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 A B S T R A C T

We present a modeling framework for multi-component, reactive gas mixtures and heat transport in porous me-
dia based on the Maxwell–Stefan and Darcy equations for multi-component diffusion and forced, viscous flow 
through porous media. Analysis of the model equations reveals thermodynamic consistency and uniqueness 
of steady states, while their mathematical structure facilitates discretization via the Finite-Volume approach 
resulting in an open-source based implementation of the modeling framework in Julia. The model allows 
imposing boundary conditions that accurately reflect the conditions prevailing in a photo-thermal chemical 
reactor that is subsequently introduced as a case study for the modeling framework. Comparison of numerical 
with experimental results reveals good agreement. Improvement options for the physical reactor are derived 
from simulation results demonstrating the practical utility of the modeling framework. Additionally, the 
framework is used for the simulation of thermodiffusion in a ternary gas mixture and has been verified with 
published numerical results with very good agreement.

. Introduction

Multi-component gas transport in porous media plays an important role in many present and emerging applications, among which are oil 
nd gas exploration, environmental remediation, carbon sequestration [1], applications in chemical engineering such as catalysis and adsorptive 
eparation [2], in the gas diffusion layers of electrochemical devices [3] and in solar reactors employing porous structures as catalyst or as receiver 
aterial [4].
Classically, multi-component gas phase mass transport was described in the Maxwell–Stefan (M–S) formulation [5] when diffusion is the 

ominating mass transport process. Modeling of multi-component mass transport involving porous media often requires the incorporation of viscous 
onvective flow. Further, microporous structures with pore sizes comparable to the mean free path length of the gas cause the flow regime to 
eviate from continuum flow such that Knudsen diffusion must be considered. The most widely used model in this context is the Dusty Gas Model 
DGM) [6]. In the DGM the solid porous structure (‘‘dust’’) is treated as an additional species in the gas phase, giving the DGM its name. As 
icroscale features of the porous medium are not resolved geometrically in this approach, the characteristics of the porous medium impacting gas 
ransport are accounted for via modification of the transport coefficients into effective transport coefficients. Variations of the DGM were developed 
n the form of the Mean Transport Pore Model Mean Transport Pore Model (MTPM) [7] and the Binary Transport Model Binary Transport Model 
BTM) [8]. All three models have in common, that in the description of species mass transport they incorporate contributions from convective 
pecies fluxes with diffusive species fluxes into a combined total species flux. This yields a single equation per species which is similar in form 
o a diffusive flux equation in the M–S formulation that relates the total species flux to the driving forces. Another more recent contribution 
laces emphasis on momentum transfer in mixture flow through porous media by incorporating momentum conservation equations along the mass 
onservation equations for each species contained in the gas phase mixture [2]. Thus, interspecies momentum exchange and gas–wall interactions 
re defined for each species separately. The authors also considered simultaneous heat transfer based on the assumption of local thermodynamic 
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equilibrium between the gas and solid phases and by adopting a pseudo-homogeneous form of the energy equation with effective heat transfer 
properties of the gas mixture and the porous medium. The model is implemented in the commercial computational fluid dynamics (CFD) code 
FLUENT® by manipulation of the code’s Eulerian multiphase model [2]. Alternatively, models based on the Lattice Boltzmann Method (LBM), a 
method that simulates fluid flow by describing molecule collisions and scattering on a mesoscopic scale have gained increasing attention due to 
the simplicity in implementation, scalability on parallel computers and favorable handling of complex geometries [9]. An application of the LBM 
for the simulation of flow, heat and species transport in porous media is presented in [10] where novel formulations for the equilibrium distribution 
functions are proposed that are calculated from macroscopic quantities and thus allow the specification of boundary conditions corresponding to 
boundary conditions defined in terms of macroscopic quantities.

In this work a model for multi-component gas phase heat and mass transfer in rigid, isotropic porous media is presented. It differentiates 
itself from the established models (DGM, MTPM, BTM) in that it formulates separate equations for convective fluxes stemming from bulk viscous 
flow and diffusive fluxes. The superposition of convective and diffusive fluxes is handled in the species mass balance. This alleviates criticism of 
the established models which lump convective and diffusive fluxes together, although they are physically different phenomena [11]. Further, the 
proposed model facilitates the definition of boundary conditions that arise from the physical system under consideration. To this end, the model 
is presented in three steps. First, after preliminary definitions in Section 2.1, gas phase balance equations describing multi-component species 
transport on the pore scale in isothermal conditions are presented in Section 2.2.1.

Second, the gas-phase equations are complemented to account for non-isothermal conditions by introducing an energy equation including the 
Dufour effect of multi-component heat transport originating from mass transport and by extending the driving forces for species mass diffusion to 
include thermodiffusion, referred to as Soret effect, in Section 2.2.2.

Third, the porous medium which in the scope of this study consists of a rigid, isotropic porous solid phase whose pore volume is filled by a gas 
phase mixture is introduced. Homogenized equations describing gas phase flow, multi-component species transport including chemical reactions 
and heat transport on the macroscopic scale in the porous medium are presented in Section 2.3 with detailed derivations based on the two-scale 
expansion method in Appendix  E. Their thermodynamic consistency under isothermal conditions is analyzed in Section 2.3.1.

In Section 3 the model implementation based on the Finite-Volume approach and the open-source code VoronoiFVM.jl [12] is introduced 
alongside with the discretized forms of model equations.

Applications of the model are demonstrated in Section 4 where first, simulations of a photo-thermal catalytic reactor (PTR) that was recently 
investigated experimentally are presented and discussed in the context of the experimental setup and boundary conditions. Second, the capability 
of the model and implementation to account for thermodiffusion (Soret effect) in mixtures of gases in absence of porous media is demonstrated by 
reproducing a simulation of gas separation of a ternary noble gas mixture contained in a closed vessel by application of a temperature gradient [13].

We conclude with a summary and outlook on future work in Section 5.

2. Modeling

Remark 2.1.  Since homogenized equations on the Darcy scale are derived from pore scale equations as part of this work, throughout this section 
the scale for which the respective equations are valid is indicated in the relevant subsection headings for clarity.

2.1. Preliminaries

We let 𝜚 = (𝜌1,… , 𝜌𝑛) denote the partial mass densities of the 𝑛 gas species in the mixture with the total mass density 𝜌 =
∑𝑛
𝑖=1 𝜌𝑖. The molar 

mass of the 𝑖th species will be denoted by 𝑀𝑖. Then the partial and total molar densities, commonly referred to as concentrations, can be expressed 
as 𝑐𝑖 = 𝜌𝑖∕𝑀𝑖 and 𝑐 =

∑𝑛
𝑖=1 𝑐𝑖. The molar and mass fractions are given by 𝑥𝑖 = 𝑐𝑖∕𝑐 and 𝑤𝑖 = 𝜌𝑖∕𝜌, respectively. By definition, it holds that 

∑𝑛
𝑖=1 𝑥𝑖 = 1 =

∑𝑛
𝑖=1𝑤𝑖. Finally, the mean molar mass of the gas mixture follows as 𝑀mix =

∑𝑛
𝑖=1 𝑥𝑖𝑀𝑖.

The ideal gas law is used as the constitutive equation for the mixture of ideal gases and relates the total pressure, total mass density and 
temperature via 

𝑝 =
𝜌

∑𝑛
𝑖=1 𝑥𝑖𝑀𝑖

𝑅𝑇 . (2.1)

Since ∑𝑛
𝑖=1 𝑥𝑖𝑀𝑖 =

∑𝑛
𝑖=1 𝜌𝑖

1
𝑐 , we can write equivalently 

𝑝 = 𝑐𝑅𝑇 =
𝑛
∑

𝑖=1

𝜌𝑖
𝑀𝑖

𝑅𝑇 . (2.2)

2.2. Gas phase balance equations (pore scale)

2.2.1. Isothermal case
Under isothermal conditions, the state of a gas phase mixture is fully characterized by the vector of mass densities 𝜚 = (𝜌1,… , 𝜌𝑛), whose 

evolution we assume to be governed by 
𝜕𝑡𝜌𝑖 + ∇ ⋅ (𝜌𝑖𝑣) + ∇ ⋅ 𝐽𝑖 = 𝑟𝑖(𝜚), 𝑖 = 1,… , 𝑛. (2.3)

Here, 𝑣 denotes the mass-averaged (barycentric) velocity that in the general case can be obtained by solving the Navier–Stokes equations. Moreover, 
𝐽𝑖, 𝑖 = 1,… , 𝑛 and 𝑟𝑖, 𝑖 = 1,… , 𝑛 denote the species mass diffusion fluxes and the reaction rates. Throughout this work, they are chosen in a way as 
to satisfy

𝑛
∑

𝑖=1
𝐽𝑖 ≡ 0, (2.4)

𝑛
∑

𝑖=1
𝑟𝑖 ≡ 0. (2.5)
2 
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Summing (2.3) over 𝑖 = 1,… , 𝑛, and using (2.4), (2.5), we deduce the continuity equation 

𝜕𝑡𝜌 + ∇ ⋅
(

𝜌𝑣
)

= 0 (2.6)

for the total mass density. The diffusion fluxes 𝐽𝑖 are determined by the M–S formulation of multi-component diffusion [14–16]. In the isothermal 
case, the M–S equations take the form 

𝑝
𝑅𝑇

1
𝑀mix

�⃗�𝑖 = −
𝑛
∑

𝑗=1
𝑗≠𝑖

𝑤𝑗𝐽𝑖 −𝑤𝑖𝐽𝑗
Ð𝑖𝑗𝑀𝑖𝑀𝑗

, 𝑖 = 1,… , 𝑛, (2.7)

with the so-called diffusive driving forces 

�⃗�𝑖 = ∇𝑥𝑖 + (𝑥𝑖 −𝑤𝑖)∇𝑝∕𝑝, 𝑖 = 1,… , 𝑛, (2.8)

and the M–S diffusivities Ð𝑖𝑗 > 0.
Notice that ∑𝑛

𝑖=1 �⃗�𝑖 = 0 as a consequence of ∑𝑛
𝑖=1 𝑥𝑖 = 1 =

∑𝑛
𝑖=1𝑤𝑖 and that of the 𝑛 M–S Eqs. (2.7) at most 𝑛 − 1 are linearly independent. In 

fact, the linear system (2.7) complemented by (2.4) forms a well-posed problem [15], ensuring the unique solvability for (𝐽𝑖)𝑛𝑖=1.

2.2.2. Non-isothermal case (pore scale)
In this section, temperature 𝑇  is allowed to vary, and the mixture model (2.3) will be complemented by a thermal energy equation for an ideal 

gas mixture along the lines of [15,17]. We limit the scope of the model to flows with low velocity considering the intended application to flows 
in porous media as elaborated in Section 2.3. Thus, the total energy reduces to the internal energy, whose density is given by 𝜌𝑒, where 𝑒 denotes 
the specific internal energy. Then, the mass continuity Eqs. (2.3) are complemented by a conservation law for the internal energy density 𝜌𝑒 of the 
gas phase 

𝜕𝑡(𝜌𝑒) + ∇ ⋅ (𝜌𝑒𝑣) + ∇ ⋅ (𝑝𝑣) + ∇ ⋅ �⃗� = 0, (2.9)

where �⃗� denotes the heat flux. Furthermore, in the non-isothermal case, the M–S equations for the diffusion fluxes 𝐽𝑖 take the adjusted form 

𝑝
𝑅𝑇

1
𝑀mix

�⃗�′𝑖 = −
∑

𝑗∶𝑗≠𝑖

𝑤𝑗𝐽𝑖 −𝑤𝑖𝐽𝑗
𝑀𝑖𝑀𝑗Ð𝑖𝑗

, 𝑖 = 1,… , 𝑛, (2.10)

with the adjusted diffusive driving forces ⃗𝖽′𝑖 additionally depending on the temperature gradient 

�⃗�′𝑖 = �⃗�𝑖 + 𝑥𝑖̃𝑖∇ log 𝑇

= ∇𝑥𝑖 + (𝑥𝑖−𝑤𝑖)∇ log 𝑝 + 𝑥𝑖̃𝑖∇ log 𝑇 , 𝑖 = 1,… , 𝑛.
(2.11)

Here, ̃ = (̃𝑖)𝑛𝑖=1 are rescaled thermal diffusion ratios defined via 

̃𝑖 =
𝑛
∑

𝑗=1

𝑥𝑗
Ð𝑖𝑗

(T
𝑖 −T

𝑗 ), (2.12)

where T
𝑖  are the barycentric coefficients of thermal diffusion [14], see also [18]. Note that 

∑𝑛
𝑖=1 ̃𝑖𝑥𝑖 = 0 because of the symmetry of Ð𝑖𝑗 , and 

consequently ∑𝑛
𝑖=1 �⃗�

′
𝑖 =

∑𝑛
𝑖=1 �⃗�𝑖 = 0. Thus, again we see that the 𝑛 Eqs. (2.10) are linearly dependent. As before, they are complemented by the 

constraint (2.4).
In the context of heat transfer in multi-component mixtures, the total diffusive heat flux �⃗� consisting of ordinary heat conduction and the net 

heat flux following from differing diffusive fluxes of the various gas phase species in the mixture (Dufour effect) takes the following form [13,14,18]: 

�⃗� = −𝜆∇𝑇 +
𝑛
∑

𝑖=1

(

ℎ𝑖 + 𝑅𝑇 ̃𝑖∕𝑀𝑖

)

𝐽𝑖 (2.13)

where ℎ𝑖 is the mass specific enthalpy of gas phase species 𝑖 and 𝜆 is the thermal conductivity of the gas phase mixture. It should be noted that the 
Soret and Dufour effects are not considered in the simulation of the PTR involving porous media in Section 4.1 due to uncertainty in the calculation 
of the respective coefficients in the multi-component mixture as experimental data on thermodiffusion coefficients for the gas species considered in 
the study is scarce [19,20] while the determination of the influence of porous media on thermodiffusion for the application considered in this work 
in the context of the homogenization method is left for future work. Instead of the internal energy equation (2.9), we may equivalently impose a 
balance law for the enthalpy 𝜌ℎ = 𝜌𝑒 + 𝑝. Using (2.6) and (2.9) the enthalpy equation can be computed as 

𝜕𝑡(𝜌ℎ) + ∇ ⋅ (𝜌ℎ𝑣) + ∇ ⋅ �⃗� = 𝜕𝑡𝑝. (2.14)

For the derivation of homogenized equations valid for the porous solid and gas phase shown in Appendix  E we reformulate the gas phase enthalpy 
Eq. (2.14) expressed in terms of the absolute enthalpy of the gas phase mixture ℎ =

∑𝑛
𝑖=1𝑤𝑖ℎ𝑖 as follows:

ℎ𝑖 = ℎ0𝑖 + ∫

𝑇

𝑇ref
𝑐𝑝,𝑖(𝑇 )𝑑𝑇 (2.15)

= ℎ0𝑖 + ℎ
th
𝑖 (𝑇 ) (2.16)
3 
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where ℎ0𝑖  is the enthalpy of formation at reference conditions (𝑇 = 298.15K, 𝑝 = 1 bara) and ℎth𝑖 (𝑇 ) is the thermal enthalpy. Rearranging as in 
Appendix  A we thus obtain 

𝜕(𝜌ℎth)
𝜕𝑡

+ ∇ ⋅
(

𝜌ℎth𝑣
)

+ ∇ ⋅

( 𝑛
∑

𝑖=1
(ℎth𝑖 + 𝑅𝑇 ̃𝑖∕𝑀𝑖)𝐽𝑖

)

+ ∇ ⋅ (−𝜆∇𝑇 ) +
𝑛
∑

𝑖=1
ℎ0𝑖 𝑟𝑖 −

𝜕𝑝
𝜕𝑡

= 0

(2.17)

To further simplify the derivation of the homogenized heat transport equation, we neglect the terms associated with the multi-component diffusive 
mass fluxes 𝐽𝑖 and the heat source from dynamic pressure changes 𝜕𝑝∕𝜕𝑡 to obtain: 

𝜕(𝜌ℎth)
𝜕𝑡

+ ∇ ⋅
(

𝜌ℎth𝑣
)

− ∇ ⋅ (𝜆∇𝑇 ) = −
𝑛
∑

𝑖=1
ℎ0𝑖 𝑟𝑖

⏟⏞⏞⏟⏞⏞⏟
𝑞

(2.18)

including heat source term 𝑞 originating from bulk gas phase chemical reactions as described in Appendix  E.2. We approximate the temperature 
dependency of gas heat capacities by a mean value in the temperature interval of interest such that we can write: 

ℎth𝑖 (𝑇 ) ≈ 𝑐𝑝,𝑖 (𝑇 − 𝑇ref)
⏟⏞⏞⏟⏞⏞⏟

�̂�

(2.19)

where we define �̂� = 𝑇 − 𝑇ref with ∇�̂� = ∇𝑇  to simplify notation. Thus, the derivation of the homogenized equation of heat transport in Appendix 
E.3 starts from the following equation of heat transport in the gas phase: 

𝜕(𝜌𝑐𝑝�̂� )
𝜕𝑡

+ ∇ ⋅
(

𝜌𝑐𝑝�̂� 𝑣
)

− ∇ ⋅ (𝜆∇�̂� ) = 𝑞 (2.20)

with the heat capacity of the gas mixture 𝑐𝑝 =
∑𝑛
𝑖=1𝑤𝑖𝑐𝑝,𝑖.

2.3. Porous solid phase and Darcy closure (Darcy scale)

This work focuses on the macroscopic description of transport processes occurring in a multi-component gas phase mixture occupying the pore 
space of a rigid, isotropic porous solid. Common techniques to derive macroscopic or darcy-scale equations from the pore scale equations are 
the volume averaging method, that relies on the definition of a representative elementary volume for spatial-averaging and obtains darcy-scale 
equations via the general transport theorem [21–24] and the homogenization method using two-scale expansions [25,26]. The latter is used in 
this work as outlined in Appendix  E. Though both procedures provide the same effective models and parameters when applied correctly, the 
homogenization method is used in this work as it has the potential to provide convergence proofs for the homogenized equations [27].

Homogenized equations for flow of the gas phase mixture through the pore space, species mass transport including chemical reactions, as well 
as thermal energy (heat) transport in the porous medium are derived in Appendix  E. As explained in Section 2.3.2 in this study we assume radial 
symmetry on the pore scale, permitting the use of scalar-valued parameters while effective model parameters corresponding to the real pore scale 
geometry will be calculated in future work. For the remainder of the text, the void fraction or porosity of the porous medium 𝜙 is defined as the 
ratio of void volume to total volume: 𝜙 = 𝑉void∕𝑉total with the solid fraction 1 − 𝜙 = 𝑉solid∕𝑉total. Further, we introduce the volumetric averaging 
operator that yields quantities that are spatially averaged over the volume of one representative elementary volume 𝛺 of the porous medium: 

⟨⋅⟩ = 1
|𝛺|

∫𝛺
⋅ 𝑑�̃� (2.21)

The derivation of effective media equations for compressible, non-isothermal gas phase flow through rigid, porous media is shown in Appendix  E.1 
and to first order of approximation within the framework of two-scale expansions leads to the well-known Darcy equation: 

⟨𝑣⟩ = −𝐊∕𝜂∇𝑝 (2.22)

where 𝜂 > 0 is the dynamic viscosity of the gas phase.
The columns of permeability tensor 𝐊 appearing in (2.22) correspond to ⟨�⃗�𝑘⟩ for 𝑘 = 1,… , 𝑑, the solutions of the so-called ‘‘cell’’ problems 

(𝑃𝑘) [25] formulated during the homogenization procedure. 𝐊 is scaled by the square of the mean pore size 𝑑p: 

𝐊 = 𝑑2p
(

⟨�⃗�1⟩ ⋯ ⟨�⃗�𝑑⟩
)

(2.23)

As the exact pore scale geometry of the porous medium is unknown and its determination via imaging techniques is out of the scope of this study, 
we cannot calculate 𝐊 from (2.23). Instead, we assume periodic grain structure at the pore scale with radially symmetric grains located in the 
center of the period leading to a scalar valued effective permeability K > 0 for which empirical values are known [28]. It should be noted that 
application of the averaging operator (E.7) yields a volume mean while we expect ⟨𝑣⟩ to be a flux and thus a surface mean. The equivalence of 
volume and surface means is shown in [26, Section 7.2.2.1] and holds for ⟨𝑣⟩ and ⟨𝐽𝑖⟩ in this text. Equations for multi-component species mass 
transport in a porous medium including chemical reactions are derived in Appendix  E.2. Chemical reactions are treated as bulk reactions taking 
place in the gas phase based on the argument of negligable mass transfer resistance as detailed in Appendix  E.2. The M–S formulation was chosen 
to describe the multi-component diffusion of gas phase species occupying the pore space. Thus, to first order of approximation in the framework 
of two-scale expansions we obtain: 

𝜙
𝜕𝜌𝑖 + ∇ ⋅ (𝜌 ⟨𝑣⟩ + ⟨𝐽 ⟩) = 𝜙𝑟 (𝝔) (2.24)

𝜕𝑡 𝑖 𝑖 𝑖

4 
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with the diffusive species mass fluxes ⟨𝐽𝑖⟩ in M–S formulation for 𝑖 = 1… 𝑛 − 1: 

−
𝑛
∑

𝑗=1
𝑗≠𝑖

𝑥𝑖𝑥𝑗⟨Ðeff
𝑖𝑗 ⟩

−1

(

⟨𝐽𝑖⟩
𝜌𝑖

−
⟨𝐽𝑗⟩
𝜌𝑗

)

= ∇𝑥𝑖 + (𝑥𝑖 −𝑤𝑖)∇𝑝∕𝑝 (2.25)

complemented by: 
𝑛
∑

𝑖=1
⟨𝐽𝑖⟩ = 0 (2.26)

Summing (2.24) over 𝑖 = 1,… , 𝑛, using (2.26), (2.5) we recover the mass conservation equation 

𝜙
𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌⟨𝑣⟩) = 0. (2.27)

In (2.25) the effective M–S diffusivities can be obtained via 
⟨Ðeff𝑖𝑗 ⟩ = Ð𝑖𝑗⟨𝐈 + ∇𝐲∗ ⊗ 𝜒⟩ (2.28)

with the gas phase M–S diffusivities Ð𝑖𝑗 and 𝜒 being the solution of cell problems (MT𝑘). As for the other effective transport parameters we do 
not calculate ⟨Ðeff𝑖𝑗 ⟩ from (2.28) but instead, in this work the Ðeff

𝑖𝑗 > 0 are scalars obtained from empirical correlation shown in Section 2.3.2. The 
derivation in Appendix  E.2 only considers molar fraction gradients ∇𝑥𝑖 as driving forces for diffusion to simplify notation. Inclusion of the pressure 
gradient term (𝑥𝑖 − 𝑤𝑖)∇𝑝∕𝑝 follows without complication and leads to (2.25) as was demonstrated in [29]. Further, in the context of the porous 
medium, thermodiffusion (Soret effect) is not considered due to uncertainty in deriving effective thermodiffusion coefficients.

Homogenized equations for heat transport in porous media are derived in Appendix  E.3. There, on the pore scale heat transport in the gas 
phase via conduction–advection accompanied by heat source originating from bulk chemical reactions as described in (2.20) are considered. In 
the porous solid phase, heat is transported via conduction. Heat exchange driven by the local difference in temperatures between the phases is 
described by a heat transfer coefficient.

Taking into account the relative magnitude of different terms relevant in our application as part of the homogenization procedure, to first order 
of approximation in the framework of two-scale expansions we obtain for heat transport in the porous medium: 

(1 − 𝜙)𝜌s𝑐s
𝜕𝑇
𝜕𝑡

+ ∇ ⋅ (𝑐𝜌𝑇 ⟨𝑣⟩) − ∇ ⋅
(

⟨𝝀eff⟩∇𝑇
)

= 𝜙𝑞 (2.29)

with the density and heat capacity of the solid phase 𝜌s and 𝑐s and the mixture density and heat capacities in the gas phase 𝜌 =
∑𝑛
𝑖=1 𝜌𝑖 and 

𝑐 =
∑𝑛
𝑖=1𝑤𝑖𝑐𝑝,𝑖, the heat source term 𝑞 from gas phase chemical reactions and further with the effective thermal conductivity ⟨𝝀eff⟩: 

⟨𝝀eff⟩ = 𝜆f ⟨𝐈 + ∇𝐲∗ ⊗ �⃗�f ⟩ (2.30)

where ⃗𝑡f  is the solution of the cell problems (HT𝑘). A single temperature field, corresponding to thermal equilibrium between the gas and solid phase, 
describes the effective medium following the homogenization procedure given the scaling properties of our application. For different conditions 
thermal non-equilibrium between the phases could occur, and homogenization would lead to separate heat transport equations for each phase as 
demonstrated in [26] which could be implemented in the model in future work. As for the permeability K and effective diffusivities Ðeff

𝑖𝑗 , in this 
study we assume that the effective thermal conductivity is a scalar 𝜆eff > 0 and is calculated as shown in Section 2.3.2.

Summarizing, the isothermal model at Darcy scale consists of the equations for species mass transport (2.24), the Darcy (2.22) and M–S 
Eqs. (2.25), (2.26) with the ideal gas law (2.1) as constitutive relation. In the non-isothermal case the iso-thermal equations are complemented by 
the homogenized heat transport Eq. (2.29).

2.3.1. Free energy (Darcy scale)
In this subsection, focus on the isothermal case and show that the simplified PDE system with fixed temperature 𝑇 > 0 is compatible with 

basic thermodynamic modeling in the sense that we identify a Lyapunov functional (see e.g. Definition 1.1 in [30]) which can be regarded as a free 
energy of the system. For a related approach with a van der Waals pressure law, we refer to [31]. Our results are valid under the mild hypotheses 
of symmetry and positive definiteness of the effective permeability tensor 𝐊 and effective diffusivities ⟨Ðeff

𝑖𝑗 ⟩:

• For all 𝜂, �̃� ∈ R𝑑 and all 𝑖, 𝑗 = 1,… , 𝑛 ∶

�̃�𝑇𝐊𝜂 = 𝜂𝑇𝐊�̃� �̃�𝑇 ⟨Ðeff
𝑖𝑗 ⟩𝜂 = 𝜂𝑇 ⟨Ðeff

𝑖𝑗 ⟩�̃� (𝖲)

• For all 𝜂 ∈ R𝑑 ⧵ {0} and all 𝑖, 𝑗 = 1,… , 𝑛 ∶

𝜂𝑇𝐊𝜂 > 0 𝜂𝑇 ⟨Ðeff
𝑖𝑗 ⟩𝜂 > 0. (𝖯)

Here, 𝑑 ∈ N denotes the dimension of the physical space. The derivation of the symmetry and positive definiteness properties (𝖲), (𝖯) of effective 
homogenized tensors in prototypical situations can be found in classical literature, see Proposition 3.2 in [25, Chapter 1], for instance. We will 
further use the tensor identity ⟨Ðeff

𝑖𝑗 ⟩ = ⟨Ðeff
𝑗𝑖 ⟩ for all 𝑖, 𝑗 = 1,… , 𝑛, which is a direct consequence of formula (2.28) and the fact that Ð𝑖𝑗 = Ð𝑗𝑖.

In the following, we suppose that the equations are formulated on a bounded spatial domain with Lipschitz continuous boundary (see Definition 
1.2.1.1 in [32]) and complemented by no-flux boundary conditions. We assume, without loss of generality, that the fixed temperature 𝑇  is the 
standard temperature. We further let 𝑝st denote the standard pressure and 𝜌st𝑖 = 𝑀𝑖

𝑝st

𝑅𝑇  the associated standard density of the 𝑖th species. As the 
free energy density of the model, we take

𝑓 (𝜚) = 𝜙𝑅𝑇
𝑛
∑ 𝜌𝑖 (log

(

𝜌𝑖∕𝜌st𝑖
)

− 1
)

.

𝑖=1 𝑀𝑖

5 
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Observe that 
𝜇𝑖 ∶=

𝜕𝑓
𝜕𝜌𝑖

(𝜚) = 𝜙𝑅𝑇
𝑀𝑖

log
(

𝜌𝑖∕𝜌st𝑖
)

. (2.31)

This yields the relation 𝑓 (𝜚) + 𝜙𝑝 = 𝜙
∑𝑛
𝑖=1 𝑅𝑇

𝜌𝑖
𝑀𝑖

log
(

𝜌𝑖∕𝜌st𝑖
)

=
∑𝑛
𝑖=1 𝜌𝑖𝜇𝑖, which is reminiscent of the Gibbs–Duhem equation (cf. [33, Section 5]). 

As a consequence, we further have 
𝑛
∑

𝑖=1
𝜌𝑖∇𝜇𝑖 = 𝜙∇𝑝. (2.32)

Let now 𝐹 (𝜚) = ∫ 𝑓 (𝜚) d𝑥 denote the free energy functional, where here and in the rest of this subsection, we do not explicitly indicate the space 
domain of integration. We assert that 𝐹  is dissipated along sufficiently regular solutions 𝜚 of (2.24), (2.22) obeying no-flux boundary conditions 
and positivity 𝜌𝑖 > 0, 𝑖 = 1,… , 𝑛, if the reaction rates (𝑟𝑖)𝑖 are dissipative in the sense that 

∑𝑛
𝑖=1 𝜇𝑖𝑟𝑖(𝜚) ≤ 0 or, equivalently, 

𝑛
∑

𝑖=1

𝑅𝑇
𝑀𝑖

𝑟𝑖(𝜚) log
(

𝜌𝑖∕𝜌st𝑖
)

≤ 0  for all 𝜚 ∈ (0,∞)𝑛. (2.33)

To show the asserted non-increase of the free energy, we compute using identities (2.24), (2.22), integration by parts, as well as (2.32)
d
d𝑡
𝐹 (𝜚) = ∫

𝑛
∑

𝑖=1
𝜇𝑖𝜕𝑡𝜌𝑖

= −1
𝜂 ∫ 𝐊∇𝑝 ⋅ ∇𝑝 + ∫

𝑛
∑

𝑖=1

1
𝜙
∇𝜇𝑖 ⋅ ⟨𝐽𝑖⟩ + ∫

𝑛
∑

𝑖=1
𝜇𝑖𝑟𝑖(𝜚).

(2.34)

The first and third term on the right-hand side of (2.34) are non-positive since 𝐊 is positive definite, since 𝜂 > 0, and due to (2.33). For treating 
the second term, we reformulate the M–S relations. Using the identities 𝜌𝑖 = 𝑐𝑀𝑖𝑥𝑖, 𝑤𝑖 = 𝑐

𝜌𝑥𝑖𝑀𝑖, and ∇𝜌𝑖𝜌𝑖 = ∇𝑝
𝑝 + ∇𝑥𝑖

𝑥𝑖
, we deduce from (2.25) and 

(2.26) that for 𝑖 = 1,… , 𝑛

𝑀𝑖𝑥𝑖
( 1
𝑀𝑖

∇𝜌𝑖
𝜌𝑖

− 𝑐
𝜌
∇𝑝
𝑝

)

= −
∑

𝑗∶𝑗≠𝑖

1
𝑐𝑀𝑖𝑀𝑗

⟨Ðeff
𝑖𝑗 ⟩

−1
(

𝑀𝑗𝑥𝑗⟨𝐽𝑖⟩ −𝑀𝑖𝑥𝑖⟨𝐽𝑗⟩
)

.

Multiplying the last equation by 𝑐
𝑀𝑖𝑥𝑖

, which is admissible if 𝑥𝑖 > 0 for all 𝑖, and recalling (2.31), we further infer for 𝑖 = 1,… , 𝑛

𝑐
𝑅𝑇

( 1
𝜙
∇𝜇𝑖 −

1
𝜌
∇𝑝) = −

∑

𝑗∶𝑗≠𝑖

1
𝑀𝑖𝑀𝑗

⟨Ðeff
𝑖𝑗 ⟩

−1
(𝑀𝑗𝑥𝑗
𝑀𝑖𝑥𝑖

⟨𝐽𝑖⟩ − ⟨𝐽𝑗⟩
)

,

Thus, 
𝑐
𝑅𝑇

( 1
𝜙
∇𝜇𝑖 −

1
𝜌
∇𝑝) = −(𝐀(𝜚)⟨𝐽⟩)𝑖, 𝑖 = 1,… , 𝑛, (2.35)

where ⟨𝐽⟩ = (⟨𝐽1⟩,… , ⟨𝐽𝑛⟩)𝑇  and with the understanding that

(𝐀(𝜚)⟨𝐽⟩)𝑖 =
𝑛
∑

𝑗=1
𝐀𝑖𝑗 (𝜚)⟨𝐽𝑗⟩,

where we have introduced the tensor-valued matrix 𝐀 = (𝐀𝑖𝑗 )𝑛𝑖,𝑗=1, 𝐀𝑖𝑗 ∈ R𝑑×𝑑sym , given by

𝐀𝑖𝑗 (𝜚) =
⎧

⎪

⎨

⎪

⎩

∑

𝑘∶𝑘≠𝑖
1
𝑀2
𝑖

𝑥𝑘
𝑥𝑖
⟨Ðeff

𝑖𝑘 ⟩

−1  if 𝑗 = 𝑖,

− 1
𝑀𝑖𝑀𝑗

⟨Ðeff
𝑖𝑗 ⟩

−1  if 𝑗 ≠ 𝑖.

If 𝜌𝑖 > 0 for all 𝑖, it holds that for all 𝜁 ∈ R𝑑×𝑛, 𝜁 = (𝜁1,… , 𝜁𝑛),

(𝐀(𝜚)𝜁 )𝑖 =
𝑛
∑

𝑗=1

1
𝑀𝑖𝑀𝑗

⟨Ðeff
𝑖𝑗 ⟩

−1(𝑤𝑗
𝑤𝑖
𝜁𝑖 − 𝜁𝑗

)

,

and therefore 

𝜁 ∶ 𝐀(𝜚)𝜁 =
𝑛
∑

𝑖,𝑗=1

√

𝑤𝑗
𝑤𝑖
𝜁𝑖
𝑇 (

𝑀𝑖𝑀𝑗⟨Ðeff
𝑖𝑗 ⟩

)−1
(

√

𝑤𝑗
𝑤𝑖
𝜁𝑖 −

√

𝑤𝑖
𝑤𝑗

𝜁𝑗
)

= 1
2

𝑛
∑

𝑖,𝑗=1
𝜂𝑇𝑖𝑗

(

𝑀𝑖𝑀𝑗⟨Ðeff
𝑖𝑗 ⟩

)−1𝜂𝑖𝑗 , 𝜂𝑖𝑗 ∶=
(

√

𝑤𝑗
𝑤𝑖
𝜁𝑖 −

√

𝑤𝑖
𝑤𝑗
𝜁𝑗
)

,

(2.36)

where the second step follows from the symmetry property ⟨Ðeff
𝑖𝑗 ⟩ = ⟨Ðeff

𝑗𝑖 ⟩. By hypothesis (𝖯), each of the summands on the right-hand side of (2.36) 
is non-negative. This shows that 

𝜁 ∶ 𝐀𝜁 ≥ 0  for all 𝜁 ∈ R𝑑×𝑛 (2.37)

with equality if and only if 𝜁𝑖 = 𝑤𝑖𝜉 for all 𝑖 ∈ {1,… , 𝑛} and some 𝜉 ∈ R𝑑 .
Using (2.35), we thus deduce

∫

𝑛
∑ 1 ∇𝜇𝑖 ⋅ ⟨𝐽𝑖⟩ = −∫

𝑅𝑇
𝑛
∑

(𝐀(𝜚)⟨𝐽⟩)𝑖 ⋅ ⟨𝐽𝑖⟩ + ∫

𝑛
∑ 1∇𝑝 ⋅ ⟨𝐽𝑖⟩
𝑖=1 𝜙 𝑐 𝑖=1 𝑖=1 𝜌

6 
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= −∫
𝑅𝑇
𝑐

𝑛
∑

𝑖=1
(𝐀(𝜚)⟨𝐽⟩)𝑖 ⋅ ⟨𝐽𝑖⟩ ≤ 0,

where the second step follows from (2.26) and the last inequality from (2.37). Insertion in (2.34) allows us to conclude
d
d𝑡
𝐹 (𝜚) = −1

𝜂 ∫ 𝐊∇𝑝 ⋅ ∇𝑝 − ∫

𝑛
∑

𝑖=1

𝑅𝑇
𝑐

(𝐀(𝜚)⟨𝐽⟩)𝑖 ⋅ ⟨𝐽𝑖⟩

+ ∫

𝑛
∑

𝑖=1
𝜇𝑖𝑟𝑖(𝜚) ≤ 0,

where each of the three integral terms in the last line has the ‘‘correct’’ sign. For the non-positivity of the term associated with the reactions we 
rely on the assumption (2.33).

Finally, let us observe that the free energy 𝐹  is strictly convex. This can easily been seen by differentiating (2.31) with respect to 𝜌𝑗 , which 
leads to

𝜕2𝑓
𝜕𝜌𝑖𝜕𝜌𝑗

(𝜚) = 𝜙 𝑅𝑇
𝑀𝑖𝜌𝑖

𝛿𝑖𝑗 , 𝑖, 𝑗 = 1,… , 𝑛, 𝜚 ∈ (0,∞)𝑛.

In particular, the Hessian of the free energy density is diagonal with positive entries, and therefore positive definite. Thus, without or under 
appropriate assumptions on the reaction rates, the steady states of the system, defined as the minimizers of the free energy under the natural 
constraints associated with the conservation laws, can be expected to be unique.

2.3.2. Effective transport properties in porous media (Darcy scale)
Effective thermal conductivity. As introduced in Section 2.3 an effective thermal conductivity 𝜆eff is required to describe diffusive heat transport in 
the homogenized model. In general, it is calculated from the thermal conductivities of the non-porous solid 𝜆s and fluid phases 𝜆f = 𝜆, the porosity 
𝜙 while considering the influence of the pore structure [34]. In principle, the homogenization approach based on two-scale expansions permits the 
direct calculation of ⟨𝝀eff⟩ via (2.30). This requires the knowledge of the exact geometry of the porous medium that must be obtained via imaging 
techniques which will be part of future work.

As an alternative, this work makes use of a recently published calculation approach for the effective thermal conductivity in porous media [35]. 
This has the advantage that it is easy to implement and does not require detailed knowledge about the pore structure. Briefly, the aim of the 
approach is to provide a general, structure and geometry independent equation for the effective thermal conductivity of porous media (2.38) and 
to integrate the geometrical influence via the structure parameter 𝜓 (2.39).

𝜆eff =

𝜆f𝜆s
𝜆s𝜙+𝜆f(1−𝜙)

𝜆s
𝜆f
𝜙 + 2𝜓 + 𝜆f

𝜆s
(1 − 𝜙) + 1

[

𝜆s
𝜆f
𝜙 + (1 − 𝜙) + 𝜓

] [

𝜙 +
𝜆f
𝜆s

(1 − 𝜙) + 𝜓
]

(2.38)

𝜓 = 1
𝑘𝑦

(𝜙 − 1)
𝜆𝑠 − 𝜆𝑓
𝜆𝑠𝜆𝑓

[𝜆𝑓 (𝜙 − 1) − 𝜆𝑠𝜙] (2.39)

For the porous medium used in this study, the structure parameter 𝜓 for an ordered packing of spheres with flattened contacts was chosen and the 
parameter 𝑘𝑦 in (2.39) is the contact angle coefficient as defined in [35]. Different calculation approaches for the effective thermal conductivity as 
a function of porosity are shown in Fig.  1 and compared to the measured value at room temperature for a sample of the porous support material 
used within this study. The pure phase thermal conductivities shown as solid black lines correspond to Borosilicate glass (s, solid) [36] and air (f, 
fluid) at room temperature and amount to 𝜆s = 1.13 W(m K)−1 and 𝜆f = 0.026 W(m K)−1 respectively. Fig.  1 shows that the proposed formula by 
Cheilytko [35] gives values of the effective thermal conductivity of the backfill close to those obtained from the formula derived by Schütz [37].
Effective mass diffusivities. As a result of the homogenization procedure, effective M–S diffusivities Ðeff𝑖𝑗  appear in (2.25). As for 𝜆eff, Ðeff𝑖𝑗  could 
be directly calculated via (2.28) which is infeasible due to the unknown pore structure. Instead, a simple tortuosity-constrictivity correction [38] 
is applied. Here 𝛾 is a constriction factor, taking into account the additional drag on diffusing gas molecules through narrow pores and 𝜏 is the 
tortuosity. In the context of a porous medium the tortuosity 𝜏 causes both a longer path length as well as a narrower effective pore cross-section for 
diffusing gas molecules leading to a higher velocity for a given flux. Thus its effect on effective transport properties is quadratic [38]. The effective 
M–S diffusivities are thus obtained by 

Ðeff𝑖𝑗 = 𝛾∕𝜏2Ð𝑖𝑗 . (2.40)

In general 𝛾∕𝜏2 is found experimentally, while a first approximation can be obtained from 𝛾∕𝜏2 = 𝜙1.5 [38] which is used throughout this study.
Knudsen diffusivities. In the case of micro-porous structures the flow regime can deviate from continuum flow indicated by the Knudsen number 
Kn = 𝓁∕𝐿, with 𝓁 the mean free path length of the gas and 𝐿 the characteristic length, corresponding to an average pore diameter in the case of 
porous media. For Kn > 1 × 10−2 the gas–wall interactions cannot be described by thermodynamic equilibrium assumption and Knudsen diffusion 
must be considered. The porous material considered in this work [36] is characterized by porosity class 0 with a pore size distribution in the range 
160 μm to 250 μm. When considering typical gas phase conditions that apply in the relevant application presented in this work of ca. 600 °C and 
1 bara, Knudsen numbers Kn ≈ 2 × 10−3 are obtained which are one order of magnitude below the limit for the continuum flow regime. Therefore, 
Knudsen diffusion is not considered.

3. Implementation

Both the isothermal model (2.22), (2.24) and the non-isothermal model (2.22), (2.24), (2.29) with their respective boundary conditions comprise 
a coupled nonlinear system of partial differential equations. For stability reasons, we chose an implicit Euler time discretization. The space 
discretization is performed using the Voronoi box based finite volume method which we describe here in a cursory way, more on this approach one 
can find e.g. in [39]. This method starts from a boundary conforming Delaunay triangulation resp. tetrahedralization [40] of the computational 
7 
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Fig. 1. Comparison of calculation approaches for effective thermal conductivity in porous media, where Cheilytko corresponds to [35], Schütz to [37] and VDI to [34].

Fig. 2. Two neighboring Voronoi cells and the background triangulation.

domain 𝛺 and constructs its dual, the Voronoi tessellation and intersects it with the computational domain. This results in a subdivision �̄� =
⋃𝐾
𝑘=1 𝜔𝑘

into 𝐾 closed convex polygonal control volumes 𝜔𝑘 with collocation points �⃗�𝑘 ∈ 𝜔𝑘 coinciding with the nodes of the initial triangulation. For two 
neighboring control volumes, the line �⃗�𝑘�⃗�𝑙 of length ℎ𝑘𝑙 connecting their respective collocation points is collinear with the normal vector 𝑛𝑘𝑙 to 
the interface 𝜎𝑘𝑙 = 𝜔𝑘 ∩𝜔𝑙, thus allowing to approximate the normal derivative of a function 𝑢 defined on 𝛺 by ∇𝑢 ⋅ 𝑛𝑘𝑙 ≈ 𝑢(�⃗�𝑘)−𝑢(�⃗�𝑙 )

ℎ𝑘𝑙
 in a consistent 

manner (see Fig.  2).
Consider a system of 𝑁 coupled partial differential equations in a 𝑑 dimensional domain 𝛺 ⊂ R𝑑 and time interval (0, 𝑇 ) written in vector form 

as 
𝜕𝑡𝐬(𝐮) + ∇ ⋅ �⃗�(𝐮, ∇⃗𝐮) + 𝐫(𝐮) = 0, (3.1)

where 𝐮(�⃗�, 𝑡) = (𝑢1(�⃗�, 𝑡)… 𝑢𝑁 (�⃗�, 𝑡)) ∶ 𝛺 × (0, 𝑇 ) → R𝑁  is the basic unknown, 𝐬 ∶ R𝑁 → R𝑁  is the local amount of species, 𝐫 ∶ R𝑁 → R𝑁  is the 
reaction term, and ⃗𝐣 ∶ R𝑁 × R𝑁𝑑 → R𝑁𝑑 is the species flux.

Integration of (3.1) over a space–time control volume 𝜔𝑘 ⊂ �̄�, [𝑡𝑚−1, 𝑡𝑚] ∈ [0, 𝑇 ], 𝑚 being the time-step index, applying Newton-Leibniz rule and 
Gauss’ law yields the identity

∫𝜔𝑘
𝐬(𝐮(�⃗�, 𝑡𝑚)) 𝑑�⃗� − ∫𝜔𝑘

𝐬(𝐮(�⃗�, 𝑡𝑚−1)) 𝑑�⃗� +

+ ∫

𝑡𝑚

𝑡𝑚−1

(

∫𝜕𝜔𝑘
�⃗� ⋅ 𝑛 𝑑𝑠 + ∫𝜔𝑘

𝐫(𝐮) 𝑑�⃗�
)

𝑑𝑡 = 0

which is approximated by
|𝜔𝑘|

(

𝐬(𝐮𝑚𝑘 ) − 𝐬(𝐮𝑚−1𝑘 )
)

+

+ (𝑡𝑚 − 𝑡𝑚−1)

(

∑

|𝜎𝑘𝑙|
ℎ

𝐠(𝐮𝑚𝑘 ,𝐮
𝑚
𝑙 ) + |𝜔𝑘|𝐫(𝐮𝑚𝑘 )

)

= 0 (3.2)

𝜔𝑙neighbor of𝜔𝑘 𝑘𝑙
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As we see, the functions 𝐬 and 𝐫 directly enter the discrete description; the same is true for nonlinear terms characterizing Robin boundary conditions, 
which we omit here for brevity. The vector valued flux function 𝐠(𝐮𝑘,𝐮𝑙) ≈ ℎ𝑘𝑙 �⃗� ⋅ 𝑛𝑘𝑙 approximates the nonlinearly coupled continuous fluxes.

With properly chosen flux terms, this finite volume approach has the potential to provide a discrete thermodynamic structure, see e.g. [41,42]. 
For the present model, a pragmatic approach is presented. The refinement of the discretization scheme as well as the investigation of discrete 
entropy principles are possible directions of further work.

Considering that the basic unknowns are 𝐮 = (𝑥1,… , 𝑥𝑛, 𝑝, 𝑇 ), the flux function 𝐠 can be written as 𝐠(𝐮𝑘,𝐮𝑙) = (𝑔𝜌𝑘𝑙 , 𝑔
𝜌1
𝑘𝑙 … 𝑔𝜌𝑛−1𝑘𝑙 , 𝑔ℎ𝑘𝑙) and 

�̄�𝑘𝑙 = (𝐮𝑘 + 𝐮𝑙)∕2. Given the Darcy velocity approximation
𝑣𝑘𝑙 = (𝐾∕𝜂)

(

�̄�𝑘𝑙
)

(𝑝𝑘 − 𝑝𝑙),

the components are:

• the total mass flux 𝑔𝜌𝑘𝑙:
𝑔𝜌𝑘𝑙 = 𝜌

(

�̄�𝑘𝑙
)

𝑣𝑘𝑙

• the species mass fluxes 𝑔𝜌𝑖𝑘𝑙 :
𝑔𝜌𝑖𝑘𝑙 = 𝐽 𝑖𝑘𝑙 + 𝜌

𝑖 (�̄�𝑘𝑙
)

𝑣𝑘𝑙 , 𝑖 = 1,… , 𝑛 − 1,

where the calculation of the diffusive species mass fluxes 𝐽 𝑖𝑘𝑙 corresponding to 𝐽𝑖 in (2.7) requires the solution of a (𝑛 − 1) × (𝑛 − 1) linear 
system [43,44]:

−𝐇𝑘𝑙𝐉𝑘𝑙 = 𝐅𝑘𝑙
𝐹 𝑖𝑘𝑙 = (𝑥𝑖𝑘 − 𝑥

𝑖
𝑙) +𝐷𝑖

𝑝
(

�̄�𝑘𝑙
)

(

𝑝𝑘−𝑝𝑙
(𝑝𝑘+𝑝𝑙 )∕2

)

+ So𝑖
(

�̄�𝑘𝑙
)

(

𝑇𝑘−𝑇𝑙
(𝑇𝑘+𝑇𝑙 )∕2

)

, 𝑖 = 1,… , 𝑛 − 1,

𝐻 𝑖𝑖
𝑘𝑙 =

𝑤𝑖

𝑀 𝑖𝑀𝑛Ð𝑖𝑛
+

𝑛
∑

𝑜=1
𝑜≠𝑖

𝑤𝑜

𝑀 𝑖𝑀𝑜Ð𝑖𝑜
, 𝑖 = 1,… , 𝑛 − 1,

𝐻 𝑖𝑗
𝑘𝑙 = −𝑤𝑖

(

1
𝑀 𝑖𝑀 𝑗Ð𝑖𝑗

− 1
𝑀 𝑖𝑀𝑛Ð𝑖𝑛

)

, (𝑖, 𝑗) = 1,… , 𝑛 − 1, 𝑖 ≠ 𝑗,

where 𝐷𝑖
𝑝 are the pressure-diffusion coefficients corresponding to 𝑥𝑖−𝑤𝑖 in (2.11), So𝑖 are the Soret thermal diffusion coefficients corresponding 

to 𝑥𝑖̃𝑖 in (2.11),
• the enthalpy flux 𝑔ℎ𝑘𝑙:

𝑔ℎ𝑘𝑙 = 𝜆eff
(

�̄�𝑘𝑙
)

(𝑇𝑘 − 𝑇𝑙) +
𝑛
∑

𝑖=1
ℎ𝑖

(

�̄�𝑘𝑙
)

𝑔𝑖𝑘𝑙 + Du
𝑖 (�̄�𝑘𝑙

)

𝐽 𝑖𝑘𝑙

where Du𝑖 are the Dufour coefficients corresponding to 𝑅𝑇 ̃𝑖∕𝑀𝑖 in (2.13).

Omitting further details, we just state that (3.2) leads to a nonlinear system of 𝐾 ⋅ 𝑁 equations which needs to be solved in each time step. 
This is achieved by Newton’s iterative method, which requires the calculation of the Jacobi matrix of partial derivatives with respect to the current 
iterate and the solution of the resulting sparse linear system for the iteration updates.

The possibility to characterize the discretized problem by the flux, reaction, storage and boundary functions and the one, two- or three-
dimensional discretization grid leads to a convenient software API which has been realized in the Julia package VoronoiFVM.jl [12]. This package 
leverages forward mode automatic differentiation [45] to calculate the partial derivatives of the constitutive functions for the subsequent assembly 
of the Jacobi matrices. It can use various direct and iterative solvers for sparse linear systems; the calculations presented in this paper used a 
GMRES iterative solver [46] with an equation-wise block diagonal preconditioner built from sparse LU factorizations performed with oneMKL 
PARDISO [47] for the 3D example in Section 4.1 and the Sparspak.jl direct solver [48] for the 2D example in Section 4.2.

4. Simulations

4.1. Photo-thermal catalytic reactor

The model is applied to a directly irradiated PTR that was experimentally investigated by the authors [49] of which a schematic cross-section 
is illustrated in Fig.  3. As was noted in Section 2.2.2, Soret and Dufour cross-diffusion effects were not considered in this simulation. The reactor 
consists of an upper and lower chamber separated by a porous support, a sintered structure of Borosilicate glass [36]. The upper chamber is 
bounded by the quartz glass window from above and by the porous support from below. The gaseous reactants enter the upper chamber from the 
side. Irradiation enters the reactor via the quartz window and hits the photo-thermal catalyst that is deposited on top of the porous support. The 
bottom chamber is bounded by the porous support and a bottom plate. The modeling domain of the PTR is a three-dimensional, square prismatic 
geometry of 16 cm side length and a height of 0.5 cm. The domain consists of the catalyst layer of 0.5 mm thickness and supporting porous structure 
as indicated in Fig.  3 and in more detail with information on domain boundaries in Fig.  D.11.

4.1.1. Boundary conditions
The simulation should reflect the boundary conditions of the physical experiment. In the experimental setup the total mass flow as well as the 

species mass flows into the reactor were controlled via mass flow controllers upstream of the reactor. The pressure at the outlet can be  regulated via 
9 
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Fig. 3. (A) Schematic cross-section of the photo-thermal reactor with in- and outflows and (B) cross-section of square prismatic modeling domain with internal regions (italic font) 
and outer boundaries with geometric dimensions.

Table 1
Boundary conditions for the simulation of the photo-thermal catalytic reactor.
 Transport process
 Total mass Species mass Thermal energy  
 (𝑖 = 1,… , 𝑛)  
 Boundary  
 Top/Inlet 𝜌𝑣 ⋅ 𝑛 = [𝛹 𝜌]𝛤in (𝐽𝑖 + 𝜌𝑖𝑣) ⋅ 𝑛 = [𝛹 𝜌𝑖 ]𝛤in Inflow (4.3),

Appendix  B
 

 Side 𝑣 ⋅ 𝑛 = 0 (𝐽𝑖 + 𝜌𝑖𝑣) ⋅ 𝑛 = 0 Appendix  C  
 Bottom/Outlet 𝑝 = 𝑝out Outflow (4.1) Outflow (4.2),

Appendix  B
 

back pressure regulator downstream of the reactor [49]. The corresponding boundary conditions applied in the simulation are summarized in Table 
1 where [𝛹 𝜌]𝛤in  and [𝛹𝜌𝑖 ]𝛤in  correspond to the specified total and species mass fluxes at the inlet, respectively. To simplify notation throughout 
this section, the averaged volume and diffusive species mass fluxes ⟨𝑣⟩ and ⟨𝐽𝑖⟩ are written as 𝑣 and 𝐽𝑖 as in the context of the effective medium 
equations all fluxes are averaged fluxes and there is no danger of confusing the notations.

A merit of the explicit calculation of the convective velocity field via (2.22) is the high degree of control over the convective flux over the 
boundaries: as can be seen in Fig.  D.11 the outermost part of the inlet boundary is not permeable for gas flow reflecting the construction of the 
physical reactor. For these parts of the boundary the total mass flux and thus the normal convective flow velocity vanishes.

Regarding the boundary condition for species transport at the outlet, the gas phase composition at the outlet is not known beforehand but instead 
is a result of the chemical reactions occurring in the catalyst layer. Thus, for the species transport, an outflow boundary condition is specified at the 
outlet. In particular, the normal species mass flux through the outlet boundary from convective flow with its velocity field computed with (2.22) 
as described in Eq.  (4.1): 

𝑛 ⋅
(

⟨𝐽𝑖⟩ + 𝜌𝑖⟨𝑣⟩
)

=
[

𝑛 ⋅ (𝜌𝑖⟨𝑣⟩)
]

𝛤out
(4.1)

Analogously, the outlet heat flux where the product gas mixture exits the modeling domain is given by 
𝑛 ⋅

(

𝑐𝜌𝑇 ⟨𝑣⟩ − 𝜆eff∇𝑇
)

=
[

𝑛 ⋅ (𝑐𝜌𝑇 ⟨𝑣⟩)
]

𝛤out
+
[

𝛹𝑇 ,rad
]

𝛤out
(4.2)

where all quantities 𝑐, 𝜌, ⟨𝑣⟩ are taken at outlet conditions and where [𝛹𝑇 ,rad]𝛤out  is a radiative heat flux term originating from irradiation exchange 
described in Appendix  B.

At the inlet boundary the normal enthalpy flux is specified via a Neumann boundary condition as: 
𝑛 ⋅

(

𝑐𝜌𝑇 ⟨𝑣⟩ − 𝜆eff∇𝑇
)

=
[

𝛹𝑇
]

𝛤in
(4.3)

where the total heat flux specified at the inlet [𝛹𝑇 ]𝛤in  is the sum of the convective and radiative heat fluxes [𝛹𝑇 ,conv + 𝛹𝑇 ,rad]𝛤in , respectively, defined as 
[

𝛹𝑇 ,conv
]

𝛤in
=
[

𝑐𝑇𝛹 𝜌
]

𝛤in
(4.4)

and [𝛹𝑇 ,rad]𝛤in  defined as shown in Appendix  B.The irradiation boundary condition for the thermal energy equation at the inlet of the photo-thermal catalytic reactor is defined by the grid 
interpolated irradiation flux density profile shown in Fig.  4: Irradiation enters the reactor via the 12 cm × 12 cm window (thick line in Fig.  4) at a 
nominal flux density of 70 kW∕m2 corresponding to the average value for the 10 cm × 10 cm core area (thin line in Fig.  4).

4.1.2. Chemical conversion
The aim of the photo-thermal catalytic reactor is the conversion of CO2 with H2 to CO and the side product H2O via the endothermic rWGS 

reaction (4.5), effectively storing the solar energy provided by the irradiation in the chemical bonds of the products. Since both CO2 and H2 are 
present in the feed stream, the methanation reaction of CO2 (Sabatier reaction) as well as the further methanation of the in-situ formed CO could 
also occur as unintended side reactions:

rWGS:
CO2 + H2 ⇌ CO + H2O

0
(4.5)
𝛥𝐻 = 41 kJ/mol (298 K)
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Fig. 4. Grid interpolated irradiation flux density profile corresponding to a nominal flux density of 70 kW∕m2 in the 10 cm × 10 cm core area from flux measurements in [49]. It is 
used as input to the boundary condition for thermal energy transport (B.1) at the inlet boundary of the photo-thermal catalytic reactor.

Sabatier:
CO2 + 4H2 ⇌ CH4 + 2H2O

𝛥𝐻0 = −206 kJ/mol (298 K)
(4.6)

CO Methanation: CO + 3H2 ⇌ CH4 + H2O

𝛥𝐻0 = −165 kJ/mol (298 K)
(4.7)

In the photo-thermal reactor chemical conversion of reactants into products occurs through heterogeneous catalytic reactions between the gas 
phase and the solid immobilized catalyst that is deposited in the catalyst layer (Fig.  3 B). In accordance with the quasi-homogeneous approach, 
the catalyst is not treated as a separate phase but instead is assumed to be dispersed evenly inside the porous structure and is quantified via the 
volumetric catalyst mass loading. Chemical conversion in the reactor is expressed mathematically via rates of reaction as functions of the local 
conditions of temperature, total pressure and chemical composition that after applying the corresponding stoichiometric factors result in the species 
source terms in (2.24). Based on the assumption that the catalyst activity is determined by the temperature, the kinetics of the photo-thermal catalyst 
can be treated like ordinary thermal catalysts [50] with reaction rate equations for the rWGS and methanation reactions from [51].

4.1.3. Results and discussion
The most important operating conditions for the PTR are the irradiation flux density, the feed gas flow and feed chemical composition. In the 

following the PTR is simulated with a nominal irradiation flux density of 70 kW∕m2 where the corresponding flux density distribution used as 
model input is shown in Fig.  4. A total feed gas flow of 3Ls∕min (𝑝s = 1.013 25 bara, 𝑇s = 293.15K) with molar composition of H2/CO2 = 1/1 and a 
total catalyst mass loading of 500mg are applied. This corresponds to the nominal operating point as defined in [49]. The optical properties of the 
catalyst layer and surrounding surfaces describe the radiation heat transport and consequently have a large impact on the temperature distribution 
in the reactor which in turn strongly influences the chemical conversion. Typical values for the optical properties that are used for the simulation 
were obtained in [49] and are shown in Table  B.2. The computational domain corresponds to the catalyst layer and porous support structure with 
dimensions of 16 cm× 16 cm× 0.5 cm shown in Fig.  D.11. The domain was discretized on a uniform, Cartesian grid with 33 grid points in the X and 
Y dimensions and 21 grid points in the Z dimension, leading to grid edge lengths of 5mm and 0.25mm, respectively.

For these conditions the simulation completed in 17min on a laptop computer with Intel® i7-1365U CPU. Selected simulation results for 
stationary operation are shown in Fig.  5. The simulation code for this numerical example together with instructions on how to reproduce Fig. 
5 is available online [52]. A maximum temperature of 610 °C is reached on the top surface in the center of the domain while the underside of the 
domain in the central region is at ca. 500 °C. The temperature drops rapidly towards the outer edges of the domain to values below 200 °C with 
the minimum reached in the corners at ca. 110 °C.

Regarding the pressure field it is mentioned in Section 4.1.1 and illustrated in Fig.  D.11 that parts of the inlet and outlet boundaries are 
impermeable for gas flow. This explains the regions of constant pressure at the outer rim of the domain. In the permeable central region a pressure 
drop of ca. 12 Pa is observed for the given combination of feed flow and porous medium. This low value is a likely result of the large pore size of 
ca. 200 μm (porosity class 0) and the corresponding high permeability [28].

With respect to the chemical conversion towards the target product CO, the maximum molar fraction of ca. 16% is observed in the center 
corresponding to the region of highest temperature as the thermochemical equilibrium favors the endothermal rWGS reaction at increasingly high 
temperatures [53]. The maximum is not located on the domain surface but in the interior of the catalyst region. The CO molar fraction quickly 
drops towards the outer edges while a CO molar fraction of ca. 10% is maintained in a core area of 10 cm × 10 cm.

The molar fraction of the undesired side product CH4 shows an interesting spatial distribution where in contrast to CO the region of maximal 
CH4 at 3.5% does not lie in the center but instead forms a ring around it corresponding to the intermediate temperature range of ca. 400 °C to 
500 °C where the thermochemical equilibrium shifts towards the exothermal Sabatier reaction. For regions with temperatures below ca. 350 °C
the CH4 molar fraction drops quickly as the reaction rates become kinetically limited.

Summarizing, for the stated operating conditions of 3 Ls∕min of H2/CO2 = 1/1 feed flow corresponding to a total molar flow 7.4 mol∕h, molar 
outflows of CO and CH4 of 0.55 mol∕h and 0.13 mol∕h respectively, are obtained. This results in a CO2 based conversion of 18% (29% H2 based) 
and a selectivity towards CO of 81% with the remaining 19% towards CH4 when based on CO2.

The simulation conditions were chosen in accordance with a set of experimental operating conditions reported in [49] allowing for a comparison 
of simulated and experimental results. The temperature on the surface of the catalyst layer will be compared as shown in Fig.  6 where the placement 
of the thermocouples is shown alongside a parity plot of experimental and calculated results. Therein the data points labeled ‘‘TC’’ correspond to the 
11 
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Fig. 5. Combined top- and cross-section views of stationary simulation results of photo-thermal catalytic reactor operated at a nominal irradiation flux density of 70 kW∕m2 and 
feed flow of 3 L𝑠∕min of H2/CO2 = 1/1: (A) temperature, (B) total pressure, (C) molar fraction of CO, (D) molar fraction of CH4. The catalyst layer region is outlined by a thin 
white line, the aspect ratio is increased in the 𝑍-axis by a factor of 4 to increase readability.

Fig. 6. Comparison of experimental and simulated results for temperature with (A) measurement positions for temperature on top of the catalyst layer in the experimental reactor 
and (B) parity plot of calculated thermocouple (TC) and catalyst surface (Cat) temperatures including error bars.

calculated thermocouple temperatures following the procedure outlined in [49] and the data points labeled ‘‘Cat’’ correspond to simulation results 
obtained with the model presented in this work. One complication arises, when attempting to compare the results because in the experimental 
setup it is difficult to measure the actual temperature of the catalyst layer. As is discussed in [49], the thermocouples are directly irradiated and will 
consequently overestimate the catalyst layer temperature. This becomes is evident by the fact that the data points corresponding to simulation results 
(‘‘Cat’’) all lie under the line through the origin. Thus, a procedure was derived in [49] to account for this effect by recalculating the thermocouple 
temperatures under irradiation based on the catalyst temperature and further model parameters. This results in the data points labeled ‘‘TC’’ with 
respective uncertainty indicators that originate from uncertain model parameters and that correspond to standard uncertainty. The experimental 
temperature values are associated with a standard uncertainty of 0.75% in the relevant temperature range. It can be seen that for the measurement 
positions T_03, T_04 and T_05 the calculated and experimental thermocouple temperatures agree within the margin of uncertainty, while for the 
remaining measurement points there is an overprediction. Overall, given the large number of model parameters which cannot be determined with 
certainty the agreement can be considered as good. Nevertheless, further improvement in this direction is expected from performing a sensitivity 
analysis of the model presented in this work with respect to the model parameters which is planned in the future.

Regarding improvement options to maximize the yield of CO it is apparent that the outer, cold regions comprise a significant part of the domain 
where no chemical conversion occurs. As an optimization measure it is thus suggested to block the outer regions and leave accessible for gas flow 
a core area of 10 cm × 10 cm so that the gas flow is forced through the hot center. At the same time this measure might reduce the rate of CH4
formation by limiting the available catalytically active area in the intermediate temperature range. In addition, an updated version of the PTR 
12 
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Fig. 7. Two-dimensional modeling domain of a separation chamber used in [13] to simulate the Soret effect through temperature induced gas separation in a ternary mixture of 
noble gases. Spatial coordinates in m.

Fig. 8. Simulation results obtained with the model presented in this work for (A) He molar fraction, (B) temperature, (C) Kr molar fraction and (D) pressure to compare against 
the results from [13] to demonstrate the Soret effect through temperature induced gas separation in a ternary mixture of noble gases.

could comprise a catalyst layer of increased thickness from the current value of ca. 500 μm as the temperature in the core area is greater than 
550 °C for more than half of the total thickness of the porous structure of 5 mm. This holds the potential to further increase CO formation under 
the condition that a sufficiently high, homogeneous temperature field prevails in the reactive zone.

4.2. Thermodiffusion

To demonstrate the model and numerical method with respect to thermodiffusion induced by Dufour and Soret cross diffusion effects as described 
in (2.10), the separation of an equimolar ternary gas mixture of Helium, Argon and Krypton driven by a temperature gradient as presented in [13] 
is reproduced. The two-dimensional modeling domain corresponding to the separation chamber of 18 cm total length consisting of two chambers 
of 8 cm height and 2 cm width that are connected by a pipe of 3 cm height and 10 cm length is shown in Fig.  7. All boundaries are impermeable 
for gas species transport. With respect to heat transport the boundaries labeled 1 and 3 are insulating while the temperature is fixed at boundary 
4 at 300 K and an appropriate heat flux through boundary 2 specified such that a temperature of ca. 400 K is obtained at that boundary [13]. 
The initial state is characterized by a uniform temperature of 300 K and a uniform, equimolar mixture composition at a pressure of 1 bara. The 
stationary state that established upon application the heat flux is shown in Fig.  5 where a temperature difference of ca. 100 K is observed over 
the length of the domain with a separation for helium defined by (𝑥afterHe,max − 𝑥

after
He,min)∕𝑥

before
He  of 7.5% is induced by the temperature difference at a 

uniform pressure of 1.15 bara in agreement with results obtained in [13]. The simulation code for this numerical example reproducing Fig.  8 can 
be run in the computational notebook ‘Thermodiffusion.jl’ from [52].

5. Summary and outlook

A modeling approach for multi-component heat and mass transport of reactive gas mixtures in porous media was developed motivated by the 
desire to accurately reflect boundary conditions prevalent in the experimental setting of continuous-flow chemical reactors involving porous media. 
Analysis of the model structure based on the approach of the minimization of free energy revealed thermodynamic consistency of the isothermal 
model equations.

Further, starting from pore scale equations for gas and rigid solid phases, effective medium equations for the porous medium were derived 
via the homogenization method with two-scale asymptotic expansions. Effective transport parameters are introduced that take into account the 
presence of the porous medium on the flow, transport of species mass and thermal energy. In this context a recently presented equation for 
the effective thermal conductivity was implemented and compared with existing correlations. The model implementation which is based on the 
Finite volume discretization and open-source software is then applied to a photo-thermal catalytic reactor PTR that was previously investigated 
experimentally. Simulation results are discussed and compared with experimentally observed results. Qualitative agreement with experimental 
13 
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temperature measurements is achieved which must be seen in the light of the large number of model parameters that are subject to varying degrees 
of uncertainty and that influence the simulation results. Despite this, the developed model in combination with the numerical implementation is a 
very valuable tool in guiding reactor development as it gives insights that are difficult to obtain via measurements and allows deriving optimization 
measures. Specifically, in order to maximize the CO productivity from the investigated PTR the catalyst placement in the porous domain should 
correspond to the regions of homogeneously high temperatures while no catalyst should be deposited in colder regions to prevent back or side 
reactions. Further, the gas flow path can be optimized such that the gas flow is restricted to regions of high temperatures by blocking the pores of 
colder regions of the domain. Generally, the implementation based on open-source code is accessible and permits the adaptation of the modeling 
framework to other applications as is demonstrated via the thermodiffusion problem of a ternary gas mixture where good agreement is achieved 
with published literature. Finally, the implementation of the Finite Volume discretization and solution algorithm including the possibility to choose 
the linear system solver permits simulation of three-dimensional geometries on a personal computer in reasonable time.

With respect to future work, symmetry assumptions on the pore structure will be dropped, and effective transport parameters will be obtained 
based on the actual pore structure following from homogenization. Further, the numerical analysis of the convergence and thermodynamic 
properties of the finite volume scheme could be investigated. Impact of uncertain model parameters on the simulation could be better understood 
via a sensitivity analysis with respect to model parameters where a focus would be placed on the optical parameters governing the light interaction 
of the irradiated surfaces as radiation is the dominant mode of heat transfer in the investigated application. Alongside, the model could be further 
validated by comparison with experiments at varying operating conditions.

 Symbols  
 Roman  
 𝑐 Molar density of gas phase  
 𝑐𝑖 Molar density of gas species 𝑖  
 𝑐𝑝,𝑖 Mass specific isobaric heat capacity of gas species 𝑖  
 𝑐𝑝 Mass specific isobaric heat capacity of gas mixture  
 𝑐s Heat capacity of solid phase  
 𝑑p Mean pore size  
 �⃗�𝑖 Diffusive driving force (isothermal) of gas species 𝑖  
 �⃗�′𝑖 Adjusted diffusive driving force (non-isothermal) of gas species 𝑖  
 Ð𝑖𝑗 Maxwell–Stefan diffusivities of gas phase species 𝑖, 𝑗  
 Ðeff𝑖𝑗 Effective Maxwell–Stefan diffusivities  
 T

𝑖 Barycentric coefficients of thermal diffusion of gas species 𝑖  
 𝑒 Mass specific internal energy of gas phase  
 ℎ Mass specific enthalpy of gas phase  
 ℎ𝑖 Mass specific enthalpy of gas species 𝑖  
 ℎth𝑖 Mass specific thermal enthalpy of gas species 𝑖  
 ℎ0𝑖 Mass specific enthalpy of formation of gas species 𝑖  
 𝐽𝑖 Diffusive mas flux of gas species 𝑖  
 𝐊 Permeability tensor  
 𝑀𝑖 Molar mass of gas species 𝑖  
 𝑀mix Molar mass of gas mixture  
 𝑝 Pressure  
 𝑞 Heat source term from gas phase chemical reactions  
 �⃗� Heat flux vector in gas phase  
 𝑟𝑖 Formation rate from chemical reactions of gas species 𝑖  
 𝑅 Ideal gas constant  
 𝑡 Time  
 𝑇 Temperature  
 𝑣 Mass-averaged gas phase velocity  
 𝑤𝑖 Mass fraction of gas species 𝑖  
 𝑥𝑖 Molar fraction of gas species 𝑖  
 ̃𝑖 Rescaled thermal diffusion ratio of gas species 𝑖  
 Greek  
 𝜂 Dynamic viscosity of gas phase mixture  
 𝜆 Thermal conductivity of gas phase mixture  
 𝜆f Thermal conductivity of fluid phase  
 𝜆s Thermal conductivity of solid phase  
 𝝀eff Effective thermal conductivity tensor  
 𝜌 Mass density of gas phase  
 𝜌𝑖 Mass density of gas species 𝑖  
 𝜌s Mass density of solid phase  
 𝜙 Porosity of porous medium  
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 𝛹 𝜌 boundary total gas phase mass flux  
 𝛹𝜌𝑖 boundary mass flux of gas species 𝑖  
 𝛹𝑇 boundary heat flux  
 𝛺 Representative elementary volume of the porous medium  
 Operator  
 ⟨⋅⟩ Volumetric averaging operator  
 Acronyms  
 M–S Maxwell–Stefan  
 DGM Dusty Gas Model  
 MTPM Mean Transport Pore Model  
 BTM Binary Transport Model  
 CFD Computational fluid dynamics  
 PTR Photo-thermal catalytic reactor  
 LBM Lattice Boltzmann Method
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Appendix A. Alternative formulation of enthalpy balance

In the following it is shown how to obtain the ‘‘separated formulation’’ of enthalpy balance equation from the formulation based on the absolute 
enthalpy of the gas phase mixture. The absolute gas species enthalpy ℎ𝑖 consists of the contributions via the reference enthalpy ℎ0𝑖  (‘‘formation 
enthalpy’’ at reference conditions, typically 298.15 K, 1 bar) and thermal enthalpy ℎth𝑖 (𝑇 ) due to the species temperature deviating from the reference 
temperature: 

ℎ𝑖 = ℎ0𝑖 + ∫

𝑇

𝑇ref
𝑐𝑝,𝑖(𝑇 )𝑑𝑇

= ℎ0𝑖 + ℎ
th
𝑖 (𝑇 )

(A.1)

The species reference enthalpies (enthalpies of formation) must be considered when species transformations through chemical reactions occur. The 
difference in reference enthalpies between reactant and product species makes up the enthalpy of reaction.

Starting from the enthalpy equation in terms of absolute enthalpy (2.14) we first use 𝜌ℎ =
∑𝑛
𝑖=1 𝜌𝑖ℎ𝑖 and (A.1):

𝜕(
∑

𝜌𝑖ℎ0𝑖 )
𝜕𝑡

+
𝜕(
∑

𝜌𝑖ℎth𝑖 (𝑇 ))
𝜕𝑡

+ ∇ ⋅
(

∑

𝜌𝑖ℎ
0
𝑖 𝑣
)

+ ∇ ⋅
(

∑

𝜌𝑖ℎ
th
𝑖 (𝑇 )𝑣

)

+∇ ⋅
(

∑

ℎ0𝑖 𝐽𝑖
)

+ ∇ ⋅
(

∑

ℎth𝑖 (𝑇 )𝐽𝑖
)

+ ∇ ⋅ �⃗� −
𝜕𝑝
𝜕𝑡

= 0 (A.2)

For the remainder of the derivation in Appendix  A we have:

�⃗� = −𝜆∇𝑇 +
𝑛
∑

𝑖=1

(

𝑅𝑇 ̃𝑖∕𝑀𝑖

)

𝐽𝑖

We can group the terms belonging to the reference and thermal enthalpies, respectively:
∑

(

𝜕(𝜌𝑖ℎ0𝑖 )
𝜕𝑡

+ ∇ ⋅
(

𝜌𝑖ℎ
0
𝑖 𝑣
)

+ ∇ ⋅
(

ℎ0𝑖 𝐽𝑖
)

)

+
𝜕(
∑

𝜌𝑖ℎth𝑖 (𝑇 ))
𝜕𝑡

+ ∇ ⋅
(

∑

𝜌𝑖ℎ
th
𝑖 (𝑇 )𝑣

)

+ ∇ ⋅
(

∑

ℎth𝑖 (𝑇 )𝐽𝑖
)

+ ∇ ⋅ �⃗� −
𝜕𝑝
𝜕𝑡

= 0 (A.3)

Consider the gas phase species mass balance (2.3) and multiply by the reference enthalpy for each species 𝑖 = 1… 𝑛: 

ℎ0𝑖
𝜕𝜌𝑖
𝜕𝑡

+ ℎ0𝑖
(

∇ ⋅
(

𝜌𝑖𝑣
))

+ ℎ0𝑖
(

∇ ⋅ 𝐽𝑖
)

= ℎ0𝑖 𝑟𝑖 (A.4)

The reference enthalpy is defined at a reference temperature 𝑇ref, so ℎ0𝑖 = ℎ0𝑖 (𝑇ref) are constant: 
𝜕(𝜌𝑖ℎ0𝑖 ) + ∇ ⋅

(

𝜌 ℎ0𝑣
)

+ ∇ ⋅
(

ℎ0𝐽
)

= ℎ0𝑟 (A.5)

𝜕𝑡 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖
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Table B.2
Effective values of optical surface properties for the visible (vis) and infra-red (IR) spectral ranges as defined in Appendix  B for the surfaces 
participating in radiative energy exchange in the reactor photo-thermal reactor.
 Quartz Catalyst Porous Reactor
 window (1) layer (2) support (3) wall (4)
 vis IR vis IR vis IR vis IR  
 𝜏 0.93 0.33 0 0 0 0 – 0  
 𝛼 0 0.67a 0.39 0.56a 0.15 0.55a – 0.8a 
 𝜌 0.07 0 0.61 0.44 0.85 0.45 – 0.2  
a 𝛼IR = 𝜖 for the respective surfaces.

Fig. B.9. Schematic cross-section of photo-thermal reactor illustrating the radiative energy exchange among the surfaces in (A) the upper chamber and (B) the lower chamber.

Summing (A.5) over all gas phase species 𝑖 = 1… 𝑛 and inserting into (A.3) yields the ‘‘separated’’ form of the enthalpy equation in the gas phase:
𝜕(
∑𝑛
𝑖=1 𝜌𝑖ℎ

th
𝑖 (𝑇 ))

𝜕𝑡
+ ∇ ⋅

( 𝑛
∑

𝑖=1
𝜌𝑖ℎ

th
𝑖 (𝑇 )𝑣

)

+ ∇ ⋅

( 𝑛
∑

𝑖=1
ℎth𝑖 (𝑇 )𝐽𝑖

)

+∇ ⋅ �⃗� +
𝑛
∑

𝑖=1
ℎ0𝑖 𝑟𝑖 −

𝜕𝑝
𝜕𝑡

= 0 (A.6)

Appendix B. Radiation heat transport

In this work radiation heat transport is treated in a simplified manner by geometrical optics while assuming, that the radiation exchange 
processes can be described as surface phenomena on the solid surfaces. To this end the optical parameters transmittance 𝜏, absorptance 𝛼 and 
reflectance 𝜌 of the participating surfaces are introduced, measuring the ratio of transmitted, absorbed and reflected light radiation intensity to 
incident light radiation intensity at a specified wavelength [54], respectively. As a simplification, effective values for the optical properties are 
introduced within this work: the light intensity spectrum of the Xe-short arc lamps used as the artificial light source emulating the sun to operate 
the photo-thermal reactor is applied as a weighting function to the wavelength dependent optical parameters 𝜏, 𝛼 and 𝜌 to yield a single effective 
value for each of the parameters via integration termed ‘‘vis’’ used for light coming from the solar simulator. Analogously, the emissive intensity 
spectrum of a black-body at 600 °C is used as a weighting function to yield effective values for 𝜏, 𝛼 and 𝜌 in the infrared wavelength range termed 
‘‘IR’’ which are used for light that is emitted from the hot surfaces. The emissivities of the hot surfaces are taken to be 𝜖 = 𝛼IR via the application 
of Kirchhoff’s law [54]. Table  B.2 lists the values of the effective optical properties used in this study.

Heat transport via radiation at both the upper and lower boundaries of the photo-thermal reactor is considered in detail in the following. Fig. 
B.9 illustrates the irradiation exchange in the top and bottom chambers of the reactor: in the upper chamber the irradiation exchange between the 
quartz glass window (surface 1) and the catalyst layer (surface 2) contributes to the boundary condition for the thermal energy equation at the 
top boundary (4.3) in form of the radiation energy flux density term [𝛹𝑇 ,rad]𝛤in  and in the lower chamber the irradiation exchange between the porous support (surface 3) and the reactor wall (surface 4) contributes to the boundary condition for the thermal energy equation at the bottom 
boundary (4.2) in the form of [𝛹𝑇 ,rad]𝛤out . Expressions for the radiation energy flux densities at the top and bottom boundaries are obtained from 
radiation balances for the surfaces marked by red dashed lines in Fig.  B.9.

Considering black-body radiation via the Stefan–Boltzmann law [54] and absorption of radiation coming from the quartz window (surface 1) 
we obtain for the top/inlet boundary: 

[

𝛹𝑇 ,rad
]

𝛤in
= −𝜖2𝜎𝑇 4

2 + 𝛼vis2 𝐺vis1 + 𝛼IR2 𝐺
IR
1 (B.1)

where 𝐺vis1  corresponds to the effective radiation flux density profile incident in the catalyst surface shown in Fig.  4 and 𝐺IR1 = 𝜖1𝜎𝑇 4
1 .

Because the catalyst layer and porous support are treated as opaque there is no radiation in the visible spectrum in the lower chamber so 
radiation exchange originates from black-body radiation emitted from the hot surfaces. Analogously, considering black-body radiation, absorption 
and reflection we obtain for the bottom/outlet boundary: 

[

𝛹𝑇 ,rad
]

𝛤out
= −𝜖3𝜎𝑇 4

3 +
𝛼IR3
IR IR

(

𝜖4𝜎𝑇
4
4 + 𝜌IR4 𝜖3𝜎𝑇

4
3
)

(B.2)

1 − 𝜌3 𝜌4
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Fig. C.10. Geometry at the side wall boundary of the modeling domain and heat flux at reactor side walls.

Fig. D.11. Schematic views on square prismatic modeling domain of the photo-thermal catalytic reactor with associated boundaries. (Drawings are not to scale, all dimensions in 
mm.).

Appendix C. Convection at reactor side walls

The geometry and thermal boundary condition at the side walls of the modeling domain are detailed in Fig.  C.10. The heat flux through the side 
walls �̇�side is a function of the convective heat transfer coefficient on the outside of the reactor. For this study, a natural convection heat transfer 
coefficient 𝑘conv = 10W∕(m2K) [55] is applied. The temperature drop over the thickness of the reactor wall is neglected due to the high thermal 
conductivity of Aluminum and wall thickness of around 2 cm.

𝑛 ⋅
(

𝑐𝜌𝑇 ⟨𝑣⟩ − 𝜆eff∇𝑇
)

= (𝑇 − 𝑇amb)

(

𝛿gap
𝜆gap

+
𝛿wall
𝜆wall

+ 1
𝑘conv

)−1

(C.1)

≈ (𝑇 − 𝑇amb)

(

𝛿gap
𝜆gap

+ 1
𝑘conv

)−1

(C.2)

where the resistance to heat transfer posed by the conduction through the reactor wall is neglected due to
𝛿wall
𝜆wall

≪
𝛿gap
𝜆gap

.

Appendix D. Domain and boundaries

Fig.  D.11 shows schematic views illustrating the dimensions of 3D prismatic modeling domain and associated boundaries used in the simulation 
of the photo-thermal catalytic reactor.

Appendix E. Homogenization

The homogenization method can be used in the context of porous media exhibiting complex geometry on multiple scales to obtain a macroscopic 
description from the microscopic or pore scale description. In the following, the two-scale homogenization method [25,26] is applied in order 
17 
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Fig. E.12. Macroscopic and microscopic (local) variation of 𝛷 and corresponding variables 𝐱∗ , 𝐲∗.
Source: Reproduced from [26].

Fig. E.13. Period of porous domain. 
Source: Reproduced from [26].

to derive macroscopic equations from the microscopic descriptions of non-isothermal, compressible flow, multi-component species mass transfer 
including chemical reactions and thermal energy transport through rigid porous media.

The two-scale homogenization method is based on the macroscopic and microscopic (local) dimensionless coordinates (𝐱∗, 𝐲∗). The following 
relations will hold throughout the derivation: 

𝐱∗ = 𝐗∕𝐿c, 𝐲∗ = 𝐗∕𝑙c, 𝜀 = 𝑙c∕𝐿c, 𝑑𝐱∗ = 𝜀𝑑𝐲∗, (E.1)

where 𝐗 is the dimensional spatial variable and 𝑙c and 𝐿c are the characteristic length scales of the microscopic features e.g. pore size and the 
macroscopic features e.g. domain size, respectively. For the scale separation parameter 𝜀 it holds that 0 < 𝜀 ≪ 1.

This two-scale behavior is illustrated in Fig.  E.12 by a quantity 𝛷 that oscillates rapidly on the local scale described by the dimensionless 
coordinates (𝐱∗, 𝐲∗):
18 
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E.1. Non-isothermal flow in rigid, porous media

Homogenized equations for the single phase, compressible flow of gas in non-isothermal conditions through a porous medium consisting of a 
porous solid phase 𝛺s saturated by the fluid (gas) phase 𝛺f  are derived. For an illustration of the fluid- and solid domains and their interface see 
Fig.  E.13. Similar treatments are show in [26,27] while in [56] variable porosity porous media are considered.

The pore scale equations consist of the momentum conservation (Navier–Stokes) and mass continuity equations in the pore space 𝛺f  occupied 
by the fluid phase combined with the no-slip boundary condition on the fluid–solid boundary 𝛤  and the equation of state: 

𝜂𝛥𝐗𝑣 − ∇𝐗𝑝 = 𝜌
(

𝜕𝑣
𝜕𝑡

+ (𝑣 ⋅ ∇𝐗)𝑣
)

in𝛺f

𝜕𝜌
𝜕𝑡

+ ∇𝐗 ⋅ (𝜌𝑣) = 0 in𝛺f

𝑣 = 0 on𝛤
𝑓 (𝑝, 𝑇 , 𝜌) = 0

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(PS)

It should be noted that (PS) only describes compressible gas flow through porous media while the other model components, species mass transport 
and heat transport, are considered in Appendices  E.2 and E.3, respectively. Introduce the non-dimensional variables of order (1) with superscript 
∗ by scaling the dimensional variables with characteristic values: 

𝜂 = 𝜂c𝜂
∗,

𝑣 = 𝑣c𝑣
∗

𝜌 = 𝜌c𝜌
∗,

𝑝 = 𝑝c𝑝
∗,

𝑇 = 𝑇c𝑇
∗

𝑡 = 𝑡∗∕𝑤c = 𝑡∗𝐿c∕𝑣c
(E.2)

Physical arguments and equation scaling
With the characteristic quantities from (E.2) we can define the following dimensionless numbers and assess their magnitude based on physical 

considerations starting with the Reynolds number in terms of the macroscopic length scale Re𝐿:

Re𝐿 =
𝜌c𝑣c𝐿c
𝜂c

In our application, slow flow prevails resulting in Re𝐿 = (1) and Re𝑙 = (𝜀), respectively. For slow flow conditions, the inertial terms in the 
momentum equation become small compared to the remaining terms.

In filtration experiments a pressure drop of order (𝑝c) occurs over the flow distance (𝐿c) corresponding to the macroscopic domain length. 
Thus, the magnitude of the pressure gradient can be estimated by: |∇𝐗𝑝| = (𝑝c∕𝐿c). Viscous drag in flows through porous media at low Reynolds 
numbers predominantly occurs due to the no-slip condition on the gas–solid boundaries. The deciding length scale for viscous drag is thus the pore 
scale of order (𝑙c) leading to |𝜂𝛥𝐗𝑣| = (𝜂c𝑣c∕𝑙2c ). In mechanical equilibrium, the viscous drag in the pores balances out the macroscopic pressure 
gradient:

(|∇𝐗𝑝|) = (|𝜂𝛥𝐗𝑣|)

(𝑝c∕𝐿c) = (𝜂c𝑣c∕𝑙2c )
This leads to the scaling of the dimensionless number 𝑄𝑙:

𝑄𝑙 =
𝑝c
𝐿c

𝑙2c
𝜂c𝑣c

= (1)

Recalling (E.1) we have:

𝑄𝑙 =
𝑝c
𝐿c

𝜀2𝐿2
c

𝜂c𝑣c
= 𝜀2𝑄𝐿

𝑄𝐿 = (𝜀−2)

which is consistent with a definition for the characteristic pressure 𝑝c = 𝜂c𝑣c𝐿c∕𝑙2c . The transient Reynolds number R𝑡 can also be written as 
R𝑡 = (𝑤c𝜏d)2 where 𝑤c is the frequency of the transient process and 𝜏d = 𝑙c

√

𝜌c∕(𝑤c𝜂c) is the time duration taken by diffusive shear wave carrying 
momentum across the microscopic spatial-period. By considering transient processes that are slow compared to diffusive momentum transfer within 
the pore space, we obtain 𝑤c𝜏d = (𝜀) and thus R𝑡,𝑙 = (𝜀2) and R𝑡,𝐿 = (1). Further, we obtain for the Strouhal number 𝑆 = R𝑡,𝐿∕Re𝐿 = (1).

The governing equations at the pore scale can then be written in dimensionless form: 

𝜂∗𝛥𝐱∗𝑣
∗ −

𝑝c
𝐿c

𝐿2
c

𝜂c𝑣c
⏟⏞⏟⏞⏟
𝑄𝐿=(𝜀−2)

∇𝐱∗𝑝
∗ =

𝜌c𝑣c𝐿c

𝜂c
⏟⏟⏟
Re𝐿=(1)

𝜌∗
(

𝐿c𝑤c

𝑣c
⏟⏟⏟
𝑆=(1)

𝜕𝑣∗

𝜕𝑡∗
+ (𝑣∗ ⋅ ∇𝐱∗ )𝑣∗

)

in𝛺f
∗

𝐿c𝑤c

𝑣c
⏟⏟⏟
𝑆=(1)

𝜕𝜌∗

𝜕𝑡∗
+ ∇𝐱∗ ⋅ (𝜌∗𝑣∗) = 0 in𝛺f

∗

𝑣∗ = 0 on𝛤 ∗

𝑓 (𝑝∗, 𝑇 ∗, 𝜌∗) = 0

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(PS*)

Homogenization ansatz
We introduce the homogenization ansatz using asymptotic expansions with different orders of the scale separation parameter written in the 

two-scale coordinates (𝐱∗, 𝐲∗) with 𝐲∗ = 𝜀−1𝐱∗ for the dimensionless quantities 𝑣∗, 𝑝∗, 𝜌∗, 𝑇 ∗ where we show here only 𝑣∗(𝐱∗, 𝐲∗) with the full set of 
quantities in [25,26]:

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 2 ∗ ∗ ∗
𝑣 (𝐱 , 𝐲 ) = 𝑣0(𝐱 , 𝐲 ) + 𝜀𝑣1(𝐱 , 𝐲 ) + 𝜀 𝑣2(𝐱 , 𝐲 ) +…
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where functions 𝑣∗𝑖 , 𝑝∗𝑖 , 𝜌∗𝑖 , 𝑇 ∗
𝑖  are periodic in 𝐲∗ in the sense that 

𝑣∗𝑖 (𝐱
∗, 𝐲∗ + 𝑘) = 𝑣∗𝑖 (𝐱

∗, 𝐲∗), 𝑘 ∈ Z (E.3)

with period of size 1 as the scaling variable 𝑙c was chosen accordingly. The dimensionless viscosity 𝜂∗ is approximated to the first order 
𝜂∗ = 𝜂∗0 (𝑝

∗
0 , 𝑇

∗
0 ). The Taylor series expansion of the dimensionless equation of state 𝑓 ∗(𝑝∗, 𝑇 ∗, 𝜌∗) around the support point 𝑝∗0 , 𝑇 ∗

0 , 𝜌
∗
0 truncated 

after the first term will be used in the following. Assuming 𝑓 is at least once differentiable in the neighborhood of the support point, the total 
differential of 𝑓 ∗, 𝑑𝑓 ∗ evaluated at (𝑝∗, 𝑇 ∗, 𝜌∗) can be written as:

𝑑𝑓 ∗(𝑝∗, 𝑇 ∗, 𝜌∗) =
𝜕𝑓 ∗

𝜕𝑝∗
𝑑𝑝∗ +

𝜕𝑓 ∗

𝜕𝑇 ∗ 𝑑𝑇
∗ +

𝜕𝑓 ∗

𝜕𝜌∗
𝑑𝜌∗

The Taylor series approximation truncated after the first term with 𝑑𝑝∗ = 𝑝∗ − 𝑝∗0 , 𝑑𝑇
∗ = 𝑇 ∗ − 𝑇 ∗

0 , 𝑑𝜌
∗ = 𝜌∗ − 𝜌∗0 thus takes the form:

𝑓 ∗(𝑝∗, 𝑇 ∗, 𝜌∗) = 𝑓 ∗(𝑝∗0 , 𝑇
∗
0 , 𝜌

∗
0) + 𝑑𝑓

∗(𝑝∗0 , 𝑇
∗
0 , 𝜌

∗
0) + (𝜀2)

= 𝑓 ∗(𝑝∗0 , 𝑇
∗
0 , 𝜌

∗
0) + 𝜀

( 𝜕𝑓 ∗

𝜕𝑝∗0
𝑝∗1 +

𝜕𝑓 ∗

𝜕𝑇 ∗
0
𝑇 ∗
1 +

𝜕𝑓 ∗

𝜕𝜌∗0
𝜌∗1
)

+ (𝜀2)

As part of the two-scale expansion method we perform a change of independent variables 𝐗 → (𝐱∗, 𝐲∗) and thus transform the derivative operator 
using (E.1): ∇X → ∇𝐱∗ + 𝜀−1∇𝐲∗ . The transformed Laplace operator thus becomes:

𝛥X = ∇X ⋅ ∇X → (∇𝐱∗ + 𝜀−1∇𝐲∗ ) ⋅ (∇𝐱∗ + 𝜀−1∇𝐲∗ )

= 𝛥𝐱∗ +
1
𝜀
(∇𝐱∗ ⋅ ∇𝐲∗ + ∇𝐲∗ ⋅ ∇𝐱∗ ) +

1
𝜀2
𝛥𝐲∗

Using the homogenization ansatz and the transformed differential operators we obtain for (PS*): 

𝜀2𝜂∗0
(

𝛥𝐱∗ + 𝜀−1(∇𝐱∗ ⋅ ∇𝐲∗ + ∇𝐲∗ ⋅ ∇𝐱∗ ) + 𝜀−2𝛥𝐲∗
)

(𝑣∗0 + 𝜀𝑣
∗
1 + 𝜀

2𝑣∗2)

− (∇𝐱∗ + 𝜀−1∇𝐲∗ )(𝑝∗0 + 𝜀𝑝
∗
1 + 𝜀

2𝑝∗2)

= 𝜀2(𝜌∗0 + 𝜀𝜌
∗
1 + 𝜀

2𝜌∗2)
( 𝜕
𝜕𝑡∗

(𝑣∗0 + 𝜀𝑣
∗
1 + 𝜀

2𝑣∗2)

+ (𝑣∗0 + 𝜀𝑣
∗
1 + 𝜀

2𝑣∗2) ⋅ (∇𝐱∗ + 𝜀−1∇𝐲∗ )(𝑣∗0 + 𝜀𝑣
∗
1 + 𝜀

2𝑣∗2)
)

in𝛺f
∗

𝜕
𝜕𝑡∗

(𝜌∗0 + 𝜀𝜌
∗
1 + 𝜀

2𝜌∗2)

+ (∇𝐱∗ + 𝜀−1∇𝐲∗ ) ⋅
(

(𝜌∗0 + 𝜀𝜌
∗
1 + 𝜀

2𝜌∗2)(𝑣
∗
0 + 𝜀𝑣

∗
1 + 𝜀

2𝑣∗2)
)

= 0 in𝛺f
∗

𝑣∗0 + 𝜀𝑣
∗
1 + 𝜀

2𝑣∗2 = 0 on𝛤 ∗

𝑓 ∗(𝑝∗0 , 𝑇
∗
0 , 𝜌

∗
0) + 𝜀

( 𝜕𝑓 ∗

𝜕𝑝∗0
𝑝∗1 +

𝜕𝑓 ∗

𝜕𝑇 ∗
0
𝑇 ∗
1 +

𝜕𝑓 ∗

𝜕𝜌∗0
𝜌∗1
)

+ (𝜀2) = 0

(E.4)

Proceeding, we replace (E.4)2 by its equivalent scaled version (E.4)2 ⟺ 𝜀 ⋅ (E.4)2 to yield the equivalent system: 

(̃E.4) =

(E.4)1
𝜀 ⋅ (E.4)2
(E.4)3
(E.4)4

(Ẽ.4)

Equating the terms in increasing order of 𝜀 we obtain for the order of 𝜀−1: 

∇𝐲∗𝑝
∗
0 = 0 in𝛺∗ (�̃�−1)

From (�̃�−1)1 we can conclude that 𝑝∗0(𝐱∗, 𝐲∗) = 𝑝∗0(𝐱
∗).

The terms of order 𝜀0 are: 
𝜂∗0𝛥𝐲∗𝑣

∗
0 − ∇𝐱∗𝑝

∗
0 − ∇𝐲∗𝑝

∗
1 = 0 in𝛺f

∗

∇𝐲∗ ⋅ (𝜌∗0𝑣
∗
0) = 0 in𝛺f

∗

𝑣∗0 = 0 on𝛤 ∗

𝑓 ∗(𝑝∗0 , 𝑇
∗
0 , 𝜌

∗
0) = 0

(�̃�0)

For the construction of the Darcy-scale velocity 𝑣0∗, we use the linearity of (�̃�0) and obtain 𝑣0∗ as a linear combination of the partial derivatives 
of 𝑝0∗, 

𝜕𝑝∗0
𝜕𝑥∗𝑘

(𝐱∗) = 𝑒𝑘𝜕𝑝∗0∕𝜕𝑥
∗
𝑘 where 𝑒𝑘 are the Cartesian unit vectors: 

𝑣∗0(𝐱
∗, 𝐲∗) = − 1

𝜂∗0

𝑑
∑

𝑘=1

𝜕𝑝∗0
𝜕𝑥∗𝑘

(𝐱∗)�⃗�𝑘(𝐲∗)

𝑝∗1(𝐱
∗, 𝐲∗) =

𝑑
∑ 𝜕𝑝∗0

∗ (𝐱
∗)𝛱𝑘(𝐲∗)

(E.5)
𝑘=1 𝜕𝑥𝑘
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with �⃗�𝑘(𝐲∗) and 𝛱𝑘(𝐲∗) being 𝐲∗-periodic functions and ∫𝑌 ∗ 𝛱𝑗𝑑𝐲∗ = 0. Then, with 𝑣∗0 and 𝑝∗1 from (E.5) we equate terms in 𝜀 in (�̃�0)1, (�̃�0)2 and 
(�̃�0)3 and we obtain: 

𝜂∗0𝛥𝐲∗

(

− 1
𝜂∗0

𝑑
∑

𝑘=1

𝜕𝑝∗0
𝜕𝑥∗𝑘

(𝐱∗)�⃗�𝑘(𝐲∗)
)

=
𝑑
∑

𝑘=1

𝜕𝑝∗0
𝜕𝑥∗𝑘

(𝐱∗)𝑒𝑘

+ ∇𝐲∗

( 𝑑
∑

𝑘=1

𝜕𝑝∗0
𝜕𝑥∗𝑘

(𝐱∗)𝛱𝑘(𝐲∗)
)

in𝛺f
∗

∇𝐲∗ ⋅

(

𝜌0
∗

(

− 1
𝜂∗0

𝑑
∑

𝑘=1

𝜕𝑝∗0
𝜕𝑥∗𝑘

(𝐱∗)�⃗�𝑘(𝐲∗)
))

=0 in𝛺f
∗

− 1
𝜂∗0

𝑑
∑

𝑘=1

𝜕𝑝∗0
𝜕𝑥∗𝑘

(𝐱∗)�⃗�𝑘(𝐲∗) = 0 on𝛤 ∗

(𝑃𝑘)

The functions ⃗𝜅𝑘 and 𝛱𝑘(𝐲∗) should solve (𝑃𝑘) for all ∇𝐱∗𝑝0∗. One way to achieve this is to consider each coordinate 𝑘 individually and to separate 
the derivatives with respect to 𝐱∗ and 𝐲∗ due to the linearity of (𝑃𝑘). Considering that 𝑝∗0(𝐱∗, 𝐲∗) = 𝑝∗0(𝐱

∗) from (�̃�−1) and that 𝑇 ∗
0 (𝐱

∗, 𝐲∗) = 𝑇 ∗
0 (𝐱

∗)
from (E.50) in Appendix  E.3, we also see that 

𝜌∗0(𝐱
∗, 𝐲∗) = 𝜌∗0(𝐱

∗) (E.6)

from (PS*)4.
Thus, we obtain the so-called ‘‘cell’’ or ‘‘canonical’’ problems [25,26] for each 𝑘 = 1… 𝑑: 

−𝛥𝐲∗ �⃗�𝑘(𝐲∗) = 𝑒𝑗 + ∇𝐲∗𝛱𝑗 (𝐲∗) in𝛺f
∗

∇𝐲∗ ⋅ �⃗�𝑘(𝐲∗) = 0 in𝛺f
∗

�⃗�𝑘(𝐲∗) = 0 on𝛤 ∗

⎫

⎪

⎬

⎪

⎭

(P𝑗)

Before deriving the homogenized equations and effective quantities on the Darcy or macroscopic scale, the functions expressed in the two-scale 
coordinates must be spatially averaged. For this, a period of the porous domain is shown in Fig.  E.13 illustrating the fluid and solid domains 𝛺f
and 𝛺s, respectively with 𝛺 = 𝛺f ∪ 𝛺s, the interface 𝛤  and normal vector 𝑛: We introduce the dimensionless volumetric averaging operator that 
integrates over the dimensionless period corresponding to a representative elementary volume 𝛺∗: 

⟨⋅⟩ = 1
|𝛺∗

|
∫𝛺∗

⋅ 𝑑�̃�∗ (E.7)

The sections on the boundary of the period belonging to either the fluid or solid phase, 𝑆f  or 𝑆s are defined as 𝑆f = 𝛺f ∩ 𝜕𝛺 and 𝑆s = 𝛺s ∩ 𝜕𝛺, 
respectively.

With the solutions to the cell problem �⃗�𝑘 we can write 𝑣∗0(𝐱∗, 𝐲∗) as: 

𝑣∗0(𝐱
∗, 𝐲∗) = − 1

𝜂∗0
𝐤∗∇𝐱∗𝑝

∗
0(𝐱

∗) (E.8)

which is the Darcy equation where 𝐤∗ is the permeability tensor corresponding to the solutions of the cell problems �⃗�𝑘 as column vectors: 

𝐤∗ =
⎛

⎜

⎜

⎝

⟨�⃗�1⟩ ⋯ ⟨�⃗�𝑑⟩
⎞

⎟

⎟

⎠

(E.9)

For leading order 𝜀 we get for Eqs. (Ẽ.4)2 and (Ẽ.4)3: 
𝜕𝜌0∗

𝜕𝑡∗
+ ∇𝐱∗ ⋅ (𝜌∗0𝑣

∗
0) + ∇𝐲∗ ⋅ (𝜌∗0𝑣

∗
1 + 𝜌

∗
1𝑣

∗
0) = 0 in𝛺f

∗

𝑣∗1 = 0 on𝛤 ∗
(�̃�1)

To obtain a macroscopic description of mass continuity, we apply the volumetric averaging operator to (�̃�1)1 and apply the Gaußtheorem and 
considering that 𝜌∗0 = 𝜌∗0(𝐱

∗):

⟨

𝜕𝜌0∗

𝜕𝑡∗
⟩ + ⟨∇𝐱∗ ⋅ (𝜌∗0𝑣

∗
0)⟩ +

1
|𝛺∗

|
∫𝛺∗

f

∇𝐲∗ ⋅ (𝜌∗0𝑣
∗
1 + 𝜌

∗
1𝑣

∗
0) 𝑑𝛺

∗ = 0

𝜙
𝜕𝜌0∗

𝜕𝑡∗
+ ∇𝐱∗ ⋅ (𝜌∗0⟨𝑣

∗
0⟩) +

1
|𝛺∗

|
∫𝜕𝛺∗

f

(𝜌∗0𝑣
∗
1 + 𝜌

∗
1𝑣

∗
0) ⋅ 𝑛 𝑑𝑆∗ = 0

Here we introduce the porosity or void fraction 𝜙 = |𝛺f
∗
|∕|𝛺∗

| which is the volume occupied by the fluid phase |𝛺f
∗
| divided by the total 

volume |𝛺∗
|.

The boundary of the fluid occupied pore domain consists of two parts: 𝜕𝛺∗
f = 𝛤 ∪ 𝑆∗

f  and thus the flux integral over the boundaries becomes: 

∫𝜕𝛺∗
f

(𝜌∗0𝑣
∗
1 + 𝜌

∗
1𝑣

∗
0) ⋅ 𝑛 𝑑𝑆∗ = ∫𝑆∗

f

(𝜌∗0𝑣
∗
1 + 𝜌

∗
1𝑣

∗
0) ⋅ 𝑛 𝑑𝑆∗

+ ∫ ∗
(𝜌∗0𝑣

∗
1 + 𝜌

∗
1𝑣

∗
0) ⋅ 𝑛 𝑑𝑆∗

(E.10)
𝛤
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The first integral on the right-hand side of (E.10) vanishes due to the 𝐲∗-periodicity over the unit cell of the functions 𝑣∗0, 𝑣∗1, 𝜌∗0, 𝜌∗1 while the second 
integral vanishes due to the no-slip boundary condition on 𝛤 ∗, (�̃�0)3 and for leading order 𝜀 from (�̃�1)2.

To first order of approximation, the macroscopic description for non-isothermal, compressible flow through rigid porous media at low Reynolds 
number is given by: 

⟨𝑣∗0⟩ = −1∕𝜂∗0 𝐊
∗∇𝐱∗𝑝

∗
0 in𝛺∗

𝜙
𝜕𝜌0∗

𝜕𝑡∗
+ ∇𝐱∗ ⋅ (𝜌∗0⟨𝑣

∗
0⟩) = 0 in𝛺∗

𝑓 ∗(𝑝∗0 , 𝑇
∗
0 , 𝜌

∗
0) = 0

(E.11)

With (E.7) the permeability tensor can be written as 𝐊∗ = ⟨𝐤∗⟩. In dimensional variables we have: 
⟨𝑣⟩ = −1∕𝜂𝐊∇𝐗𝑝 in𝛺

𝜙
𝜕𝜌
𝜕𝑡

+ ∇𝐗 ⋅ (𝜌⟨𝑣⟩) = 0 in𝛺

𝑓 (𝑝, 𝑇 , 𝜌) = 0

(E.12)

With the dimensional permeability tensor 𝐊 = 𝑙2c𝐊
∗.

E.2. Species mass transport

In the following, species mass transport in a porous medium consisting of a porous solid phase 𝛺s and a fluid phase 𝛺f  (i.e. gas phase in 
this case) that saturates the pore space as shown in Fig.  E.13 is described. The phase boundary is denoted as 𝛤 . On the pore scale (PS), species 
mass transport occurs in the gas phase via diffusion superimposed by advection. Chemical reactions physically occur via the catalyst deposited 
on the walls of the porous solid. Calculations of mass transfer resistance from the bulk gas phase to the solid wall interface performed for typical 
reaction conditions in the computational notebook ’PTReactorDemo.jl’ revealed, that mass transfer resistance is negligible. Therefore, the species 
concentrations on the surface of the solid catalyst which is deposited as a thin layer onto the walls of the porous solid phase are approximately 
equal to the bulk gas phase concentrations. Further, it is assumed that the deposited catalyst is fully accessible to the gas phase and therefore the 
heterogeneous gas–solid reactions are considered as homogeneous or bulk phase reactions with the volume averaged catalyst mass loading. Similar 
treatments can be found in [29,57] while both do not treat chemical reactions and the latter also includes a slip velocity on the pore walls. In [58] 
the reaction–diffusion–advection processes are treated for an evolving porous medium.

The equations for gas phase species mass conservation with reaction, diffusion and advection terms for 𝑛 gas species where the Maxwell–Stefan 
formulation was chosen for the diffusive fluxes can be expressed together with the no-flux boundary condition on the impermeable boundary 𝛤
for 𝑖 = 1,… , 𝑛 as: 

𝜕𝜌𝑖
𝜕𝑡

+ ∇𝐗 ⋅ (𝜌𝑖𝑣 + 𝐽𝑖) = 𝑟𝑖(𝜚), 𝑖 = 1… 𝑛 in𝛺f

𝑛 ⋅ 𝐽𝑖 = 0 on𝛤

−
𝑛
∑

𝑗=1
𝑗≠𝑖

𝑥𝑖𝑥𝑗
Ð𝑖𝑗

(

𝐽𝑖
𝜌𝑖

−
𝐽𝑗
𝜌𝑗

)

= ∇𝐗𝑥𝑖 𝑖 = 1… 𝑛 − 1

𝑛
∑

𝑖=1
𝐽𝑖 = 0

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(MT-PS)

where we recall from (PS) that 𝑣 = 0 on 𝛤 . Because only 𝑛 − 1 of Maxwell–Stefan relations are linearly independent, the system is complemented 
by ∑𝑛

𝑖=1 𝐽𝑖 = 0. To simplify the derivation of the upscaled equation for species mass transport, only the concentration gradients 𝑑𝑖 = ∇𝐗𝑥𝑖 are 
considered as diffusive driving forces. Including other diffusive driving forces as pressure gradients (pressure diffusion) or temperature gradients 
(thermodiffusion) is straight forward, an upscaling procedure including pressure gradients is shown in [29].

Considering (MT-PS)3 and (MT-PS)4 which form a well-posed problem ensuring the unique solvability for (𝐽𝑖)𝑛𝑖=1 [15], we can explicitly write 

𝐽𝑖 =
𝑛−1
∑

𝑗=1
𝐵𝑖𝑗∇𝐗𝑥𝑗 𝑖 = 1… 𝑛 − 1 (E.13)

with 𝐵𝑖𝑗 ≠ 0 which is convenient for the derivation of the upscaled equations with the homogenization method.
Introduce the non-dimensional variables of order (1) with superscript ∗ by scaling the dimensional variables with characteristic values:

𝑣 = 𝑣c𝑣
∗,

𝑣c = 𝐷c∕𝐿c,

Ð𝑖𝑗 = 𝐷cÐ𝑖𝑗∗,

X = 𝐿c𝑥
∗,

𝑡 = 𝑡c𝑡
∗,

𝑡c = 𝐿2
c∕𝐷c,

𝜌𝑖 = 𝜌c𝜌𝑖
∗,

𝐽𝑖 = 𝐽 c𝐽𝑖
∗,

𝐽 c = 𝜌c𝐷c∕𝐿c,

𝑥𝑖 = 𝑥c𝑥𝑖
∗,

𝑤𝑖 = 𝑤c𝑤𝑖
∗,

𝑟𝑖 = 𝜌c∕𝑡c,r 𝑟𝑖∗,

where 𝑡c and 𝑡c,r are the characteristic timescales of diffusive transport and chemical reaction, respectively.
Based on the characteristic quantities the following dimensionless numbers can be defined that indicate the relative magnitude of the different 

terms:

PeL =
𝐿c𝑣c
𝐷c

, Da =
𝑡c
𝑡c,r
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The boundary value problem (MT-PS) can thus be rewritten with dimensionless variables in terms of the dimensionless numbers: 
𝜕𝜌𝑖∗

𝜕𝑡∗
+ ∇𝐱∗ ⋅ (PeL 𝜌𝑖∗𝑣∗ + 𝐽𝑖∗) = Da 𝑟𝑖∗, 𝑖 = 1… 𝑛 in𝛺f

∗

𝑛 ⋅ 𝐽𝑖
∗ = 0, 𝑖 = 1… 𝑛 on𝛤

−
𝑛
∑

𝑗=1
𝑗≠𝑖

𝑥𝑖∗𝑥𝑗∗

Ð𝑖𝑗∗

(

𝐽𝑖∗

𝜌𝑖∗
−
𝐽𝑗∗

𝜌𝑗∗

)

= ∇𝐱∗𝑥𝑖
∗, 𝑖 = 1… 𝑛 − 1

𝑛
∑

𝑖=1
𝐽𝑖

∗ = 0

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(MT-PS*)

Physical arguments and equation scaling
The Peclet number PeL = (1) for mass transport is computed on the one hand from the gas flow rate and thus the advective flow velocity that 

is specified as part of the experimental conditions and on the other hand from the characteristic diffusivity of the gas phase. Further, it is assumed 
that diffusive transport and chemical reaction occur at the same rate with 𝑡c∕𝑡c,r = (1).

Homogenization ansatz
Next, we introduce the homogenization ansatz using asymptotic expansions with different orders of the scale separation parameter written in 

the two-scale coordinates (𝐱∗, 𝐲∗) with 𝐲∗ = 𝜀−1𝐱∗ for the dimensionless quantities 𝜌𝑖∗, 𝑣∗, 𝑥𝑖∗, 𝑤𝑖∗,Ð𝑖𝑗∗ as in [25,26].
We recall that the species mass fractions 𝑤𝑖∗ = 𝑤𝑖∗(𝑥𝑖∗(𝐱∗, 𝐲∗)) are functions of the molar fractions 𝑥𝑖∗(𝐱∗, 𝐲∗). The species partial densities are 

related to the overall density via the species mass fractions 𝜌𝑖∗ = 𝑤𝑖∗𝜌∗.
Considering (E.13) we introduce further: 

𝐵𝑖𝑗
∗(𝐱∗, 𝐲∗) = 𝐵𝑖𝑗,0

∗(𝐱∗, 𝐲∗) + 𝜀𝐵𝑖𝑗,1∗(𝐱∗, 𝐲∗) + 𝜀2𝐵𝑖𝑗,2∗(𝐱∗, 𝐲∗) +…

𝐽𝑖
∗(𝐱∗, 𝐲∗) =

𝑛−1
∑

𝑗=1
(𝐵𝑖𝑗,0∗ + 𝜀𝐵𝑖𝑗,1∗ + 𝜀2𝐵𝑖𝑗,2∗)(∇𝐱∗ + 𝜀−1∇𝐲∗ )(𝑥𝑗,0∗ + 𝜀𝑥𝑗,1∗ + 𝜀2𝑥𝑗,2∗) +…

(E.14)

For convenience, we introduce the shorthand notation 

𝐽𝑖,−1
∗ =

𝑛−1
∑

𝑗=1
𝐵𝑖𝑗,0

∗∇𝐲∗𝑥𝑗,0
∗ (E.15)

at order 𝜀−1 of the scale separation parameter so we can write: 
𝐽𝑖

∗(𝐱∗, 𝐲∗) = 𝜀−1𝐽𝑖,−1
∗ + 𝐽𝑖,0∗ + 𝜀𝐽𝑖,1∗ + (𝜀2) (E.16)

where 𝐽𝑖,0∗ and 𝐽𝑖,1∗ correspond to the sum of order 𝜀0 and 𝜀1 terms in (E.14), respectively.
Further, we apply Taylor series expansion of the dimensionless bulk reaction rate for the gas phase species 𝑟𝑖∗(𝝔∗) around the support point 𝝔0∗, 

truncated after the first term with the vector of species mass densities (𝝔∗)𝑖 = 𝜌𝑖∗. Assuming 𝑟𝑖∗ is at least once differentiable in the neighborhood 
of the support point, the total differential of 𝑟𝑖∗, 𝑑𝑟𝑖∗ can be written as:

𝑑𝑟𝑖
∗(𝝔∗) =

𝑛
∑

𝑗=1

𝜕𝑟𝑖∗

𝜕𝜌𝑗∗
𝑑𝜌𝑗

∗

Then, the Taylor series approximation developed around 𝝔0∗ truncated after the first term with 𝑑𝝔∗ = 𝝔∗ − 𝝔0∗ thus takes the form:
𝑟𝑖
∗(𝝔∗) = 𝑟𝑖

∗(𝝔0∗) + 𝑑𝑟𝑖∗(𝝔0∗) + (𝜀2)

= 𝑟𝑖
∗(𝝔0∗) + 𝜀

( 𝑛
∑

𝑗=1

𝜕𝑟𝑖∗

𝜕𝜌𝑗,0∗
𝜌𝑗,1

∗

)

+ (𝜀2)

= 𝑟𝑖,0
∗(𝝔0∗) + 𝜀𝑟𝑖,1∗(𝝔1∗) + (𝜀2)

Inserting the ansatz functions into (MT-PS*) considering the transformed differential operators we obtain when writing in index notation 𝑖 = 1… 𝑛: 

𝜕
𝜕𝑡∗

(𝜌𝑖,0∗ + 𝜀𝜌𝑖,1∗ + 𝜀2𝜌𝑖,2∗) + (∇𝐱∗ + 𝜀−1∇𝐲∗ )⋅
(

(𝜌𝑖,0∗ + 𝜀𝜌𝑖,1∗ + 𝜀2𝜌𝑖,2∗)

(𝑣0∗ + 𝜀𝑣1∗ + 𝜀2𝑣2∗) + (𝜀−1𝐽𝑖,−1∗ + 𝐽𝑖,0∗ + 𝜀𝐽𝑖,1∗)
)

= 𝑟𝑖,0
∗ + 𝜀𝑟𝑖,1∗ + (𝜀2), in𝛺f

∗

𝑛 ⋅ (𝜀−1𝐽𝑖,−1∗ + 𝐽𝑖,0∗ + 𝜀𝐽𝑖,1∗) = 0, on𝛤

𝜀−1𝐽𝑖,−1
∗ + 𝐽𝑖,0∗ + 𝜀𝐽𝑖,1∗ =

𝑛−1
∑

𝑗=1
(𝐵𝑖𝑗,0∗ + 𝜀𝐵𝑖𝑗,1∗ + 𝜀2𝐵𝑖𝑗,2∗)(∇𝐱∗ + 𝜀−1∇𝐲∗ )(𝑥𝑗,0∗ + 𝜀𝑥𝑗,1∗ + 𝜀2𝑥𝑗,2∗)

𝑛
∑

𝑖=1
(𝜀−1𝐽𝑖,−1∗ + 𝐽𝑖,0∗ + 𝜀𝐽𝑖,1∗) = 0

(E.17)

Proceeding, we replace (E.17)1 by its equivalent scaled version (E.17)1 ⟺ 𝜀 ⋅ (E.17)1 to yield the equivalent system: 

(̃E.17) =

𝜀 ⋅ (E.17)1
(E.17)2
(E.17)3

(Ẽ.17)
(E.17)4
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Collecting the terms in increasing order of 𝜀 we get for order 𝜀−1 from (Ẽ.17) for 𝑖 = 1… 𝑛: 

∇𝐲∗ ⋅ 𝐽𝑖,−1
∗ = 0 in𝛺f

∗

𝑛 ⋅ 𝐽𝑖,−1
∗ = 0 on𝛤

𝐽𝑖,−1
∗ =

𝑛−1
∑

𝑗=1
𝐵𝑖𝑗,0

∗∇𝐲∗𝑥𝑗,0
∗

𝑛
∑

𝑖=1
𝐽𝑖,−1

∗ = 0

(E.18)

We find from (E.18)1,2 that 𝐽𝑖,−1∗ = 0 and with 𝐵𝑖𝑗,0∗ ≠ 0 we get ∇𝐲∗𝑥𝑖,0∗ = 0 in 𝛺f
∗. We can deduce, that 𝑥𝑖,0∗(𝐱∗, 𝐲∗) = 𝑥𝑖,0∗(𝐱∗). The next higher 

order terms, of order 𝜀0, reveal: 
∇𝐲∗ ⋅ 𝐽𝑖,0

∗ = 0 in𝛺f
∗

𝑛 ⋅ 𝐽𝑖,0
∗ = 0 on𝛤

𝐽𝑖,0
∗ =

𝑛−1
∑

𝑗=1
𝐵𝑖𝑗,0

∗(∇𝐱∗𝑥𝑗,0
∗ + ∇𝐲∗𝑥𝑗,1

∗)

𝑛
∑

𝑖=1
𝐽𝑖,0

∗ = 0

(E.19)

In order to obtain (E.19)1 at order 𝜀0 from (Ẽ.17) starting from 𝜌𝑖,0∗ = 𝑤𝑖,0∗𝜌0∗ we apply the product and chain rules of differentiation to show that 
∇𝐲∗ ⋅ (𝜌𝑖,0∗𝑣0∗) = 0 with ∇𝐲∗ ⋅ (𝜌0∗𝑣0∗) = 0 from (�̃�0) in Appendix  E.1 and: 

∇𝐲∗𝑤𝑖,0
∗ = ∇𝐲∗𝑤𝑖,0

∗(𝑥𝑖,0∗(𝐱∗)) ∇𝐲∗𝑥
∗
𝑖,0(𝐱

∗)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

=0

= 0. (E.20)

With (E.6) and (E.20) we get 

∇𝐲∗𝜌𝑖,0
∗ = 0. (E.21)

Similar to Appendix  E.1 we then write ∇𝐱∗𝑥𝑖,0∗ = 𝜕𝑥𝑖,0∗∕𝜕x𝑘∗ for coordinate 𝑘 = 1,… , 𝑑 of spatial dimension 𝑑, and we assume that the 
𝐲∗-periodic functions 𝑥𝑖,1∗ can be written as linear combinations of ∇𝐱∗𝑥𝑖,0∗ and the 𝐲∗-periodic, 𝑑-dimensional functions 𝜒(𝐲∗): 

𝑥𝑖,1
∗(𝐱∗, 𝐲∗) =

𝑑
∑

𝑘=1

𝜕𝑥𝑖,0∗

𝜕x𝑘∗
(𝐱∗)𝜒𝑘(𝐲∗) (E.22)

with ∫𝑌 ∗ 𝜒𝑘𝑑𝐲∗ = 0 for 𝑘 = 1,… , 𝑑.
We can thus rewrite the terms ∇𝐱∗𝑥𝑖,0∗ + ∇𝐲∗𝑥𝑖,1∗ for species 𝑖 = 1,… , 𝑛: 

∇𝐱∗𝑥𝑖,0
∗ + ∇𝐲∗𝑥𝑖,1

∗ =
𝜕𝑥𝑖,0∗

𝜕x𝑘∗
(𝐱∗) + 𝜕

𝜕y𝑘∗

( 𝑑
∑

𝑙=1

𝜕𝑥𝑖,0∗

𝜕x𝑙∗
(𝐱∗)𝜒𝑙(𝐲∗)

)

, 𝑘 = 1,… , 𝑑

=
𝑑
∑

𝑙=1

𝜕𝑥𝑖,0∗

𝜕x𝑙∗
(𝐱∗)(𝛿𝑘𝑙 +

𝜕
𝜕y𝑘∗

𝜒𝑙(𝐲∗)), 𝑘 = 1,… , 𝑑

= (𝑰 + ∇𝐲∗ ⊗ 𝜒)∇𝐱∗𝑥𝑖,0
∗

(E.23)

with Kronecker delta 𝛿𝑘𝑙

𝛿𝑘𝑙 =

{

0, 𝑘 ≠ 𝑙

1, 𝑘 = 𝑙.
Inserting (E.23) into (E.19)1,2 yields: 

∇𝐲∗ ⋅

(𝑛−1
∑

𝑗=1
𝐵𝑖𝑗,0

∗(𝑰 + ∇𝐲∗ ⊗ 𝜒)∇𝐱∗𝑥𝑗,0
∗

)

= 0 in𝛺f
∗

𝑛 ⋅

(𝑛−1
∑

𝑗=1
𝐵𝑖𝑗,0

∗(𝑰 + ∇𝐲∗ ⊗ 𝜒)∇𝐱∗𝑥𝑗,0
∗

)

= 0 on𝛤

(E.24)

The function 𝜒 must be chosen such that (E.24) holds for all possible values of ∇𝐱∗𝑥𝑖,0∗. We can consider each element 𝜒𝑘 individually and 
separate derivatives with respect to 𝐱∗ and 𝐲∗ due to the linearity of (E.24). We thus obtain the so-called cell problems to solve for the periodic 
functions 𝜒𝑘(𝐲∗) in each spatial dimension 𝑘 = 1… 𝑑: 

∇𝐲∗ ⋅
(

𝑒𝑘 + ∇𝐲∗𝜒𝑘(𝐲∗)
)

= 0 in𝛺f
∗

𝑛 ⋅
(

𝑒𝑘 + ∇𝐲∗𝜒𝑘(𝐲∗)
)

= 0 on𝛤
(MT𝑘)

where 𝑒𝑘 is the 𝑘th unit vector in Cartesian coordinate system. Here we used the fact that 𝐵𝑖𝑗,0∗ = 𝐵𝑖𝑗,0∗(𝑥𝑖,0∗, 𝜌𝑖,0∗,Ð𝑖𝑗,0∗)(𝐱∗) ≠ 0 are independent 
of the microscopic coordinate 𝐲∗.
24 
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Finally, the terms of order 𝜀 for (Ẽ.17)1,2 yield: 
1⃝

⏞⏞⏞
𝜕𝜌𝑖,0∗

𝜕𝑡∗
+

2⃝
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∇𝐱∗ ⋅ (𝜌𝑖,0∗𝑣0∗) +

3⃝
⏞⏞⏞⏞⏞
∇𝐱∗ ⋅ 𝐽𝑖,0

+

4⃝
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∇𝐲∗ ⋅ (𝜌𝑖,0∗𝑣0∗ + 𝜌𝑖,1∗𝑣1∗) +

5⃝
⏞⏞⏞⏞⏞
∇𝐲∗ ⋅ 𝐽𝑖,1 =

6⃝
⏞⏞⏞
𝑟𝑖,0

∗ in𝛺f
∗

𝑛 ⋅ 𝐽𝑖,1
∗ = 0 on𝛤

(E.25)

To obtain a macroscopic description of gas phase species mass transport we apply the volumetric averaging operator (E.7) on (E.25)1 and 
integrate over the period 𝛺∗ = 𝛺f

∗ ∪𝛺s
∗ with |𝛺∗

| = |𝛺f
∗
|+ |𝛺f

∗
|. Further, we make use of the Gauß  divergence theorem and the 𝛺∗-periodicity 

of the fields that depend on the microscopic variable 𝐲∗. The sections on the boundary of the period belonging to either the fluid or solid phase, 
are defined as 𝑆f

∗ = 𝛺f
∗ ∩ 𝜕𝛺∗ and 𝑆s

∗ = 𝛺s
∗ ∩ 𝜕𝛺∗, respectively. For an illustration of the spatial domain and its boundaries we refer to Fig.  E.13. 

Here we introduce the porosity or void fraction 𝜙 = |𝛺f
∗
|∕|𝛺∗

| which is the volume occupied by the fluid phase |𝛺f
∗
| divided by the total volume 

|𝛺∗
|. We recall the identities:

𝐽𝑖,0
∗ = ∇𝐲∗ ⋅ (𝐲∗ ⊗ 𝐽𝑖,0

∗) (E.26)

𝐽𝑖,0
∗ =

𝑛−1
∑

𝑗=1
𝐵𝑖𝑗,0

∗(𝑰 + ∇𝐲∗ ⊗ 𝜒)∇𝐱∗𝑥𝑗,0 (E.27)

Further we recall, that

∫𝛺∗
⋅ 𝑑𝛺∗ = ∫𝛺f ∗

⋅ 𝑑𝛺∗ + ∫𝛺s∗
⋅ 𝑑𝛺∗

and that all terms of (E.25)1 vanish in the interior of the solid domain 𝛺s
∗ such that the respective integrals over the solid part of the domain also 

vanish. Proceeding on a term-by-term basis we obtain:
1⃝: 

1
|𝛺∗

|
∫𝛺∗

𝜕
𝜕𝑡∗

(𝜌𝑖,0∗)𝑑𝛺∗ with (E.21)= 𝜙
𝜕𝜌𝑖,0∗

𝜕𝑡∗
(E.28)

2⃝: 
1

|𝛺∗
|
∫𝛺∗

∇𝐱∗ ⋅ (𝜌𝑖,0∗𝑣0∗)𝑑𝛺∗ with (E.21)= ∇𝐱∗ ⋅ (𝜌𝑖,0∗⟨𝑣0∗⟩) (E.29)

where ⟨𝑣0∗⟩ is the Darcy velocity as defined in (E.11).
3⃝:

1
|𝛺∗

|
∫𝛺∗

∇𝐱∗ ⋅ (𝐽𝑖,0∗)𝑑𝛺∗ with (E.26)= ∇𝐱∗ ⋅
(

1
|𝛺∗

|
∫𝛺f ∗

∇𝐲∗ ⋅ (𝐲∗ ⊗ 𝐽𝑖,0)𝑑𝛺∗
)

=

∇𝐱∗ ⋅
(

1
|𝛺∗

|

(

∫𝑆f ∗
(𝐲∗ ⊗ 𝐽𝑖,0) ⋅ 𝑛𝑑𝑆∗ + ∫𝛤

(𝐲∗ ⊗ 𝐽𝑖,0) ⋅ 𝑛
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=0, (E.19)2

𝑑𝑆∗
))

with (E.27)
=

∇𝐱∗ ⋅
(

1
|𝛺∗

|
∫𝑆f ∗

(

𝐲∗ ⊗
𝑛−1
∑

𝑗=1
𝐵𝑖𝑗,0

∗(𝑰 + ∇𝐲∗ ⊗ 𝜒)∇𝐱∗𝑥𝑗,0
∗) ⋅ 𝑛𝑑𝑆∗

)

=

∇𝐱∗ ⋅
(

1
|𝛺∗

|
∫𝑆f ∗

𝐲∗ ⊗
(

𝑛−1
∑

𝑗=1
𝐵𝑖𝑗,0

∗(𝑰 + ∇𝐲∗ ⊗ 𝜒)∇𝐱∗𝑥𝑗,0
∗ ⋅ 𝑛

)

𝑑𝑆∗
)

(E.7), Gauß, (E.26)
=

∇𝐱∗ ⋅
(

𝑛−1
∑

𝑗=1
⟨𝑩𝑖𝑗,0

∗
⟩∇𝐱∗𝑥𝑗,0

∗) =

∇𝐱∗ ⋅ ⟨𝐽𝑖,0
∗
⟩ (E.30)

4⃝:
1

|𝛺∗
|
∫𝛺∗

∇𝐲∗ ⋅ (𝜌𝑖,0∗𝑣0∗ + 𝜌𝑖,1∗𝑣1∗)𝑑𝛺∗ = 1
|𝛺∗

|
∫𝜕𝛺f ∗

(𝜌𝑖,0∗𝑣0∗ + 𝜌𝑖,1∗𝑣1∗) ⋅ 𝑛 𝑑𝑆∗ =

1
|𝛺∗

|
∫𝑆f ∗

(𝜌𝑖,0∗𝑣0∗ + 𝜌𝑖,1∗𝑣1∗)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0, 𝛺∗-periodicity of 𝜌𝑖,0∗ ,𝜌𝑖,1∗ ,𝑣0∗ ,𝑣1∗
⋅𝑛 𝑑𝑆∗ +

1
|𝛺∗

|
∫𝛤 ∗

(𝜌𝑖,0∗𝑣0∗ + 𝜌𝑖,1∗𝑣1∗)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0, 𝑣0∗ ,𝑣1∗=0 on 𝛤 ∗ , (�̃�0), (�̃�1)

⋅𝑛𝑑𝑆∗ = 0 (E.31)

5⃝:
1

|𝛺∗
|
∫𝛺∗

∇𝐲∗ ⋅ 𝐽𝑖,1
∗𝑑𝛺∗ = 1

|𝛺∗
|
∫𝜕𝛺f ∗

𝐽𝑖,1
∗ ⋅ 𝑛 𝑑𝑆∗ =

1
|𝛺∗

|
∫𝑆f ∗

𝐽𝑖,1
∗

⏟⏟⏟
⋅𝑛 𝑑𝑆∗ + 1

|𝛺∗
|
∫𝛤 ∗

𝐽𝑖,1
∗

⏟⏟⏟
⋅𝑛 𝑑𝑆∗ = 0 (E.32)
=0, 𝛺∗-periodicity of 𝐽𝑖,1∗ =0, (E.25)2
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6⃝: 
1

|𝛺∗
|
∫𝛺∗

𝑟𝑖,0
∗(𝝔𝟎∗)𝑑𝛺∗ with (E.21)= 𝜙𝑟𝑖,0

∗(𝝔𝟎∗) (E.33)

Summarizing, we obtain the macroscopic equation for gas phase species mass transport through porous media at first order of approximation 
for 𝑖 = 1… 𝑛: 

𝜙
𝜕𝜌𝑖,0∗

𝜕𝑡∗
+ ∇𝐱∗ ⋅ (𝜌𝑖,0∗⟨𝑣0∗⟩ + ⟨𝐽𝑖,0

∗
⟩) = 𝜙𝑟𝑖,0

∗(𝝔𝟎∗) in𝛺∗ (MT0∗)

From (E.30) we obtain the spatially averaged diffusive species mass fluxes 

⟨𝐽𝑖,0
∗
⟩ =

𝑛−1
∑

𝑗=1
⟨𝑩𝑖𝑗,0

∗
⟩∇𝐱∗𝑥𝑗,0

∗. (E.34)

Recalling that we rewrote (MT-PS)3 and (MT-PS)4 to yield (E.13) at the outset of the derivation we can now rewrite (E.34) again in 
Maxwell–Stefan formulation for 𝑖 = 1… 𝑛 − 1: 

−
𝑛
∑

𝑗=1
𝑗≠𝑖

𝑥𝑖,0
∗𝑥𝑗,0

∗
⟨Ðeff∗

𝑖𝑗,0 ⟩
−1

(

⟨𝐽𝑖,0∗⟩
𝜌𝑖,0∗

−
⟨𝐽𝑗,0∗⟩
𝜌𝑗,0∗

)

= ∇𝐱∗𝑥𝑖,0
∗ (E.35)

complemented by 
𝑛
∑

𝑖=1
⟨𝐽𝑖,0

∗
⟩ = 0 (E.36)

with the effective Maxwell–Stefan diffusivities: 

⟨Ðeff*𝑖𝑗,0 ⟩ =
1

|𝛺∗
|
∫𝛺f ∗

Ð𝑖𝑗,0∗(𝐈 + ∇𝐲∗ ⊗ 𝝌)𝑑𝛺∗

= Ð𝑖𝑗,0∗⟨𝐈 + ∇𝐲∗ ⊗ 𝝌⟩.
(E.37)

Here we used the fact that Ð𝑖𝑗,0∗(𝐱∗) = Ð𝑖𝑗,0∗(𝑝0∗, 𝑇0∗)(𝐱∗) are independent of 𝐲∗ as is shown for 𝑝0∗ and 𝑇0∗ in Appendices  E.1 and E.3, respectively.
In dimensional variables we have: 

𝜙
𝜕𝜌𝑖
𝜕𝑡

+ ∇𝐗 ⋅ (𝜌𝑖⟨𝑣⟩ + ⟨𝐽𝑖⟩) = 𝜙𝑟𝑖(𝝔) + (𝜀) in𝛺 (MT)

with the diffusive species mass fluxes in Maxwell–Stefan formulation for 𝑖 = 1… 𝑛 − 1: 

−
𝑛
∑

𝑗=1
𝑗≠𝑖

𝑥𝑖𝑥𝑗⟨Ðeff
𝑖𝑗 ⟩

−1

(

⟨𝐽𝑖⟩
𝜌𝑖

−
⟨𝐽𝑗⟩
𝜌𝑗

)

= ∇𝐗𝑥𝑖 + (𝜀) (E.38)

with the effective Maxwell–Stefan diffusivities 
⟨Ðeff𝑖𝑗 ⟩ = Ð𝑖𝑗⟨𝐈 + ∇𝐲∗ ⊗ 𝝌⟩ + (𝜀) (E.39)

where Ð𝑖𝑗 are the gas phase Maxwell–Stefan diffusivities complemented by 
𝑛
∑

𝑖=1
⟨𝐽𝑖⟩ = (𝜀). (E.40)

E.3. Thermal energy transport

In the following, thermal energy (i.e. heat) transport in a porous medium consisting of porous solid phase 𝑏 and gas phase 𝑎 saturating the pore 
space as shown in Fig.  E.14 is described. On the pore scale (PS), heat transport in the gas phase occurs via conduction–advection accompanied 
by heat source originating from bulk chemical reactions as described in (2.20) while in the porous solid phase heat is transported via conduction 
only. Heat exchange between the gas phase 𝛺𝑎 and the porous solid phase 𝛺𝑏 over the boundary 𝛤  is described as proportional to a heat transfer 
coefficient ℎ and the local difference in temperatures between the phases 𝑇𝑎 − 𝑇𝑏. Similar treatments are show in [26,27].

Thus, the pore scale equations for heat transport inside the gas and solid phases 𝛺𝑎 and 𝛺𝑏, formulated in terms of the temperatures of 𝑇𝑎 and 
𝑇𝑏, respectively, including heat exchange and heat flux continuity on the boundary 𝛤  take the form: 

𝜕
𝜕𝑡
(𝜌𝑎𝑐𝑎𝑇𝑎) − ∇𝐗 ⋅ (𝜆𝑎∇𝐗𝑇𝑎 − 𝜌𝑎𝑐𝑎𝑇𝑎𝑣) = 𝑞𝑎 in𝛺𝑎

𝜕
𝜕𝑡
(𝜌𝑏𝑐𝑏𝑇𝑏) − ∇𝐗 ⋅ (𝜆𝑏∇𝐗𝑇𝑏) = 0 in𝛺𝑏

𝑛 ⋅ (𝜆𝑏∇𝐗𝑇𝑏) = −ℎ(𝑇𝑎 − 𝑇𝑏) on𝛤
𝑛 ⋅ (𝜆𝑎∇𝐗𝑇𝑎 − 𝜆𝑏∇𝐗𝑇𝑏) = 0 on𝛤

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(HT-PS)

with heat release or consumption from bulk chemical reactions in the gas phase 𝑞𝑎.
Introduce the non-dimensional variables of order (1) with superscript ∗ by scaling the dimensional variables with characteristic values:

X = 𝐿c𝑥
∗,

𝑡 = 𝑡c𝑡
∗,
∗

𝑇𝑎 = 𝑇 c𝑇𝑎
∗,

𝑇𝑏 = 𝑇 c𝑇𝑏
∗,

∗

𝜆𝑎 = 𝜆𝑎c𝜆
∗
𝑎 ,

𝜆𝑏 = 𝜆𝑏c𝜆
∗
𝑏 ,

∗

𝜌𝑎 = 𝜌𝑎c𝜌
∗
𝑎 ,

𝜌𝑏 = 𝜌𝑏c𝜌
∗
𝑏 ,

𝑐𝑎 = 𝑐𝑎c𝑐
∗
𝑎

𝑐𝑏 = 𝑐𝑏c𝑐
∗
𝑏

𝑣 = 𝑣c𝑣 , ℎ = ℎcℎ , 𝑞𝑎 = 𝜌𝑎c𝑐𝑎c𝑇c∕𝑡Rc 𝑞𝑎 ,
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Fig. E.14. Period 𝛺 of porous domain with the gas phase 𝛺𝑎 and the solid phase 𝛺𝑏 considering contact resistance affecting heat exchange between the phases. 
Source: Reproduced from [26].

Here, 𝑡c is the timescale of transient temperature change in phase 𝑎 relative to rate of conductive heat transfer in phase 𝑎 and 𝑡Rc is the timescale 
of heat release or consumption by chemical reactions relative to conductive heat transport in phase 𝑎.

Based on the characteristic quantities, the following dimensionless numbers can be defined that indicate the relative magnitude of the different 
terms:

PeL =
𝜌𝑎c𝑐𝑎c𝐿c𝑣c

𝜆𝑎c
,  =

𝜆𝑏c
𝜆𝑎c

, L =
𝜌𝑎c𝑐𝑎c𝐿2

c
𝜆𝑎c𝑡c

,  =
𝜌𝑏c𝑐𝑏c
𝜌𝑎c𝑐𝑎c

, BiL =
ℎc𝐿c
𝜆𝑏c

,

 =
𝑡c
𝑡Rc

The boundary value problem (HT-PS) can thus be rewritten with dimensionless variables in terms of the dimensionless numbers: 

L
𝜕
𝜕𝑡∗

(𝜌𝑎∗𝑐𝑎∗𝑇𝑎∗)

−∇𝐱∗ ⋅ (𝜆𝑎∗∇𝐱∗𝑇𝑎
∗ − PeL𝜌𝑎∗𝑐𝑎∗𝑇𝑎∗𝑣∗) = L 𝑞𝑎∗ in𝛺𝑎

∗

L
𝜕
𝜕𝑡∗

(𝜌𝑏∗𝑐𝑏∗𝑇𝑏∗) − ∇𝐱∗ ⋅ (𝜆𝑏∗∇𝐱∗𝑇𝑏
∗) = 0 in𝛺𝑏

∗

(1∕) 𝑛 ⋅ (𝜆𝑎∗∇𝐱∗𝑇𝑎
∗) = −BiLℎ∗(𝑇𝑎∗ − 𝑇𝑏∗) on𝛤 ∗

𝑛 ⋅ (𝜆𝑎∗∇𝐱∗𝑇𝑎
∗ − 𝜆𝑏∗∇𝐱∗𝑇𝑏

∗) = 0 on𝛤 ∗

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(HT-PS*)

Physical arguments and equation scaling
In the following the magnitude of the dimensionless numbers that quantify the relative magnitude and thus importance of different processes 

are discussed based on physical arguments in connection with the application of interest. The dimensionless numbers presented herein are discussed 
in the computational notebook ‘‘PTReactorDemo.jl’’.

The Peclet number PeL = (1) is computed on the one hand from the gas flow rate and thus the advective flow velocity that is specified as part 
of the experimental conditions and on the other hand from the density and thermal properties of the gas phase.

The ratio of thermal conductivities  = (𝜀−1) follows from the fact that the solid phase 𝑏 has a thermal conductivity 𝜆𝑏c that is roughly one 
order of magnitude larger than that of the gas phase 𝑎, 𝜆𝑎c.

The dimensionless number L = (𝜀2) quantifies the ratio of thermal power to overcome thermal inertia in a transient setting to the conductive 
heat transport rate in phase 𝑎. In our application, we are interested in stationary solutions or slowly-varying solutions approaching the stationary 
solution, such that large values for the characteristic time 𝑡c are chosen leading to a small value for L.

To estimate   we begin by writing 𝑡c, the timescale of transient temperature change in phase 𝑎 relative to rate of conductive heat transfer in 
phase 𝑎 as 𝑡c = 𝜌𝑎c𝑐𝑎c𝐿2

c∕𝜆𝑎c
−1
L . To estimate 𝑡Rc, the timescale of heat release or consumption by chemical reactions relative to conductive heat 

transport in phase 𝑎, we assume, that the rate of heat release or consumption by reaction is of same magnitude than the rate of conductive heat 
transport in phase 𝑎 expressed by |𝑞𝑎| ≈ |∇𝐗 ⋅ (𝜆𝑎∇𝐗𝑇𝑎)|. We can then write 𝑡Rc = 𝜌𝑎c𝑐𝑎c𝐿2

c∕𝜆𝑎c and thus obtain for  = 𝑡c
𝑡Rc

= −1
L = (𝜀−2).

The ratio of the volumetric heat capacities  = (𝜀−2) follows from the fact that phase 𝑎 is a gas while phase 𝑏 is a solid with a density that is 
roughly three orders of magnitude larger than that of phase 𝑎.

The Biot number BiL = (𝜀−1) accounts for the ratio of interfacial heat transfer to thermal conductivity in the solid phase and in the present 
case is evaluated with an interfacial heat transfer coefficient computed according to [59] and the thermal conductivity of the material of the solid 
phase.

Homogenization ansatz
The homogenization ansatz we use relies on asymptotic expansions with different orders of the scale separation parameter written in the two-

scale coordinates (𝐱∗, 𝐲∗) with 𝐲∗ = 𝜀−1𝐱∗ for the dimensionless quantities 𝑇𝑎∗, 𝜌𝑎∗, 𝑣∗, 𝑇𝑏∗, where functions 𝑇𝑎∗, 𝑇𝑏∗ are periodic in 𝐲∗ analogous to 
(E.3). The dimensionless physical properties of gas phase 𝑎, thermal conductivity 𝜆𝑎∗ and heat capacity 𝑐𝑎∗ are approximated to the first order by 
𝜆 ∗ = 𝜆 ∗(𝑇 ∗), 𝑐 ∗ = 𝑐 ∗(𝑇 ∗) while the physical properties of solid phase 𝑏, 𝜆 ∗, 𝜌 ∗ and 𝑐 ∗ are considered constant.
𝑎 𝑎,0 𝑎,0 𝑎 𝑎,0 𝑎,0 𝑏 𝑏 𝑏
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Further, we apply Taylor series expansion of the dimensionless heat release from bulk chemical reactions in the gas phase 𝑞𝑎∗ = 𝑞𝑎∗(𝑇𝑎∗) around 
the support point 𝑇 𝑎,0∗, truncated after the first term. Assuming 𝑞𝑎∗ is at least once differentiable in the neighborhood of the support point, the 
total differential of 𝑞𝑎∗, 𝑑𝑞𝑎∗ can be written as:

𝑑𝑞𝑎
∗(𝑇𝑎∗) =

𝜕𝑑𝑞𝑎∗

𝜕𝑇𝑎∗
𝑑𝑇𝑎

∗

Then, the Taylor series approximation developed around 𝑇 𝑎,0∗ truncated after the first term with 𝑑𝑇𝑎∗ = 𝑇𝑎∗ − 𝑇 𝑎,0∗ takes the form:
𝑞𝑎

∗(𝑇𝑎∗) = 𝑞𝑎
∗(𝑇 𝑎,0∗) + 𝑑𝑞𝑎∗(𝑇 𝑎,0∗) + (𝜀2)

= 𝑞𝑎
∗(𝑇 𝑎,0∗) + 𝜀

𝜕𝑞𝑎∗

𝜕𝑇 𝑎,0∗
𝑇 𝑎,1

∗ + (𝜀2)

= 𝑞𝑎,0
∗(𝑇 𝑎,0∗) + 𝜀𝑞𝑎,1∗(𝑇 𝑎,1∗) + (𝜀2)

The change of independent variable necessitates the following transformation of the derivative operator: ∇X → ∇𝐱∗+𝜀−1∇𝐲∗ . Inserting the ansatz 
functions into (HT-PS*) considering the transformed differential operators we obtain:

𝜀2 𝜕
𝜕𝑡∗

(

𝑐𝑎
∗(𝜌𝑎,0∗ + 𝜀𝜌𝑎,1∗ + 𝜀2𝜌𝑎,2∗)(𝑇 𝑎,0∗ + 𝜀𝑇 𝑎,1∗ + 𝜀2𝑇 𝑎,2∗)

)

− (∇𝐱∗ + 𝜀−1∇𝐲∗ ) ⋅
(

𝜆𝑎,0
∗(∇𝐱∗ + 𝜀−1∇𝐲∗ )(𝑇 𝑎,0∗ + 𝜀𝑇 𝑎,1∗ + 𝜀2𝑇 𝑎,2∗)

−𝑐𝑎∗(𝜌𝑎,0∗ + 𝜀𝜌𝑎,1∗ + 𝜀2𝜌𝑎,2∗)(𝑇 𝑎,0∗ + 𝜀𝑇 𝑎,1∗ + 𝜀2𝑇 𝑎,2∗)(𝑣0∗ + 𝜀𝑣1∗ + 𝜀2𝑣2∗)
)

=

𝑞𝑎,0
∗(𝑇 𝑎,0∗) + 𝜀𝑞𝑎,1∗(𝑇 𝑎,1∗) + (𝜀2) in𝛺𝑎

∗ (E.41)

𝜕
𝜕𝑡∗

(

𝜌𝑏
∗𝑐𝑏

∗(𝑇 𝑏,0∗ + 𝜀𝑇 𝑏,1∗ + 𝜀2𝑇 𝑏,2∗)
)

− 𝜀−1(∇𝐱∗ + 𝜀−1∇𝐲∗ ) ⋅
(

𝜆𝑏
∗(∇𝐱∗ + 𝜀−1∇𝐲∗ )(𝑇 𝑏,0∗ + 𝜀𝑇 𝑏,1∗ + 𝜀2𝑇 𝑏,2∗)

)

= 0 in𝛺𝑏
∗ (E.42)

𝜀𝑛 ⋅
(

𝜆𝑎,0
∗(∇𝐱∗ + 𝜀−1∇𝐲∗ )(𝑇 𝑎,0∗ + 𝜀𝑇 𝑎,1∗ + 𝜀2𝑇 𝑎,2∗)

)

=

−𝜀−1ℎ∗(𝑇 𝑎,0∗ + 𝜀𝑇 𝑎,1∗ + 𝜀2𝑇 𝑎,2∗ − 𝑇 𝑏,0∗ − 𝜀𝑇 𝑏,1∗ − 𝜀2𝑇 𝑏,2∗) on𝛤 ∗ (E.43)

𝑛 ⋅
(

𝜆𝑎,0
∗(∇𝐱∗ + 𝜀−1∇𝐲∗ )(𝑇 𝑎,0∗ + 𝜀𝑇 𝑎,1∗ + 𝜀2𝑇 𝑎,2∗)

)

=

𝑛 ⋅
(

𝜀−1𝜆𝑏
∗(∇𝐱∗ + 𝜀−1∇𝐲∗ )(𝑇 𝑏,0∗ + 𝜀𝑇 𝑏,1∗ + 𝜀2𝑇 𝑏,2∗)

)

on𝛤 ∗ (E.44)

Consecutively, for each equation in (E.41)–(E.44), we consider terms of increasing order in 𝜀. Therefore, from (E.41), with order 𝜀−2 we get: 

∇𝐲∗ ⋅ ( 𝜆𝑎,0∗
⏟⏟⏟

>0

∇𝐲∗𝑇 𝑎,0
∗) = 0 in𝛺𝑎

∗ (E.45)

From (E.42) for order 𝜀−3 we get analogously: 

∇𝐲∗ ⋅ ( 𝜆𝑏
∗

⏟⏟⏟
>0

∇𝐲∗𝑇 𝑏,0
∗) = 0 in𝛺𝑏

∗ (E.46)

Scaling both sides of the heat transfer boundary condition between the phases (E.43) by 𝜀−1 yields the equivalent expression:

𝑛 ⋅
(

𝜆𝑎,0
∗(∇𝐱∗ + 𝜀−1∇𝐲∗ )(𝑇 𝑎,0∗ + 𝜀𝑇 𝑎,1∗ + 𝜀2𝑇 𝑎,2∗)

)

=

− 𝜀−2ℎ∗(𝑇 𝑎,0∗ + 𝜀𝑇 𝑎,1∗ + 𝜀2𝑇 𝑎,2∗ − 𝑇 𝑏,0∗ − 𝜀𝑇 𝑏,1∗ − 𝜀2𝑇 𝑏,2∗) on𝛤 ∗ (Ẽ.43)

From (Ẽ.43) we can directly see that for order 𝜀−2 we have: 

ℎ∗
⏟⏟⏟

>0

(𝑇 𝑎,0∗ − 𝑇 𝑏,0∗) = 0 ⟹ 𝑇 𝑎,0
∗ = 𝑇 𝑏,0

∗ on𝛤 ∗ (E.47)

Also for order 𝜀−2 we get from the heat flux continuity boundary condition between the phases (E.44): 

𝑛 ⋅ ( 𝜆𝑏
∗

⏟⏟⏟
>0

∇𝐲∗𝑇 𝑏,0
∗) = 0 ⟹ ∇𝐲∗𝑇 𝑏,0

∗ = 0 on𝛤 ∗ (E.48)

Eqs. (E.46) and (E.48) form a boundary value problem for 𝑇 𝑏,0∗ whose solution has the form: 

𝑇 𝑏,0
∗(𝐱∗, 𝐲∗) = 𝑇 𝑏,0

∗(𝐱∗). (E.49)

Similarly, by combining (E.45), (E.47) and (E.48) we can deduce for 𝑇 𝑎,0∗ at order 𝜀−2: 

𝑇 𝑎,0
∗(𝐱∗, 𝐲∗) = 𝑇 𝑏,0

∗(𝐱∗) = 𝑇0
∗(𝐱∗) in 𝛺𝑎

∗ ∪𝛺𝑏
∗ (E.50)

In other words, to first order of approximation, the temperature is constant across the period 𝛺∗.
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For (E.41) the next higher order is 𝜀−1 and with (E.50) and (�̃�0)2 from Appendix  E.1 it yields: 
∇𝐱∗ ⋅ (𝜆𝑎,0∗ ∇𝐲∗𝑇 𝑎,0

∗

⏟⏞⏟⏞⏟
=0

)

+∇𝐲∗ ⋅
(

𝜆𝑎,0
∗(∇𝐱∗𝑇 𝑎,0

∗ + ∇𝐲∗𝑇 𝑎,1
∗) − 𝜌𝑎,0∗𝑐𝑎,0∗𝑣0∗𝑇 𝑎,0∗

)

=

∇𝐲∗ ⋅
(

𝜆𝑎,0
∗(∇𝐱∗𝑇 𝑎,0

∗ + ∇𝐲∗𝑇 𝑎,1
∗)
)

−𝑐𝑎,0∗
(

(∇𝐲∗ ⋅ (𝜌𝑎,0∗𝑣0∗))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟=0

𝑇 𝑎,0
∗ + (𝜌𝑎,0∗𝑣0∗) ⋅ ∇𝐲∗𝑇 𝑎,0

∗

⏟⏞⏟⏞⏟=0

)

=

∇𝐲∗ ⋅
(

𝜆𝑎,0
∗(∇𝐱∗𝑇 𝑎,0

∗ + ∇𝐲∗𝑇 𝑎,1
∗)
)

= 0 in𝛺𝑎
∗

(E.51)

Similarly, the terms of order 𝜀−2 for (E.42) under consideration of (E.49) lead to: 
∇𝐱∗ ⋅ (𝜆𝑏∗ ∇𝐲∗𝑇 𝑏,0

∗

⏟⏞⏟⏞⏟
=0

) + ∇𝐲∗ ⋅
(

𝜆𝑏
∗(∇𝐱∗𝑇 𝑏,0

∗ + ∇𝐲∗𝑇 𝑏,1
∗)
)

= 0 in 𝛺𝑏
∗

(E.52)

For order 𝜀−1 in (Ẽ.43), which corresponds to order 𝜀0 in (E.43), we get: 
𝑛 ⋅ (𝜆𝑎∗ ∇𝐲∗𝑇 𝑎,0

∗

⏟⏞⏟⏞⏟
=0 (E.50)

) = ℎ∗
⏟⏟⏟

>0

(𝑇 𝑎,1∗ − 𝑇 𝑏,1∗) ⟹ 𝑇 𝑎,1
∗ = 𝑇 𝑏,1

∗ on𝛤 ∗ (E.53)

In the same way we get for order 𝜀−1 in (E.44): 
𝑛 ⋅ (𝜆𝑎∗ ∇𝐲∗𝑇 𝑎,0

∗

⏟⏞⏟⏞⏟
=0 (E.50)

) = 𝑛 ⋅ (𝜆𝑏∗(∇𝐱∗𝑇 𝑏,0
∗ + ∇𝐲∗𝑇 𝑏,1

∗)) on𝛤 ∗ (E.54)

Taken together, (E.52) and (E.54) form a boundary value problem for 𝜆𝑏∗(∇𝐱∗𝑇 𝑏,0∗ + ∇𝐲∗𝑇 𝑏,1∗) with the solution 

𝜆𝑏
∗

⏟⏟⏟
>0

(∇𝐱∗𝑇 𝑏,0
∗ + ∇𝐲∗𝑇 𝑏,1

∗) = 0⃗ in 𝛺𝑏
∗. (E.55)

From (E.55) we can see that a solution for 𝑇 𝑏,1∗ is: 

𝑇 𝑏,1
∗(𝐱∗, 𝐲∗) = −𝐲∗ ⋅ ∇𝐱∗𝑇 𝑏,0

∗ + �̄� 𝑏,1∗(𝐱∗) (E.56)

where �̄� 𝑏,1∗(𝐱∗) is an arbitrary function of 𝐱∗.
We now seek expressions for the field 𝑇 𝑎,1∗ in terms of 𝑇 𝑎,0∗. We begin by rewriting ∇𝐱∗𝑇 𝑎,0∗ and by further assuming that the functional form 

of the 𝛺∗-periodic field 𝑇 𝑎,1∗ can be represented as a linear combination in terms of ∇𝐱∗𝑇 𝑎,0∗:

∇𝐱∗𝑇 𝑎,0
∗ =

𝑑
∑

𝑘=1

𝜕𝑇 𝑎,0∗

𝜕x∗𝑘
(𝐱∗) 𝑒𝑘 (E.57)

𝑇 𝑎,1
∗(𝐱∗, 𝐲∗) =

𝑑
∑

𝑘=1

𝜕𝑇 𝑎,0∗

𝜕x∗𝑘
(𝐱∗) 𝑡𝑎,𝑘(𝐲∗) (E.58)

Upon inserting (E.57), (E.58) into (E.51), (E.53) and factoring out the terms which are constant with respect to 𝐲∗ we obtain the cell problems 
in the form of boundary value problems for the 𝛺∗-periodic functions 𝑡𝑎,𝑘. The cell problems for each spatial dimension 𝑘 = 1,… , 𝑑 can thus be 
formulated: 

∇𝐲∗ ⋅
(

𝜆𝑎,0
∗(𝑒𝑘 + ∇𝐲∗ 𝑡𝑎,𝑘)

)

= 0 in 𝛺𝑎
∗

𝑡𝑎,𝑘 − 𝑦𝑘∗ = 0 on 𝛤 ∗

∫𝛺𝑎∗
𝑡𝑎,𝑘𝑑𝛺

∗ = 0 in 𝛺𝑎
∗

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(HT𝑘)

We require a vanishing mean value for 𝑡𝑎,𝑘 when integrating over the period 𝛺∗(HT𝑘)3. We can write 𝑡𝑎,𝑘, 𝑗 = 𝑘,… , 𝑑, where 𝑑 is the spatial 
problem dimension, more compactly in vector form:

�⃗�𝑎 =
𝑑
∑

𝑘=1
𝑡𝑎,𝑘𝑒𝑘

∇𝐲∗𝑇 𝑎,1
∗ = ∇𝐲∗

𝑑
∑

𝑘=1

𝜕𝑇 𝑎,0∗

𝜕x∗𝑘
𝑡𝑎,𝑘 =

𝑑
∑

𝑘=1

𝜕𝑇 𝑎,0∗

𝜕x∗𝑘
∇𝐲∗ 𝑡𝑎,𝑘

And thus: 
∇𝐱∗𝑇 𝑎,0

∗ + ∇𝐲∗𝑇 𝑎,1
∗ = (𝐈 + ∇𝐲∗ ⊗ �⃗�𝑎)∇𝐱∗𝑇 𝑎,0

∗ (E.59)

For the next higher order corresponding to 𝜀0 for (E.41) we get:

∇𝐱∗ ⋅ (𝑐𝑎,0∗𝑇 𝑎,0∗𝜌𝑎,0∗𝑣0∗) + ∇𝐲∗ ⋅
(

𝑐𝑎,0
∗(𝑇 𝑎,0

∗(𝜌𝑎,0∗𝑣1∗ + 𝜌𝑎,1∗𝑣0∗) + 𝑇 𝑎,1∗𝜌𝑎,0∗𝑣0∗
)

)

−∇𝐱∗ ⋅
(

𝜆𝑎,0
∗(∇𝐱∗𝑇 𝑎,0

∗ + ∇𝐲∗𝑇 𝑎,1
∗)
)

− ∇𝐲∗ ⋅
(

𝜆𝑎,0
∗(∇𝐱∗𝑇 𝑎,1

∗ + ∇𝐲∗𝑇 𝑎,2
∗)
)

= 𝑞𝑎,0
∗ in𝛺𝑎

∗ (E.60)

An intermediate result that will be used later can be obtained from the order 𝜀−1 for (E.42):
−∇𝐱∗ ⋅

(

𝜆𝑏
∗(∇𝐱∗𝑇 𝑏,0

∗ + ∇𝐲∗𝑇 𝑏,1
∗)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

)

=0, (E.55)
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−∇𝐲∗ ⋅
(

𝜆𝑏
∗(∇𝐱∗𝑇 𝑏,1

∗ + ∇𝐲∗𝑇 𝑏,2
∗)
)

= 0 in𝛺𝑏
∗ (E.61)

For order 𝜀0 for (E.42) we get:
𝜕
𝜕𝑡∗

(𝜌𝑏∗𝑐𝑏∗𝑇 𝑏,0∗) − ∇𝐱∗ ⋅
(

𝜆𝑏
∗(∇𝐱∗𝑇 𝑏,1

∗ + ∇𝐲∗𝑇 𝑏,2
∗)
)

−∇𝐲∗ ⋅
(

𝜆𝑏
∗(∇𝐱∗𝑇 𝑏,2

∗ + ∇𝐲∗𝑇 𝑏,3
∗)
)

= 0 in𝛺𝑏
∗ (E.62)

For convenience, we introduce the heat fluxes through each phase:
𝑞𝑎

∗ = 𝜆𝑎
∗(∇𝐱∗𝑇 𝑎,0

∗ + ∇𝐲∗𝑇 𝑎,1
∗)

= 𝜆𝑎
∗ ((𝐈 + ∇𝐲∗ ⊗ �⃗�𝑎)∇𝐱∗𝑇 𝑎,0

∗) (E.63)

𝑞𝑏
∗ = 𝜆𝑏

∗(∇𝐱∗𝑇 𝑏,1
∗ + ∇𝐲∗𝑇 𝑏,2

∗) (E.64)

for which it holds due to (E.51) and (E.61):
𝑞𝑎

∗ = ∇𝐲∗ ⋅ (𝐲∗ ⊗ 𝑞𝑎
∗) (E.65)

𝑞𝑏
∗ = ∇𝐲∗ ⋅ (𝐲∗ ⊗ 𝑞𝑏

∗) (E.66)

As they will be used in later steps, the expressions obtained from the heat flux continuity boundary condition (E.44) of order 𝜀0 and 𝜀1 are: 
𝑛 ⋅ (𝜆𝑎,0∗(∇𝐱∗𝑇 𝑎,0

∗ + ∇𝐲∗𝑇 𝑎,1
∗)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑞𝑎∗

) = 𝑛 ⋅ (𝜆𝑏∗(∇𝐱∗𝑇 𝑏,1
∗ + ∇𝐲∗𝑇 𝑏,2

∗)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑞𝑏∗

) on 𝛤 ∗ (E.67)

and 
𝑛 ⋅ (𝜆𝑎,0∗(∇𝐱∗𝑇 𝑎,1

∗ + ∇𝐲∗𝑇 𝑎,2
∗)) = 𝑛 ⋅ (𝜆𝑏∗(∇𝐱∗𝑇 𝑏,2

∗ + ∇𝐲∗𝑇 𝑏,3
∗)) on 𝛤 ∗ (E.68)

respectively.
Summarizing, the following boundary value problem at order 𝜀0 for the 𝛺∗-periodic fields 𝑇 𝑎,0∗, 𝑇 𝑎,1∗, 𝑇 𝑎,2∗ and 𝑇 𝑏,0∗, 𝑇 𝑏,1∗, 𝑇 𝑏,2∗ is obtained 

from (E.60), (E.62), (E.53) and (E.67):

1⃝
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∇𝐱∗ ⋅ (𝑐𝑎,0∗𝑇 𝑎,0∗𝜌𝑎,0∗𝑣0∗) +

2⃝
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∇𝐲∗ ⋅
(

𝑐𝑎,0
∗(𝑇 𝑎,0

∗(𝜌𝑎,0∗𝑣1∗ + 𝜌𝑎,1∗𝑣0∗) + 𝑇 𝑎,1∗𝜌𝑎,0∗𝑣0∗
)

)

−

3⃝
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∇𝐱∗ ⋅

(

𝜆𝑎,0
∗(∇𝐱∗𝑇 𝑎,0

∗ + ∇𝐲∗𝑇 𝑎,1
∗)
)

−

4⃝
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∇𝐲∗ ⋅

(

𝜆𝑎,0
∗(∇𝐱∗𝑇 𝑎,1

∗ + ∇𝐲∗𝑇 𝑎,2
∗)
)

=

5⃝
⏞⏞⏞
𝑞𝑎,0

∗

in 𝛺𝑎
∗

6⃝
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜕
𝜕𝑡∗

(𝜌𝑏∗𝑐𝑏∗𝑇 𝑏,0∗) −

7⃝
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∇𝐱∗ ⋅

(

𝜆𝑏
∗(∇𝐱∗𝑇 𝑏,1

∗ + ∇𝐲∗𝑇 𝑏,2
∗)
)

−

8⃝
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∇𝐲∗ ⋅

(

𝜆𝑏
∗(∇𝐱∗𝑇 𝑏,2

∗ + ∇𝐲∗𝑇 𝑏,3
∗)
)

= 0 in 𝛺𝑏
∗

𝑇 𝑎,1
∗ − 𝑇 𝑏,1∗ = 0 on 𝛤 ∗

𝑛 ⋅ (𝜆𝑎,0∗(∇𝐱∗𝑇 𝑎,0
∗ + ∇𝐲∗𝑇 𝑎,1

∗)) = 𝑛 ⋅ (𝜆𝑏∗(∇𝐱∗𝑇 𝑏,1
∗ + ∇𝐲∗𝑇 𝑏,2

∗)) on 𝛤 ∗

For the macroscopic equations we integrate over the period 𝛺∗ = 𝛺𝑎
∗ ∪ 𝛺𝑏

∗ with |𝛺∗
| = |𝛺𝑎

∗
| + |𝛺𝑏

∗
|. Here we introduce the porosity or 

void fraction 𝜙 = |𝛺𝑎
∗
|∕|𝛺∗

| which is the volume occupied by the gas phase |𝛺𝑎
∗
| divided by the total volume |𝛺∗

|. The solid fraction thus 
becomes |𝛺𝑏

∗
|∕|𝛺∗

| = 1 − 𝜙. The sections on the boundary of the period belonging to either the fluid or solid phase, 𝑆𝑎∗ or 𝑆𝑏∗ are defined as 
𝑆𝑎∗ = 𝛺𝑎

∗ ∩ 𝜕𝛺∗ and 𝑆𝑏∗ = 𝛺𝑏
∗ ∩ 𝜕𝛺∗, respectively as shown in Fig.  E.14. We make use of the Gauß  divergence theorem, the 𝛺∗-periodicity of the 

fields that depend on the microscopic variable 𝐲∗ and the volumetric averaging operator (E.7). We recall that 𝑛 is the unit normal pointing out of 
𝛺𝑎

∗, so that (𝑛 𝑑𝑆𝑎)𝛤 ∗ = −(𝑛 𝑑𝑆𝑏)𝛤 ∗  holds.
Further, proceed on a term by term basis: 1⃝:

1
|𝛺∗

|
∫𝛺∗

∇𝐱∗ ⋅ (𝑐𝑎,0∗𝑇 𝑎,0∗𝜌𝑎,0∗𝑣0∗)𝑑𝛺∗ with (E.50)= ∇𝐱∗ ⋅ (𝑐𝑎∗𝜌𝑎,0∗𝑇0∗⟨𝑣0∗⟩)

where ⟨𝑣0∗⟩ is the Darcy velocity as defined in (E.11).
2⃝:

1
|𝛺∗

|
∫𝛺∗

∇𝐲∗ ⋅
(

𝑐𝑎,0
∗(𝑇 𝑎,0

∗(𝜌𝑎,0∗𝑣1∗ + 𝜌𝑎,1∗𝑣0∗) + 𝑇 𝑎,1∗𝜌𝑎,0∗𝑣0∗
)

)

𝑑𝛺∗ =

1
|𝛺∗

|
∫𝜕𝛺∗

(

𝑐𝑎,0
∗(𝑇 𝑎,0

∗(𝜌𝑎,0∗𝑣1∗ + 𝜌𝑎,1∗𝑣0∗) + 𝑇 𝑎,1∗𝜌𝑎,0∗𝑣0∗
)

)

⋅ 𝑛𝑑𝑆∗ =

1
|𝛺∗

|
∫𝑆𝑎∗

(

𝑐𝑎,0
∗(𝑇 𝑎,0

∗(𝜌𝑎,0∗𝑣1∗ + 𝜌𝑎,1∗𝑣0∗) + 𝑇 𝑎,1∗𝜌𝑎,0∗𝑣0∗
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

)

)

⋅ 𝑛𝑑𝑆∗ +
=0, 𝛺∗-periodicity of 𝑇 𝑎,0∗ ,𝑇 𝑎,1∗ ,𝜌𝑎,0∗ ,𝜌𝑎,1∗ ,𝑣0∗ ,𝑣1∗
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1
|𝛺∗

|
∫𝛤 ∗

(

𝑐𝑎,0
∗(𝑇 𝑎,0

∗(𝜌𝑎,0∗𝑣1∗ + 𝜌𝑎,1∗𝑣0∗) + 𝑇 𝑎,1∗𝜌𝑎,0∗𝑣0∗
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0, 𝑣0∗ ,𝑣1∗=0 on 𝛤 ∗ , (�̃�0), (�̃�1)

)

)

⋅ 𝑛𝑑𝑆∗ = 0

3⃝+ 7⃝:

− 1
|𝛺∗

|
∫𝛺∗

∇𝐱∗ ⋅
(

𝜆𝑎,0
∗(∇𝐱∗𝑇 𝑎,0

∗ + ∇𝐲∗𝑇 𝑎,1
∗)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑞𝑎∗

)

𝑑𝛺∗

− 1
|𝛺∗

|
∫𝛺∗

∇𝐱∗ ⋅
(

𝜆𝑏
∗(∇𝐱∗𝑇 𝑏,1

∗ + ∇𝐲∗𝑇 𝑏,2
∗)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑞𝑏∗

)

𝑑𝛺∗with ((E.65),(E.66))
=

− 1
|𝛺∗

|

∇𝐱∗ ⋅

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∫𝑆𝑎∗
(𝐲∗ ⊗ 𝑞𝑎

∗) ⋅ 𝑛 𝑑𝑆∗ + ∫𝛤 ∗
(𝐲∗ ⊗ 𝑞𝑎

∗) ⋅ 𝑛 𝑑𝑆∗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
cancel out with (E.67)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

− 1
|𝛺∗

|

∇𝐱∗ ⋅

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∫𝑆𝑏∗
(𝐲∗ ⊗ 𝑞𝑏

∗) ⋅ 𝑛 𝑑𝑆∗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0, 𝛺∗-periodicity of 𝑇 𝑏,1∗ ,𝑇 𝑏,2∗

−∫𝛤 ∗
(𝐲∗ ⊗ 𝑞𝑏

∗) ⋅ 𝑛 𝑑𝑆∗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
cancel out with (E.67)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

with (E.63)
=

−∇𝐱∗ ⋅

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
|𝛺∗

|
∫𝑆𝑎∗

𝜆𝑎,0
∗(𝐲∗ ⊗ (𝐈 + ∇𝐲∗ ⊗ �⃗�𝑎)) ⋅ 𝑛𝑑𝑆∗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝝀eff*0

∇𝐱∗𝑇 𝑎,0
∗

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

with (E.50)
=

−∇𝐱∗ ⋅
(

⟨𝝀eff*0 ⟩∇𝐱∗𝑇0
∗)

4⃝+ 8⃝:

− 1
|𝛺∗

|
∫𝛺∗

∇𝐲∗ ⋅
(

𝜆𝑎,0
∗(∇𝐱∗𝑇 𝑎,1

∗ + ∇𝐲∗𝑇 𝑎,2
∗)
)

𝑑𝛺∗

− 1
|𝛺∗

|
∫𝛺∗

∇𝐲∗ ⋅
(

𝜆𝑏
∗(∇𝐱∗𝑇 𝑏,2

∗ + ∇𝐲∗𝑇 𝑏,3
∗)
)

𝑑𝛺∗ =

− 1
|𝛺∗

|

⎛

⎜

⎜

⎜

⎜

⎝

∫𝑆𝑎∗
(

𝜆𝑎,0
∗(∇𝐱∗𝑇 𝑎,1

∗ + ∇𝐲∗𝑇 𝑎,2
∗)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0, 𝛺∗-periodicity of 𝑇 𝑎,1∗ ,𝑇 𝑎,2∗

)

⋅ 𝑛𝑑𝑆∗ + ∫𝛤 ∗

(

𝜆𝑎,0
∗(∇𝐱∗𝑇 𝑎,1

∗ + ∇𝐲∗𝑇 𝑎,2
∗)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
cancel out with (E.68)

)

⋅ 𝑛𝑑𝑆∗

⎞

⎟

⎟

⎟

⎟

⎠

− 1
|𝛺∗

|

⎛

⎜

⎜

⎜

⎜

⎝

−∫𝑆𝑏∗
(

𝜆𝑏
∗(∇𝐱∗𝑇 𝑏,2

∗ + ∇𝐲∗𝑇 𝑏,3
∗)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0, 𝛺∗-periodicity of 𝑇 𝑏,2∗ ,𝑇 𝑏,3∗

)

⋅ 𝑛𝑑𝑆∗ − ∫𝛤 ∗

(

𝜆𝑏
∗(∇𝐱∗𝑇 𝑏,2

∗ + ∇𝐲∗𝑇 𝑏,3
∗)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
cancel out with (E.68)

)

⋅ 𝑛𝑑𝑆∗

⎞

⎟

⎟

⎟

⎟

⎠

= 0

5⃝:
1

|𝛺∗
|
∫𝛺∗

𝑞𝑎,0
∗(𝑇 𝑎,0∗)𝑑𝛺∗ with (E.50)= 𝜙𝑞𝑎,0

∗(𝑇0∗)

6⃝:
1

|𝛺∗
|
∫𝛺∗

𝜕
𝜕𝑡∗

(𝜌𝑏∗𝑐𝑏∗𝑇 𝑏,0∗)𝑑𝛺∗ with (E.50)= (1 − 𝜙)𝜌𝑏∗𝑐𝑏∗
𝜕𝑇0∗

𝜕𝑡∗
Summarizing, we obtain the macroscopic equation for thermal energy (heat) transport through porous media at first order of approximation: 

(1 − 𝜙)𝜌𝑏∗𝑐𝑏∗
𝜕𝑇0∗

𝜕𝑡∗
+ ∇𝐱∗ ⋅ (𝑐𝑎∗𝜌𝑎,0∗𝑇0∗⟨𝑣0∗⟩) − ∇𝐱∗ ⋅

(

⟨𝝀eff*0 ⟩∇𝐱∗𝑇0
∗) = 𝜙𝑞𝑎,0

∗ in𝛺∗ (HT0∗)

with the effective, non-dimensional thermal conductivity ⟨𝝀eff*⟩ to first order of approximation: 

⟨𝝀eff*0 ⟩ = 1
|𝛺∗

|
∫𝑆𝑎∗

𝜆𝑎,0
∗(𝐲∗ ⊗ (𝐈 + ∇𝐲∗ ⊗ �⃗�𝑎)) ⋅ 𝑛𝑑𝑆∗ (E.69)

We can rewrite (E.69) by first applying GaußTheorem to obtain: 

⟨𝝀eff*0 ⟩ = 1
|𝛺∗

|
∫𝛺𝑎∗

∇𝐲∗ ⋅
(

𝜆𝑎,0
∗(𝐲∗ ⊗ (𝐈 + ∇𝐲∗ ⊗ �⃗�𝑎))

)

𝑑𝛺∗ (E.70)

which can be simplified by applying the product rule and (HT𝑘): 
∇𝐲∗ ⋅

(

𝜆𝑎,0
∗(𝐲∗ ⊗ (𝐈 + ∇𝐲∗ ⊗ �⃗�𝑎))

)

=𝜆𝑎,0∗
(

𝐈⊗ (𝐈 + ∇𝐲∗ ⊗ �⃗�𝑎) + 𝐲∗ ⊗ (∇𝐲∗ ⋅ (𝐈 + ∇𝐲∗ ⊗ �⃗�𝑎)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0, (HT𝑘)

)
)

∗

(E.71)
=𝜆𝑎,0 (𝐈 + ∇𝐲∗ ⊗ �⃗�𝑎)
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So we can write: 

⟨𝝀eff*0 ⟩ = 1
|𝛺∗

|
∫𝛺𝑎∗

𝜆𝑎,0
∗(𝐈 + ∇𝐲∗ ⊗ �⃗�𝑎)𝑑𝛺∗

= 𝜆𝑎,0
∗
⟨𝐈 + ∇𝐲∗ ⊗ �⃗�𝑎⟩

(E.72)

It should be noted, that due to strong contrast in heat capacity of the two phases, expressed by  = (𝜀−2), the heat capacity of phase 𝑎 is 
not considered in the storage term to first order of approximation. Similarly, the effective thermal conductivity 𝝀eff* is a function of the thermal 
conductivity 𝜆𝑎,0∗ alone, which is the phase with lower thermal conductivity expressed by  = (𝜀−1) as this corresponds to the case of infinite 
thermal conductivity of phase 𝑏 (and thus vanishing temperature gradient across phase 𝑏) to first order. The microscopic geometry is accounted 
for via the solution of the cell problem ⃗𝑡𝑎. In dimensional variables we have: 

(1 − 𝜙)𝜌𝑏𝑐𝑏
𝜕𝑇
𝜕𝑡

+ ∇𝐗 ⋅ (𝑐𝑎𝜌𝑎𝑇 ⟨𝑣⟩) − ∇𝐗 ⋅
(

⟨𝝀eff⟩∇𝐗𝑇
)

= 𝜙𝑞𝑎 + (𝜀) in𝛺 (HT)

with the effective thermal conductivity ⟨𝝀eff⟩: 
⟨𝝀eff⟩ = 𝜆𝑎⟨𝐈 + ∇𝐲∗ ⊗ �⃗�𝑎⟩ + (𝜀) (E.73)

Data availability

The model implementation and data that supports the findings of this study are available on GitHub at - https://github.com/DavidBrust/
MultiComponentReactiveMixtureProject.
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