping ratios, can be fine-tuned
through an off-line trial and error process.

The initial implementation requires as inputs the three specific forces acting
on the aircraft cockpit in the body axes, which are defined as

fueh=a—91 (11)

where g is the gravitational acceleration and a is body-axis components of the
aircraft acceleration at the cockpit reference point, and the three angular rates
wyep Of the aircraft.

The translational branch generates translational motion while operating
within the motion platform’s workspace. This channel reproduces high-frequency
displacements only. In this channel, the specific force enters as input and then is
scaled and transformed into world frame acceleration [22]. Through a High-Pass
Filter, the low-frequency acceleration is attenuated to reproduce only high-
frequency displacement. Finally, a double integrator provides the sway, surge,
and heave displacements of the motion platform.

The translational channel HP filter transfer function is

82

52 + 2(pwis + w3

HP; = (1.2)

Where ¢, is the damping ratio, which determines the sharpness of the filter’s
response, and wy, is the cut-off frequency.
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The rotational channel works like the translational one, but it handles the
angular velocities instead of specific forces. It contains blocks that have the
same function of the translational branch; however, the high-pass filter output is
integrated once to obtain the Euler angles (pitch, roll, and yaw). Yaw is a direct
output, while pitch and roll are further combined with the coordination channel
output.

The rotational channel HP filter transfer function is

Hp, = > (1.3)
S+ Who
Where wy, g is the cut-off frequency.

The coordination channel is responsible for simulating low-frequency accelera-
tions, previously attenuated by the translational channel. It induces rotational
movements that tilt the motion platform, exploiting gravity to simulate low-
frequency accelerations. The scaled-specific forces enter this branch as input. A
low-pass filter is then applied to eliminate high-frequency signals. The resulting
acceleration is converted into pitch and roll angles (tilt coordination is limited to
lateral and longitudinal accelerations) by the tilt coordination block. In order to
ensure these motions are not perceived as angular displacements, a rate limiter
is applied, trying to keep the angular velocity of the tilt coordination below the
operator’s perceptual threshold.

The coordination channel LP filter transfer function is

¥;

82 4 2 wss + wi

LFP, (1.4)
Where ¢; is the damping ratio, which determines the sharpness of the filter’s
response, and w; is the cut-off frequency.

Most of the processing blocks of the classical algorithm can be parameterized,
and the choice of the parameters significantly modifies its performance.

1.2.2 Adaptive Washout

The classical washout is effective and simple to implement. However, its perfor-
mance is limited by two factors:

» the reachable workspace of the motion platform is not considered, which
enhances flexibility but results in suboptimal adaptation to the particular
hardware;

o the algorithm parameters are pre-tuned offline for a worst-case scenario, as
the generated motion must stay within the platform constraints regardless
of the inputs.
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This conservative approach often leads to an underutilization of the motion
platform, particularly when input magnitudes are small, as accelerations may be
excessively downscaled. Consequently, only a fraction of the platform’s workspace
is utilized under typical conditions, and the resulting motion cues may be less
effective.

PBsim l g
ayeh + 2 Osim
_DISM B.I_irllll | Lis | :l Adaptive Filler #1 —» 18 — 1 l—b
| | — A/ l | )
| Rate Limit ‘
Oyah E = z Bsim

—>|.5-|:m&LIr|ﬂ§—)- Aa }——>| Adapthe Filer | ————————> 15—

o

Figure 1.8. Adaptive Washout structure

Adaptive algorithms have been introduced ([21],[23])to address these limita-
tions, allowing the MCA filters to adjust their parameters dynamically throughout
execution. Classical washout algorithms, in contrast, are characterized by their
use of simple linear filters and scaling elements with time-invariant coefficients
combined with nonlinear limiting and transformation processes such as tilt
coordination. Adaptive washout algorithms, on the other hand, incorporate time-
varying filters and scaling coefficients, enabling a more efficient and responsive
use of the motion platform. Figure 1.8 shows the block diagram that outlines
the operation of the adaptive washout.

1.2.3 Optimal Washout

The main limitation of both classical and adaptive algorithm is that the human
perception is not considered, as both algorithms are essentially heuristic. The
filter structure is predefined and seeks to optimize the parameter values of the
algorithm blocks. Thus, this fixed structure does not represent the optimal
approach to motion cueing, even when parameters are finely tuned.

For this reason, the optimal MCA was introduced by [25] and developed by
[26]so that the motion cueing generation system is treated as a control problem,
trying to minimize the difference between the output of the system and the
expected output. Figure 1.9 shows the block diagram of the optimal washout
algorithm. The main difference from the other presented approaches can be
found in the filters Wiy, W12, and Wyy. These filters can be obtained using
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the Linear Quadratic Regulator (LQR) method and obtaining filters of high
order. The goal of this optimization problem is to minimize perception errors by
incorporating mathematical models of human perceptual systems.

ﬁsm\l

Lis Scale & Limit | s 1is in
|
H Tilt rate Limit

Oveh l Bsim
Scale & Limit H \—w s U

Wi
\

Figure 1.9. Optimal Washout structure

The potential advantage that comes from a reduced sensation error depends
on the accuracy of the human perception models. Additionally, the working
space usage may also be improved.

Perception
Model

Vehicle
Dynamics

Optimal Control
Algorithm

Motion Cueing Simulator Perception
Algorithm Dynamics Model

Figure 1.10. Optimization structure of the optimal control algorithm

Figure 1.10 illustrates the optimization structure of the optimal control
algorithm. The input is the force F' that represents the vehicle’s dynamics. In
the upper branch, the force perceived by the pilot in an aircraft during a real
scenario is calculated using the appropriate perception model. In the lower
branch, the force is first processed through the optimal motion cueing algorithm,
which provides the simulator with linear and angular position vectors. The
force fyen generated by the simulator is then sent to the perception block, which
returns the force dg;,,, the pilot perceives as reproduced by the simulator.

The two perceived forces (the real one and the one in the simulator) are
subsequently compared. The algorithm’s objective is to minimize the discrepancy
between these two forces, thereby enhancing the simulation experience.
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In the linear Optimal MCA implementation, the filters are computed a
priori, by selecting the weighting matrices in the cost function. In the Nonlinear
Optimal MCA variant, the optimization problem is solved at each time step of the
simulation. This approach is challenging because of the real-time implementation,
due to the Riccati equation solution to be computed at each step. The optimal
approach stands out by incorporating the sensation error and the simulator’s
physical constraints directly into the filter design. However, due to the significant
computational effort required for optimization, this method demands more time
for tuning and development compared to other approaches

1.2.4 MPC Washout

A method for developing motion cueing algorithms that has gained significant
prominence in recent years is Model Predictive Control (MPC) developed by
Dagdelen et al. [14]. This technique is capable of managing a large number of
variables and complex constraints. The primary objective of MPC is to enhance
a cost function through the prediction of system behavior.

The objective is to determine a viable control action and a sequence of states
at each time step across a prediction horizon, facilitating the computation of
the optimal movement for the simulator. The optimal movement is attained by
minimizing the squared perception error, which is defined as the discrepancy
between the acceleration observed in the simulator and that of the real vehicle.
This methodology incorporates the physical limitations of the simulator and
also factors in the human perception system during the calculations. When the
algorithm predicts that the platform is approaching its limits, it starts a washout
maneuver, guiding the simulator toward its neutral position while remaining
below the motion perception threshold. This inevitably introduces false cueing,
as the system must decelerate to stay within its physical boundaries.

The higher the control horizon, the better the tracking performance, increasing
significantly the complexity of the calculations. The MPC strategy has received
positive subjective evaluations[9]; however, further studies are needed to compare
its performance with existing MCA methods.

1.3 Force Cueing

In the context of G-seat application, the accelerations specified by the simulation
are modeled by applying pressure to the body, this method is known as force
cueing [15]. This approach operates in a similar way to motion cueing but relies
on actuators exerting pressure on the human body. The position and the direction
of these actuators are crucial to ensure the correct perception of acceleration.
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Unlike motion-based systems, the G-seat does not use tilt coordination, in fact,
it works purely through pressure application. To design cueing strategies based
on human perception models, a model for pressure sensation must be included.
In the present work, the optimal washout algorithm has been chosen and its
detailed implementation will be presented in Chapter 2. In the following section,
the main pressure perception models will be discussed.

1.4 Human perception model

The operator of a motion platform has to control its dynamics, which requires
perceiving its motion. The human brain combines multisensory cues through
vision, the vestibular system, somatosensory inputs, and auditory cues to make
dynamic estimates of self-orientation [8], [12]. This section focuses on the
somatosensory system, examining its physiology and categorization from an
engineering perspective.

Ruffini endings

Meissner’s
corpuscles

Pacinian

r |
Merkel cells PO

Figure 1.11. Mechanoreceptors of human skin [10]

Somatic sensors include mechanoreceptors, thermoreceptors, electromagnetic
receptors, chemoreceptors, and pain receptors [3], [10]. For vehicle simulation,
mechanoreceptors are the most relevant, as they detect touch, pressure, and
vibration. Tactile sensors, located in the skin, are also called cutaneous sensors,
which play a key role in perceiving steady-state motion. It is thought that these
receptors convert physical energy into chemical alterations, leading to the specific
stimulation of free nerve endings and the generation of nerve impulses.

Figure 1.11 shows the receptors of interest for this study and their placement.
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1.4.1 Pacinian Corpuscles

Pacinian corpuscles are found in subcutaneous tissues of the body; they are a type
of encapsulated nerve endings. They adapt to pressure within 10 milliseconds
in both compression and release. They function as a high-pass filter and a
rectifier. Figure 1.12 presents a schematic of an in-vitro experiment where a
Pacinian corpuscle is positioned on a fixed plate and subjected to controlled
compression via an applied electrical signal. The signal activates a piezoelectric
crystal, causing it to deform and compress the corpuscle while removing the signal
eliminates the compressive force. The bottom trace depicts crystal displacement,
while the generated potential of the Pacinian corpuscle is shown just above it.

-—FPiezoelectric
Crystal

Pacinian G, =  Fixed Plate

Corpuscle

Generator Potential u

Displacement - \

J

Figure 1.12. The generator potential induced by the compression of an intact
Pacinian corpuscle. Calibration is 10ms and 50V . [4]

The Pacinian corpuscle generates a potential that consistently corresponds
to the direction of the stimulus, regardless of whether it is being compressed or
released, a phenomenon known as the "rectifier’ effect. This suggests that it does
not convey information about the direction of the applied force. Examination
of the duration of the generated potential in relation to calibration marks
indicates that the receptor fully adapts in approximately 10ms, highlighting its
sensitivity to high-frequency stimuli. These receptors are essential for sensing
tissue vibrations and swift mechanical alterations, capable of responding to
displacements as small as 10um. The transfer function of the Pacinian corpuscle,
as described by Borah, characterizes its input in terms of skin deformation and
its output as afferent potential, featuring a time constant of 10 milliseconds. The
voltage output generated is affected by pressure, although the precise nature of
this relationship necessitates additional research.
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1.4.2 Type I receptors

A notable example of Type I receptors is the Merkel disc, located in the epidermis
near the skin’s surface. These receptors exhibit an initial strong response, followed
by gradual adaptation over approximately 1 to 30s, with a frequency sensitivity
ranging from 1 to 100Hz. They are highly attuned to detecting edges and
curved surfaces, responding to skin displacements between less than 1mm and
up to bmm. Merkel discs are distributed at a density of about one per square
millimeter, though their static afferent firing rate is irregular.

Another Type I receptor is the Meissner corpuscle, which adapts rapidly
and is found at a similar density of 1 per square millimeter. It has a broader
bandwidth of 2 to 200H z and detects skin displacements as small as 0.001mm
up to lmm. However, its spatial resolution is lower compared to Merkel cells.

1.4.3 Type II receptors

Ruffini end organs are Type II receptors located in the dermis, as well as in
connective tissues and joint capsules. Unlike Type I receptors, they are not
positioned near the surface. They exhibit partial but slow adaptation, with
time constants of approximately 1, 5, and 20s, making them well-suited for
detecting sustained skin deformation and skeletal joint rotation. These receptors
are distributed at a density of about 10 per square centimeter and respond within
a 10H z bandwidth.

Ruffini endings have a continuous resting and static afferent firing rate (AFR)
and are believed to play a key role in sensing skin stretch. Other Type II receptors
include free nerve endings, which primarily detect pain, and hair follicle receptors,
which respond to axial or bending forces with spatial resolution ranging from 1
to 3em.

1.4.4 Frequency response of somatosensory receptors

Figure 1.13 presents a psychophysical tuning curve illustrating the sensitivity of
haptic receptors to vibrational stimuli. The graph plots the required stimulus
amplitude for detection against frequency in hertz. Two data sets are shown:
one under normal conditions and another with a topical anesthetic applied to
the palm’s base.

Each set features two distinct slopes, reflecting different receptor response
characteristics. The shallower slopes correspond to Type I and Type II receptors,
while the steeper slopes (falling at a rate of -2) are characteristic of Pacinian
corpuscles. The anesthetized condition resulted in reduced sensitivity, meaning
higher stimulus amplitudes were needed for receptors near the skin’s surface
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to detect the vibration, while deeper receptors, primarily Pacinian corpuscles,
remained unaffected.

Pacinian corpuscles exhibit increased sensitivity with frequency, requiring only
a two-micron deformation for detection at 300H z. Further experiments extended
the frequency range, showing that these receptors respond to deformations
as small as 1um peak-to-peak between 200 and 400H z, with slightly reduced
sensitivity up to 500H z.
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Figure 1.13. Psychophysical tuning curve for the human threshold in response
to tactile stimuli on glabrous skin, specifically the thenar eminence. [4]

The somatosensory system plays a crucial role in motion perception, where
mechanoreceptors provide essential feedback of touch, pressure and vibration.
Among these receptors, Pacinian corpuscles demonstrate exceptional sensitivity
to high-frequency stimuli, functioning as rectifiers and high-pass filters. Type
I receptors, such as Merkel discs and Meissner corpuscles, contribute to edge
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detection and fine touch discrimination, while Type II receptors, including Ruffini
endings, aid in perceiving sustained skin deformation and joint movement.
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Chapter 2

System modelling

This chapter describes in detail the implementation procedure of the control
strategy. In the first section, the implementation environment and software used
are presented. Then, the optimal washout algorithm used to control the G-seat
flaps and the haptic perception model used is described.

2.1 Simulation environment

The system modeling and controller design were performed using MATLAB /Simulink.
The software was then tested on Modelica. In this paragraph, the development
environments will be briefly described.

2.1.1 Modelica - an overview

Modelica is an open-source, object-oriented language designed for the modeling of
extensive, intricate, and diverse physical systems [20]. It is particularly effective
for multi-domain modeling, such as mechatronic systems in robotics, automotive,
and aerospace sectors, which encompass mechanical, electrical, hydraulic, and
control subsystems, as well as process-oriented applications and the generation
and distribution of electrical power.

The design of Modelica allows it to be employed in a manner akin to how
engineers construct real-world systems. Models within Modelica are represented
mathematically through differential, algebraic, and discrete equations, elimi-
nating the need for manual resolution of specific variables. A Modelica tool
possesses sufficient information to automate this process. Furthermore, Model-
ica is structured to leverage specialized algorithms that facilitate the efficient
management of large-scale models. It is well-suited for hardware-in-the-loop
simulations and embedded control systems.
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Modelica accommodates both high-level modeling through composition and
detailed component modeling via equations. Standard component models are
generally accessible in model libraries. A graphical model editor enables users
to create models by constructing a composition diagram (or schematic) that
involves positioning icons representing component models, establishing connec-
tions, and inputting parameter values through dialogue boxes. Additionally,
features for incorporating graphical annotations in Modelica ensure that icons
and composition diagrams can be easily transferred between various tools.

2.1.2 Dymola - an overview

Dymola, or Dynamic Modeling Laboratory, is a proprietary modeling and simu-
lation software created by Dassault Systemes, tailored to facilitate Modelica [1].
Specifically, it offers libraries of genuinely reusable components and supports
connectors along with composite causal connections. Moreover, model libraries
are accessible across various engineering fields.

Dymola employs an innovative modeling approach that integrates object
orientation with equations, eliminating the traditional requirement for manual
conversion of equations into block diagrams through the implementation of
automatic formula manipulation.

Notable features of Dymola include:

o The capability to manage extensive and intricate multi-engineering models,
« Enhanced modeling efficiency through graphical model assembly,

o Accelerated simulation via symbolic pre-processing,

« Flexibility for user-defined model components,

« An open interface for integration with other software,

o Support for 3D animation,

» Real-time simulation capabilities.

The architecture of the Dymola software is depicted in figure 2.1. Dymola
boasts a powerful graphical editor tailored for model composition. It works with
Modelica models saved in files and can import a variety of data and graphic files.
Furthermore, Dymola features a symbolic translator that transforms Modelica
equations into C-code for simulation. This C-code can be exported to Simulink
and hardware-in-the-loop systems. Additionally, Dymola provides sophisticated
tools for experimentation, plotting, and animation. Users can employ scripts to
organize experiments and perform calculations, and an automatic documentation
generator is also included.
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Figure 2.1. Dymola architecture [1]

2.2 Perception model

This section introduces the different mathematical models of the receptors
examined in Chapter 1. These models are primarily derived from existing
literature. Specifically, the models for the Pacinian corpuscle and the type I and
IT tactile receptors are integrated into simulations of a seated human experiencing
vertical acceleration. The behavior of these models is characterized by their
frequency and time responses.

Don R. Gum developed a body pressure model, depicting the body/seat
dynamics as a spring mass damper system [18]. This model illustrates the skin’s
deflection under the ischial tuberosities, which are situated in the buttocks region.
When the user is seated, the body weight causes the skin in the buttocks area to
deform. The model assumes that the seat remains rigid and does not present
deflection, meaning that only the skin experiences deformation. Figures 2.2 and
2.3 show how this model is derived and the mechanical circuit. The equation

that describe it is given by:

G
dt?

d dits
—FC;;,(?‘T;EZ — d—zl;;)"l'_kb(mb_xs) (21)
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dry, dx,. dxy,
a o) teus

where my, is one-half the mass of the body on the seat, k; is the body flesh spring
constant, ¢, is the body flesh damping factor, x; is the body displacement, k. is
the seat cushion spring constant, c. is the seat cushion damping factor, x. is the
seat displacement.

0= —k‘b(acb — ZL’C) + kex. — Cb( (2.2)
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Figure 2.3. Body-seat contact me-
Figure 2.2. Body-seat contact [18§] chanical model [18]
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The transfer function governing the body /seat dynamics connects an external
vertical force applied to the seat to the resulting skin deflection, excluding any
initial deformation caused solely by the person’s body weight. This transfer
function indicates the output of any additional deformation resulting from the
force exerted by the seat.

The system’s input consists of an externally applied force, which is converted
into skin displacement in meters through the body pressure dynamics transfer
function. The skin deflection correlates with perceived pressure, influenced
by a central nervous delay and adaptation. The adaptation of the Pacinian
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Figure 2.4. Gum Body Pressure model

corpuscle is modeled with a duration of one second, allowing it to adjust to
stimuli and enhance the sensation of skin deformation. Gum notes that "no
quantitative information regarding an adaptation process is given except that it is
much more rapid than the vestibular apparatus and may be around one second.”
[18]. Consequently, he incorporated a time constant of one second, along with
a H0ms delay from the central nervous system. Figure 2.4 illustrates the block
diagram of this model.

Following this, Joshua Borah made modifications to the Gum model [4].
Borah’s model operates under the assumption of a specific force input and
considers a human mass of 70kg, in contrast to the 28kg used by Gum. Gum’s
model posited that half of the individual’s mass is supported by each ischial
tuberosity, facilitating mass distribution during aircraft roll maneuvers. The
increased mass in Borah’s model is more representative of real-world conditions,
leading to a reduction in both the damping ratio and the natural frequency of
the body/seat dynamics. This revised model incorporates the features of type
I and type II cutaneous receptors, along with the high-pass characteristics of
the Pacinian corpuscle. Additionally, it includes a rectification effect to address
the Pacinian corpuscle’s inability to convey the direction of the stimulus. The
output from this block diagram directs the signal to a central processor, depicted
as a Kalman filter, which enables the extraction of directional information from
the Pacinian corpuscle based on the rectification channel from which the signal
originates.

Borah introduced an alternative body pressure model that examines receptor
dynamics to develop a comprehensive integrated model.

This model features a more realistic structure compared to the one depicted in
figure 2.5, as it suggests that receptor dynamics and the dynamics of the Pacinian
corpuscle contribute additively rather than merging through the multiplication
of the two transfer functions. It is important to note that this combination does
not necessarily follow a linear pattern. The primary focus of the research cited in
these references is to develop a model that integrates the entire motion-sensing
apparatus using a Kalman Filter, referred to as the central processor in the
subsequent text. A revised model, illustrated in Figure 2.6, is derived from the
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Figure 2.5. Borah Body Pressure model

frameworks established by Gum and Borah [8]. This updated model incorporates
specific force sensations by utilizing the body/seat dynamics outlined in Borah'’s.
framework. Key modifications include the introduction of a central nervous
system delay term and the application of Pacinian corpuscle dynamics, replacing
the combined receptor dynamics transfer function previously utilized by Borah.
The Pacinian corpuscle is represented as an adaptation term with a time constant
of 10 ms, selected for its capability to detect a broad spectrum of stimuli and
its sensitivity to minimal skin displacements. The body dynamics model from
Borah was preferred due to the use of a 70kg mass, which provides a more
accurate average compared to the H6kg proposed by Gum. The 10ms adaptation
term for the Pacinian corpuscle was also chosen, as there was limited data on
its adaptation at the time of Gum'’s publication. An experiment referenced in
Figure 1.12, conducted to assess the Pacinian corpuscle’s response as reported by
Borah, indicates that the generator potential of the Pacinian corpuscle adapts
within a 10ms time frame.

Force input 9.8 .08 8 Sensed pressure
(™ - —us [ [
» e > »
52+ 125 + 453 s +100
Body/Seat Dynamics Central Nervous Adaptation
System Delay

Figure 2.6. Modified Borah Body Pressure Model
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2.2.1 Step Response

The analyses of step response have been performed utilizing the same input of
specific force for all models. The step response for the receptor dynamics of the
Borah model, the modified model, and the Gum model is presented in Figure
2.7. The Borah model features a singular transfer function that integrates the
characteristics of both Type I and Type II cutaneous receptors, as well as those
of the Pacinian corpuscle. In contrast, the modified model utilizes the high-pass
properties of the Pacinian corpuscle, incorporating a 10ms adaptation period.
Conversely, the Gum model applies the Pacinian corpuscle framework with an
adaptation period of 1s.

% 1{}'3 Body/Buttocks/Seat Model Step Response & Body/Buttocks/Seat Model Step Response
5 — 0.0
/\ ——Borah Model — Gum Model

Modified Model 0.025

'y

(=]
(=1
L]
——
 —
B

Perceived Pressure
L) %)
H |
—H |
_,——“/
__,__-—-:/""/
Perceived Pressure
o
= o
o S
- n
=]

=

0.005 \

=

0 J \ 3

1 L 8 0 e~

- -0.005

20 0.2 0.4 0.6 08 1 o 0 1 2 3 4 5 6 ¥
Time (sec) Time (sec)

Figure 2.7. Pressure models step responses (8]

As depicted in Figure 2.7, all three models demonstrate an immediate response
to stimuli, which is due to the high-pass characteristics of the Pacinian corpuscle.
This suggests that a sudden force exerted on the body is detected significantly
faster than by the vestibular system. These models exemplify rapid adaptation
receptors, thereby enhancing the efficacy of proprioceptive sensing in high-
frequency piloting tasks. The Borah model and the modified model both exhibit
a settling time of 0.0391s. In contrast, the Gum model has a significantly longer
settling time of 3.91s.

The Borah model and its modified version generally exhibit superior perfor-
mance compared to the Gum model [8]. The modified model incorporates the
delay of the central nervous system, yet the settling time remains nearly identical
to that of the Borah model. The Borah model achieves a stable fixed value,
suggesting that the dynamics of the receptor do not fully equilibrate to zero.
This model is effective in identifying sustained specific force signals. Furthermore,
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both models demonstrate a significantly shorter settling time than the Gum
model due to the absence of damping.

Given these performance characteristics, the modified Borah model was
selected for implementation as the tactile perception algorithm.

2.3 Force cueing algorithm

This section describes the procedure leading to the development of the force
cueing algorithm in which a dynamic model of the system and a body pressure
model are included in the formulation of the optimal washout filter. This
algorithm is applied to the G-seat actuator only, as an enhancement to the RMS
motion cueing algorithm. In Figure 2.8 this correlation is schematized.
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Figure 2.8. Total model

The simulation of aircraft dynamics produces an output Fy;,, from the Pilot
Sensor block that reflects the inertial force experienced by the pilot in a realistic
context. In the lower branch, the MCA block converts the simulated force into
the desired position and attitude, which is then processed by the RMS block.
This block characterizes the dynamics of the simulation platform and generates
movements of the simulator based on the provided cues. Additionally, a second
pilot sensor block measures the force Fryrg felt by the pilot within the simulator
environment.

The difference between these two quantities is combined in the sum block
that returns the error of these quantities. This error is processed by the force
cueing algorithm considered in this paper. The upper branch processes this
signal through the somatosensory perception system, which provides the optimal
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pressure that the pilot is expected to feel. Conversely, in the lower branch,
F—seat 18 integrated into the force cueing algorithm, which translates these
forces into angular positions via actuator dynamics. Subsequently, an additional
block processes these values by establishing a relationship between flap angles
and the force exerted on the body. This force is then relayed to the somatosensory
perception block, vielding the G-seat sensed pressure.

Finally, a comparison between these two pressure signals determines the
effectiveness of the cueing strategy in replicating realistic force perception. By
combining global motion cues (via the RMS) and localized force feedback (via
the G-seat), the system aims to enhance the pilot’s immersion and training
effectiveness, ensuring that the perceived forces closely match those expected in
real-world conditions.

An optimal washout filter is applied such that the following relationship

us = W(s) - uq (2.3)

is satisfied, where u, is the acceleration vector used to generate the desired force,
and u, is the acceleration vector entering both the aircraft dynamic system and
the simulator system. The following steps describe the procedure to obtain the
transfer function W(s) of the filter [24], [25]. The system S, is the perception
model that describes the relationship between the F,, and the displacement 0,;
the system Sg_ ot sSystem includes the seat dynamics, the angle-force mapping
function, and the same tactile perception system. The following transfer function
describes the body pressure model

9.8s e~00% p(5) (2.4)

I = T st B3 +1)°

due to the continuous-time delay in the transfer function, it can be applied a
third-order Pade approximation, obtaining

3.289s
(83 4+ 44.47s? + 828.3s + 15230)

f~ E(s). (2.5)
The pressure force F' acting on the body is

Fy, = m(u, — g). (2.6)

The actuator dynamics is described by the force-angle mapping function, which
exploits the following mechanical relationship

F(t) = kx(t) + csx(t) (2.7)
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where k [N/m] is the cushion stiffness, ¢; [Ns/m] is the cushion damping factor,
 is the linear displacement, F' is the force exerted by the actuator. Substituting
z(t) = rf(t) and & = rtheta, the equation becomes

F(t) = kré(t) + c,rd(t) (2.8)

Since the goal is to precisely map forces, and the application can require mapping
sudden accelerations, the acceleration has been selected as input instead of
angular position, so that in the Laplace domain we have

afy =Bl = By="0 (2.9)

Substituting this into the force equation, we obtain

- (s)
Flg)= k?‘% + c*r's%., (2.10)

factoring out a(s) the transfer function becomes

F(s) _ r(k + cgs)
a(s) s

(2.11)

This function describes how the flap’s angular acceleration translates into force
on the cushion, incorporating both stiffness and damping effects. The inertia of
the flap has been neglected under the assumption that the mass of the system
does not significantly affect the force transmission dynamics since the dominant
terms are the spring and damping forces. This approach simplifies the system
while still capturing the primary dynamic behavior.

Then, the force F acting on the pilot is
F(s) = wa(s) - g(a -9) (2.12)
where ¢ is the gravity acceleration (that can be seen as a disturbance) and a is
the vertical component of the aircraft acceleration.

Combining equations (2.5) and (2.12), the transfer functions that describe
the G-seat dynamic system and the aircraft become

_ 3.280s

- | (). 2.1:
Jo= @ 104752 + 828.35 1 15230) el —
B ¢ i B ;

7 = 3.289s(ms? + regs + rk) w, (5. (2.14)

(83 + 44.475% + 828.3s + 15230)(s?)
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Then, the state space system equations for the two systems can be defined as

-'j-:a, — Auxu Ba.ua

Yo = Ca,-'xa. + D allg

;’q — As'- ‘s T BS' '8 >
g, " : . (2.16)

Ys = Cezs + Daus

where x, and z, are the aircraft and seat system states, and the state matrices
are defined as

44.47 —828.34 —15225.66 1
Ay=| 1 0 0 B,= 0| C,=3.289 [0 m 0} D,=0

0 1 0 0

44.47 —828.34 —15225.66 0 0 1

1 0 0 0 0 0

A.=1| 0 1 0 0 0| B,=1|0

0 0 1 0 0 0

0 0 0 10 0

Cy=3.28900 0 m reg rk] D, =0.

The actuator operates within a constrained workspace due to its angle operating
range. To limit the movement of the flaps, it is essential to incorporate the
displacement and the linear velocity of the seat into the cost function. To
achieve this, supplementary seat states, denoted as x4 = [[[ uldt [uldt]”, are
introduced, and the equation governing the seat motion state is formulated as

i?d = A,{_IE,,{ + Bdu.‘n (217)

e Y nef]

The perception sensation error can also be defined as

with

e =Ys — Ya- (2.18)

Finally, the equations (2.15), (2.16), and (2.17) can be integrated to create a
comprehensive system:

., :A‘ '
ST {i}.‘t Ty + Btbi (219)

Yt = Cyxy + Dyu
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with
A, 0 0 B, 0 i
Ai=|10 A, 0|, B,=|0 Bs|, C= [_{?a C{;s {;]
0 0 Ad 0 Bd

—-D, D iy
De= l 0 O] W= LLJ
where 0 and I are dimensionally suited zero and identity matrices.
The similarity between equation (2.15) and equation (2.16) results in the
presence of common poles and zeros, leads to an ill-defined optimization problem.
Hence, it is essential to eliminate the uncontrollable modes by canceling the

pole-zero pairs from the transfer function, recovering the minimal realization of
the total system S;. The resultant system, denoted as S, is
¥ t Y H Thin

3-:"”-1;-'”- = ‘47”-'1‘-'”. m"”.i'ﬂ- + BTN.JE'”.u 9
Smin 3 (_.20)
Ymin = Crisniring + Dmanti

where Bi,in and Dy, can be divided in accordance with the partitioning of u

Uq
U = lu ] ’ Bmi-n. — Bminl Bmin?] ’ D m — [D minl Dmin?]
&
The signal u, is modeled as the output of a linear system driven by white
noise n, i.e.
N =% = AaTnt Bun, (2.21)
e — UG
Here, x,, represents the internal state of the filter, while A,, B,, and C,, are
the system parameters that define the shaping filter. These parameters can be
specified as A,, = —v, B, =, and C},, = 1, where v denotes the first-order filter
break frequency.
The minimized system (2.20) and the noise system (2.21) can be combined
to form the desired system equation

= Az + Bu, + Hw,
y = Cz + Dus,.

o
T

where x = represents the combined state vector. While A, B, C', D, and

‘:'N.
H are defined as follows

Bnds: Pt G Brin2 0
- min minln|  po_ min2| oy ‘
I T s B 1
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C= Cmin -+ Dmml Cna D= Dm?an-

Given the actual system S, the simulator system S, and the noise filter N, the
goal is to find a transfer function which generates u, gievn u,(7), —0o < 7 <,
for all ¢, minimizing the cost function J, which is defined as

J=E [/GDC (eTQe + 2T Rgz + -uTRu) d.t] : (2.22)

The cost function J can be reformulated into an optimal control framework using
the following equation

J=E [f;“ (:I;Tle + 22T Rypx + 7.531%2?;3) dt] . (2.23)
where

By OF [‘g g}] C. Ryp=CT

Q 0 _ 7|Q 0
0 Rd D._‘ R]—R+D 0 Rd D'.l

The challenge of minimizing (2.23) while adhering to the system state equation
(2.3)constitutes a typical optimal control problem, and the objective function .J
reaches its minimum when

W =—Kg, (2.24)

where
K = R;Y(BTP + RYL) (2.25)

and P is the solution of the Riccati equation
P(A-BR;'RL)+(A-BR;'R],)P+R—Ry;2R;'R},—PBR;'BT P = 0 (2.26)

Sivan details the solution to the design challenge related to an optimal linear and
quadratic simulator [25], achieved in this study through computer simulations
conducted with MATLAB. Furthermore, Sivan describes the methodology for
deriving the optimal washout filter to satisfy the relationship of the equation
2.3. In this thesis, a corresponding Simulink model was utilized to monitor
constraints, allowing for modifications to the weight matrices of the function
designated for minimization.
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Chapter 3

Force cueing algorithm
implementation

This chapter provides a comprehensive overview of the methodology employed
to validate the optimal control algorithm and elaborates on the tuning process
involved in fine-tuning the algorithm to achieve the desired performance met-
rics. Additionally, the chapter presents the results obtained from a systematic
comparison between the optimal control algorithm and a conventional washout
algorithm developed in the previous work on this system [15], highlighting the
differences in performance and effectiveness.

3.1 Force cueing algorithm implementation

The optimal control filter has been implemented in the Modelica simulation
environment, to evaluate its effectiveness and improvements over the classical
washout algorithm. Figure 3.1 shows the structure of the model implemented in
Modelica [15], which handles force cueing:

» The orange block is responsible for generating test values for the acceleration
vector, which serves as input for the Modelica model. This block allows
for the configuration of various test functions, including a step function,
square wave function, or sine wave. Moreover, this block can facilitate the
definition of more intricate flight trajectories. To achieve this, accelerations
are extracted from the log file of a simulated flight maneuver;

e The red block contains the washout filter, which will be discussed in the
next section, and the calculation of the directions of the forces applied by
the actuator on the seat. To accurately ascertain the directions of the forces,
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it is essential to convert the unit vector in the z-direction from the specific
flap coordinate system to the global coordinate system. This conversion is
influenced by the spatial position of the actuator and the current deflection
of its flap, denoted as ¢, which changes during operation. In Modelica, the
transformation matrix T can be directly derived from the spatial position
of an object, which is necessary for transitioning from the global coordinate
system to the relevant object coordinate system;

e The green block contains the simulation of the G-seat, consisting of four
flap actuators, two positioned in the seat and two positioned in the backrest
(Figure 1.6). This setup allows for the testing and visualization of the
G-seat’s behavior without the need for a physical prototype. Furthermore,
any configuration of the G-seat, incorporating various numbers of actuators,
can be created at any location within the simulation environment;

e The ‘Hardware Recalculation’ block transforms the position values into
an input suitable for the hardware. In this case, EtherCAT (Ethernet for
Control Automation Technology) is used to let the controller communicate
with the servo drives. It necessitates that the target positions to be expressed
in tenths of a degree;

¢ The blue block handles the connection to the Modelnet server.

3.2 Tuning and testing

The software-in-the-loop evaluation of the force cueing algorithm aims to select
suitable parameters that meet the required performance (tuning) and verify that
the desired motion is generated without exceeding physical constraints. This
section outlines the procedure for tuning the parameters of the optimal washout
algorithm.

3.2.1 Tuning

The simulation process involves the configuration of the software environment, the
setup for the close loop simulation, and the iterative adjustment of the parameters
to achieve optimal performance. Part of the work focused on determining the
appropriate weights for the LQR matrices. It is a crucial procedure to achieve
the desired trade-off between performance and control effort. The process
involves iterative adjustments based on system response, stability, and real-world
constraints.
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Figure 3.1. Modelica schematics of the G-seat.

The tuning process was conducted using MATLAB, where the sensed forces
from model S, and model S, were compared to minimize the error. After identi-
fying the optimal tuning parameters, the algorithm for the optimal washout filter
was integrated into the G-seat model within Modelica to assess its performance.
The weight matries in eq. (2.26) have been defined as

!
Q=g Ri= lg ﬂ R=r.
The @@ and R; matrices entries represent the cost associated with deviating from
the desired value of the state or output. A higher value means that deviation
from that particular state is highly undesirable, forcing the controller to prioritize
minimizing it, while a lower value means that deviation in that state is tolerated
more. The same reasoning can be applied to the value R, which acts on the
control action. Table 3.1 shows the weighted entries of Q,R4, and R.

Increasing the values of the () matrix enhances the overall performance of
the system, ensuring that the pressure perceived by the pilot on the G-seat
closely replicates the sensations experienced in the actual aircraft. A similar
improvement in performance can be achieved by reducing the contribution of
the control effort penalization, represented by the R matrix.

Regarding the states that define the actuator constraints, increasing the
weighting associated with angular position and angular velocity in the Ry matrix

34



Force cueing algorithm implementation

Entry Weighted variable

0 sensed pressure error
r actuator angular position
! actuator angular velocity
T control action

Table 3.1. Physical meaning of the LQR weighting matrices entries

generally results in a decline in overall system performance. However, the impact
of these constraints is comparatively smaller than the influence of the primary
state cost terms in ). Consequently, higher weightings are assigned to these
states to maintain actuator movements within their physical limitations while
improving steady-state tracking.

To further optimize the system response, the cost associated with actuator
velocity is kept relatively low. This allows the algorithm to more effectively track
the acceleration profiles typical of aircraft dynamics, ensuring a balance between
actuator compliance and motion fidelity.

The final values, chosen at the end of this iterative process are

"

Q=55-10% R;= [1'250 10 1831 , R=10"%
Figure 3.2 shows the enhancements realized by the optimal washout algorithm
(b) in comparison to the traditional washout algorithm (a), specifically regard-
ing the perceived force experienced through the G-seat system. The optimal
algorithm demonstrates a remarkable ability to closely replicate the perceived
force generated by the aircraft system while adhering to the physical limitations,
as illustrated in Figure 3.3, of position described in section 1.1.2 and velocity,
which are about 600rad/s for the used motor.

Figure 3.4 illustrates more distinctly the significant reduction in the discrep-
ancy between the forces experienced in the aircraft system and those calculated
using both the classical washout algorithm and the optimal washout algorithm,
with the error decreasing by an order of magnitude. Additionally, the classical
washout algorithm exhibits a degree of lag, which hinders its ability to follow
changes in acceleration accurately.

3.3 Results

Once the algorithm was fine-tuned, it was integrated into the Modelica model,
which simulates the G-seat at the software level. This tool facilitated tests to
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Figure 3.3. G-seat constraints x4 states

determine whether any enhancements had been realized. The actuators angular
position performance was tested by applying a step acceleration input along
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Figure 3.4. Sensed force error comparison between the classical washout algo-
rithm and the optimal washout algorithin

the z-axis, as these accelerations exert greater stress on the flap movement
and influence the algorithm performance. Furthermore, the flaps response to a
trajectory input was assessed by examining its z-component for the same reasons
mentioned earlier.

Then, the outcomes were compared to those obtained using the traditional
washout filter.

In this experiment, a step input of 2m/s* was applied along the z-axis at
time t = 1s to evaluate the system response to rapid changes. As shown in
Figure 3.5, analyzing the system response using the optimal washout algorithm
(represented by the blue line) reveals a rise time of approximately 0.3s. The
actuator stabilizes at a lower value compared to the classic washout method and
does not exhibit overshoot, indicating a well-controlled response. Additionally,
the actuator achieves stabilization swiftly.

Conversely, the classic washout (red line) demonstrates a more gradual re-
sponse, taking a longer duration to reach steady state and stabilizing at a higher
value than the optimal washout. This results in increased actuator movement.
The optimal washout algorithm effectively minimizes unwanted oscillations and
excessive movements by considering physical constraints, whereas the classic
washout algorithm may lead to greater mechanical strain over time.
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Figure 3.6 depicts the response of the G-seat flap in response to a trajectory,
specifically focusing on its z-axis component. This trajectory encompasses
both high-frequency fluctuations and low-frequency patterns, rendering the test
particularly suitable for evaluating the algorithm capabilities.

The input is marked by frequent acceleration changes, evident in the numerous
peaks and troughs, with peaks surpassing 20m/s?, which is higher than the step
input value. Additionally, it is observed that the optimal washout algorithm
demonstrates a quicker response to these rapid acceleration changes. It is
important to highlight that negative accelerations result in a position of zero, as
the actuator cannot simulate negative pressure sensations.

Despite the primary drawback of the optimal washout algorithm is its compu-
tational cost and processing time, this issue is mitigated in the present application.
This is largely because the weights of the LQR are determined offline, significantly
reducing the real-time computational burden. As a result, the algorithm remains
efficient while preserving its ability to enhance motion cueing fidelity.

Furthermore, this test illustrates that the optimal washout algorithm, which
inherently accounts for constraints, relies less on the position limiter compared
to the traditional washout method. The traditional washout exhibits a slower
response, with delays of up to ls in some instances, whereas the optimal washout
algorithm offers superior filtering, which is essential for delivering an accurate

response to the pilot.
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Chapter 4

Conclusion and future
works

4.1 Conclusion

This thesis focuses on the development, integration, and assessment of a force cue-
ing algorithm aimed at enhancing the functionality of a G-seat system intended
for implementation within the DLR’s RMS. It examined various methodologies
for motion cueing algorithms, analyzing their respective advantages and disad-
vantages to determine whether enhancements could be made to the currently
employed algorithm. After identifying the optimal washout algorithm as a viable
option, it was tailored to fit the specific application. Notably, this application is
restricted to the G-seat rather than the entire mobile platform, positioning this
algorithm as a supplementary tool to the primary motion cueing algorithm that
regulates the RMS.

The selected optimal washout algorithm incorporates the physical limitations
of the system alongside an assessment of the perception model. Consequently, the
most appropriate perceptual system for this application was scrutinized, leading
to the adoption of a haptic system. A review of the literature was conducted
to understand how this system has been modeled, ultimately resulting in the
selection of the most accurate model currently available, specifically the one
identified by Cardullo as the modified Borah.

The washout algorithm was developed and evaluated using MATLAB, demon-
strating a notable enhancement in performance characterized by quicker and
more precise responses, along with a substantial reduction in sensation error. Sub-
sequently, the algorithm was assessed within a simulator developed in Modelica
and compared against the traditional washout algorithm. The findings indicated
that the optimal washout method markedly enhances the accuracy and stability
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of force cueing, leading to decreased response times and minimized mechanical
stress. These enhancements in performance directly influence the overall fidelity
of motion cueing, thereby providing a more immersive and physically realistic
experience.

A key limitation of the optimal washout algorithm is its high computational
cost and processing time. However, this issue is mitigated in the current applica-
tion through the offline determination of LQR weights, significantly reducing
computational demands during real-time operation. As a result, the algorithm
remains efficient while enhancing motion cueing fidelity.

4.2 Future works

While the findings are encouraging and Modelica provides precise software-
level representations, this research does not include hardware validation; the
actual performance of the G-seat has not been assessed. By implementing the
optimal force cueing algorithm within a real G-seat system, researchers can
assess its effectiveness by contrasting it with the traditional washout algorithm
under genuine operational conditions. Conducting tests with pilots or trained
individuals would facilitate the assessment of subjective realism, confirming that
the enhanced cues correspond with human perception and expectations. To
achieve the optimal MCA, it is essential to examine the impact of the weighting
matrices on the filter characteristics in more detail, including an analysis of
the sensitivity to minor variations in the weighting values. Furthermore, the
incorporation of a more comprehensive perception model is a viable consideration.
Another potential approach to enhance performance is to adopt a model predictive
control (MPC) algorithm that considers the physical constraints discussed in
section 1.1.2. By applying the findings of this work to practical scenarios and
investing time in testing campaigns, it is possible to create a generation of force
cueing systems that offer improved realism and performance.
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