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DLR, Institut für Aerodynamik und Strömungstechnik, Standort Braunschweig 
 
Datengetriebene Korrektur von Strömungssimulationen geringer Genauigkeit 
Dissertation, Technische Universität Braunschweig 
 
Computational Fluid Dynamics (CFD) ermöglicht die Simulation komplexer Strömungen und ist 
in der Luftindustrie weit verbreitet. Trotz ihrer weiten Verbreitung sind CFD Simulationen in 
großem Maßstab für komplette Flugzeugkonfigurationen nach wie vor eine rechenintensive 
Aufgabe. Im Allgemeinen erfordern genaue Simulationen eine hohe Auflösung in Form von 
Freiheitsgraden, um die Strömung in relevanten Bereichen aufzulösen, was mit hohen 
Rechenkosten verbunden ist. Dies verhindert parametrische Szenarien, bei denen es von 
Interesse ist, Simulationen für verschiedene Strömungsbedingungen durchzuführen. Traditionell 
wird versucht, Algorithmen zu beschleunigen, um akkurate Simulationen effizienter zu 
berechnen. Die vorliegende Arbeit verfolgt den entgegengesetzten Ansatz: die Verbesserung der 
Genauigkeit von rechnerisch weniger aufwendigen aber dafür ungenauen Simulationen. 
Das vorgeschlagene Korrekturverfahren ist datengetrieben, wobei Machine Learning Modelle, 
die mit genauen Daten trainiert wurden, als Funktionsapproximatoren dienen. Für die Korrektur 
von stationären Simulationen verfolgt der Ansatz drei Schritte: Zunächst werden genaue und 
ungenaue Simulationen berechnet, um einen Datensatz zu erzeugen. Anschliessend zielt das 
Training darauf ab, eine Beziehung zwischen den aus dem Datensatz extrahierten Features und 
dem Korrekturterm herzustellen. Schließlich wird die Vorhersage des Modells verwendet, um 
ungenaue Simulationen zu korrigieren. Dieser auf Supervised Learning basierende Ansatz wird 
auf instationäre Simulationen ausgeweitet und mit einer Methode des Reinforcement Learning 
verglichen. 
Bei stationären Simulationen verbessern die Korrekturen das Strömungsfeld sowie die 
Oberflächen- und Integralgrößen wie Druck- und Auftriebsbeiwert. Dies wird für turbulente 
Strömungen auf einem 2D-Profil und einem 3D-Flügel, sowie für laminare Strömungen um einen 
3D-Flügel demonstriert. Die Projektion, die notwendig ist um Daten zwischen verschiedenen 
Diskretisierungen zu übertragen, stellt eine Obergrenze für die erreichbare Genauigkeit dar. 
Darüber hinaus weisen die trainierten Modelle Generalisierungsgrenzen sowie eine geringere 
Genauigkeit in der Nähe von Diskontinuitäten auf. 
Schließlich wird die vorgeschlagene Methode auf instationäre Probleme angewandt, 
einschließlich eines linearen Transportproblems und der Konvektion eines isentropen 2D-
Wirbels. Reinforcement Learning ist hierbei die teuerste Methode und erreicht gleichzeitig die 
geringste Genauigkeit. Im Gegensatz dazu erweist sich die einfachste Methode, ein Supervised 
Learning Ansatz mit entkoppelter Korrektur, innerhalb des gewählten Designraums und 
Trainingszeitfensters als am zuverlässigsten. 
Diese Arbeit zeigt das Potenzial datengetriebener Methoden zur Verbesserung der Genauigkeit 
von CFD-Simulationen mit geringer Genauigkeit auf. Der vorgeschlagene Ansatz dient als 
effektive Technik der Ersatzmodellierung für die schnelle Vorhersage in parametrisierten 
Szenarien. 
 
 
 
  



Data-driven, correction, machine learning, low-fidelity, CFD, discontinuous Galerkin, finite 
volume, discretization 

(Published in English language) 
Anna Marie KIENER 
German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology, 
Braunschweig 
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Computational Fluid Dynamics (CFD) enables the simulation of complex fluid flows and is widely 
used within the aerospace industry. Despite its widespread adoption, high-fidelity CFD 
simulations remain a computationally demanding task for full-aircraft configurations at scale. In 
general, high-fidelity simulations require high resolution in terms of degrees of freedom to resolve 
the flow in areas of interest, which is associated with high computational costs. This prohibits 
many-query scenarios, in which it is of interest to conduct simulations parametrically across 
various flow conditions. 
Traditionally, efforts in CFD focus on improving algorithms to obtain high-fidelity simulations more 
efficiently. This work takes the opposite approach: improving the accuracy of computationally less 
expensive low-fidelity simulations, including coarse grid finite volume and low-order 
discontinuous Galerkin discretizations. 
The proposed correction framework is data-driven, where machine learning models, trained on 
high-fidelity data, serve as function approximators. For the correction of steady simulations, the 
approach follows three steps: first, a set of high- and low-fidelity simulations is computed to 
generate a data set. Secondly, the model training aims to find a relationship between the input 
features and the correction term, which are extracted from the data set. Finally, the model's 
prediction is used to enhance the accuracy of low-fidelity simulations outside of the training data 
set. For unsteady simulations, a reinforcement learning approach is proposed and compared to 
corrections based on supervised learning. 
For steady simulations, the corrections improve the flow field, as well as surface and integral 
quantities such as pressure and lift coefficient. This is demonstrated for turbulent flows using the 
Reynolds Averaged Navier-Stokes equations with a one-equation turbulence model on a 2D 
airfoil and a 3D wing, as well as for laminar flow around a 3D wing. However, the need to project 
high-fidelity data onto low-fidelity discretizations ultimately poses an upper bound to the 
achievable accuracy, specifically for certain variables of interest such as the drag coefficient. 
Additionally, the trained models exhibit generalization limits as well as reduced accuracy near 
discontinuities. Finally, the proposed method is extended to unsteady problems, including a linear 
transport problem and the convection of a 2D isentropic vortex described by the 1D advection 
and the Euler equations, respectively. The reinforcement learning approach is the most 
expensive method, while also achieving the lowest accuracy, accumulating errors due to its 
autoregressive nature. In contrast, the simplest method, a supervised learning approach with 
post-processing correction, proves to be most reliable within the chosen design space and 
training time window. 
This thesis highlights the potential of data-driven methods for enhancing the accuracy of low-
fidelity CFD simulations. The proposed approaches serve as an effective surrogate modeling 
technique for rapidly predicting flow field and pressure related variables in parametrized many-
query scenarios. 
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Abstract

Computational Fluid Dynamics (CFD) enables the simulation of complex fluid
flows and is widely used within the aerospace industry. Despite its widespread
adoption, high-fidelity CFD simulations remain a computationally demanding task
for full-aircraft configurations at scale. In general, high-fidelity simulations re-
quire high resolution in terms of degrees of freedom to resolve the flow in areas of
interest, which is associated with high computational costs. This prohibits many-
query scenarios, in which it is of interest to conduct simulations parametrically
across various flow conditions. Traditionally, efforts in CFD focus on improving
algorithms to obtain high-fidelity simulations more efficiently. This work takes
the opposite approach: improving the accuracy of computationally less expensive
low-fidelity simulations, including coarse grid finite volume and low-order discon-
tinuous Galerkin discretizations.

The proposed correction framework is data-driven, where machine learning
models, trained on high-fidelity data, serve as function approximators. For the
correction of steady simulations, the approach follows three steps: first, a set of
high- and low-fidelity simulations is computed to generate a data set. Secondly,
the model training aims to find a relationship between the input features and
the correction term, which are extracted from the data set. Finally, the model’s
prediction is used to enhance the accuracy of low-fidelity simulations outside of the
training data set. For unsteady simulations, a reinforcement learning approach is
proposed and compared to corrections based on supervised learning.

For steady simulations, the corrections improve the flow field, as well as surface
and integral quantities such as pressure and lift coefficient. This is demonstrated
for turbulent flows using the Reynolds Averaged Navier-Stokes equations with a
one-equation turbulence model on a 2D airfoil and a 3D wing, as well as for lam-
inar flow around a 3D wing. However, the need to project high-fidelity data onto
low-fidelity discretizations ultimately poses an upper bound to the achievable ac-
curacy, specifically for certain variables of interest such as the drag coefficient.
Additionally, the trained models exhibit generalization limits as well as reduced
accuracy near discontinuities. Finally, the proposed method is extended to un-
steady problems, including a linear transport problem and the convection of a 2D
isentropic vortex described by the 1D advection and the Euler equations, respec-
tively. The reinforcement learning approach is the most expensive method, while
also achieving the lowest accuracy, accumulating errors due to its autoregressive
nature. In contrast, the simplest method, a supervised learning approach with
post-processing correction, proves to be most reliable within the chosen design
space and training time window.

This thesis highlights the potential of data-driven methods for enhancing the
accuracy of low-fidelity CFD simulations. The proposed approaches serve as an ef-
fective surrogate modeling technique for rapidly predicting flow field and pressure
related variables in parametrized many-query scenarios.



Zusammenfassung

Computational Fluid Dynamics (CFD) ermöglicht die Simulation komplexer Strö-
mungen und ist in der Luftindustrie weit verbreitet. Trotz ihrer weiten Verbrei-
tung sind CFD Simulationen in großem Maßstab für komplette Flugzeugkonfigu-
rationen nach wie vor eine rechenintensive Aufgabe. Im Allgemeinen erfordern
genaue Simulationen eine hohe Auflösung in Form von Freiheitsgraden, um die
Strömung in relevanten Bereichen aufzulösen, was mit hohen Rechenkosten ver-
bunden ist. Dies verhindert parametrische Szenarien, bei denen es von Interesse
ist, Simulationen für verschiedene Strömungsbedingungen durchzuführen. Tradi-
tionell wird versucht, Algorithmen zu beschleunigen, um akkurate Simulationen
effizienter zu berechnen. Die vorliegende Arbeit verfolgt den entgegengesetzten
Ansatz: die Verbesserung der Genauigkeit von rechnerisch weniger aufwendigen
aber dafür ungenauen Simulationen.

Das vorgeschlagene Korrekturverfahren ist datengetrieben, wobei Machine
Learning Modelle, die mit genauen Daten trainiert wurden, als Funktionsappro-
ximatoren dienen. Für die Korrektur von stationären Simulationen verfolgt der
Ansatz drei Schritte: Zunächst werden genaue und ungenaue Simulationen berech-
net, um einen Datensatz zu erzeugen. Anschliessend zielt das Training darauf ab,
eine Beziehung zwischen den aus dem Datensatz extrahierten Features und dem
Korrekturterm herzustellen. Schließlich wird die Vorhersage des Modells verwen-
det, um ungenaue Simulationen zu korrigieren. Dieser auf Supervised Learning
basierende Ansatz wird auf instationäre Simulationen ausgeweitet und mit einer
Methode des Reinforcement Learning verglichen.

Bei stationären Simulationen verbessern die Korrekturen das Strömungsfeld
sowie die Oberflächen- und Integralgrößen wie Druck- und Auftriebsbeiwert. Dies
wird für turbulente Strömungen auf einem 2D-Profil und einem 3D-Flügel, sowie
für laminare Strömungen um einen 3D-Flügel demonstriert. Die Projektion, die
notwendig ist um Daten zwischen verschiedenen Diskretisierungen zu übertragen,
stellt eine Obergrenze für die erreichbare Genauigkeit dar. Darüber hinaus weisen
die trainierten Modelle Generalisierungsgrenzen sowie eine geringere Genauigkeit
in der Nähe von Diskontinuitäten auf.

Schließlich wird die vorgeschlagene Methode auf instationäre Probleme ange-
wandt, einschließlich eines linearen Transportproblems und der Konvektion eines
isentropen 2D-Wirbels. Reinforcement Learning ist hierbei die teuerste Methode
und erreicht gleichzeitig die geringste Genauigkeit. Im Gegensatz dazu erweist
sich die einfachste Methode, ein Supervised Learning Ansatz mit entkoppelter
Korrektur, innerhalb des gewählten Designraums und Trainingszeitfensters als
am zuverlässigsten.

Diese Arbeit zeigt das Potenzial datengetriebener Methoden zur Verbesse-
rung der Genauigkeit von CFD-Simulationen mit geringer Genauigkeit auf. Der
vorgeschlagene Ansatz dient als effektive Technik der Ersatzmodellierung für die
schnelle Vorhersage in parametrisierten Szenarien.
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ŷ Machine learning predicted outputs
η Machine learning feature input vector

Aπ Advantage function under policy π
C Sutherland’s constant
Cf Skin friction coefficient
CL Lift coefficient
CP Pressure coefficient
D Number of decision trees
Dt Turbulent destruction term
E Total energy
E Edges
Fc Vector of convective fluxes
Fv Vector of viscous fluxes
G Return
G Graph
H Horizon
Htot Total enthalpy
I Number of elements
Icf Mapping from fine to coarse grid
J Number of labeled input and output pairs
L Loss function
L Number of neural network layers
Lv Vortex length
Lref Reference length
M Mach number
Mx Momentum in x direction
N Number of degrees of freedom
N Set of neighborhood vertices of vertex
P Pressure
Pr Probability ratio
Pt Turbulent production term
Qπ Action-value function or Q-function under policy π
R Ideal gas constant

x



SYMBOLS

R2 Coefficient of Determination
Re Reynolds number
S Surface
T Temperature
U Velocity
Vπ Value function under policy π
V Vertices
V p
h Space of polynomials of total degree p

W Weight matrix

xi





Chapter 1

Introduction

The ultimate goal is to
obtain the desired accuracy
with the least effort, or the
maximum accuracy with
the available resources.

Ferziger, Peric, Street [52]

1.1 Motivation: The Relationship Between Efficiency
and Accuracy

Technical advancements have led to cheaper and more accessible air mobility. This
has facilitated globalization, driving many of today’s achievements. However, the
increased use of air transport comes with a growing need for infrastructure and
contributes to noise and pollution. Policymakers face the challenge of balancing
the growing demand for mobility with the urgent need to combat climate change.
One way of reducing aircraft emissions and thus the contribution to climate change
is by technical means [64], i.e. the pursuit of green aviation. Previously, one of the
primary objective of aerospace engineers was to improve cost efficiency. However,
in response to recent global developments, the focus has fundamentally shifted
towards sustainability as a critical priority.

In this context, Computational Fluid Dynamics (CFD) plays a crucial role in
the development of new aircraft. CFD entails the computational simulation of
fluid flow behavior and has become an essential element in many industrial fields.
For instance, in the automotive industry, CFD is used for the design of combustion
engines and the analysis of aerodynamic forces. In the Heating, Ventilation and
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Air Conditioning (HVAC) industry, CFD is employed to analyze indoor airflow,
heat transfer and temperature distribution. These are just a few examples to show
the broad scope of CFD applications, which provide insights into complex fluid
flows. The initial promise of CFD in the aerospace industry was to substitute
expensive tests, thereby saving time and resources in designing new and improved
aircraft, long before a physical model or prototype is built. As of today, while
CFD has matured to a state in which it reduces the need for certain physical tests,
it has not replaced expensive wind tunnel experiments or flight tests, but rather
complements these methods during all stages of design. This can be attributed
to the fact that full-scale simulations of aircraft still remain a computationally
demanding task. Reducing computational cost of CFD simulations remains an
active area of research, and this thesis aims to contribute to these efforts.

The focus of this thesis is to efficiently approximate solutions of fluid flow prob-
lems described by boundary value problems. In general, scientist and engineers
mathematically describe physical problems, be it in the domain of fluid dynamics
or other, using Partial Differential Equations (PDE), where the unknown function
depends on both space and time. Consider as a simple example the heat equation,
given as

∂u

∂t
= c

∂2u

∂x2
, (1.1)

with x and t the independent variables representing the space and time dimensions,
u being the variable depending on x and t, and c a real positive constant. To
arrive at the boundary value problem for which one desires a solution, auxiliary
conditions at the boundary need to be stated. While analytical solutions are
desirable, they are usually derived only for very simple problems. In most practical
applications, especially those involving complex geometries or non-linear terms in
the PDEs, which is often the case for fluid problems, finding an analytical solution
is generally difficult. As a result, numerical methods are commonly used to find
an approximation of the analytical solution. Employing the method of lines, all
but one derivative, typically the spatial ones, are discretized, using for example an
algebraic approximation such as finite differences. With this, the original PDE is
converted into a system of time dependent Ordinary Differential Equations (ODE),
which can be integrated with a suitable time stepping scheme. As fluid problems
are of interest here, for which the governing equations are of non-linear nature, the
considered spatial discretization schemes are the Finite Volume (FV) [19] and the
Discontinuous Galerkin (DG) [36] methods. The FV discretization has become
the dominant one throughout several fluid related applications, whereas the DG
discretization, being a higher order method receiving currently more attention
from academia than from industry, is often dismissed for being too expensive [20,
168].

Although the increased use of CFD simulations has lead to a variety of such
discretization schemes, all of them share the same trade-off: accurate solutions are
accompanied by increased computational cost. This ultimately is a bottleneck for
performing a large number of high-fidelity simulations. Increasing the accuracy
of CFD simulations necessitates in general more degrees of freedom N . For both
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FV and DG discretization, the physical domain of interest is first divided into
cells, collectively forming the mesh or grid. In the case of FV, the number of
elements or vertices corresponds to the number of degrees of freedom N . To
accurately capture phenomena of interest, such as small-scale turbulence near an
airfoil, the mesh must be refined in these regions. In contrast, less relevant areas,
such as the far field, require less resolution. As the DG discretization describes
the solution in one element as a piecewise polynomial approximation, it allows
to control the number of degrees of freedom N not only by refining the grid, but
also by increasing the polynomial degree. While increasing the polynomial degree
results in a rapid growth of degrees of freedom, it is notable that choosing the
lowest possible polynomial degree results in a first order FV scheme.

For the scope of this thesis, it is necessary to clarify and define certain terms,
including computational cost, accuracy, as well as low- and high-fidelity. Firstly,
computational cost can be regarded in terms of complexity, putting the num-
ber of degrees of freedom N into relation with the time needed to obtain a nu-
merical solution, as given in Figure 1.1. Obviously, it would be desirable that
the solution algorithms scale linearly with the number of degrees of freedom
N , such that O(N) is achieved. In reality, obtaining numerical solutions of the
Reynolds-Averaged Navier-Stokes equations, which are the central governing equa-
tions within this work, has the computational complexity O(Nm), with m ≥ 2,
while pre-conditioning methods can lessen this complexity to a certain extent.
Thus, while increasing the number of degrees of freedom on the one hand might
improve the solution accuracy, the computational cost or time to obtain a solution
must increase at least quadratically on the other hand.

Then, the question arises: how many degrees of freedom are necessary to
achieve sufficient accuracy? Naturally, it is desirable for a numerical solution uh

to approximate the analytical solution u, such that the error

ε(h) = |u− uh|, (1.2)

being a function of the chosen discretization h, vanishes. In this work, an accurate
solution either satisfies convergence in terms of degrees of freedom, meaning that
the solution does not change significantly with increased N , or approximates a

Figure 1.1: Computational cost in terms of complexity
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reference value. Thus, the obtained solution is deemed accurate if it is comparable
either to the analytical solution if available, or measurement or simulation data
from literature. These accurate solutions are labeled as high-fidelity, and are
obtained for FV and DG on relatively fine grids or with high polynomial degrees,
respectively. Contrarily, low-fidelity solutions are obtained with less degrees of
freedom, either on coarser grids or with lower polynomial degrees, with respect
to their high-fidelity counterparts. With the established complexity of at least
O(N2), these low-fidelity solutions are less expensive, but with the prospect of
being less accurate.

Two obvious ways to decrease the time needed to obtain high-fidelity solu-
tions is to either improve the algorithms or the respective hardware capabilities.
Promising algorithms include multigrid methods [23] and adaptive refinement of
the grid or the polynomial degree [16]. Regarding hardware, there is a trend to-
wards higher parallelism [140] and heterogeneous architectures [184], although it
can be shown that the parallel efficiency of many solution algorithms scale sub-
optimally [104]. Also, a renewed interest in utilizing GPUs for CFD computations
can be observed [21, 138, 179].

Another approach to achieve accurate solutions in less time is by enhancing
the accuracy of the low-fidelity solution. This is often the starting point for cur-
rent research aimed at accelerating CFD solutions through data-driven methods.
Machine Learning (ML) methods, in particular, have received increased attention
across various research fields in recent years. ML, especially deep learning, has
achieved notable success in solving problems related to image recognition [129] and
natural language processing [128]. Thus, there is considerable interest in achiev-
ing similar success for physics-based problems, well outlined in various review
papers [27, 46, 163, 58], and this work builds upon those efforts.

To summarize, there exists a relationship between complexity and accuracy
in CFD simulations, while the demand for achieving accurate solutions in less
time is rising. Nowadays, increasingly complex problems are tackled, including
multi-disciplinary simulations. Here, engineers must not only account for aerody-
namics, but a multitude of disciplines, such as structural integrity and propulsion.
Quick and precise design iterations are essential for exploring various design op-
tions and optimizing performance under diverse conditions. This is particularly
the case in the context of many-query problems, where numerous simulations in a
parametrized setting must be conducted efficiently. The ability to efficiently sim-
ulate complex, mutual dependent phenomena is crucial for advancing aerospace
engineering and meeting the industry’s evolving demands and the goal of green
aviation. Thus, to advance simulation capabilities, there is a necessity for "revolu-
tionary algorithmic improvements", as the CFD vision 2030, published by NASA
in 2014, states [153].
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1.2 State of the Art

This section discusses established methods, such as multigrid methods and adap-
tive refinement, and closes with an overview of current research trends involving
ML methods. This review of the state of the art provides the foundation for this
thesis, exploring if and how ML methods can improve the accuracy of low-fidelity
CFD simulations.

1.2.1 Classical Algorithms to Accelerate CFD Simulations
As previously described, low-fidelity simulations comprising less degrees of free-
dom tend to be computational inexpensive while potentially being less accurate.
However, certain algorithms exploit these properties to their advantage.

One such technique is the Multigrid (MG) method, which requires to transfer
information between different discretizations by using projection and interpolation
operators. Using Fourier expansion, it can be shown that the solution error which
is reduced during the iterative solving procedure contains high- and low-frequency
components, while the latter is the main driver for slow convergence [65, 161]. The
fundamental idea of MG is to smoothen the error. By employing a hierarchy of
discretizations, such as a sequence of coarse to fine grids, the costly low-frequency
error components of the fine grid discretization become high-frequency compo-
nents on the coarse grid discretization. On the low-fidelity discretization, the
error can be more efficiently reduced, promising to accelerate the overall conver-
gence behavior [19].

Another method that leverages the fast solution of low-fidelity discretizations
is the adaptive refinement of a mesh or increase of a polynomial degree, known
as h- or p-refinement, respectively. Adaptive Mesh Refinement (AMR) has found
applications in various areas such as climate modeling and astrophysics [43]. The
core idea of AMR is to dynamically refine the discretization locally where needed,
while achieving a coarse discretization otherwise, to efficiently arrive at an accept-
able accuracy with only as many degrees of freedom as needed. In fluid problems,
critical areas in need of refinement are encountered where the solution exhibits
steep gradients, such as inside the boundary layer or at discontinuities [16]. The
AMR algorithm typically starts with a coarse mesh. After obtaining a solution
on this discretization, an error indicator flags cells for refinement. The choice of
an indicator is non-trivial, with a wide variety existing in literature, including
gradient- or residual-based indicators [90]. Repeating the refinement on the next
discretization leads to a sequence of grids. This iterative process of solving, error
estimation, and mesh refinement is repeated until a certain stopping criterion is
satisfied. The same procedure applies to p-refinement, where the polynomial de-
gree within the flagged elements is increased instead of the element being refined,
while a combination of both, known as hp-refinement, also exists.

The discussed methods have demonstrated their effectiveness, showing that the
use of low-fidelity discretizations can accelerate the process of obtaining accurate
solutions [82, 177]. Nevertheless, Witherden and Jameson [172] argue that CFD
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progress has plateaued since the early 2000s, with second-order FV schemes cur-
rently being the state of the art for solving steady flow problems. They emphasize
that the practical use of CFD tools is closely linked to the speed and memory ca-
pacity of available computational hardware, and thus CFD benefits directly from
advancements in hardware technology. However, trends like heterogeneous com-
puting, higher parallelism, and exploiting GPU architectures come with obstacles,
including increased development and maintenance cost, while small engineering
companies are constrained not only by the number of software licenses but also by
the available hardware. Additionally, the efficiency gains are often diminished by
the need of on- and offloading data between different devices and load balancing
cost. Most importantly, from an algorithmic perspective, it has been shown that
several schemes lose efficiency with increased levels of parallelism [104]. Therefore,
with the given increase in problem complexity and demand of simulations, there is
a need for innovative algorithmic approaches that can fully and efficiently exploit
the potential of current and future hardware trends, highlighting the necessity
to improve existing algorithms or even derive new ones. In the light of explor-
ing methods beyond classical algorithms, ML methods have received increased
attention across various research fields.

1.2.2 Machine Learning Algorithms to Accelerate CFD Sim-
ulations

ML has achieved remarkable success in areas where deep learning models exploit
extensive datasets [34]. Examples include object detection in computer vision for
autonomous driving [56], generating texts using large language models in natural
language processing [66], and discovering new protein structures in biology [80].
Given this progress, there is growing interest in achieving similar achievements for
physics-based problems. Trying to leverage synergies between ML techniques and
CFD methods, different applications have emerged and are focal point of current
research. This is reflected in the number of review articles investigating the appli-
cation of ML methods for CFD in general [27, 29, 58, 68, 130, 163] or specifically
for turbulence modeling [11, 46, 47]. One can categorize ML for physics simula-
tion into prediction and correction tasks [114]: prediction methods seek to directly
forecast the CFD solver’s output, bypassing the costly CFD evaluation. Correc-
tion methods aim to improve simulation results or certain components within the
CFD solver, for example turbulence models. In addition to these two distinctions,
the following sections review current research on coupling CFD solvers with ML
techniques, a topic that has become central to unsteady simulations.

Predicting CFD Simulations

Surrogate models and Reduced Order Models (ROM) are examples for inexpen-
sive predictions of CFD solutions. During the early stages of design development,
rapid evaluations of possible designs allow to iterate through a plethora of geome-
tries and assess them under varying flight conditions. Here, high-fidelity CFD
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simulations slow down evaluations and thus hold back quick optimization pro-
cesses. The aim of surrogate models it to predict with sufficient accuracy certain
quantities of interest, such as lift, drag or surface coefficient, at a much lower
computational cost. As for ROMs, any simplified model could be regarded as a
ROM of a higher fidelity model. Thus, the Euler equations could for example be
by definition a ROM of the Reynolds-Averaged Navier-Stokes (RANS) equations.
Nevertheless, most ROMs in literature rely on data-driven approaches and cap-
ture the physical characteristics of the high-fidelity or Full Order Model (FOM)
in a reduced or compressed format. This compression is accomplished by select-
ing an appropriate projection that encapsulates the main properties of the FOM
data within a space of lower dimension [117]. Creating the FOM data and fitting
the projection to a large dataset are the costly parts of creating a ROM. After
this fitting or training, the model is employed for new predictions, which is in
turn cheap and allows for fast design iterations. In CFD applications, ROMs are
often build on Proper Orthogonal Decomposition (POD) [158, 55, 49]. POD is
a dimensionality reduction method, which uses eigenvalue analysis to decompose
a vector field, such as the velocity or pressure field, into a set of basis functions.
Finally, the solution can be reconstructed from these extracted POD modes.

Recently, deep learning models have gained popularity as surrogates and have
shown improved capabilities for certain problems. For instance, Hines et al. [74]
compare a POD with an interpolation method, a deep neural network, and a graph
neural network, predicting the pressure coefficient based on the Mach number and
angle of attack for a wing geometry. It was found that the deep learning models
result in higher accuracy for transonic flows. Sabater et al. [144] predict the surface
pressure distribution of an airfoil and an aircraft geometry by comparing Gaussian
Processes, POD with interpolation, and a deep neural network. Similarly, they
concluded that all models achieve high accuracy for subsonic regimes, whereas at
transonic design points, where discontinuities such as shocks form, deep learning
methods outperform the other approaches.

Correcting CFD Simulations

For aerodynamic applications, the use of previously described surrogates is of-
ten limited to the prediction of surface and integral coefficients, while full field
simulation data is discarded. Leveraging all available data for ML model cor-
rections allows to address a wider range of problems and ultimately enables the
combination of data-driven models with the CFD solver.

One area of correcting CFD simulations is the development of data-driven
turbulence models. Resolving all turbulent scales, known as Direct Numerical
Simulation (DNS), is currently infeasible for most industrial applications because
of high computational cost. Various turbulence models exist for different prob-
lems, and the prospects of finding a universal turbulence model seem marginal.
For instance, the one-equation Spalart-Allmaras turbulence model is mainly used
in aerospace applications [155], while the two-equation k − ϵ turbulence model
is a popular choice for the simulation of indoor airflow [33]. Turbulence models
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typically contain multiple coefficients that are empirically chosen and carefully
calibrated on canonical test cases. In this sense, turbulence models can already
be considered somewhat data-driven. However, tuning these models only with
canonical cases prohibits them to be accurate for a broad range of complex tasks.
By leveraging data-driven methods, such as ML, the aim is to extract new patterns
from more diverse datasets, with which existing turbulence models can potentially
be augmented. Wang et al. [166] for example train a random forest algorithm to
predict the discrepancy in the Reynolds stress between high-fidelity DNS data
and the respective low-fidelity RANS simulation. Using mean flow features as
inputs, based on previous work by Ling and Templeton [113], improved perfor-
mance was observed in flows with fully developed turbulence in a square duct
with varying Reynolds number and flows with separation over periodic hills with
varying geometry. Another approach, commonly called Field Inversion and Ma-
chine Learning, is a data-driven paradigm for turbulence model augmentation
coined by Parish and Duraisamy [131], and further explored by several research
groups [17, 51, 75, 146, 176]. During the field inversion step, a spatial correction
field describing the difference between the turbulence model to be corrected and
reference data, is inferred, often using an adjoint-driven optimization algorithm.
In the second step, a regression model is fitted to predict this correction term,
which can then be used to augment the turbulence model equation, for instance
by a local factor to the turbulent production term.

Another research area focuses on using ML corrections to accelerate high-
fidelity simulations. One such popular method, called super-resolution, is adapted
from image processing. Essentially, super-resolution aims to enhance the resolu-
tion of under-resolved or blurry images by increasing pixel density to capture
more details [132]. This method has been studied in different fields, including
medical image diagnosis [6], satellite imaging [136], surveillance [91], and astro-
nomical imaging [87]. Convolutional Neural Networks (CNNs) are commonly used
to learn the reconstruction from low- to high-resolution, leveraging their ability
to recognize patterns and details in image data [127]. CNNs were first applied
to the task of recognizing handwritten digits by LeCun et al. [109]. Since then,
they have become a standard tool for image-related tasks because of their effi-
cient handling of high-dimensional data. In CFD, the goal of super-resolution
is to reconstruct high-fidelity flow fields from their low-fidelity counterpart. The
low-fidelity discretization is analogous to an under-resolved image, with each de-
gree of freedom representing a pixel in the image. For instance, Fukami et al. [57]
employ two different models containing convolutional blocks to learn the recon-
struction of DNS data for laminar and turbulent flows from the downsampled DNS
data. Both models successfully reconstruct the wake of a laminar flow behind a
cylinder and improve accuracy for two-dimensional decaying turbulence, judged
by the turbulent kinetic energy spectra, velocity, and vorticity fields. Romano and
Baysal [142] use a CNN autoencoder to learn the reconstruction from unsteady
RANS simulations to Detached-Eddy-Simulations (DES) for different NACA air-
foils and varying angles of attack. The model performs well on new angles of
attack but its performance significantly decreases on geometries unseen during
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the training phase. Gao et al. [60] explore the use of CNNs for super-resolution in
CFD simulations for cardiovascular systems, reconstructing high-fidelity velocity
fields. By introducing a physics-informed loss to minimize PDE residuals, they
achieve promising results even with noisy low-resolution data and are able to avoid
the need of high-resolution samples for the supervised training. However, several
limitations are reported, including the restriction of CNNs to simple geometries
with image-like uniform data structures. Morimoto et al. [122] report similar con-
clusions, highlighting that traditional CNNs are not easily applied to practical
CFD problems, since unstructured meshes are commonly encountered in CFD to
accurately represent complex geometries. One of the solutions proposed by the
authors are Graph Neural Networks (GNN).

Indeed, GNNs have recently gained significant attention in various fields, in-
cluding physics, where they are used to model particle interaction such as colli-
sions [79], and chemistry, where GNNs predict chemical reactions based on molec-
ular structures [45]. As the name suggests, GNNs operate on graph-structured
data, such as social networks, where graph vertices represent people and graph
edges their connections. Graphs can also contain vertex and edge features - in
the example of a social network, vertex features might include age, while edge
features describe the relationship between people, such as colleagues or family
members. Similarly, a mesh with a CFD solution can be described as a graph:
mesh nodes or cell centres are graph vertices, and their connections graph edges.
Field variables like velocity or pressure act as vertex features, while edge fea-
tures can include distance or angle between the vertices. Similar to CNNs, GNNs
convolve information from local parts of the graph by efficiently including neigh-
borhood features through message-passing, thus leveraging the graph-structured
data to make predictions. He et al. [72] utilize a graph convolution attention net-
work to predict the complete flow field and the forces on a cylindrical body based
on incomplete and unstructured data, highlighting improved results compared to
traditional CNNs across varying Reynolds numbers. On body-fitted triangular
grids, Chen et al. [32] trained a graph-based surrogate model on incompressible
laminar flow around 2’000 different 2D shapes, testing the prediction of velocity
and pressure field data as well as the resulting forces on a NACA0012 airfoil.
They concluded that compared to classical CNN models, the implementation and
training of a GNN is more complex and time consuming, nevertheless it offers
higher accuracy and is ultimately a better choice for complex geometries. Other
sources include Ogoke et al. [126], predicting the drag force induced by laminar
flow around varying airfoils based on sparse velocity measurements, and Wang et
al. [167], proposing a framework to identify vortices on unstructured grids, show-
casing the versatility of graph-based frameworks. Furthermore, Hines et al. [74]
use GNNs to predict the surface pressures of both 2D and 3D geometries, show-
casing the scalability of the model. In summary, the relevance of GNNs for CFD is
twofold: firstly, they are applicable to graphs of arbitrary structure, which is the
case for unstructured grids, since GNNs are permutational invariant to the num-
ber of input nodes and edges, something with which traditional neural networks
or CNN architectures struggle with. Secondly, they incorporate the topology of
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the graph, such that their predictions consider local neighborhood information
and thus the relation between data points, similarly to stencils used in CFD com-
putations.

Yet another research field aiming to correct CFD simulations involves the
use of ML methods to improve the accuracy of low-fidelity simulations. Here,
the highly inverse problem of projecting a low-fidelity solution to a high-fidelity
discretization, namely super-resolution, is avoided. This, since super-resolved re-
sults often provide qualitatively good outcomes suitable for image-related tasks,
but lack the quantitative accuracy required for CFD applications. For example,
Fukami et al. [59] state in their survey on super-resolution for fluid flows that
it cannot be expected to recover DNS data from LES input. Similarly, Shin
et al. [151] conclude that super-resolution may introduce new or amplify existing
features, making the results potentially misleading, especially in safety critical do-
mains. Thus, the key idea of the following work is to preserve the low simulation
cost while injecting high-fidelity information into inaccurate solutions through
a data-driven model. Davydzenka and Tahmasebi [40] investigate this concept
for fluid-particle interactions, for which CFD and the Discrete Element Method
(DEM) are coupled. The trained neural network model predicts for coarse grid
simulations the corrected drag forces needed to compute the particle-fluid momen-
tum exchange term. They reported significantly improved results across various
metrics, including the run-off distance of particles on coarse meshes with twice and
four times increased cell size compared to the ground truth model, while results
diminish with an eight-fold coarsened grid, as this is a discretization too coarse to
capture any relevant physical phenomena. Hanna et al. [69] propose to directly
correct the error induced by the coarse grid, i.e. the discretization error, which
can be quantified by mapping the high-fidelity solution onto the coarse grid. Using
local flow features from the coarse grid solution, such as a local Reynolds number
and the first and second gradients of the flow field variable to be corrected, two
ML models are trained to predict the grid-induced error locally. In their case
study, a random forest and a neural network are tested to correct the velocity
field of the turbulent flow in a three dimensional lid-driven cavity. Varying the
Reynolds number, grid spacing, and aspect ratio, they cover cases to test the mod-
els’ inter- and extrapolation capabilities. Lee and Cant [110] adopt this approach
with a random forest model for a turbulent flow around a bluff-body in an enclosed
duct. By incorporating additional features related to Reynolds stress and regions
characterized by steep pressure and shear gradients, they increase the prediction
accuracy of their model. Similarly, Cantarero-Rivera et al. [30] use a neural net-
work to learn and correct coarse grid-induced errors in CFD simulations of mixing
flows inside spinner flask bioreactors. They aim to correct the velocity field and
the Kolmogorov length across varying fluid viscosity, mixing speeds, and impeller
geometry conditions. Despite some limitations in generalization capabilities, all
three studies report reduced errors on coarse grids while increasing computational
efficiency. This method can be regarded as purely data-driven and decoupled from
the CFD solver, as the correction itself is applied in a post-processing fashion after
the simulations have been conducted. The disadvantage of decoupled data-driven
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corrections is the disregard of conservation laws, potentially leading to nonphysi-
cal results. To address this issue, further research focuses on integrating both ML
training and ML corrections within the CFD framework. These approaches aim
to leverage available information from the solver, with unsteady problems often
at their core.

Coupling Machine Learning and CFD Solver for Unsteady Problems

Using methods to increase accuracy while maintaining the efficiency of low-fidelity
discretizations is of special interest for time variant problems, since unsteady flow
simulations are particularly expensive. Although accuracy may suffer, low-fidelity
discretizations allow to solve for less degrees of freedom with a greater time step,
ultimately decreasing the computational cost. De Lara and Ferrer [42] make use
of this fact, employing a neural network to predict corrections of low-order DG
simulations. Their method consists of three steps: firstly, data is being collected
by advancing both low and high-order simulations up to a certain time. During
this, a corrective forcing term is computed representing the difference between
both trajectories. Secondly, a neural network is trained to predict this correction.
Finally, only the low-order simulation is evolved and the trained network predicts
the correction used to approximate the high-order trajectory. They report differ-
ent sources of error, and conclude that the most significant is the error of the ML
model prediction itself, since it accumulates and thus grows over time due to its
autoregressive nature. Nevertheless, based on the promising results for smooth
solutions of the 1D Burgers’ equation, the proposed approach is tested on the
3D Taylor Green Vortex problem [118]. They report an increased acceleration of
4-5 times compared to the high-order solution with same accuracy for cases with
varying Reynolds numbers.

Similarly, Um et al. [162] correct the trajectory of coarse grid simulations to
approximate their fine grid counter parts, comparing three different correction
approaches for a variety of unsteady problems. They introduce a method, coined
solver-in-the-loop, aiming to embed the ML training between the solver itera-
tions using a differentiable CFD solver. They conclude that this method provides
high accuracy and generalization capabilities with stable long-term corrections.
Such differentiable CFD solvers, based on Automatic Differentiation (AD), are
traditionally used for aerodynamic shape optimization [81] and allow to compute
derivatives of a function with respect to a great number of design variables. In
the context of ML, these gradients can be used to optimize the neural network
model in an end to end fashion after each solver step, allowing to include the
resulting flow field in the training process. Essentially, the differentiable solver
enables the computation of derivatives with respect to the trainable ML param-
eters, ultimately integrating data from the interaction between ML model and
CFD solver into the learning process. Such a solver embedded training has been
investigated in various other research work to increase the accuracy of coarse grid
simulations: one of the earliest work is conducted by Bar-Sinai et al. [7], aiming to
replace constant coefficients with predictions of a neural network to improve the
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spatial derivatives of the Burgers’ equation. Kochkov et al. [93] aim to approx-
imate 2D turbulent DNS simulations using a differentiable framework, reporting
results for 8-10 times coarser grids with increased speed-ups of up to 80. De Avila
Belbute-Peres et al. [41] deploy an adjoint-based differentiable solver in combina-
tion with a GNN. The solver is only used on the coarse grid for a fast evaluation
of a preliminary solution, which is then up-sampled to the respective fine grid.
The up-sampled solution is embedded into the convolutional layers of the GNN
model, in turn predicting the final flow field on the fine grid.

However promising such differentiable approaches are, many CFD solvers lack
this capability. The adjoint method, a common mode of AD, is difficult to im-
plement and many existing solvers do not easily provide them without significant
programming effort. Zhang et al. [180, 181] propose an ensemble Kalman method
as an alternative to a differentiable solver to train a neural network. Although
the implementation is non-intrusive with regards to the solver, meaning that no
changes are needed within the CFD solver, and promising results have been shown
for data-driven turbulence modeling, the main disadvantage is that the method
does not scale with larger datasets. Another alternative to include indirect data
from the CFD solver into the training process is the use of Reinforcement Learning
(RL), providing a framework to autonomously optimize specific tasks. In general,
a model trained under the RL framework is called an agent, which interacts with
an environment. According to its current policy, the agent predicts an action,
which induces a transition of the environment’s state. Based on the effect of this
transition, the agent receives a reward and updates its policy accordingly. This
cycle is repeated and the objective is to optimize the agent to receive higher re-
wards. Because of the flexible formulation of the reward function, RL has recently
gained attention in combination with CFD [61, 141]. The reward function allows
to embed solver relevant information into the training, without the need of adapt-
ing the CFD solver itself. Similarly to adjoints, RL has been explored for shape
optimization in fluid problems: Viquerat et al. [164] generate shapes that maxi-
mize the lift-to-drag ratio in the flow described by the Navier-Stokes equations at
low Reynolds numbers. Similarly, Ghraieb et al. [62] first minimize the drag of a
2D airfoil before applying their methodology to a 3D wing to minimize the lift-to-
drag ratio. Keramati et al. [83] use a RL framework to optimize heat exchanger
shapes, leading to 60 percent minimized pressure drop and 30 percent maximized
heat transfer compared to the initial geometry. Lately, RL has been aimed at
improving discretizations: using a multi-agent approach, Novati et al. [125] are
able to approximate the energy spectra of DNS data on Large Eddy Simualtions
(LES). Similarly, Kurz et al. [101] formulate the reward function to minimize the
difference of the energy spectra between LES and DNS. Beck and Kurz [12] in-
vestigate the use of RL to find an optimal blending strategy of a hybrid DG and
FV scheme. Schwarz et al. [150] use a RL agent to find an optimized slope limiter
in a second order FV scheme, where the training is steered by a negative reward
to punish nonphysical solutions. Based on these results, RL might be a powerful
tool for optimizing certain scenarios without the need for direct modifications to
the CFD solver itself, rendering it a potential alternative to differentiable solvers
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driven by adjoints.

Machine Learning for CFD: Balancing Overly Optimistic and Skeptical
Expectations

Summarizing this section, ML methods offer promising avenues, be it as a ROM
predicting quantities of interest and thus replacing the solver, or as a correction
approximator to enhance simulations, or with data-driven methods interacting
with the CFD solver. ML approaches have proven their merit in other fields, and
an increased research interest in combining ML with CFD is observable. However,
the rising number of publications does not necessarily correlate with success for
relevant problems in science and engineering.

Researchers often exhibit skepticism towards ML, known for producing black-
box models. Coveney and Highfield [39] describe ML models as "glorified curve-
fitting systems". Such skepticism comes from the desire for explainable and re-
liable models in various scenarios. In contrast, state of the art PDE solvers rely
on well established numerical methods that are robust, reproducible, and widely
regarded as reliable computational tools. Current ML methods fail to deliver this
sense of reliability: Bouthillier et al. [22] highlight the problem of reproducibility
of research in the field of deep learning, showcasing that even if results are re-
producible, a slight alteration in the experimental set-up would not support the
drawn conclusion. While highlighting the opportunities of ML for CFD, the main
obstacles of data-driven methods described by Calzolari and Liz [29] are manifold:
fast predictions come along with decreased accuracy, databases are often neither
sufficiently large nor consistent, and the models lack the capability to extrapo-
late, while they often over-fit to small scale problems. One can argue that when
this last limitation is overlooked in confined test cases, results appear convincing
enough for publication, which in turn fuels the optimism for data-driven research.
McGreivy and Hakim [120] systematically review a substantial number of arti-
cles related to accelerating PDEs for fluid problems with ML, and conclude that
mostly positive results are being highlighted, while the negative ones are rarely
reported at all. They argue that overoptimism within the ML for CFD community
is based on two issues: first, reporting bias leads to the suppression of negative
results, and secondly, many positive outcomes are derived by comparing the ML
enhanced solution to weak baselines. Take for example the previously mentioned
work by Kochkov et al. [93], reporting increased speed-ups of up to 80. When Mc-
Greivy and Hakim [120] replicate the problem and compare the efficiency with a
stronger baseline, in this case a pseudo-spectral instead of a finite volume method,
the ML enhanced methodology is in fact slightly slower.

In conclusion, the current state of ML for CFD is at a crossroad between overly
optimistic promises and cautious skepticism. To move forward and build trust in
novel tools such as ML within the CFD community, priding itself on accurate and
robust methods, thorough research is needed, reporting not only successes, but
also addressing limitations. This thesis seeks to contribute to this effort. The aim
is to provide a balanced perspective to identify when and how ML methods are
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truly beneficial and when not, in the context of ML corrections for low-fidelity
CFD simulations.
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1.3 Objectives and Outline

The central research question of this thesis is outlined below. To address it com-
prehensively, the results presented in this work are analyzed with respect to three
critical properties: robustness, accuracy, and efficiency. Thus, the main research
question is broken down into three sub-questions, with each of them targeting one
of these key aspects. Furthermore, the investigations are conducted within three
different correction scenarios. The sub-questions and corresponding scenarios are
listed below.

Main research question
Can ML methods be employed to improve the accuracy of low-fidelity CFD

simulations?

Question 1
Can ML models robustly infer corrections for low-fidelity simulations under

varying conditions?

Question 2
Can the corrected solutions accurately approximate the respective high-fidelity

ones?

Question 3
Can all of the above be done efficiently to maintain the low cost of the

low-fidelity simulation?

Correction scenario 1
Correction of steady coarse grid finite volume simulations.

Correction scenario 2
Correction of steady low-order discontinuous Galerkin simulations.

Correction scenario 3
Correction of unsteady low-order discontinuous Galerkin simulations.

These questions are evaluated in this thesis based on the presented scenarios.
Chapters 2 and 3 present theoretical background and the proposed methodologies.
Chapter 4, 5, and 6 showcase the results for steady coarse grid FV, steady low-
order DG, and unsteady low-order DG simulations, respectively. Finally, chapter 7
closes this thesis with a conclusion.

Chapter 2 focuses on the theoretical foundation of this work, beginning with
an overview of CFD methodologies, followed by a section on ML. The govern-
ing equations of interest are introduced and an overview of the FV and the DG
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discretization is given. The section concludes with an introduction to temporal
discretizations. The ML section describes supervised and reinforcement learning,
as well as the different ML models investigated. These include models of varying
complexity, namely a random forest, a fully-connected neural network, a graph
neural network model, as well as the proximal policy algorithm. Additionally, the
section discusses expected generalization capabilities of ML methods and varying
approaches of model evaluation and optimization techniques.

Chapter 3 outlines the developed correction methodologies. The supervised
training of ML models with the goal to predict a post-processing correction for
steady coarse grid FV and low-order DG simulations is described. Secondly, the
method is extended to unsteady problems. Additionally, an approach which re-
duces the variance of the correction term in time is presented, with the aim to
provide long-term stable predictions. Finally, an online learning approach em-
ploying a RL framework is introduced.

Chapter 4 presents test cases on the post-processing correction of steady coarse
grid FV solutions applied to flow conditions involving turbulence and discontinu-
ities. The main goal is to identify how the error induced by a low-fidelity spatial
discretization can be quantified and whether this error exhibits patterns which
can be learned. The chapter describes the investigated cases, including the 2D
RAE2822 airfoil and the 3D LANN wing. The predictive capabilities of a random
forest, neural network, and graph neural network are tested and compared.

Chapter 5 continues with the results of the correction of steady low-order DG
simulations, extending the previous methodology from FV to another discretiza-
tion. As opposed to the FV approach, employing a DG discretization allows to
generate datasets of varying fidelity on the same grid. The test cases involve tur-
bulent flow around the 2D RAE2822 airfoil, and laminar flow around a 3D delta
wing.

Chapter 6 discusses the correction of unsteady low-order DG simulations. Here,
different combinations of correction and training approaches are investigated. The
first approach, based on the steady methodology, is completely decoupled from
the solver, involving supervised learning and a post-processing correction. A more
involved approach, aiming to couple ML model and CFD solver during the train-
ing and prediction, is based on using RL and applying the correction in-between
solver iterations. Investigated problems include the 1D linear advection of a sine
curve, and the convection of a 2D isentropic vortex, described by the Euler equa-
tions.

Chapter 7 concludes this thesis by reviewing the main objective in the light of
the reported results, providing an in-depth discussion and an outlook for future
research work.
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Chapter 2

Theoretical Background

This chapter introduces the theoretical background of this thesis. Section 2.1
presents various aspects of CFD. This includes the governing equations of inter-
est, the spatial discretization using FV and DG schemes, as well as an overview
of temporal discretizations. Section 2.2 focuses on ML topics of this work. This
covers two types of learning, supervised and reinforcement learning, and the ap-
plied ML models and algorithms, namely random forest, neural network, graph
neural network, and proximal policy optimization. Additionally, a discussion on
data distribution and its role in the generalization capabilities of ML models is
provided. Finally, several validation metrics and hyperparameter optimization
techniques are presented, with which ML models are evaluated and fine-tuned.

2.1 Computational Fluid Dynamics

CFD enables engineers and scientists to simulate and explore complex fluid be-
havior across many applications. In general, the scope of CFD is too broad to
be described in this thesis. Thus, the interested reader is referred to common
literature for more details [19, 36, 123]. In the following, only aspects relevant for
the further content of this work are laid out.

2.1.1 Governing Equations
PDEs are essential to describe physical quantities evolving over space and time.
In fluid dynamics, a system of non-linear PDEs captures the conservation laws of
mass, momentum, and energy. In general, the governing equations of interest are
the so called Navier Stokes equations, given as

∂ρ

∂t
+∇ · (ρU) = 0, (2.1)

∂(ρU)

∂t
+∇ · (ρU ⊗ U) +∇P −∇ · τ = 0, (2.2)
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∂(ρE)

∂t
+∇ · (ρHtotU) +∇ · q −∇U : τ = 0, (2.3)

with density ρ, velocity U = [vx, vy, vz]
T , pressure P , specific total energy E,

and total enthalpy Htot. The conductive heat flux is described by Fourier’s law
q = −kT∇T , with T the temperature and kT the thermal conductivity. τ denotes
the viscous stress tensor, which is given as

τ = µeff

[
∇U + (∇U)T − 2

3
(∇ · U)I

]
, (2.4)

which takes into account the effective viscosity µeff = µl + µt, where µl and
µt are the laminar and turbulent viscosity, respectively. For three dimensions,
the system consists of five equations and the conservative variables are u =
[ρ, ρvx, ρvy, ρvz, ρE]T . With seven unknown variables, namely ρ, vx, vy, vz, E,
P , and T , two additional constitutive equations need to be introduced. Assuming
the fluid of interest to behave like a perfect gas, the first constitutive equation to
be considered is the ideal gas law

P = ρRT, (2.5)

with R being the ideal gas constant. Then, the system of equations is closed
with a second constitutive equation, such as Sutherland’s law [156], describing
the relation between laminar viscosity µl and temperature T , with Sutherland’s
constant C:

µL = µ0
T0 + C

T + C

(
T

T0

)3/2

, (2.6)

µ0 =
ρ∞U∞Lref

Re
, (2.7)

cp = R
γ

γ − 1
, (2.8)

where Lref is a reference length, Re the Reynolds number, and cp the specific
heat capacity. γ is the gas dependent ratio of specific heat with γ = 1.4 for air.
Considering laminar flow, the turbulent viscosity is µt = 0.

Turbulence Modeling

At a critical Reynolds number, instabilities in laminar flow cause perturbations
leading to transition to turbulence [123]. Such turbulent flows are generally chaotic
and exhibit a wide range of interacting scales, typically described by Kolmogorov’s
concept of energy cascade [96, 95]. Resolving the full scale of turbulence, done
by so called Direct Numerical Simulations (DNS), is prohibitively expensive and
its application has thus been limited to academic problems, including for example
flows over a flat plate [173] or turbulent channel flows [111]. To make simulations
of turbulent flows feasible at the cost of decreased accuracy, one option to con-
sider is the method of Large Eddy Simulations (LES), which models small scale
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turbulent structures while resolving the larger ones. The most widely used ap-
proach in the aerospace industry, which is also considered within this work, are
the Reynolds-Averaged Navier-Stokes (RANS) equations. With the RANS frame-
work, the effects of turbulence are modeled through statistical averaging, rather
than directly resolving the turbulent spectrum. This approach requires one or
more additional equations for the modeling of turbulence.

Within this thesis, the turbulent viscosity µt is obtained using the one-equation
Spalart-Allmaras (SA) turbulence model, originally formulated in [155] and ex-
tended as a negative formulation in [3]. Thus, one additional equation is intro-
duced for a turbulent transport variable ν̃, and is given as

∂ν̃

∂t
+∇ · (ν̃U) =

1

σ

[
∇ · ((ν + ν̃)∇ν̃) + cb2(∇ν̃)2

]
+ Pt −Dt, (2.9)

where ν = µL/ρ is the molecular viscosity, and Pt and Dt denote the production
and destruction term, respectively. This work neglects the trip term Tt, intro-
duced in the original SA formulation. Thus, the vector of conservative variables
is extended to u = [ρ, ρvx, ρvy, ρvz, ρE, ρν̃]

T . Finally, the turbulent transport
variable ν̃ is linked to the eddy viscosity µt as

µt = ρν̃fv1. (2.10)

For the complete definition of the SA equation, including the constants and other
terms, such as σ, cb2, and fv1, the reader is referred to [3, 155].

As resolving turbulent effects is still mostly infeasible for practical applica-
tions, research on turbulence modeling is still an active area. Today’s turbulence
models are often specialized, tailored to specific flow regimes or applications, with
no model being universally reliable among many scenarios. Additionally, each
model involves trade-offs between accuracy and computational cost. An in-depth
discussion of the field of turbulence modeling is beyond the scope of this work,
and for details the reader is referred to common literature [170].

Euler Equations

The governing equations described in (2.1), (2.2), and (2.3) can be simplified by
neglecting certain components. In high Reynolds number flows, viscous effects
can be confined to thin boundary layers near solid surfaces and are negligible in
the majority of the flow domain. Under these conditions, the viscous terms in the
momentum and energy equations, given in (2.2) and (2.3), vanish. This leads to
the so-called Euler equations, describing the convection of inviscid fluids. Even if
they represent a simplified form, the Euler equations allow to represent important
phenomena such as shocks, relevant for aerospace applications.

Linear Advection Equation

The phenomenon of advection describes the transport of a conserved quantity or
scalar field u(x, t) induced by fluid motion. The PDE representing this linear
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advection, where the transport takes place along the x-axis in 1D, is given by

∂u

∂t
+ c

∂u

∂x
= 0 (2.11)

with c a constant non-zero velocity coefficient.

2.1.2 Spatial Discretization
Most approaches approximating the governing equations follow two steps prior to
the temporal discretization: first of all, the bounded physical domain of interest
Ω is transformed into a computational domain, on which the solution u is ap-
proximated as ũ [19]. For this, consider the bounded computational domain Ωh

covered by a finite set of domains {ki}i=1,...,I . Thus, the set

Ωh := {ki : i = 1, ..., I} (2.12)

comprises I non-overlapping elements or control volumes k. This decomposition
Ωh is the so-called grid or mesh. The second step is the discretization of the
spatial terms of the boundary value problem of interest, by, for example, the FV
or the DG method. Although the FV discretization is more commonly used, the
DG discretization is introduced first, as it inherently includes the FV scheme in
its simplest form.

Discontinuous Galerkin Method

The DG discretization receives currently more attention from academia than from
industry, as high-order methods have so far not been applied to an extensive range
of industrial applications since many dismiss it for being too expensive [20, 168].
The main promise of higher order methods, including DG, is to reach improved
accuracy with fewer degrees of freedom compared to methods like FV. Addition-
ally, the DG formulation offers great flexibility in terms of numbers of unknowns,
as the number of degrees of freedom can be steered by both h- and p-refinement.
Thus, there is still interest in developing DG solvers [50, 159].

To discretize the governing equations with a DG scheme, consider the func-
tional space V p

h of piecewise polynomials up to degree p on all elements k on the
grid Ωh, given as

V p
h = {ϕ ∈ L2(Ωh) : ϕ|k ∈ V p

k , ∀k ∈ Ωh}. (2.13)

Here, V p
k defines the space of polynomials of total degree p on element k. A basis

of V p
k is defined as ϕk = {ϕ1

k, ..., ϕ
N
k } ∈ V p

k , with dimension N . The numerical
solution ũ is expressed in each element k as piecewise polynomial function

ũ(x, t) =

N∑
i=1

ai(t)ϕi(x), ∀x ∈ k, k ∈ Ωh, ∀t > 0, (2.14)
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with the polynomial coefficients a = [a1, . . . , aN ] being the degrees of freedom
per equation per element k. In this work, a hierarchical and orthonormal basis
function is employed, defined by a modified Gram-Schmidt procedure as proposed
in [8]. Neglecting the time dependent term of the governing equations, the weak
formulation using the DG discretization can be written as

⟨ϕ,∇ · Fc(ũ)⟩k − ⟨ϕ,∇ · Fv(ũ,∇ũ)⟩k = 0, (2.15)

with ⟨q, w⟩k indicating the scalar product of q and w over element k and Fc(ũ)
and Fv(ũ,∇ũ) being the convective and diffusive fluxes, respectively. Integration
by parts yields

⟨∇ϕ, Fc(ũ)− Fv(ũ,∇ũ)⟩k
−⟨ϕ,∇ · Fc(ũ) · n⟩∂k + ⟨ϕ,∇ · Fv(ũ,∇ũ) · n⟩∂k = 0.

(2.16)

The number of degrees of freedom N is related to the problem dimension d and
the polynomial degree p within each element, as given in (2.17). For instance, for
a 3D problem, the number of degrees of freedom can be obtained with (2.18).

N =
(p+ d)!

p!d!
(2.17)

N3D =
(p+ 1)(p+ 2)(p+ 3)

6
(2.18)

To display how quickly the number of degrees of freedom N rises with increased
polynomial degree p, they are exemplarily given in table 2.1 for p ∈ {0, 1, 2, 3, 4, 5}
for dimensions d = {1, 2, 3}. Taking into consideration that solving the RANS
equations scales with O(Nm), with m ≥ 2, it becomes clear why higher order
methods are often dismissed for being too expensive.

Table 2.1: Number of degrees of freedom N per element and equation for
varying polynomial degrees p and dimensions d

d p = 0 p = 1 p = 2 p = 3 p = 4 p = 5
1 1 2 3 4 5 6
2 1 3 6 10 15 21
3 1 4 10 20 35 56

As the name of the discretization method suggests, this formulation leads to dis-
continuities at element boundaries. To overcome this, numerical flux schemes are
introduced to compute convective fluxes at element boundaries. Furthermore,
the viscous term needs special attention due to gradients, for which varying ap-
proaches exist, including Symmetric Interior Penalty (SIP) [70], as well as first
and second Bassi-Rebay scheme (BR1 [9] and BR2 [10]), allowing to evaluate
a diffusive flux at element boundaries. Another aspect which has to be taken
into account is the treatment of discontinuities, specifically shocks, since higher
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polynomial degrees lead to Gibbs-type oscillations, reducing the robustness of the
scheme significantly.

In this work, if not stated differently, the Roe upwind scheme [19] and, in the
case of viscous flows, the BR2 scheme [10] are employed to compute convective and
diffusive numerical fluxes at element boundaries, respectively. In the presence of
shocks, a sensor-based artificial viscosity method is employed [137]. If not stated
differently, the DG simulations in this work are conducted using the CFD software
developed by ONERA, DLR, Airbus (CODA) [165].

Finite Volume Method

The FV method is a widely used scheme for the spatial discretization of PDEs,
especially for fluid dynamics and heat transfer [172]. For many applications nowa-
days, its second order accurate form results in an acceptable trade-off between
accuracy and cost. Additionally, it can be argued that the method is relatively
straightforward to implement [123]. For details and the derivation of the FV
method, the reader is referred to further literature [19, 123].

For the scope of this thesis, it is interesting to highlight the relationship be-
tween DG and FV schemes. Consider (2.14) and the lowest possible polynomial
degree p = 0, such that N = 1 and ϕ1 = 1. With this, the numerical solution
ũ is simply a constant value across each element K, which is also the case for
a first order FV discretization. By introducing gradient reconstruction methods,
such as the Green-Gauss reconstruction, does its popular second order formulation
achieve improved accuracy.

In general, using the FV method, solutions of the boundary value problem of
interest can be obtained at discrete points of the grid, either in the barycenter of
the control volumes K following a cell-centered scheme, or, as is done in this work,
in the element’s vertices, employing a node-centered scheme. Additionally, for the
FV simulations conducted within this thesis, a pressure switch in the dissipative
term ensures robustness in cases featuring shocks by inducing first order accuracy
along the shock location [106]. All FV simulations in this work are conducted
using the DLR CFD solver TAU [98],

2.1.3 Temporal Discretization
Assuming steady-state flow, the time dependent terms in the governing equa-
tions can be neglected. This can obviously not be done for simulations of time
dependent phenomena, like gust responses, vibrations, and flutter, where the so-
lution changes over time. Thus, the terms need to be further integrated over a
finite time step ∆t and methods are required to evaluate these integrals from the
current time step ti to ti+1 = ti + ∆t. A common approach handling spatial
and temporal discretization independently is the method of lines, allowing for a
flexible choice of the respective schemes [19]. Here, the governing equations are
firstly discretized using a spatial discretization such as FV or DG. This results in
a system of ordinary differential equations in time, which can then be integrated
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using a time-stepping scheme. Such temporal schemes are usually categorized as
explicit or implicit. Explicit schemes on the one hand compute the solution at
the next time step based on information only available at the current time step.
These methods are comparably simple to implement and computationally inex-
pensive per time step. However, they usually require small time steps to ensure
stability, which poses a major restriction for stiff equations. Implicit methods on
the other hand calculate the next time step taking into account both current and
future state information. This renders implicit methods more robust, allowing for
greater time step sizes.

For unsteady simulations in this work, a third order explicit Runge-Kutta
(RK) method [19] is employed for simple 1D problems. For more complex prob-
lems, a dual time stepping scheme with linearized implicit Euler is employed for
the inner iterations and a diagonally implicit RK scheme for the outer iterations.

2.2 Machine Learning

At its core, ML encompasses a set of methods designed to detect patterns in data
during the so-called training, without being explicitly programmed to do so. Once
trained, the ML model or function approximator leverages these patterns to make
new predictions or decisions. Depending on the nature of the task, the function
approximator can be a classifier predicting qualitative outputs, or, as it is the case
for this work learning corrections for flow field variables, a regressor predicting
quantitative outputs [71].

As for the previous section, the field of ML is too vast to be presented in depth,
and the interested reader is referred to common literature for more details [18,
71, 124]. In the following, section 2.2.1 gives an introduction to supervised and
reinforcement learning, while section 2.2.2 presents the ML models and algorithms
employed within this work. A discussion on the generalization capabilities of
trained models is given in section 2.2.3, emphasizing the importance of coherent
data distribution. In section 2.2.4, validation metrics, which aid in evaluating and
comparing models, are described and the concept of hyperparameter optimization
used to fine-tune models is introduced.

2.2.1 Categories of Learning
ML methods are typically grouped into supervised learning, unsupervised learn-
ing, and reinforcement learning [71, 124]. Supervised learning owes its name to the
fact that labeled data is needed to train models to map inputs to the respective
outputs. Unsupervised learning aims at uncovering patterns within unlabeled
data, creating for instance models to find groups or clusters within a dataset.
Finally, reinforcement learning involves learning to make decisions by interact-
ing with an environment and receiving feedback, known as reward, based on the
previously taken actions. This work is centered around two of these categories,
namely supervised learning and reinforcement learning.
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Supervised Learning

Since supervised learning relies on labeled data, it requires pairing each input
with its corresponding output manually, a process that can become labor-intensive
when working with vast datasets. Denoting the inputs, also defined as features
or independent variables, as η = {η1, ..., ηJ}, and the corresponding outputs, also
known as responses or dependent variables, as y = {y1, ..., yJ}, and assuming a
relation between the J input and output pairs or instances, the aim of the training
is to find a function approximator defined as

fML(η, θ) = ŷ, (2.19)

where θ are the parameters of the model and ŷ is the predicted output. The
training involves the search for parameters θ of the function approximator. In
addition to the model parameters θ, there are so-called hyperparameters, which
are settings that guide the training process and define the model architecture.
These hyperparameters have to be defined before the training, either manually or
through a hyperparameter optimization process described later in section 2.2.4.
The training, and thus the search for parameters θ, is driven by minimizing a loss
function L(y, ŷ), oftentimes the mean squared error, which measures the distance
between prediction ŷ and the ground truth value y.

Training data

Input features
𝜼

True output
𝒚

ML model
𝑓ML 𝜂, 𝜃

Predicted output
ෝ𝒚

Loss function
𝐿(𝒚, ෝ𝒚)

ML model
𝑓ML 𝜂, 𝜃

Input features
𝜼

Predicted output
ෝ𝒚

Update 𝜃 to
minimize 𝐿(𝒚, ෝ𝒚)

TRAINING PREDICTION / INFERENCE

Hyperparameters

Figure 2.1: Supervised learning

Figure 2.1 depicts the training and prediction phase of a supervised learning
model. During the training phase, the input features of the training dataset
are passed to the ML model, which predicts based on current parameters θ an
output ŷ. The prediction ŷ and the true output y from the training data are
used to compute the loss function L(y, ŷ), which in turn drives the update of
the model parameters θ. This process is repeated until convergence of the loss
function or another stopping criterion is reached. The trained ML model with
fixed parameters θ is then employed during the prediction or inference phase on
new input features, which have not been encountered in the training data.
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Figure 2.2: Interaction between environment and agent in reinforcement learning

Obviously, being based on statistical learning and optimization techniques, an
ML prediction ŷ will in general not match the true output y for several reasons.
These include noise in the training data, incomplete inputs not fully representing
the underlying pattern to represent the output, limitations of the chosen model,
and sub-optimal training leading to local optima for the ML parameters θ. Never-
theless, through careful model selection, feature engineering, and iterative training
processes, predictions with sufficient accuracy can be achieved for practical appli-
cations.

Reinforcement Learning

Opposed to supervised learning, RL does not learn a function approximation
based on input and output pairs, aiming to reduce a loss function. Instead, the
learning is based on an interaction with a so-called environment, and the goal
is to maximize the expected return [157]. The key concept of RL is presented in
Figure 2.2. The agent, oftentimes one or multiple ML models, receives the state st
of the environment at time t. This state does not necessarily reflect the complete
state describing the environment, but can rather be only a partial observation
of it. Based on the current policy π of the agent, it returns an action δt to the
environment given the current state st. The action induces a transition to the
next environment state st+1. During training, the agent receives a reward rt+1

and the new state st+1. This procedure is repeated, until the terminal state sn is
reached. A complete trajectory, from initial state s0 to a terminal state sn leading
to rewards r1 to rn−1, is called an episode. Employing a stochastic policy, the
agent’s goal is to find over multiple episodes a policy πθ(δ|s = st) which maps the
states s to the probabilities of selecting each possible action δ, maximizing the
cumulative reward over time, also called return Gt. The return Gt for a infinite
episode is defined as

Gt = rt+1 + γrt+2 + γ2rt+3 + ... =

∞∑
k=0

γkrt+k+1, (2.20)

with 0 ≤ γ ≤ 1 being the discount rate. This parameter balances the importance
of current and future rewards and acts as a regularization term, with γ = 0
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trying to maximize only the immediate reward rt+1. With γ approaching 1, future
rewards become more relevant, increasing the importance of long-term actions [4].

The interaction between agent and environment in RL underlies the assump-
tion that the learning task can be modeled as a Markov Decision Process (MDP),
usually used to model sequential decisions under uncertainty. Thus, the RL task
needs to satisfy the Markov property [157]. Consider the transition probability

ptr(st, rt|st−1, δt−1), (2.21)

which defines the probability of each next possible state st and reward rt pair,
given state st−1 and action δt−1 pair from the previous time step. With these
definitions, a finite MDP can formally be defined as

MDP = (s, δ, ptr, r, γ,H), (2.22)

with s the set of all possible states, δ the set of possible actions, ptr the transition
probability, r the set of rewards, γ the discount factor, and H the horizon of
the finite sequence. Given an environment that satisfies the Markov property,
the next state and expected reward are predictable solely using the current state
and action, and the best policy to choose an action based on the current state
is as good as the best policy on the basis of not only the current state, but the
complete history of past states. If the agent cannot observe the complete state
of the environment, but only a fraction of it, one usually defines the system as
a Partially Observable MDP (POMDP) [78], which is indeed the case for most
practical applications.

Further foundations of modern RL are based on studies of learning by trial
and error, previously researched primarily in animals [67], and on the work of
Richard Bellman on dynamic programming [15]. Dynamic programming is a field
which strives to find algorithms to solve complex problems by breaking them into
sub-problems and solving them recursively. Bellman et al. [14] introduced MDPs
for optimal control problems and developed a formal approach to solve them using
the state of a dynamical system and an optimal return function, which is nowadays
known as the Bellman equation. Using the Bellman equation for RL, the so-called
value function is defined as

Vπ(s) = Eπ[Gt | st = s]

= Eπ

[
∞∑

k=0

γkrt+k+1 | st = s

]
= Eπ [rt+1 + γGt+1 | st = s]

(2.23)

with Eπ[... | st = s] denoting the expected value for an agent following the pol-
icy π given state st. Estimating the value function is central to almost all RL
algorithms [157]. The value function defines how good it is to be in a given state
st in terms of the expected return Gt under policy π, thus it is also known as
the state-value function of the policy. Similarly, the Bellman equation for the
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action-value function or the Q-function under policy π is defined as

Qπ(s, δ) = Eπ[Gt | st = s, δt = δ]

= Eπ

[
∞∑

k=0

γkrt+k+1 | st = s, δt = δ

]
= Eπ [rt+1 + γGt+1 | st = s, δt = δ] .

(2.24)

The Q-function defines the value for the expected return when taking action δ
given state s under policy π. Thus, the Bellman equation expresses recursively
a combined value of current and possible successor states for the value function
Vπ(s) and a value for the current and possible successor state and action pairs for
the Q-function Qπ(s, δ). Based on (2.23) and (2.24), the advantage function is
defined as

Aπ(s, δ) = Qπ(s, δ)− Vπ(s), (2.25)

which measures the difference between the action-value function and the state-
value function under policy π. It describes how much better it is to choose the
new action δ compared to following the current policy π, i.e. the advantage of
taking action δ instead of the default action of policy π.

Although RL is not a new concept, it has regained popularity due to the in-
tegration of Neural Networks (NNs) as function approximators, coining the term
Deep Reinforcement Learning (DRL). By modeling the value function or the pol-
icy with NNs, high-dimensional state and action spaces can be handled more
efficiently. RL shares similarities with other optimization algorithms, since it
tries to find an optimum by exploring and exploiting the interactions with the
environment. Compared to classical optimization algorithms, the use of NNs in
DRL enables the trained model to be extended to new tasks, making DRL a more
versatile tool applicable to large scale, complex, and high-dimensional environ-
ments. Nevertheless, a key limitation of DRL is the inherent stochastic nature
of the method, making the training and results highly variable. This randomness
can lead to inconsistent performance across tasks, making the algorithms sensitive
to implementation details [48]. This and the fact that small changes in hyperpa-
rameters or environmental factors can drastically affect outcomes, renders DRL
difficult to reproduce. In the following parts of this work, the abbreviation RL
will be used interchangeably with DRL.

In summary, the ability to learn directly from past interactions with an en-
vironment makes RL a unique tool for dynamic and time dependent tasks. Nev-
ertheless, RL is a vast field and, compared to supervised learning, has not yet
found broad usage due to its added complexity. Nowadays, many libraries exist,
offering a variety of RL algorithms out of the box [44, 99, 139]. Nevertheless,
one fundamental building block in RL is ultimately problem specific: casting the
environment into an MDP, often requiring to implement algorithms from scratch.
Defining an environment involves defining the observable state, transition func-
tion, and the shape of the reward function, as well as balancing short- and long-
term returns. Especially the design of the reward function is crucial, since poorly
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shaped rewards can lead to sub-optimal policies and thus to unintended behavior.
Additionally, many RL algorithms exist. The choice of a suitable algorithm is de-
pendent on the problem at hand, since some handle only discrete action or state
spaces, while others can handle continuous data. What distinguishes these algo-
rithms furthermore is how sample-efficient, computationally expensive, and stable
they are. For example, some sample-efficient and thus less expensive off-policy
algorithms include a memory replay buffer, in which past experienced episodes
are stored in, such that they can be redrawn and reused for training [115]. Thus,
finding problems for which RL is relevant requires not only understanding its
potential, but also navigating its many challenges.

2.2.2 Machine Learning Models and Algorithms
A broad range of ML models exist, varying in their complexity and learning al-
gorithms. Simpler models, such as linear regression or decision trees, are inter-
pretable and require less computational power, while more complex models, such
as deep learning models, can capture intricate patterns in data but are often con-
sidered black-boxes and require more resources. The models also differ in their
ability to handle different types of data, how prone they are to overfitting, and
the effort required to find optimal hyperparameters. Thus, the choice of model
depends on multiple factors, including the complexity of the problem, the amount
of data available, and a balance between available resources and expected perfor-
mance.

The following sections introduce random forest, neural network, and graph
neural network models. These models are chosen for this work based on their
capability of handling large datasets and capturing non-linear relationships effec-
tively. Random forests are particularly popular due to the ease of tuning and
training them, while achieving high accuracy across a variety of tasks without
extensive parameter optimization or the need for data scaling [71, 133]. Deep
learning methods, with neural networks at their core, have perpetually gained
attention in many fields, due to their ability of handling big datasets and a vast
range of complex tasks [35]. Both random forests and neural networks have been
explored in previous work related to CFD discretization errors [30, 69, 110], ren-
dering their selection a reasonable choice. Furthermore, the use of graph neural
networks is explored, since they are designed to operate on graph structured data,
which is typically encountered in CFD simulations [74, 122].

Additionally, this section describes the Proximal Policy Optimization (PPO)
RL algorithm, which uses neural networks as function approximators to model
policy and value functions. PPO can handle both discrete and continuous state
and action spaces, and is known to be relatively easy to implement while the
training is more stable compared to other RL algorithms. Despite its simplicity,
PPO often matches or exceeds the performance of more complex RL algorithms,
and has become one of the go-to algorithms for many RL tasks [48, 178].
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Random Forest

Random Forests (RF) were first introduced by Breiman [25] and belong to the
so-called ensemble methods. Creating an ensemble model is based on the princi-
ple that a collective decision yields in general improved results compared to the
individual ones. Thus, employing ensembles constitutes of combining the results
of two or more base models or weak learners, which may individually perform
poorly [71, 182]. The RF consists of the set {T (η; Θi)}Di=1 of D decision trees.
Here, η denotes the feature inputs and Θi the random characteristics, or random
vector, leading to the i-th decision tree. The random vector includes the selected
features for a split, the cut point for a split at each node, and the values of termi-
nal nodes. After B trees are grown, the final regression result ŷRF(η) of the RF
is the averaged output of all D decision trees in the ensemble set {Ti}Di=1:

ŷRF =
1

D

D∑
i=1

Ti(η; Θi)). (2.26)

Improved performance is achieved if the weak learners exhibit diversity among
themselves [100]. For RF, this is achieved firstly via a random selection of feature
variables considered for the splitting of the tree nodes, and secondly via bootstrap
aggregation, also known as bagging. Bootstrapping is a sampling technique, in
which random subsets with replacement are drawn from the entire dataset. This
results in diverse subsets and thus diverse weak learners, improved performance
on limited datasets, and reduced overfitting. Using decision trees as weak learners
allows to decrease the bias by increasing their depth. Additionally, averaging the
results of the weak models reduces the variance of the final prediction [71]. The
model parameters which are adapted to optimize the loss function during the
training are the selected features and the threshold for a split of the respective
tree node. Summarized, the RF training algorithm for a regression task, driven
by minimizing a loss function L(y, ŷRF), is given in algorithm 1. In this work, RF
models are built using the Scikit-learn [135] library.

Algorithm 1 Random Forest Training

for i = 1 to D do
1) Bootstrap: draw a subset with replacement from training data
2) Grow tree on subset:

Recursively repeat these steps until a stopping criterion is reached
a. Randomly select a subset of all feature variables
b. Select feature for split resulting in greatest loss reduction
c. Split node into two child nodes

end for
Return ensemble of trees {Ti}Di=1
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Neural Network

Neural Networks (NN), inspired by the brain’s neural structure, build the core of
deep learning [63]. They have become a versatile and powerful tool due to their
ability to learn complex, high-dimensional, and non-linear relationships. First in-
troduced in 1943 [119], NNs are nowadays the foundation of a range of advanced
deep learning architectures and algorithms, including convolutional neural net-
works [108], deep reinforcement learning [157], or large language models [121].
Thus, understanding their fundamental concept is of relevance for further archi-
tectures investigated in this work. A NN consists of layers of so-called neurons,
whereas for the l-th layer the output hl is described as

hl = g(W lhl−1 + bl), (2.27)

with 1 ≤ l ≤ L, where hl−1 is the output of the previous layer, and h1 = η. g is
a non-linear activation function, and the model parameters θ, which are adapted
during training to optimize a loss function, are W , the weight matrix, and b, the
bias vector. The shape of the weight matrix is defined by the number of inputs
and the number of neurons, and the bias vector contains one bias per neuron.
Thus, the final prediction ŷNN of an NN comprising L layers is written as

ŷNN = g(WLhL−1 + bL). (2.28)

The training of an NN aims to find optimal parameters W and b to minimize a
loss function L(y, ŷNN ), as summarized in algorithm 2. This is done iteratively
over so called epochs. During each epoch, the data is shuffled and divided into
batches. For each batch i, gradients of the loss function with respect to the
weights and biases are calculated, i.e. ∂Li

∂W
and ∂Li

∂b
. The algorithm computing

these gradients, starting from the output at the end of the network and moving
to the initial layers, is called backpropagation. The computed gradients finally
drive an optimization algorithm, commonly stochastic gradient descent [143] or
Adam [88], to adjust the parameters W and b based on a learning rate, which
influences convergence and stability. This process continues over multiple epochs
until a certain stopping criterion is reached. For the NN model employed in this
work, the PyTorch [134] library is used.

Graph Neural Network

Graph Neural Networks (GNNs) have been proposed as an extension of NNs for
graph structured or so-called non-Euclidean data [147]. The advantage of using
GNNs is twofold: firstly, they are applicable to graphs of arbitrary structure, since
they are permutational invariant to the number of input nodes and edges, while
traditional neural network architectures typically are constrained to fixed-size data
with regular structures, as is encountered for example on images. Secondly, they
incorporate the topology of the graph, such that their predictions consider local
neighborhood information and thus the relation between data points. These char-
acteristics make GNNs highly relevant for CFD, since CFD data is often obtained
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Algorithm 2 Neural Network Training

Initialize weights W and biases b of NN
for epoch e in E or until stopping criterion is reached do

Shuffle training data (η,y)
Divide data into B batches
for batch i in B do

Forward propagation: compute prediction ŷNN,i for feature input ηi

Compute loss Li = L(yi, ŷNN,i)
Backpropagation: compute gradients ∂Li

∂W
and ∂Li

∂b

Update parameters W and b using an optimization algorithm
end for

end for
Return NN model

from unstructured grids and can be easily represented as a graph. Moreover, the
solution in one grid element is naturally influenced by a stencil of surrounding
elements.

Consider a graph G = (V, E), defined by a set of vertices or nodes V and a
set of edges E . Any vertex vk is connected to any vertex vj ∈ N (vk) through the
edges ej,k, where N (vk) is the set of all neighborhood vertices of vk. The core
principle of GNNs is to update the initial feature vector representation of vk given
as ht=0

k = ηk to a new feature vector representation ht+1
k . Figure 2.3 depicts an

undirected graph with 6 vertices, with each vertex having as attribute a feature
vector ηv, making up in their entirety the current graph feature representation
ht=0. Note that the edges are only exemplarily indicated for k = 0. The update
to ht+1

k is dependent on the feature vector of the current vertex at previous step
ht

k, the feature vectors of all neighboring vertices ht
j for all vj ∈ N (vk), and if

applicable any edge feature vectors.

𝑣0

𝑣3

𝑣2

𝑣4
𝑣1

𝑣5
…𝜼𝒗𝟎: 𝜂𝑣0,0

𝜼𝒗𝟏:

𝜼𝒗𝟐:

𝜼𝒗𝟒:

𝜼𝒗𝟓:

𝜼𝒗𝟑:

𝜂𝑣0,𝐽

𝑒1,0
𝑒4,0

𝑒3,0 𝑒2,0

Figure 2.3: Undirected and attributed graph

This update is done in three steps: message passing, aggregation, and the final up-
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𝑣0

𝑣3

𝑣2

𝑣4
𝑣1

𝑣5 𝜼𝒗𝟎

𝜼𝒗𝟏

𝜼𝒗𝟐

𝜼𝒗𝟑

𝜼𝒗𝟒

Figure 2.4: Message passing to node vk = v0

date of the feature vector representation. During the message passing, a function
Mt, which entails model parameters to be optimized during training, passes neigh-
borhood information as a message mt+1

j,k from each neighbor vertex vj ∈ N (vk)
to vertex vk, as given in (2.29). Figure 2.4 shows the message passing for ver-
tex vk = v0, propagating information from immediate neighbors and the vertex’s
own feature vector. With this, each additional graph convolutional layer increases
the radius within which information is propagated. Thus, one layer aggregates
information from immediate neighboring vertices, whereas two layers aggregate
information including the neighbors of neighbors, and so on. During the aggrega-
tion step, all received messages need to be combined into the message mt+1

k . This
aggregation function

⊕
commonly consists of a sum or mean of all received mes-

sages, such that the final message is independent of the number of neighbors or
their indices and thus permutation-invariant. The general form of the aggregation
function is given in (2.30). In the final step, the feature vector representation of
vertex vk is updated based on a function Ut, which, similarly to the message pass-
ing function, contains model parameters that are to be optimized during training.
This update function Ut takes into account the aggregated message mt+1

k and the
previous feature vector representation ht

k, as given in (2.31). Combining these
three steps, i.e. message passing, aggregation, and feature representation update,
yields (2.32).

mt+1
j,k =Mt(h

t
j ,h

t
k, ej,k) (2.29)

mt+1
k =

⊕
vj∈N (vk)

mt+1
j,k (2.30)

ht+1
k = Ut(h

t
k,m

t+1
k ) (2.31)

ht+1
k = Ut

ht
k,

⊕
vj∈N (vk)

Mt(h
t
j ,h

t
k, ej,k)

 (2.32)

Since the message passing and aggregation steps can be defined in different ways,
many variations of GNN layers exist. These layers can be nested, thus repeating
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(2.32), which ultimately increases the aggregation radius and the number of model
parameters. This work employs the Graph Convolutional Network (GCN) layer
proposed in [89] as well as the residual gated graph network proposed in [26]. Ex-
emplarily shown for the residual gated graph network, the convolutional operator
is given as

hk+1
k = σ(Uth

t
k +

∑
vj∈N (vk)

λkj ⊙Mth
t
j). (2.33)

Here, σ is a non-linear activation function, and ⊙ signifies the point-wise Hadamard
multiplication operator. The first term in brackets represents the self-update of
node k, transforming the node’s own features. The second term captures the
aggregation of information from neighboring nodes j, where j → k denotes that
node j is a neighbor of node k. Here, λkj is a weighting term, with the Sigmoid
function as non-linear activation σ, while containing further trainable terms At

and Bt, such that
λkj = σ(Ath

t
k +Bth

t
j). (2.34)

GNNs are trained like NNs, as summarized in algorithm 2: at each epoch, data is
divided into batches and the predicted output per batch is used to compute a loss
function. This loss is differentiated via backpropagation with respect to the model
parameters, which in turn drives an optimizer to update the model parameters
to minimize the loss function. For all GNN models in this work, the PyTorch
Geometric [53] library is employed.

Proximal Policy Optimization

The PPO algorithm was first introduced in 2017, with the aim of improving
the scalability, data efficiency, and robustness of leading RL algorithms at that
time [149]. As an on-policy method, PPO updates its policy using samples gener-
ated from the current policy, as opposed to off-policy methods, which are trained
on past experiences. While this approach simplifies the learning process, it makes
PPO less sample efficient compared to other off-policy algorithms, since experi-
ences from previous policies are not reused.

PPO belongs to the family of Policy Gradient (PG) methods, which focus
on directly optimizing the policy. In essence, PG methods estimate the policy
gradient and utilize a stochastic gradient ascent algorithm to improve the policy
iteratively, using a gradient estimator of the common form

q̂ = Êt

[
∇θ log πθ(δt|st)Ât

]
, (2.35)

where the expectation Êt[...] is collected empirically and averaged over a batch of
samples. θ denotes the policy model parameters to be optimized, and Ât is an es-
timator of the advantage function at time step t. Using automatic differentiation,
as it is common with the training of NNs, the gradient estimator is obtained by
differentiating the objective function

LPG(θ) = Êt

[
log πθ(δt|st)Ât

]
. (2.36)
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It was shown empirically that using this formulation leads to large updates of the
policy network, leading to unstable learning. To avoid this, the authors proposing
PPO suggest a clipped objective function [149]

LCLIP (θ) = Êt

[
min(Pr(θ)Ât, clip(Pr(θ), 1− ϵ, 1 + ϵ)Ât)

]
, (2.37)

where ϵ is a hyperparameter and commonly set to 0.2 as suggested in [149], and
Pr(θ) denotes a probability ratio, measuring the difference between the new policy
πθ and the previous policy πθold , such that

Pr(θ) =
πθ(at|st)
πθold(at|st)

, (2.38)

and thus Pr(θold) = 1.0. The loss LCLIP (θ) consists of two terms. The first term
is simply the objective function used in the Trust Region Policy Optimization
(TRPO) algorithm, based on which PPO is built [149]. The second term is what
makes PPO stable: clip(Pr(θ), 1−ϵ, 1+ϵ). This clipping function restricts updates
within the interval [1− ϵ, 1+ ϵ], thus allowing updates only within a trust region.
During the optimization, the smaller term of both is taken, such that a pessimistic
lower bound of the objective is considered. This penalizes large changes in the
gradient estimator and thus in the changes of the policy. In the original paper,
the authors further suggest an optional adaptive Kullback Leibler (KL) divergence
penalty term, which was not implemented for the PPO algorithm within this work,
since the clipping of the objective function has shown to sufficiently stabilize the
training.

Since PPO belongs to the actor-critic algorithms, two networks are employed,
an actor network for the policy, and a critic network for the value function. The
actor network models the policy and is trained to maximize the objective given
in (2.37). The critic network with parameters ψ approximates the value function
given in (2.23) as V (ψ, s), and the loss is simply computed as the mean squared
error between predicted values and the discounted reward-to-go r̂ based on a
general advantage estimation Â [148]. Thus, the actor learns the policy, while
the critic evaluates the taken actions by estimating the value of the encountered
states. Using actor-critic frameworks in RL has shown to increase robustness of
the training, with the value estimations of the critic network guiding the policy
updates of the actor. The training algorithm of PPO is summarized in algorithm 3.
The implementation of the actor and critic networks often involves shared layers,
leading to a shared objective function by combining the loss terms of both actor
and critic. For the considered problem of this thesis, the architectures of both
networks and their loss terms are separated. All policies in this work follow a
normal distribution during training, for which the standard deviation is set to
a fixed value such that the actor network predicts the mean of the distribution.
During predictions after the training, the actions are chosen deterministically
by setting the standard deviation to zero. Other implementations exist, letting
the actor predict both mean and standard deviation, which has shown to be
less robust for this work. The greater the standard deviation during training is,
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Algorithm 3 PPO Training

Initialize policy parameters θ0 and value function parameters ψ0

for episode e in E or until stopping criterion is reached do
Collect set of trajectories De = {τi} with policy π(θe) in environment
Compute rewards-to-go r̂t
Compute advantage estimates Ât based on value function V (ψe)
Via an optimization algorithm update policy parameters θe by maximizing
PPO objective:

θe+1 = argmax
θ

1
|De|T

∑
τ∈De

T∑
t=0

min
(
P̂t(θe)Ât(θe), clip(ϵ, Ât(θe))

)
Via some optimization algorithm update value function parameters ψe by
minimizing value loss function:

ϕe+1 = argmin
ϕ

1
|De|T

∑
τ∈De

T∑
t=0

(Vt(ψe)− r̂t)
2

end for
Return actor

the more exploration is encouraged. Another approach to encourage exploration,
implemented in the PPO algorithm in this work, is the addition of an entropy
bonus to the actor’s loss function [149, 171].

2.2.3 Generalization:
Why Can Trained Models Be Used On New Data?

The central goal of ML is to train models that not only perform well on the
data they are trained on but also generalize effectively to new data outside of
the training dataset. This generalization capability renders ML models useful for
real-world applications. Understanding key concepts such as data distribution,
and over- and underfitting is essential for achieving robust model performance,
ultimately ensuring that the models do not simply memorize the training data
but are adaptable to new examples.

Independent and Identically Distributed versus Out-of-Distribution

ML methods are inherently statistical techniques, and are thus heavily affected
by data distribution. A fundamental concept of ML is whether the data is in-
dependent and identically distributed (i.i.d.) or out-of-distribution (o.o.d.) [18].
i.i.d. refers to a dataset containing observations which are drawn independently
of each other but from the same underlying probability distribution. Employing
an ML model, it is often assumed that both train and test data are i.i.d. [18], as
given on the left hand side of Figure 2.5. With this assumption, the model has
a clear and consistent relationship to learn, and its performance on new, unseen
data following the same distribution is likely to be reliable. o.o.d. describes data
significantly differing from the training data. This could originate from a shift in
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the distribution of the model inputs or outputs, or due to new data which is sam-
pled from a different domain than the training data, as depicted on the right of
Figure 2.5. A trained model which only reflects the patterns of the training data
distribution will show a significant degradation in performance when employed on
o.o.d. data, as this requires extrapolation capabilities. This scenario is a common
problem in real-world applications, such as for example in time series [18]. Data
from a specific time period may only capture current conditions, meaning that
future data could differ significantly due to for example seasonal changes. This
results in o.o.d. data that doesn’t align with past trends, rendering long-term
predictions inherently difficult.

In this work, to generate data samples within a given design space, stochastic
sampling methods are primarily used, employing the SMARTy library [13]. This,
since equidistant or full factorial sampling, depicted in Figure 2.6a, may miss
fine-scale variations if they align poorly with the function being learned or may
over-represent regular structures, potentially biasing the model. Choosing random
or quasi-random distributions, for example with a Halton sampling strategy given
in Figure 2.6b, helps the model generalize better, as it encounters more diverse
variations in the design space rather than regularized patterns.

Model Complexity: Bias vs. Variance

Beside the data distribution, the proper selection of the ML model and the tuning
of its hyperparameters have a significant effect on the final performance. Balanc-
ing model complexity is key to avoid under- and overfitting, concepts depicted
in Figure 2.7. Underfitting occurs when a trained model is too simplistic, often
exhibiting a high bias, to capture the relation between in- and outputs, resulting
in poor performance even for the training dataset, as for example a linear model
for non-linear problems. Overfitting occurs if the model captures not only the un-
derlying patterns but also noise in the training data, a problem often encountered
for models with high variance. This leads to excellent performance on the training
set, but the patterns learned do not generalize well to unseen test data, resulting
in poor performance outside of the training environment. Thus, careful model
selection, finding the right hyperparameters, as well as monitoring and comparing
model performance during training on a separate validation dataset is essential

Train samples
Test samples

𝑧1

𝑧2

i.i.d. o.o.d.

Figure 2.5: i.i.d. vs. o.o.d. data
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(b) Halton sampling

Figure 2.6: Data sampling strategies

for detecting and preventing these effects.

Sample
True function
Underfit
Overfit

𝑧

𝑦

Figure 2.7: Underfit vs. overfit

2.2.4 Model Selection and Performance Evaluation
To build robust and reliable models, various tools and strategies address common
challenges. Model performance is assessed through validation metrics to ensure
generalization across data. A standard ML practice is to split the dataset into
training, validation, and test sets: the model is trained on the first, tuned using
the second, and finally evaluated on the third.

The following sections cover validation metrics and hyperparameter optimiza-
tion strategies. Given this work’s focus on external aerodynamics, the trained
ML model performance is evaluated not only using standard ML metrics but also
through aerodynamic coefficients, which will be defined in the following.

Validation Metrics and Strategies

To assess a model’s performance, clear criteria defining a successful model are
needed. For this, various validation metrics exist to judge the quality of a model.
Some metrics are applicable only to either regression or classification tasks. Fur-
thermore, any metric comes with specific advantages and disadvantages, thus it is
necessary to assess and compare models not only by a single one. For the present
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work focusing on regression tasks, three metrics are chosen. The first validation
metric introduced is the Mean Squared Error (MSE), defined as

MSE =
1

J

J∑
j=1

(yj − ŷj)
2, (2.39)

where J is the number of instances or observations, yj the ground truth value, and
ŷj the predicted value. Thus, the MSE squares the differences between predicted
and true value, penalizing larger errors. This characteristic might pose a disad-
vantage, since outliers forming greater errors have more influence on the overall
MSE score.

The second metric introduced is the Mean Absolute Error (MAE), which is
unlike the MSE less sensitive to outliers, and is given as

MAE =
1

J

J∑
j=1

|yj − ŷj |. (2.40)

Thus, all errors are treated linearly and larger errors do not receive greater atten-
tion. The final validation metric being considered in this work is the coefficient
of determination, also known as R2, which is defined as

R2 = 1−
∑J

j=1(yj − ŷj)
2∑J

j=1(yj − ȳ)2
, (2.41)

where ȳ denotes the mean of the ground truth values. A model predicting the exact
output such that ŷ = y will reach a coefficient of determination R2 = 1, whereas
R2 = 0 corresponds to a model predicting the average ȳ for any given instance.
The R2 assumes a linear relationship between in- and outputs, making it reliable
for linear problems. For non-linear relationships, relying solely on this metric
might be misleading and might indicate an over- or underfit, even if this is not
the case. Nevertheless, an advantage of this metric is its intuitive interpretation
with a normalized scale up to R2 = 1, which is a helpful assessment when used
together with other quantitative metrics, even for non-linear problems [38].

These proposed metrics can be used as part of a validation strategy to find
optimal hyperparameters or to compare different models with each other. In
this work, two strategies for splitting the dataset for validation are considered,
namely hold-out validation and k-fold validation. For hold-out validation, the
total available data is split into a training set and smaller validation and test
sets, which do not change during the training. K-fold validation is more intricate
and requires k training cycles for the final validation score. With this strategy,
the validation data consists of a different portion of the entire training dataset for
each fold. These cycles can become time consuming and computational expensive.
Nevertheless, k-fold validation uses the available data more efficiently by using
each data instance for both training and validation, and helps reducing the risk
of overfitting.
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Aerodynamic Coefficients

The previously presented metrics are valuable for hyperparameter tuning using
the validation set and for evaluating the model’s performance on the test set.
Nevertheless, this work is mainly concerned with external aerodynamic problems.
Thus, it is crucial to assess how well the final ML model corrects and improves
key aerodynamic values on the test samples.

The first dimensionless quantity of interest is the pressure coefficient CP , de-
scribing the relative pressure at a surface point compared to free-stream condi-
tions:

CP =
P − P∞
1
2
ρ∞U2

∞
, (2.42)

with P∞ the free-stream pressure, ρ∞ the free-stream air density, and U∞ the
free-stream velocity.

Secondly, the lift coefficient CL describing the generated lift force FL relative
to the dynamic pressure 1

2
ρ∞U

2
∞ and reference area A is another dimensionless

parameter of interest and given as:

CL =
FL

1
2
ρ∞U2

∞A
. (2.43)

Similarly, the drag coefficient CD represents the ratio between the drag force FD

acting on a body and the dynamic pressure and reference area:

CD =
FD

1
2
ρ∞U2

∞A
. (2.44)

Finally, the last dimensionless value of interest is the skin friction coefficient Cf .
It quantifies the wall shear stress τw at a surface point with respect to the dynamic
pressure:

Cf =
τw

1
2
ρ∞U2

∞
. (2.45)

The wall shear stress τw is defined by the dynamic viscosity µdyn, the velocity
component v parallel to the surface, and y, the normal distance to the surface:

τw = µdyn

(∂v
∂y

)
y=0

. (2.46)

Hyperparameter Optimization

Even if ML models do not need to be explicitly programmed to learn patterns
from data, their hyperparameters need to be explicitly set prior to the training.
This might pose one of the most cumbersome tasks in the field of deep learning [2],
if one considers how many hyperparameters a NN entails and how sensitive the
results are with respect to their choice. Thus, a great research effort focuses on
algorithms for HyperParameter Optimization (HPO).
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The crudest option to do HPO belonging to the category of model-free algo-
rithms is simple trial and error - also called babysitting or grad student descent
(GSD) because of its popularity among students [175] - which consists of find-
ing hyperparameters manually. Obviously, this approach should be abandoned
early for complex problems with many hyperparameters. Two other model-free
algorithms include grid search and random search. Although both are easily par-
allelized, they are not efficient. Assume a grid search with k hyperparameters,
each of which having n values, the computational complexity for grid search is
O(nk) [116]. Random search slightly reduces the computational effort by only
sampling a fixed number of hyperparameter combinations in the grid. Neverthe-
less, since both algorithms do not exploit regions in the search space which have
previously performed well, they will conduct unnecessary training runs.

Gradient-based optimization forms another category of possible algorithms.
Although effective, since gradients allow to identify and move along the direction
towards the optimum, they are rarely employed for HPO [175]. The main reason
is that they can only be used for continuous hyperparameters for which gradients
can be computed, like the learning rate for NNs, but not for discrete or categorical
ones.

Yet another category is Bayesian optimization, a popular choice for HPO [175].
Bayesian optimization takes into account previously encountered hyperparameter
combinations to determine the next configuration, trying to find a balance between
exploration of new promising regions and exploitation of currently promising areas.
A surrogate model and an objective function form the two main ingredients for
any Bayesian optimization algorithm [77]. The surrogate model is fit on previously
encountered samples and the objective function values. The next hyperparameter
combination is selected based on a selected acquisition function or infill crite-
rion [154]. This combination is then used to evaluate the real objective function
and the surrogate model is updated. This procedure is repeated until a stopping
criterion is reached. Since the procedure is sequential, these algorithms are dif-
ficult to parallelize. Nevertheless, this approach has shown to be more efficient
than model-free algorithms, often detecting sufficiently good hyperparameters af-
ter a few iterations [175]. Most commonly used surrogate models for HPO are
Gaussian processes, random forests, and Tree Parzen Estimators (TPE) [175]. In
this work, for more intricate model training, Bayesian optimization with TPE is
employed, if not stated differently, using the Optuna library [2].
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Methodology

The following chapter presents different correction methodologies applied in this
thesis. Section 3.1 defines the correction terms for FV and DG methods, applicable
to steady and unsteady simulations. For FV, the variables of interest are directly
corrected, whereas for DG, these variables are indirectly adjusted by correcting the
polynomial coefficients. The aim is to correct the entire flow field, while allowing
flexibility through a point by point correction, i.e. vertex by vertex for a vertex-
centered FV scheme and element by element for the DG scheme. This allows to
extract a significant amount of training instances per simulation. Additionally,
correcting the flow field allows firstly to extract not only certain values such as
loads, but also 3D flow phenomena such as vortices, and secondly enables the
predicted correction term to interact with the CFD solver across the entire flow
regime if necessary. In the following, the corrections, whether for the FV or DG
discretization, are applied either as post-processing for steady simulations, or in-
between CFD solver iterations for unsteady simulations.

Section 3.2.1 and 3.2.2 present the post-processing correction methodology
for FV and DG solutions, respectively. Both consist of a supervised learning ap-
proach of three steps: data generation, training, and prediction for scenarios not
present in the training data. While the post-processing correction of FV solutions
is similarly extendable to unsteady simulations, the final section 3.3 focuses on the
correction of low-fidelity unsteady DG simulations. For the unsteady correction,
different correction approaches in combination with different training methods
are presented: a post-processing correction with supervised learning, an itera-
tive correction applied in-between CFD solver iterations trained under supervised
learning, and an iterative correction employing a training based on RL.

3.1 Definition of the Correction Term

Let u(x, t) be the variable of interest to be solved for and ũ(x, t) its approximated
solution at time t. This work considers the residual R(ũ) = 0 [98, 165]. R
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corresponds to a boundary value problem of the equations of interest as presented
in 2.1.1.

3.1.1 Finite Volume Correction
The variables of interest on the coarse and fine grid are ũc and ũf , where the
subscripts c and f denote coarse and fine grid related variables, respectively. For
the FV study of this work, the aim is to quantify and learn the discretization error
on the coarse grid. Thus, the fine grid solution ũf needs to be projected to the
coarse grid discretization by introducing a fine-to-coarse mapping operator Ic

f :

ũI,c = Ic
f (ũf ). (3.1)

Subsequently, the error ∆ũc between the coarse grid solution ũc and the projected
solution ũI,c can be quantified as:

∆ũc = ũI,c − ũc. (3.2)

The ML model receives inputs derived from the coarse grid solution, denoted as
η(ũc). The aim of the ML training is to find a relationship between the feature
vector η(ũc) and the target variable ∆ũc:

fML(η) = ∆ûc, (3.3)

∆ũc = fML(η) + ε, (3.4)

where ε is the deviation between the model’s prediction ∆ûc and the true target
value ∆ũc. To reduce this error, a loss function L(∆ũc,∆ûc) measuring the
discrepancy between predictions and true values is minimized by optimizing the
model’s parameters θ during training.

After the training, the prediction is used to correct coarse grid simulations
unseen during the training, resulting in the corrected unknown ûc:

ûc = ũc +∆ûc. (3.5)

The corrected solution approximates the projected fine grid solution on the coarse
grid discretization ũI,c, such that

ûc ≈ ũI,c. (3.6)

Injection as Mapping Operator

For the cases considered in this work, injection is used as a mapping operator Icf .
With Icf : Vf → Vc, where Vf and Vc are the function spaces of fine and coarse
grid Ωf and Ωc, respectively, the injection is defined as

(Icf ũf )(x
c
i ) = ũf (x

c
i ) (3.7)
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for all xci ∈ Ωc being the locations of the coarse grid nodes. Since a series of nested
grids is used, it follows that Ωc ⊂ Ωf . Injection as mapping operator between two
nested grids is exemplarily presented in Figure 3.1

𝑥𝑖
𝑐

𝑥𝑖
𝑓

Ω𝑐

Ω𝑓

Figure 3.1: Injection as mapping operator Icf on nested grids Ωc ⊂ Ωf

Injection preserves the exact values at coarse grid nodes when these nodes coincide
with fine grid vertices, ensuring an accurate representation of quantities such as
the pressure coefficient along an airfoil surface. This property holds for vertex-
centered FV codes and nested grids. Nevertheless, injection also leads to a loss of
data from the high-fidelity discretization, as all other fine grid points are discarded,
potentially neglecting fine grid variations in the solution. If surface related values,
such as the pressure coefficient, are not necessarily in focus, or if non-nested grids
are used, alternative methods such as volume weighted interpolations may be
more suitable. Such methods are often used in the multigrid method [65, 160]
to capture volume averaged quantities and minimize interpolation artifacts across
the flow field.

3.1.2 Discontinuous Galerkin Correction
Employing a DG discretization with orthonomal basis function, the numerical
solution ũ at time t is expressed in each element K as piece-wise polynomial
function, as given in (2.14), with a being the polynomial coefficients, ϕ the basis
functions, and N the number of degrees of freedom per equation per element.
Let the low-order and high-order solutions be denoted by subscripts LO and HO,
respectively. Thus, the variables of interest become ũLO and ũHO defined by aLO

and aHO, and it is assumed that NLO < NHO.
As for the FV correction, the discretization error is defined on the low-order

discretization and later to be learned by the ML model. Thus, the high-order
coefficients are truncated to the low-order discretization, resulting in the truncated
solution ũT,LO:

ũT,LO =

NLO∑
i=1

ai,HOϕi. (3.8)
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Since the basis is hierarchical and orthonormal, this results in an L2 projection.
The error is computed as the difference between the truncated and low-order
coefficients:

∆ai = ai,HO − ai,LO, (3.9)

for 1 ≤ i ≤ NLO. As before, a loss function L(∆a,∆â) is minimized during ML
training to find a relationship between the feature vector η(ûLO) and the target
variable ∆a:

fML(η) = ∆â, (3.10)

∆a = fML(η) + ε, (3.11)

with ε the difference between the model’s prediction ∆â and the true target value
∆a. With the ML predictions ∆â, the LO solution ũLO is corrected as

ûLO =

NLO∑
i=1

(ai,LO +∆âi)ϕi. (3.12)

The corrected solution ûLO approximates the truncated one ũT,LO:

ûLO ≈ ũT,LO. (3.13)

Finally, a connection between corrections of FV and DG discretizations can be
established: for polynomial degree p = 0 with ϕ1 = 1, the DG correction equation
(3.12) corresponds to the FV correction given in (3.5).

3.2 Post-Processing Correction of Steady Simulations

In the following sections, the workflow for correcting steady simulations is de-
scribed. First, it is presented for an FV discretization, followed by a DG scheme.

3.2.1 Coarse Grid Finite Volume Correction
This section describes the correction approach applied to steady coarse grid FV
simulations. The aim is to find a ML based correction function to increase the ac-
curacy of coarse grid simulations. The corrected solution ultimately approximates
the fine grid solution projected onto the coarse grid discretization. Figure 3.2 il-
lustrates the proposed supervised learning approach, consisting of three steps:
dataset generation, ML training, and ML model prediction.

In the first step, as depicted on the left in Figure 3.2, the dataset for the
training is generated. This is done by running the same simulations on both
coarse and fine grid discretizations. The simulations are conducted on different
sample points within the design space. In the cases considered, the design space is
spanned by Mach number M and angle of attack α. Differences in the coarse and
fine solutions ũc and ũf arise due to the coarse grid induced error. After this,
the fine solutions are projected onto the coarse discretization using a mapping
operator Ic

f , as previously described in (3.1). Subsequently, the correction term
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Figure 3.2: Overview of steady FV correction workflow

is computed as the difference between coarse grid solution and projected solution
at each point of the grid.

Additionally, several quantities are derived from the low-fidelity solution, mak-
ing up the feature vector η(ũc). As a first feature, a local cell Reynolds number
Rek is chosen, which is computed using the local velocity magnitude Uk, wall
distance dk, and molecular viscosity νk, and is given as

Rek =
|Uk|dk
νk

(3.14)

Furthermore, it can be assumed that the discretization error correlates to steep
gradients within a flow solution. Thus, the first and second derivatives of the
variables of interest of the coarse grid solution are a natural choice as additional
features. The derivatives are computed using a weighted least squares approach
with an inverse distance weighting [169]. Thus, the feature vector for each vertex
k can be written as

η(ũc) =

[
∂ũc

∂xi

∣∣∣
k
,
∂2ũc

∂xi∂xj

∣∣∣
k
, Rek

]
. (3.15)

This set of features serves as input of the ML model, while the correction term is
the target for the machine learning model during the second step, the ML train-
ing. Here, the model is trained by adjusting its parameters θ, minimizing the
loss function L(∆ũc,∆ûc). Once trained, the parameters are frozen, and the ML
model can be employed to predict the correction term for any kind of coarse grid
simulations, which have not been encountered during the training phase, as illus-
trated on the right of Figure 3.2 by a red cross in the design space. The feature
inputs have to be the same, thus local Reynolds number, and the first and second
derivative of the coarse grid solution have to be computed prior to any prediction.
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Fine grid
Coarse grid

Figure 3.3: Nested grids: coarse vs. fine around curved boundary

The corrected flow field is obtained by adding the prediction to the coarse grid
variables of interest, as described in (3.5).

In chapter 4, the proposed method is demonstrated on a 2D and a 3D test case,
including the RAE2822 airfoil and the LANN wing geometry. The corrected flow
fields are analyzed, and derived values, such as pressure coefficients on the surface
and lift coefficient, are assessed. This allows to showcase strengths and limitations
of an ML based correction for coarse grid steady FV simulations.

Choice of the mapping operator and coarse grid.

Using a mapping operation Ic
f to project the fine grid data onto the coarse grid

discretization poses the following limitations to the proposed procedure:

1. The choice of Ic
f is non-trivial, especially around curvatures if the data points

of the fine and the coarse grid are not overlapping. This is for example the case
for cell-centered data and nested grids, where the coarse boundary layer cells
are located outside of the fine grid geometry, as illustrated in Figure 3.3.

2. The ML corrected coarse grid solution can only be expected to approximate
the mapped solution, since it is trained on the projected and not the fine grid
data. By reducing the number of data points, the mapping operation from fine
to coarse naturally decreases the high-fidelity information content. Thus, the
maximum accuracy of the corrected solution is limited by two factors: one, the
coarse grid discretization itself, and two, by the chosen mapping function Ic

f .

Point-wise training and prediction.

Choosing a correction acting on each data point separately, i.e. on the data in each
grid vertex or element, allows for greater flexibility. Training on the whole flow
domain would limit the model to be applicable only to the specific grid seen during
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training. Another advantage is that a point-wise correction approach results in
more training instances per simulation and reduces the dimensionality of the in-
and output. The disadvantage of this approach is that the relation between in-
and output might be non-unique: two different points in one solution field might
have the same value for the unknown ũc but might need two different corrections.
This poses a problem for any training approach taking only local information into
account. Clever selection of features can minimize this issue: in this work, the
local cell Reynolds number Rek includes the wall distance dk and the computation
of the derivatives takes into account information from the neighborhood. Another
measure to avoid this issue is deploying a model which accumulates neighboring
information for a point-wise prediction, such as CNNs or GNNs.

3.2.2 Low-order Discontinuous Galerkin Correction
The post-processing correction of low-fidelity steady DG simulations obtained with
low polynomial degree follows a similar approach to the FV correction described in
the previous section. The supervised learning approach is depicted in Figure 3.4,
consisting again of three steps, namely dataset generation within a design space
spanned by Mach number M and angle of attack α, ML training, and ML model
prediction.

One of the main differences to the FV correction is that both low- and high-
fidelity simulations can be conducted on the same grid to generate the dataset.
Different solutions are obtained by using varying polynomial degrees, such that
NLO ≤ NHO. With a hierarchical and orthonormal basis, an L2 projection of
the high-order solution is achieved, by simply truncating the higher-order terms
to the low-order discretization. The error or correction term is then computed as
the difference between the truncated coefficients aT and the low-order coefficients
aLO. For the feature inputs, the cell Reynolds number is computed as given
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Figure 3.4: Overview of steady DG correction workflow
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in (3.14). The first and second derivatives are computed with respect to the
polynomial coefficients. Thus, the feature vector for an element k can in general
be written as

η(ũLO) =

[
∂aLO

∂xi

∣∣∣
k
,
∂2aLO

∂xi∂xj

∣∣∣
k
, Rek

]
. (3.16)

Consequently, as the polynomial degree of the solution to be corrected increases,
the number of feature inputs and correction outputs grows. The ML training and
the prediction steps follow closely the previously described ones for the FV correc-
tion: the ML model is trained by providing the set of inputs and outputs, trying to
find optimal model parameters θ by minimizing a loss function L(∆a,∆â). Sub-
sequently, the trained model is employed to make predictions on new low-fidelity
simulations, as marked by the red cross in the design space, and the correction
term can be used to approximate an improved flow field ûLO.

The DG post-processing method is tested on a 2D and 3D case and presented in
chapter 5, including the RAE2822 airfoil and a delta wing geometry. As for the
FV correction, assessments of the corrected flow field and several derived values
are made. The results demonstrate advantages and limitations of using an ML
based correction for DG solutions.

Choice of low-fidelity polynomial degree.

Notably, aerodynamic RANS simulations are commonly conducted only up to
p = 4, often showing sufficiently accurate results with p = 3 [24, 28]. Thus,
correcting RANS solutions obtained with polynomial degree p ∈ {0, 1, 2} is a
reasonable choice. Nevertheless, the applications considered in this work restrict
the correction to p ∈ {0, 1}, as the problems considered show sufficient accuracy
with polynomial degree p = 2. Additionally, the number of in- and outputs and
therefore the training cost do not only rise significantly with increased polyno-
mial degree, but also with the dimension of the problem, as given in (2.17) and
described in table 2.1.

3.3 Correction of Unsteady Simulations

This section presents correction approaches for unsteady low-fidelity simulations.
Figure 3.5 depicts various trajectories of the numerical solution ũ(x, t) over time.
The high-fidelity solution is illustrated in blue, whereas the low-fidelity trajectory
is colored black. The figure qualitatively highlights the need for smaller time
steps ∆t for high-fidelity discretizations. Furthermore, even with both high- and
low-fidelity simulations starting with the same initial conditions, their trajectories
diverge over time. Source of the inaccuracies of low-fidelity simulations are both
spatial and temporal discretization errors. To correct the low-fidelity solution and
approximate the respective high-fidelity solution, latter is truncated to the low-
fidelity discretization, as shown by the green trajectory in Figure 3.5 and given in
(3.8).
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Figure 3.5: Different solution trajectories and correction methods

Table 3.1: Overview of correction and learning approaches

Correction Method Learning Method
1 Post-processing correction Supervised learning
2 Iterative correction Supervised learning
3 Iterative correction Supervised learning + noise regularization
4 Iterative correction Reinforcement learning

Two correction approaches are investigated, as depicted by the arrows in Fig-
ure 3.5. The first approach is referred to as post-processing correction, while the
second one is denoted as iterative correction. The first method is an extension
of the previously described post-processing correction for steady simulations to
unsteady simulations, employing a supervised learning approach. Here, the cor-
rection is decoupled from the CFD solver and can be applied once the low-fidelity
simulation has been concluded. For the other approach, the iterative correction
and the CFD solver take turns, such that after each solver iteration the correction
is being applied.

To learn the iterative correction, two different training procedures are em-
ployed: supervised learning and reinforcement learning. Additionally, a supervised
learning approach regularized with noisy input features is investigated. This re-
sults in four different combinations of correction and training methods, as summa-
rized in table 3.1. Similar to the previously described post-processing correction
for steady simulations, the methods are applicable to both coarse grid FV and
low polynomial degree DG solutions. The focus of this work will be the correction
of latter. The methodology for each combination is described in the following
sections.

In chapter 6, all approaches are first tested and compared on a simple 1D linear
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Figure 3.6: Overview of unsteady post-processing correction workflow

advection problem. Based on the performance on the 1D test case, the most
promising techniques are applied to the 2D convection of an isentropic vortex,
governed by the Euler equations.

3.3.1 Post-Processing Correction with Supervised Learning
In the first unsteady correction approach, the post-processing correction, the low-
and high-fidelity trajectories are computed independently, and the correction de-
picted by black arrows in Figure 3.5 is applied after the simulations have been
computed. The process is summarized in Figure 3.6.

The method closely follows the correction approach described for steady simu-
lations in section 3.2.2, with the addition of the temporal dimension. Again, three
steps are conducted: dataset generation, ML training, and ML model prediction.
During the first phase, the dataset generation, multiple simulations using the low-
and high-fidelity discretization are conducted until a specified time tend. This is
done across a defined design space. Previously, the design space for steady appli-
cation was spanned by Mach number M and angle of attack α. For the unsteady
application considered, the variables are dependent on the respective test case and
are described in detail in chapter 6. It is assumed that ∆tHO < ∆tLO. The time
step sizes have to be chosen such that every low-fidelity time step ∆tLO is inside
the set of high-fidelity time steps. This allows to obtain a truncated high-order
solution at every low-order time instance. After the simulations have been con-
ducted, only the high-fidelity solutions ũHO coinciding with the low-order time
steps are truncated to the low-fidelity discretization and are used to compute the
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correction term ∆a(t) for each element k. Furthermore, the low-fidelity simula-
tions are used to derive the set of input features η(ũLO). As the input features
for the unsteady cases vary, they are described in more detail in the respective
results sections. There is no need to compute truncation, correction, and features
for t0 if the initial conditions of both low- and high-fidelity simulations are the
same. The ML training does not differ significantly as for the one described in
section 3.2.2 for steady simulations. The only notable difference is that the num-
ber of training instances per simulation is multiplied by the number of conducted
low-fidelity time steps. Finally, during the prediction phase, the ML model infers
the correction term element-wise at every time step for each simulation previously
not present within the design space. The correction is then used to improve the
low-fidelity solution in the interval [t0 +∆t, tend].

Diverging trajectories lead to out of distribution data.

The post-processing correction is a convenient and straightforward approach to
implement, as the simulations and thus the data collection can be conducted
independently of the ML training and the ML correction. However, a drawback
of this method is that the corrections may not follow a uniform distribution, as
the HO and LO trajectories diverge over time, as exemplarily shown in Figure 3.5.
This can create challenges during the ML training, and, more importantly, can
pose a major problem to the ML generalization capabilities. For unseen problems
during prediction, the distribution of low-fidelity states can differ significantly,
especially if the model is employed at time steps not covered during training.

3.3.2 Iterative Correction with Supervised Learning
To mitigate diverging trajectories as encountered in the post-processing correction
approach, an alternative method, the iterative correction, is explored. This alter-
native trajectory is depicted in red in Figure 3.5. The approach aims to achieve a
more uniform distribution of correction values over time by applying the difference
between the low-fidelity and the truncated high-fidelity solutions after each solver
iteration. This allows the next solver step to start from a corrected solution, en-
abling the low-fidelity simulation to closely follow the truncated one and thereby
minimizing the divergence between the different trajectories. The correction is
learned using a supervised training method, after trajectories have been unrolled
up to a certain time step tend, during which data is collected for the ML training.

Figure 3.7 presents a summary of the workflow. The training phase follows
the same procedure as discussed for the post-processing correction and is therefore
not repeated. The key differences are found in the data collection and prediction
phases. During the dataset generation step, given on the left of Figure 3.7, the
feature inputs and correction terms are computed after each low-fidelity iteration
for each sample point in the design space. The correction term is immediately used
to correct ũLO before the next solver iteration. The corrected solution, which is
equal to the truncated solution, is thus used as restart solution for the next solver
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iteration until the final time step tend is reached.
During the ML model prediction phase, the correction follows again an it-

erative approach in-between solver iterations for new simulations previously not
encountered within the design space. After the first time step, the features are
computed and used as input to the trained ML model, which in turn predicts the
correction term. The correction is used to alter the low-fidelity solution, finally
used as restart to the next solver iteration until tend. For the initial solution,
there is again no need to compute a correction.

Autoregression leads to error accumulation.

The expected drawback of the iterative correction, occuring after employing the
trained model for longer time periods, is depicted as orange trajectory in Fig-
ure 3.8. The predicted correction ∆â(t) does not perfectly match the true correc-
tion term ∆a(t), leaving an error term as given in (3.11). Even if this error term is
small, it will accumulate with each time step, potentially leading to non-physical
results. This phenomenon, known as data drift, occurs because the statistical
nature of the data seen during training differs from that encountered during de-
ployment, resulting in o.o.d. data, as described in section 2.2.3. This is typical for
autoregressive models: here, future predictions are dependent on previous predic-
tions. The model is trained in a supervised learning fashion, for which the data
has been pre-collected and does not take into account the error term. Since the
trained ML model interacts with the solver during the prediction, the correction
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Figure 3.7: Overview of unsteady iterative correction with supervised learning
workflow
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term influences the next solution, which in turn affects the subsequent predic-
tion. In this work, introducing noise to the model input features is investigated
as regularization method, in essence mimicking the error behavior, and has been
suggested in previous work for stabilizing time-series predictions [145]. As intro-
ducing noise is case and feature specific, the implementation details are discussed
in the respective applications in chapter 6.

3.3.3 Iterative Correction with Reinforcement Learning
To account for the actual error of the ML predictions, several studies suggest
avoiding the separation of data collection and training, recommending instead to
integrate the training process into the CFD solver iterations [7, 41, 162]. This ap-
proach enables learning while unrolling the solution trajectories. Many such stud-
ies utilize a differentiable solver with adjoints, which allows the feedback from the
corrected solution to be incorporated into the minimization of the training loss,
leading to more accurate and stable long-term predictions. An alternative ap-
proach to a differentiable solver, since many CFD solvers lack adjoint capabilities,
is RL. Coupling a CFD solver as an environment which interacts with a RL agent
requires no modifications within the solver, while allowing for an online learning
approach.

Figure 3.9 summarizes the RL method followed for this work, showing that the
data generation step for the low-fidelity simulations is no longer separated from
the ML training procedure. Since RL does not require labeled input and output
pairs, the high-fidelity data does not necessarily need to comprise the complete
truncated high-order data. In theory, anything from full field data to sparse data
obtained from measurements can be utilized to formulate the reward function. If
expensive high-order simulation data is used, it can be precomputed, as it is not
subject to any changes during the training phase. Thus, the truncated higher-
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Figure 3.8: Data-drift
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order solutions at each low-fidelity time step can also be obtained in advance and
stored in memory.

Every episode begins by initializing all simulations in the design space at t0,
as depicted on the left of Figure 3.9. As previously mentioned, the specific design
spaces vary case by case, and are described in the respective results chapter 6.
Initializing multiple simulations at once can be seen as multi-environment RL
training, as the agent processes and learns from multiple scenarios at once. Then,
the CFD solver iterates over one time step ∆t. From the resulting simulations,
features are computed, acting as the observation of the environment’s state, which
are passed to the ML agent. The PPO RL algorithm returns a probability dis-
tribution of possible actions based on the received features. This is realized by
a defined standard deviation σ, a hyperparameter during training, whereas the
actor network predicts the mean µ of the probability distribution. Such an action
sampling introduces variance into the training, encouraging exploration in the
PPO algorithm. The action for each element k, which is the correction term for
the current time t, is returned to the environment, where it is used to correct the
previously computed simulation results. This corrected solution serves as restart
for the next CFD solver iteration. Furthermore, a reward function is formulated
which compares the corrected solution with the ground truth solution, i.e. the
truncation at current time step. This procedure is repeated until some stopping
criterion is reached, such as the final time tend.

At the end of such a trajectory, tuples of state observations, actions, and re-
wards have been collected. Note that since the actor predicts a correction for each
element k separately, and the observation collection and reward computation oc-
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Figure 3.9: Overview of unsteady iterative correction with reinforcement
learning workflow
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cur on an element-by-element basis, this setup is interpretable as a Multi-Agent
Reinforcement Learning (MARL) approach. With MARL, each element has its
own agent, though in this case they all share the same weights. The collected tu-
ples are used to compute the discounted reward, the resulting advantage function,
and both policy and value losses to finally update the parameters of the actor
and critic network via backpropagation. Collecting the trajectories and training
the agents concludes one episode, and the next begins by re-initializing the train-
ing simulations. This cycle of episodes is repeated until a predefined number of
episodes is reached or the reward converges.

The inference phase, given on the right of Figure 3.9, follows the same proce-
dure as the iterative correction approach described in the previous section. With
PPO, not the whole agent is needed for predictions outside of the training, but
only the actor, with which deterministic actions are achieved using the mean of
the predicted probability distribution.

Exploration versus exploitation and the challenge of stability, sample
efficiency, and reproducibility.

One of the main challenges in employing RL algorithms is finding a balance be-
tween exploration and exploitation. For the PPO algorithm, this balance is con-
trolled by the chosen standard deviation and the magnitude of the entropy factor.
However, increasing exploitation can lead to instabilities, causing abrupt changes
in the agent’s behavior. These sudden shifts can result in poor rewards from
which the agent cannot recover, leaving it effectively stuck. Sample inefficiency is
another major limitation of many RL algorithms, especially for on-policy meth-
ods like PPO. Such methods require a large number of episodes to achieve con-
vergence. Finally, reproducibility poses another challenge due to the stochastic
nature of the environment, the learning process, or both. Research has shown
that minor changes, such as altering the random seed while keeping the model
and hyperparameters fixed [73], can introduce sufficient variability to produce
significantly different results.
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Chapter 4

Application:
Correction of Steady Finite
Volume Simulations

Performing simulations with the FV method, typically of second order, requires
highly resolved computational grids to achieve sufficient accuracy. This increases
the number of degrees of freedom as well as the computational cost. Take for
example the simulation of a 2D NACA0012 airfoil across different grids, resulting
in the lift coefficients and wall clock times reported in Figure 4.1, where the same
boundary conditions and hardware has been used for all simulations. The data
suggests that neither accuracy nor time scales linearly with the number of degrees
of freedom. Increasing the number of elements and with this the number of degrees
of freedom increases accuracy, until convergence is reached and a lift coefficient
comparable to the reference value is obtained. Obviously, the more accurate the

Figure 4.1: Simulation time vs. accuracy for varying grid resolutions
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solution is, the more expensive it becomes. Though only shown exemplary on a
NACA0012 airfoil, this effect can be observed for many other cases [103, 107, 98].

Classical approaches for achieving fast and accurate simulations focus on re-
ducing the wall clock time required to obtain precise solutions. In this chapter,
ML methods are explored that aim for the opposite: enhancing the accuracy
of simulations that are already inexpensive, while preserving their low compu-
tational cost. For this, it is investigated if ML methods are capable of learning
the discretization error of coarse grid solutions, subsequently used as a corrective
function. The proposed approach is showcased in this chapter on turbulent flows
around the 2D RAE2822 airfoil and the 3D LANN wing. The content of this chap-
ter has previously been published in [85] and in [86]. The method is described in
detail in section 3.1.1 and section 3.2.1.

4.1 2D Case - RAE2822 Airfoil

The RAE2822 airfoil geometry is a standard case for numerical investigations [92,
152, 174], since an extensive wind tunnel measurement campaign has been con-
ducted [37]. The RAE2822, shown in Figure 4.2, is a rear-loaded and sub-
critical airfoil, with a roof-top type pressure distribution at design conditions
with CL = 0.56 at Minf = 0.66 and angle of attack α = 1.06◦ [1]. In this work,
the Reynolds number is kept constant at Re = 5.7 × 106, similarly to one of the
investigated cases of the test campaign. Parametrization of the angle of attack
and Mach number within the design space allow for a rich dataset, resulting in
continuous flow conditions as well as conditions with discontinuities, specifically
shocks.

4.1.1 Data Generation
This section discusses the data generation procedure for the RAE2822 airfoil. This
includes the simulation setup and the comparison of coarse and fine grid results,
as well as an assessment of using injection as mapping operator Ic

f , as described
in section 3.1.1.
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Figure 4.2: RAE2822 airfoil geometry
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(a) Fine grid (b) Coarse grid (c) Nested grids

Figure 4.3: Nested grids for RAE2822

Simulation Setup

For the simulations, the RANS equations and the negative version of the Spalart-
Allmaras turbulence model are employed. The solver employs the FV method with
a vertex-centered data structure. Sections of the coarse and fine C-type grids used
for this study are shown in Figures 4.3a and 4.3b, respectively. The number of
elements and degrees of freedom per equation are reported in table 4.1. A detailed
study for the complete grid sequence can be found in [105]. Since the grids are
nested and thus the coarse grid nodes are congruent with the respective fine grid
nodes, as is shown in Figure 4.3c, injection can be used as the mapping operator
Ic
f . With injection, for each coarse grid node the value of the corresponding fine

grid node is selected.
Steady-state simulations are performed between Mach number 0.52 and 0.82

and angles of attack between 0.0° and 9.0°. In total, 60 simulations are conducted
for the training and validation set, as given in Figure 4.4. Half of the samples
are located in the regime in which the lift coefficient behaves linearly, and the
other half in the area with high angles of attack, where the lift coefficient is
expected to behave non-linearly. The separation of these two areas is indicated
in Figure 4.4 by the dashed line. This ensures that a higher sample density is
achieved in the latter, which is assumed to be more difficult to learn due to the
presence of discontinuities. The simulation points are generated with a design of
experiment method, specifically a Latin Hypercube and a Halton sampling. The
different sampling strategies have been chosen to achieve higher variance within
the dataset. For the test set, additional 17 and 12 simulations are conducted at

Table 4.1: Number of elements, degrees of freedom per equation, and average
wall clock time for FV study, RAE2822

Elements Degrees of freedom Time
Coarse 1’280 1’368 1 min 30 s

Fine 327’680 329’088 7 h
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Figure 4.4: Sampling points for training and test sets, where the dashed line
divides the different sampling areas, RAE2822

Mach numbers 0.6 and 0.75, respectively. To retrieve the complete data base,
for each sample coarse and fine grid simulations are conducted. For all coarse
and fine grid computations, a reduction of 12 orders of magnitude of the density
residual is obtained. The fine grid simulations are computed on a cluster, using
one node with eight processes, while the coarse grid equivalents are realizable
on a desktop computer. The respective average wall clock time is reported in
table 4.1. These times indicate that using only the coarse grid with subsequent
correction would greatly lower the required computational time, since the coarse
grid simulations converge rapidly compared to the fine grid equivalents needing
several hours. Nevertheless, this also indicates the disadvantage of purely data-
driven methods: obtaining extensive datasets for the training of ML models is an
expensive task.

Simulation Results

Before the training of any data-driven model, a comparison between coarse and
fine grid simulation is provided in Figure 4.5, for a sample point within the design
space, at Mach numberM = 0.75 and angle of attack α = 5.5◦. The plot shows the
pressure coefficient CP for both, coarse and fine grid simulation, and additionally
the CP distribution from the fine grid solution after being mapped to the coarse
grid discretization using injection. The coarse grid solution does not match the
fine grid solution, especially in the vicinity of the shock location. Mapping the fine
grid solution to the coarse grid leads to a well preserved CP distribution. Only at
the shock location, interpolating the values between the limited number of surface
elements is not sufficient to match the fine grid pressure coefficient. Nevertheless,
the shock is better approximated than with the coarse grid solution. Thus, it can
be concluded that the number of degrees of freedom on the coarse grid is sufficient
to capture this value when using the injection operator. In contrast, conducting
a simulation on this low-fidelity discretization is not sufficiently accurate.

This is also visible when comparing the coarse and fine grid results with mea-
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Figure 4.5: Pressure coefficient CP for coarse, fine, and mapped solution, at
M = 0.75 and α = 5.5◦, RAE2822

Table 4.2: Lift coefficient CL for coarse and fine grid simulation, reference values
and test campaign, at M = 0.676 and angle of attack α = 1.93◦, RAE2822

CL Lift count difference
Coarse 0.451 115

Fine 0.557 9
Ref. 1 [105] 0.569 3
Ref. 2 [105] 0.561 5

Test campaign [1] 0.566 -

surement and reference data. For this, simulations are conducted at M = 0.676
and α = 1.93◦, for which the lift coefficient CL from a test campaign [1] and ref-
erence simulation data from literature [105] is available. Table 4.2 depicts the lift
coefficient of these sources as well as the lift coefficient derived from coarse and fine
grid simulation. Additionally, the table reports the number of lift counts between
the simulation and the test campaign value, for which one lift count corresponds
to 0.001. The table highlights the inaccuracy of the coarse grid solution, as the
lift count is significantly higher than for the fine grid solution and the reference
values. The fine grid solution displays a relatively low deviation to the references
and the test campaign, such that the simulations obtained with this grid and the
corresponding settings are deemed accurate enough for the following study.

4.1.2 Machine Learning Correction
In this section, the ML model training is presented. Furthermore, the ML correc-
tion results for the test sets are shown, while comparing the performance of all
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three ML models.

Training Setup

All three ML models introduced in 2.2.2 are used to learn the correction term
for the RAE2822 case. These include a RF, NN, and GNN model. With 60
simulations in the training and validation set and 1’368 degrees of freedom per
simulation, this amounts to 82’080 training instances. As inputs, given in (3.15),
the models receive a local cell Reynolds number, as given in (3.14), and the first
and second derivative of the variables of interest ũ.

The trained models return one correction term for each of the variables of
interest to be corrected. These are ũ = [ρ,U , P ]T , including density ρ, velocity
vector U = [vx, vz]

T , and pressure P . Note that the turbulent variable ν̃ is not
corrected, as this term is not necessary to derive variables of practical interest,
such as for example the lift coefficient CL. Nevertheless, adding features which
consider the turbulent nature of the flow increases the accuracy. This is done
through the local Reynolds number, entailing the laminar and turbulent viscosity.
It was found that adding certain global values as features, such as the angle of
attack and Mach number, had no significant influence on the validation metrics.
Other grid element related values, such as the skewness or cell volume, had also
no relevant effect as features. Only the cell Reynolds number, which includes the
wall distance, leads to improved validation metrics. This results in a total of 25
input features and 4 outputs per vertex. Standardization to zero mean and unit
variance is applied to each in- and output variable.

A four-fold cross validation is performed to train the models. During each fold,
the models are trained on 45 simulations while being validated on the remaining
15. Additionally, Bayesian hyperparameter optimization with TPE is used to ex-
plore different model parameters. The remaining 39 simulations at Mach numbers
M = 0.6 and M = 0.75 are then tested only on the best performing models re-
sulting from this cross validation. The final hyperparameters found during this
procedure are reported in tables 4.3, 4.4, and 4.5. For both the NN and GNN,
The batch size has shown no significant influence in the model performance, while
mainly affecting training speed. The learning rate decays exponentially up to
a fifth of the initial value after 1’000 epochs and a stopping criterion based on
the validation data is employed for both network based models. The Adam opti-
mizer leads to improved performance compared to Stochastic Gradient Descent.
Similarly, the hyperbolic tangent as non-linear function outperforms the rectified
linear unit function.

Table 4.3: RF hyperparameters, RAE2822

Hyperparameter Value
No. of decision trees 236

Features per split 12
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Table 4.4: NN hyperparameters, RAE2822

Hyperparameter Value
No. of layers 7

No. of neurons per layer 317
Initial learning rate 3.24× 10−4

Table 4.5: GNN hyperparameters, RAE2822

Hyperparameter Value
No. of layers 9

Feature dimension per layer 285
Initial learning rate 1.62× 10−3

0 10 20 30 40 50 60 70 80 90 100

Pressure Error [%]

(a) Coarse grid solution (b) RF correction

(c) NN correction (d) GNN correction

Figure 4.6: Pressure error in percentage compared to high-fidelity solution
projected to coarse grid at M = 0.6 and α = 7.5◦, RAE2822

All described ML model trainings are performed either on CPU for the RF,
or on GPU for the deep learning models. The GPU model is an NVIDIA Quadro
P2200 with 5 GB memory. The wall clock times are around 20 minutes for the
RF training, 1.7 hours for the NN training, and 2.2 hours for the GNN training.
The deployment of the models during the prediction phase, e.g. retrieving the
corrections, takes only seconds.
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Correction Results

In this section, the test set at Mach numbersM = 0.6 andM = 0.75 are presented.
Since the correction of the flow field is the main focus of the proposed method,
firstly a qualitative comparison of the pressure error is given in Figure 4.6 for Mach
number M = 0.6 at angle of attack α = 7.5◦. Figure 4.6a illustrates the error
between the coarse grid simulation and the high-fidelity solution after injection.
It is clearly visible that the error is mainly present in front of the shock location.
Figures 4.6b, 4.6c, and 4.6d show the reduced error after the correction of the three
ML models. All three models are able to reduce the error between the leading
edge and the shock location, thus predicting the shock where the coarse grid
simulation fails to do so. All models succeed in reducing the error, with the GNN
outperforming the RF and NN. For the RF model the maximum error is found at
85.6 % within the boundary layer, for the NN it is found outside the boundary
layer but with an amount of 103.1 %. The GNN model decreases the error to
a maximum of 48.1 % and the resulting pressure field shows the most accurate
pressure distribution. This might be explained by the GNN taking into account
neighboring information of each corrected vertex value, leading to a regularized
and smooth correction, whereas the other models exhibit noisy behavior as they
take into account local vertex information only. Similar correction trends are
observed for the other variables and flow conditions.

In the following, various surface and integral coefficients are presented and
compared to quantitatively assess the corrections. It is emphasized that all co-
efficients are computed from either the high- or low-fidelity simulation, or from
ML corrected field solutions. In Figure 4.7, the pressure coefficient CP along the
airfoil surface is shown for the coarse and fine grid simulation, as well as the ML
corrections for Mach number M = 0.6 at angle of attack α = 0.5◦ and for Mach
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Figure 4.7: Pressure coefficient CP for two test set samples, RAE2822
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Figure 4.8: Lift coefficient CL for test set samples, RAE2822

number M = 0.75 and angle of attack α = 5.0◦. At low angle of attack, all models
perform well. Only the RF shows some outliers on both upper and lower surface
around x = 0.1. For the example at higher Mach number and higher angle of
attack, the GNN correction approximates the distribution well, while both the
RF and the NN corrections show outliers or oscillating behavior, especially on the
suction side.

Figure 4.8 presents the resulting lift coefficients CL across all angles of attack
for both test sets. All models improve the accuracy significantly and approach
the lift coefficient of the fine grid simulation, especially for lower angles of attack.
At higher angles of attack, a reduction of the prediction accuracy occurs. This
difficulty can be attributed to the discontinuities encountered here, since shocks
are present at these conditions.

A final comparison between the models is done by computing varying metrics,
defined in 2.2.4, to assess quantitatively the accuracy of the predicted discretiza-
tion error. These metrics include the coefficient of determination R2 (2.41), the
MAE (2.40), and the MSE (2.39). Figures 4.9 and 4.10 depict these scores av-
eraged over all simulations for each test set. The metrics are computed between
the scaled true correction term ∆ũ and the scaled predicted correction term ∆û
for each variable, i.e density ρ, velocities vx and vz, and pressure P . The figures
indicate that the GNN is the best performing model across all metrics and vari-
ables for both test sets. The model reaches greater R2 scores, while showing the
lowest values for MAE and MSE. Considering the test set at lower Mach number
M = 0.6 in Figure 4.9, the NN and the GNN show a consistent performance with
an R2 value between 0.9 and 0.97 across all corrections, whereas the RF shows
a drop of performance for pressure and density. For the results for the test set
at Mach number M = 0.75, given in Figure 4.10, all models show a performance
degradation for the correction of the pressure and density field for the R2 values.
Again, the RF model scores lowest for R2 and highest for MAE and MSE values.
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Figure 4.9: Test set metrics for M = 0.6, RAE2822
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Figure 4.10: Test set metrics for M = 0.75, RAE2822

The significant decrease of the coefficient of determination for the RF model for
this test set indicates that it is not as capable of predicting accurate corrections
for flows with discontinuities as the NN or GNN. The GNN shows for all variables
a relatively high R2 score above 0.84. The test set metrics of the NN and GNN are
observed to be in similar ranges as the ones obtained during cross validation for
the validation data. Only the RF shows a significant loss of corrective capability
for the test set at high Mach number, indicating an overfit to the training and
validation sets.
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4.2 3D Case - LANN Wing

Extending and testing methods on 3D cases is of importance to showcase scalabil-
ity to industrial relevant problems. Therefore, turbulent flow around the LANN
wing geometry is considered. The geometry is a supercritical wing, and although
relatively simple, it has proven to be a valuable test case for many CFD solvers,
since an extensive wind tunnel test campaign has been conducted [54]. The LANN
wing is designed as a moderate-aspect-ratio transport wing configuration, at de-
sign conditions Minf = 0.82 and CL = 0.53. Similarly to the previously considered
2D test case, steady simulations are considered at a constant Reynolds number of
7.3× 106, while Mach numbers and angles of attack vary.

4.2.1 Data Generation
In the following, the simulation setup to generate data for the LANN wing is
presented. This also includes a comparison between coarse and fine grid simu-
lation results, as well as the injected high-fidelity solution. For this, a sample
point is chosen for which experimental data is available. This allows to validate
the simulation settings and confirm that the fine grid simulation is sufficiently
accurate.

Simulation Setup

The coarse and fine grid for the LANN geometry are obtained from a nested
grid series [31], allowing to use injection as mapping operator Ic

f , as described
in section 3.1.1. The coarse and fine grid of the upper surface area are shown in
Figures 4.11a and 4.11b, respectively, and the resulting number of elements and
degrees of freedom per equation are reported in table 4.6.

As for the 2D case, the RANS equations with the negative Spalart-Allmaras
turbulence model are used. In total, 40 simulations are computed between Mach

(a) Coarse surface grid (b) Fine surface grid

Figure 4.11: Nested grids for LANN wing
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Table 4.6: Number of elements, degrees of freedom per equation, and average
wall clock time, LANN

Elements Degrees of freedom Time
Coarse 7’040 8’236 7 min 40 s

Fine 450’560 469’213 5 h 10 min

number 0.52 and 0.82 and angle of attack 0.0◦ and 7.5◦, as presented in Figure
4.12. Two design of experiments are carried out and combined to obtain a denser
distribution within the flow regime along high angles of attack. A Latin Hyper-
cube sampling is conducted to generate 20 data points within the bottom area and
a Halton sampling to generate 20 data points within top area. This results in 20
less simulations for the training set compared to the 2D test case. Nevertheless,
each 3D sample point consists of more degrees of freedom and thus more training
instances. For testing, 14 points at Mach number M = 0.6 and 11 points at Mach
number M = 0.75 are generated. For each sample point a coarse and fine grid sim-
ulation is computed with convergence criterion of 12 orders of magnitude for the
density residual. The high-fidelity simulations are conducted on a cluster, using
one node with eight processes. The coarse grid equivalents are decomposed into
four domains and computed on a desktop computer. The respective averaged wall
clock time is reported in table 4.6. This emphasizes that at the cost of decreased
accuracy, potentially cheaper and more accessible hardware can be employed with
a significant decrease in time when relying on low-fidelity simulations.

Simulation Results

Data from experiments are available at Mach number 0.82 and angle of attack
0.6◦ [183]. Thus, both low- and high-fidelity simulations are computed at this
point to compare their accuracy with respect to the measurement data. This is
done in Figure 4.13, by plotting the pressure coefficient along the wing surface at
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Figure 4.12: Sampling points for training and test sets, LANN
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Figure 4.13: Pressure coefficient CP for coarse, fine, and mapped solution, at
M = 0.82 and α = 0.6◦, slice at x = 0.62, LANN

the sectional cut at x = 0.62. The location of the cross section is indicated in
Figure 4.11. The fine grid simulation very well matches the experimental data,
with slight deviations around the shock location. Nevertheless, it is by far more
accurate than the solution obtained on the low-fidelity discretization: the coarse
grid simulation is not capable of capturing the shock. Additional to the experi-
mental value and simulation data, Figure 4.13 also plots the fine grid simulation
injected to the coarse grid. The preserved pressure coefficient on the coarse grid
discretization shows to be sufficiently accurate, although it slightly deviates from
the fine grid solution at the shock location. Thus, it is a reasonable goal to predict
corrections for the coarse grid simulation to approximate its respective fine grid
counterpart.

4.2.2 Machine Learning Correction
This section describes the conducted ML model training, mainly based on the
previously obtained results for the 2D airfoil. Subsequently, the ML corrected
coarse grid solutions for the test set are presented, first qualitatively by depicting
the percentage error of the pressure field and the pressure coefficient on the wing
surface, and then quantitatively, by evaluating the lift coefficient and different
metrics across the test samples.

Machine Learning Setup

Since cross validation and Bayesian optimization involve rigorous training of sev-
eral models to find optimal hyperparameters, this is avoided for the 3D case.
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Instead, the best performing model from the 2D case is adopted, namely a GNN
model, and the same hyperparameters are used to train it on the LANN wing
training data. Only the number of epochs deviate from the previous case, since
a stopping criterion based on the convergence of the training loss is employed.
The training on the 3D case requires more epochs until convergence. The same
features are used as inputs, including the derivatives in the third dimension. With
the local cell Reynolds number and all three velocity components, this results in a
total of 61 input features. As for the outputs, there are a total of five corrections
to be predicted. Again, standardization to zero mean and unit variance is applied
to all features and outputs.

Compared to the 2.2 hours training time on the two dimensional RAE2822,
the GNN training for the LANN wing dataset took about 9.6 hours on the same
hardware. This can be put into relation with the additional number of feature
inputs and outputs for a three dimensional case, the increased amount of epochs
needed, and the increased amount of training instances: on the one hand, the
RAE2822 training is conducted on 60 simulations with 1’368 degrees of freedom
each, resulting in 82’080 training instances. On the other hand, the LANN wing
training data consists of 40 simulations with 8’236 degrees of freedom, resulting
in 329’440 training instances. Even if this number increases, an advantage of the
correction of low-fidelity simulation is that the number of training instances is
still fairly low compared to other deep learning applications, as the training is
performed on the coarse grid data. Thus, no additional arrangements have to be
taken into account to fit the three dimensional data into memory, as the GPU
with 5 GB memory combined with a small batch size is sufficient for this 3D case.

Machine Learning Correction

ML correction results are presented in Figure 4.14 for the LANN wing test sample
at Mach number M = 0.75 and angle of attack α = 4.5◦. The figure shows the
percentage error of the pressure field for a cross section at x = 0.25. The location

(a) Coarse grid solution

0 5 10 15 20 25 30 35 40 45 50

Pressure Error [%]

(b) GNN Correction

Figure 4.14: Pressure error in percentage compared to high-fidelity solution
projected to coarse grid at M = 0.75 and α = 4.5◦, LANN
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Figure 4.15: Pressure coefficient CP and absolute error compared to high-fidelity
solution projected to coarse grid along upper wing surface at M = 0.6 and

α = 5.0◦, LANN

of this cross section is indicated in Figure 4.11. In Figure 4.14a, the error of
the coarse grid simulation with respect to the injected high-fidelity solution is
depicted. Figure 4.14b presents the corresponding error for the GNN corrected
simulation. For the low-fidelity simulation, the error is mainly located in front of
the shock area and additionally around the trailing edge. The GNN correction
improves the solution, with no error being visible around the trailing edge and a
significant error decrease in front of and at the shock location compared to the
coarse grid simulation result.

The performance of the GNN is also reflected in the accuracy of the corrected
pressure coefficient CP . This value is presented in Figure 4.15 for the upper wing
surface for the test sample at Mach M = 0.6 and angle of attack α = 5.0◦. Fig-
ures 4.15a and 4.15b show the pressure coefficient for the fine and coarse grid
simulation, respectively. Figure 4.15d presents the pressure coefficient CP derived
from the injected high-fidelity simulation, while Figure 4.15e presents the GNN
corrected solution. It is first of all visible that the injection captures well the pres-
sure distribution obtained from the fine grid simulation, although slight deviations
can be seen for example at the wing tip. Looking at the coarse grid solution, it
is clear that the low-fidelity simulation does not capture an accurate pressure co-
efficient distribution, especially along the leading edge. The ML correction given
in Figure 4.15e notably increases the accuracy, leading to a pressure coefficient
distribution which visually well approximates the corresponding distribution from
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Figure 4.16: Lift coefficient CL for test set samples, LANN

the injected solution. This is indeed well presented in Figures 4.15c and 4.15f,
showing that the absolute error of the CP distribution is significantly decreased
after the GNN correction.

For a quantitative assessment, the lift coefficient is depicted for all test samples
in Figure 4.16. Figure 4.16a and Figure 4.16b show the lift coefficients derived
from the coarse grid simulation, the fine grid simulation, and the GNN corrected
solution across all angles of attack for Mach M = 0.6 and at Mach M = 0.75,
respectively. It is visible that the low-fidelity discretization significantly deviates
from the fine grid simulation. At low angles of attack, there is a constant offset
between the lift coefficients, while at higher angles of attack, where discontinuities
occur, this deviation increases. Similarly to the 2D test case, the GNN correction
significantly improves the accuracy of the lift coefficient, and even exhibits less
oscillatory behavior at high angles of attack compared to the RAE2822. Never-
theless, the trend of having better improvements at low angles of attack than at
higher ones is still visible.

Finally, Figures 4.17 and 4.18 present the evaluation of the coefficient of de-
termination R2, the mean absolute error MAE, and the mean squared error MSE,
averaged over all angles of attack for the predicted corrections, for the test set
samples at Mach M = 0.6 and at Mach M = 0.75, respectively. The coefficient
is computed between the scaled true correction term ∆ũ and the scaled predicted
correction term ∆û for each variable, that is density ρ, all three components of ve-
locity vx, vy, and vz, as well as pressure P . The GNN scores a value of R2 = 0.89
or higher for both test sets, showing the lowest score for the correction for the
density variable. Looking at the MAE and MSE, it is visible that larger errors are
found for the velocity vz, and that the MSE increases for the density predictions
for the high Mach number samples. Nevertheless, the errors are in general low
and their range is comparable to the achieved 2D RAE2822 metrics. While these
scores indicate good predictive capabilities, increased performance may be achiev-
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Figure 4.17: Test set metrics for M = 0.6, LANN
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Figure 4.18: Test set metrics for M = 0.75, LANN

able by repeating the hyperparameter tuning process. Nonetheless, it has to be
highlighted that the ability to apply the same GNN architecture as used in the 2D
case suggests that prior experience in setting up ML models and hyperparameters
can be effectively transferred to new cases.

4.3 Limitations

The previously presented results highlight the correction capabilities of the trained
models, especially the GNN. Nevertheless, the proposed correction approach ex-
hibits several limitations. First, limitations posed by the coarse grid discretization
itself are discussed in the following. Secondly, restrictions given by the ML model
are examined, focusing on its generalization capacity, the cost of collecting training
data, and the computational expenses associated with training the model.
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4.3.1 Low-Fidelity Discretization: Coarse Boundary Layer
As previously discussed in section 3.2.1, the ML corrected coarse grid solution
approximates in the best case the fine grid solution projected onto the coarse grid
discretization, not the fine grid solution itself. Thus, the choice of the coarse grid
resolution plays a major role not only in reducing computational cost but also
in the maximum achievable accuracy. The previously presented results showed
that values such as pressure and lift coefficient are well preserved on the coarse
grid. For these values, the ML corrected solutions indeed approximate the high-
fidelity solution. Nevertheless, certain values of interest, being accurate on the
fine grid, are naturally degraded on the coarse grid discretization. For external
aerodynamics, this includes values depending on velocity gradients computed at
the boundary. This holds true for both 2D and 3D test case, but it is exemplarily
presented here only for the RAE2822 case.

Figure 4.19 depicts the friction coefficient Cf along the airfoil surface for Mach
M = 0.75 and angle of attack α = 5.0◦. It shows that the coarse grid simulation
is again far from the corresponding fine grid simulation. The coefficient derived
from the GNN corrected fields improves this, but it is not capable of achieving the
same accuracy as the high-fidelity simulation, leaving a significant gap. Instead,
the correction approximates only the coefficient of the fine grid solution injected
onto the coarse grid given in red.

While decreasing the number of degrees of freedom by coarsening the grid
allows for fast evaluations, it obviously degenerates the accuracy. For the investi-
gated cases, this effect is observable for friction related values. The source of this
error becomes obvious when looking at the definition of the wall shear stress τw,
given in (2.46). The wall shear stress is defined by the velocity gradient perpen-
dicular to the wall. Employing fine grids, the elements along the wall boundary
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Figure 4.19: Friction coefficient Cf for test sample at M = 0.75 and α = 5.0◦,
RAE2822
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Figure 4.20: Velocity profile U(y) and gradient approximation with coarse and
fine grid

are sufficiently thin, and thus capable of accurately capturing velocity gradients.
This accuracy is degraded on the coarse grid, where elements along the airfoil wall
increase in thickness, on which gradients are crudely approximated. This problem
is visually explained in Figure 4.20, presenting a velocity profile U(y) along a wall
on the left. It shows how an equidistant coarse grid is not capable of capturing
the gradient, while a grid refined towards the boundary does. To alleviate this
issue, one could tailor the coarse grid to be finer in the vicinity of walls, while
still employing relatively coarse elements elsewhere. Additionally, wall functions
could be applied to compute more accurate gradients.

4.3.2 Data-Driven Modeling Restrictions
Additional limitations of the proposed method arise due to the data-driven nature
of ML models. Firstly, restrictive generalization capacities are showcased, deter-
mining the model’s performance on out of distribution data. Secondly, the process
of collecting training data is often resource intensive, as acquiring high-fidelity
simulations is a time consuming task. The computational expenses associated
with training the model, including the need for powerful hardware and extended
training times, further add to these limitations. Together, these factors highlight
the balance between achieving accuracy and managing practical constraints in the
development of data-driven solutions.

Generalization Capabilities

The test samples for the RAE2822 airfoil and the LANN wing, given in sec-
tions 4.1.1 and 4.2.1, respectively, have been chosen such that they are located
inside the borders of the design space, allowing the trained ML model to interpo-
late within this space. As described in section 2.2.3, data-driven models cannot
be expected to be applicable to new samples out of the distribution of the training
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Figure 4.21: RAE2822 vs. RAE5212 airfoil geometry

data. To confirm the lack of extrapolation capabilities, the GNN model trained
on the RAE2822 data is now applied to infer a correction for a slightly different
geometry, namely the RAE5212 airfoil given in Figure 4.21. To lessen the degree
of generalization needs, the same coarse grid as for the RAE2822 is used to gen-
erate data, which is simply deformed to accommodate the new RAE5212 airfoil
geometry.

To test the GNN model, simulations of the RAE5212 airfoil are conducted
at the same flow conditions as for the training airfoil, while keeping the Mach
number at M = 0.6 and varying the angle of attack between 0.0° and 8.0° . The
corresponding high-fidelity simulations on the fine grid are also conducted, but
solely for the purpose of comparison with the ML corrected solutions. Figure 4.22a
presents the resulting metrics, including coefficient of determination R2, mean
absolut error MAE, and mean squared error MSE, averaged over all RAE5212
simulations. The metrics quantify how well the predicted correction corresponds
to the true correction term for each variable, i.e. density ρ, the two velocity
coefficients vx and vz, and pressure P . Previously, the GNN model has achieved
an R2 value greater than 0.9 for the RAE2822 airfoil. Inferring corrections for
the RAE5212 airfoil with the GNN model trained on the RAE2822 airfoil results
in a R2 values between 0.19 for the pressure variable P and 0.46 for the velocity

ρ vx vz P
0.0

0.2

0.4

0.6

0.8

1.0

R
2

GNN

(a) R2

ρ vx vz P
0.00

0.05

0.10

0.15

0.20

M
A
E

GNN

(b) MAE

ρ vx vz P
0.0

0.1

0.2

0.3

0.4

0.5

M
S
E

GNN

(c) MSE

Figure 4.22: Test set metrics for M = 0.75, RAE5212
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Figure 4.23: Lift coefficient CL for RAE5212 test set at M = 0.6

variable vz. The MAE for the density variable ρ increases by more than a factor
of four, and the MSE for the velocity vx rises from 0.10 to 0.29.

This decrease of corrective capabilities is also visible when looking at the
resulting lift coefficients given in Figure 4.23. As before, the gap between coarse
and fine grid simulations is evident. Although the GNN model tends to increase
the lift coefficients at high angles of attack towards the high-fidelity solutions,
the resulting lift coefficients are significantly poorer for the RAE5212 test set
compared to the RAE2822, and even worse for lower angles of attack than the
coarse grid simulation.

As a final assessment to display the lack of generalization capabilities to out of
distribution data, the pressure field for the test sample at angle of attack α = 4.0◦

is presented in Figure 4.24. Figure 4.24a shows the coarse grid simulation result
and Figure 4.24b the high-fidelity pressure field injected onto the coarse grid.
The difference between both is mainly located in front of the shock location. The
discontinuity is less pronounced in the solution obtained with the coarse grid.
Applying the predicted GNN correction, as given in Figure 4.24c, it can be seen
that the correction is overestimated, leading to an exaggerated low pressure area
that is larger and more pronounced than expected.
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Figure 4.24: Pressure field for M = 0.6 and α = 4.0◦, RAE5212
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To improve the generalization capabilities of an ML model, particularly for
varying geometries, one approach is to extend the design and training space by
incorporating samples of different geometries. This ensures that the model learns
from a diverse set of shapes, capturing underlying patterns rather than overfitting
to a limited dataset. Additionally, leveraging data augmentation techniques or
physics-informed constraints could further enhance robustness, enabling the model
to make accurate predictions even for unseen configurations.

Data Preparation and Training Time

A further drawback of the method, akin to any data-driven method, is the time
investment required to generate high-fidelity data for the training phase and op-
timize the hyperparameters of the ML models. Table 4.7 summarizes the number
of simulation samples conducted for the RAE2822 and the LANN wing training
data, and the resulting simulation time, computed by using the reported average
wall clock times given in table 4.1 and 4.6 for both coarse and fine grid simula-
tions, as well as the time needed to train the final GNN model. Obviously, this
effort in data collection and model training is only justified if during the infer-
ence phase the model is used on a sufficient amount of new simulations to break
even the time needed to generate the ML model in the first place. Needing on
average 7 hours for a fine grid simulation of the RAE2822, this point would be
reached after 61 simulations. For the LANN wing, requiring 5 hours and 10 min-
utes for one high-fidelity simulation, the break even point would be reached after
43 simulations.

For industrial settings, it can be expected that databases with high-fidelity
simulations are already available. Thus, the most costly aspect of the proposed
approach, the generation of high-fidelity data, is significantly reduced or even
eliminated. Instead of requiring additional expensive computations, these existing
datasets can be utilized to develop a surrogate model as presented in this work.

An additional time consuming point which is not accounted for in table 4.7
is the hyperparameter optimization. For the GNN model presented in this chap-
ter, the hyperparameters have been found during Bayersian optimization after
the fifteenth iteration, which means that a total of 15 GNN models had to be
trained to arrive at the presented results. The number of iterations can vary
significantly, and it was found that for the RF model a convergence in improved

Table 4.7: Number of training samples and total time needed for data collection
and final GNN model training, FV study

RAE2822 LANN
No. of samples 60 40

Simulation time 421 h 30 min 211 h 47 min
Training time 2 h 12 min 9 h 54 min

Total time investment 423 h 42 min 221 h 41 min
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metrics for the validation set is found earlier, while the NN and GNN models tend
to need more exploration, which is likely due to their greater number of influential
hyperparameters. Nevertheless, it was shown for the 3D LANN wing that expen-
sive hyperparameter optimization can be avoided. For this case, hyperparameters
from previous studies, in this work the 2D case, were successfully reused without
extensive need of additional tuning.

4.4 Concluding Remarks

This chapter presented a method to quantify the discretization error between FV
solutions obtained on two nested grids. After training ML models on collected
data obtained from coarse and fine grid simulations, they are employed to infer
the error. The predicted error can be used to correct low-fidelity field variables to
approximate the corresponding fine grid simulation injected onto the coarse grid.
The first aim of this investigation was to assess if the correction term can be suc-
cessfully learned. For this, three different models were trained on the 2D test case,
taking as inputs the first and second derivatives of the variables to be corrected
and a local cell Reynolds number. All models show corrective capabilities on the
test set. Difficulties are generally encountered in the flow regime at high angles
of attack, where discontinuities are dominant. As for the training, the RF stands
out for its simplicity: relatively few hyperparameters are quickly tuned to reach
convergence on the validation metric, whereas both neural network-based models
require more extensive hyperparameter optimization, and often longer training
times to achieve similar or superior performance. Judged only by their corrective
capabilities, the GNN model outperforms both NN and RF, as the latter two show
noisy behavior in their corrections. The overall better performance underlines the
GNN’s capability to grasp more information by taking into account the connec-
tivity to neighboring nodes and their features, resulting in overall smoother field
corrections and less oscillatory surface values such as the pressure coefficient. This
is shown not only on a 2D test case, but also a 3D test case, involving turbulent
flows.

These findings indicate that the discretization error with respect to a fine grid
simulation can be quantified, learned and finally corrected. Nevertheless, limita-
tions of the proposed method need to be highlighted as well. These include the
degradation of the fine grid simulation after projecting it onto the low-fidelity dis-
cretization, i.e. the coarse grid. For the cases investigated, coarse boundary layers
lead to insufficient accuracy of velocity gradients, ultimately limiting the accuracy
of values such as the skin friction coefficient and thus the friction component of
the resulting drag. From the ML side, limitations are posed by the generaliza-
tion capabilities of the ML model, showcased by applying the GNN model trained
on an RAE2822 airfoil to data of an RAE5212 airfoil. Although the corrections
tend towards the right direction, such as increasing the resulting lift coefficient
or amplifying the shock, the accuracy is not comparable to results obtained for
the RAE2822 test data. Further limitation posed by the data-driven approach
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include the time investment needed to collect training data and find optimal hy-
perparameters. These issues can most likely be avoided in industrial settings and
with sufficient experience in ML model training.

Two practical restrictions of the proposed approach to correct FV simulations
are the need to collect data on two grids and defining a mapping function to
transfer the fine grid solution to the coarse grid discretization. In the following
chapter, the method is adapted to correct low-order polynomial DG solutions
instead of coarse grid simulations. With this, the need of having multiple grids to
generate low- and high-fidelity solutions is eliminated, since solutions of different
accuracies can be obtained on the same grid. Additionally, the choice of mapping
function becomes trivial.
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Chapter 5

Application: Correction of Steady
DG Simulations

Discontinuous Galerkin methods allow to raise the number of degrees of free-
dom not only by grid refinement, but also by increasing the polynomial degree.
Therefore, on the same grid, varying accuracies can be achieved by changing the
polynomial degree. In this chapter, advantage is taken of this fact such that both
low- and high-fidelity simulations are obtained on the same mesh. An exemplary
simulation conducted on the same mesh but across varying polynomial degrees is
illustrated in Figure 5.1 for laminar flow around the NACA0012 geometry. The
figure shows that with increased number of degrees of freedom the lift coefficient
becomes more accurate, until it approximates a reference value. At the same
time, the computational cost, here quantified by the wall clock time needed to
run the simulations, also rises. Neither accuracy nor cost grow linearly with the

Figure 5.1: Simulation time vs. accuracy on varying polynomial degrees
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number of degrees of freedom, resulting in high computational cost for accurate
solutions. As a consequence, conducting simulations with the DG discretization
suffers from the same trade-off between accuracy and computational cost as the
FV discretization.

In the previous chapter, the high-fidelity simulations are conducted using the
FV discretization on fine grids. Projecting this solution onto coarser grids leads to
a loss of accuracy. Furthermore, the choice of mapping function for this projection
is not straightforward. Deploying a modal DG discretization, only a single coarse
grid can be employed, while both low- and high-fidelity simulations are computed
by varying the polynomial degree. Additionally, the choice of a mapping function
is simple. This, since a truncation of the higher polynomial terms leads to an L2

projection, as the polynomial basis used in this work is orthogonal, as described
in section 3.1.2. The results of this approach are investigated in the following on
two test cases, namely on the turbulent flow around the 2D RAE2822 airfoil and
on the laminar flow around a 3D delta wing. The goal is to infer an ML prediction
which can be used to correct inaccurate solutions obtained with low polynomial
degrees. The content of this chapter has partially been published in [85].

5.1 2D Case - RAE2822 Airfoil

The first test case under consideration is the same as for the FV studied in sec-
tion 4.1, that is the RAE2822 airfoil. For the dataset generation, the Reynolds
number is kept constant at Re = 5.7× 106, and the same design of experiment is
conducted as for the FV study.

5.1.1 Data Generation
In the following, the simulation setup to generate a dataset is described. For
one sample, the different results are showcased and compared. Here, the main
focus is to present the difference between solutions of lower and higher polynomial
degree, and to proof that the high-order solution truncated to the low-fidelity
discretization is of higher accuracy than the low-order one.

Simulation Setup

For the DG simulations, the RANS equations are solved with the negative version
of the SA turbulence model. For both high and low-order simulations, the same C-
type grid is employed with 2’464 quadratic elements, given in Figure 5.2. Since this
case features discontinuities at high angles of attack, which has shown to corrupt
the robustness for certain samples, a shock sensor and artificial viscosity are used
for polynomial degree p > 0. Convergence is reached for all simulations, defined
by a reduction of 12 orders of magnitude for all residuals, including the turbulent
variable ν̃. Simulations are conducted for polynomial degrees of p ∈ {0, 1, 2}.
The lower degrees of p = 0 and p = 1 are considered to be corrected, whereas
p = 2 serves as high-fidelity solution to be approximated. For degrees p = 1
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Table 5.1: Number of elements, degrees of freedom per equation, and average
wall clock time for DG study, RAE2822

Polynomial degree Elements Degrees of freedom Time
p = 0 2’464 2’464 30 s
p = 1 2’464 7’392 5 min
p = 2 2’464 17’248 50 min

and p = 2, the solution obtained on the previous polynomial degree is used as
restart solution to accelerate convergence. The resulting number of degrees of
freedom and the average wall clock time per simulation are reported in table 5.1.
The table highlights the significant increase in degrees of freedom when choosing
higher order polynomials, as well as higher computational time needed to conduct
these simulations. As for the FV study on the RAE2822, low- and high-fidelity
simulations are run for all sample points. The design space and sampling strategy
are the same as for the FV study, including 60 points for training and additional
29 simulations for testing, as presented in section 4.1.1 and given in Figure 4.4.
Although this case features the same sample points as for the FV study, both
studies employ different grids and thus different numbers of degrees of freedom,
as the DG discretization requires for this case quadratic elements. The main goal
is not to compare the results on both FV and DG, but rather show the versatility
of the correction approach on different discretizations.

Simulation Results

Figure 5.3 presents the pressure coefficient for the simulation at Mach number
M = 0.75 and angle of attack α = 5.5◦. Comparing the simulation results ob-
tained with p ∈ {0, 1, 2}, it is visible that the lowest order does not develop a
shock similar to the one seen at higher orders. For p = 0, the pressure coefficient
along the suction side deviates significantly from the p = 2 solution, while less
pronounced deviations are present along the pressure side of the airfoil. For the
pressure coefficient obtained with polynomial degree p = 1, the difference to the

Figure 5.2: Grid used for the RAE2822 DG study
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Figure 5.3: Pressure coefficient CP for M = 0.75 and α = 5.5◦ obtained with low
and high-order polynomial degree p ∈ {0, 1, 2}, as well as CP from truncated

high-order solution

higher order p = 2 is reduced, but still present especially around the shock lo-
cation. Furthermore, Figure 5.3 shows the derived pressure coefficient from the
high-order solution after the variables of interest have been truncated to the low-
fidelity discretization space. It is evident that the pressure coefficient obtained
on the high-fidelity discretization is preserved, for both p = 0 and p = 1 dis-
cretizations. Thus, this indicates that the low-order solution can be corrected to
potentially achieve this level of accuracy.

Additionally, the simulation results are compared with available measurement
and reference data from a test campaign [1] and simulations from literature [105].
For this, CODA simulations are conducted at M = 0.676 and α = 1.93◦. Table 5.2
depicts the lift coefficient of these sources, the lift coefficient derived from simula-
tions with varying polynomial degree, and the resulting lift count with respect to

Table 5.2: Lift coefficient CL for simulation with p ∈ {0, 1, 2}, reference values
and test campaign, at M = 0.676 and angle of attack α = 1.93◦, RAE2822

Polynomial degree / reference CL Lift count difference
p = 0 0.436 130
p = 1 0.505 61
p = 2 0.570 4

Ref. 1 [105] 0.569 3
Ref. 2 [105] 0.561 5

Test campaign [1] 0.566 -
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the test campaign source. The table highlights the inaccuracy of the simulations
with low polynomial degrees p ∈ {0, 1}, as the lift count is significantly higher
than for the solution with p = 2 and the reference values. Thus, the simula-
tions obtained with p = 2 and the corresponding simulation settings are deemed
accurate enough for the following study.

5.1.2 Machine Learning Correction
The ML model training follows a similar procedure to the one discussed in the
previous chapter, presented in section 4.1.2, but is nevertheless shortly described
in the following. For this case, only two models are employed, and their resulting
correction capabilities are presented on the test set samples for both polynomial
degrees p = 0 and p = 1.

Training Setup

To correct DG solutions, the variables of interest are indirectly corrected by the
ML prediction, by adding the corrective term to the degrees of freedom a and
not directly to the variables ũ themselves, as described in 3.2.2. The variables
of interest include the conservative variables of density ρ, momentum Mx and
Mz, as well as energy ρE, such that ũ = [ρ,M , ρE]T . Note that as for the
FV study, the turbulent variable ν̃ is not considered for correction. Thus, for
polynomial degree p = 0, there are 4 correction terms to be predicted, while the
model receives 25 inputs per element. These inputs include, given in ( 3.16) the
first and second derivative of the degrees of freedom, computed by a weighted least
squares approach, and a local cell Reynolds number, given in (3.14). There are no
significant differences compared to the FV approach for p = 0, since the first basis
function is ϕ = 1. For the correction of p = 1 solutions, there are 3 degrees of
freedom to be corrected per equation for a 2D case, resulting in 12 predictions per
element. The feature inputs scale accordingly, resulting in 73 values per element.
As for the choice of ML models, only the RF and GNN are considered in this
study. The RF is chosen for its ease of training, making it an ideal baseline model,
while the GNN is selected as it has previously demonstrated superior performance
compared to both RF and NN. To find optimal hyperparameters, a four-fold cross
validation is performed with Bayesian optimization for the p = 0 dataset. For the
RF, the hyperparameters to be tuned include the number of decision trees, the
number of features to be considered for a split, and if bootstrapping is applied or

Table 5.3: RF hyperparameters, RAE2822

Hyperparameter Value
No. of decision trees 428

Bootstrapping False
Features per split Square root criterion
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Table 5.4: GNN hyperparameters, RAE2822

Hyperparameter Value
No. of layers 9

Feature dimension per layer 298
Initial learning rate (p = 0) 1.955× 10−3

Initial learning rate (p = 1) 1.973× 10−3

not. The final hyperparameters are reported in table 5.3. The number of features
per split is determined by the square root of the maximum number of available
features. For the GNN, residual gated graph network layers were found to perform
better than GCN layers, and further hyperparameters are reported in table 5.4.
Some hyperparameters are kept based on the FV study: such as an exponential
learning rate decay and hyperbolic tangent as non-linear activation function. For
the p = 1 models, the same architectures are employed as for p = 0, but the
initial learning rate is adjusted for the GNN model based on another four-fold
cross validation. The final RF is trained on CPU with 6 parallel jobs and requires
for p = 0 around 5 minutes and for p = 1 around 15 minutes. For the training of
the GNN model, a NVIDIA Quadro P2200 GPU with 5 GB memory is employed,
resulting in training times of approximately 45 minutes and 1 hour for p = 0 and
p = 1, respectively.

Correction Results

The first qualitative results of interest are the corrected fields. Figure 5.4 depicts
the percentage error of the pressure field for the test sample at Mach M = 0.6
and angle of attack α = 7.5◦. Thus, not the corrected degrees of freedom nor any
of the variables ũ are shown, but rather the derived pressure field to be consistent
with the results presented in the previous chapter. The two figures on the top,
namely Figure 5.17a and Figure 5.17b, show the percentage error between the
truncated high-fidelity solution and the low-order solution for p = 0 and p = 1,
respectively. The error of the low-fidelity discretization is mainly located in front
of the shock location, and it is visible that the lower the order the greater the
discrepancies become. For p = 0, additional errors are visible towards the trailing
edge. The subsequent rows show the percentage error of the resulting pressure
field after the ML corrections. Figure 5.17c and Figure 5.4d present the fields
corrected by the RF model for p = 0 and p = 1, while Figure 5.4e and Figure 5.4f
depict the respective GNN corrected fields. At a first glance, the GNN corrections
feature lower errors around the shock location. Nevertheless, when assessing the
error close to the boundary, the GNN corrected field exhibits greater errors in
close vicinity of the airfoil. Overall, the percentage error for the pressure field is
reduced from 172.9% to 42.7% with the RF and to 63.0% with the GNN for p = 0,
and from 96.8% to 35.8% with the RF and to 32.9% with the GNN for p = 1. For
the GNN corrections, the maximum error is located within the boundary layer,
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(a) p = 0 simulation
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(b) p = 1 simulation

(c) p = 0 with RF correction (d) p = 1 with RF correction

(e) p = 0 with GNN correction (f) p = 1 with GNN correction

Figure 5.4: Pressure error [%] for M = 0.6 and α = 7.5◦ compared to the
truncated high-fidelity simulation, RAE2822

which is not the case for the RF results.
The different corrective capabilities close to the airfoil boundary is also re-

flected when evaluating surface related values, such as the pressure coefficient.
Figure 5.5 shows the pressure coefficient for a test sample at lower Mach number
M = 0.6 and angle of attack α = 2.0◦ on the left for p = 0 in Figure 5.5a, and on
the right for p = 1 in Figure 5.5b. Similarly, the pressure coefficient is depicted
for a higher Mach number of M = 0.75 and angle of attack of α = 5.0◦ in Fig-
ure 5.6. It is again obvious that the p = 0 solution differs more significantly from
the high-fidelity simulation. At lower Mach number given in Figure 5.5a, the
RF correction perfectly matches the high-fidelity pressure coefficient, while the
GNN correction exhibits slight deviations, resulting in noisy behavior especially
for p = 0. Assessing the case with higher Mach number and higher angle of attack,
where a shock is present, the RF starts to deviate from the high-order solution,
especially around the discontinuity. As in the FV study, the GNN shows improved
corrective capabilities for discontinuities. Nevertheless, the GNN still shows noisy
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Figure 5.5: Pressure coefficient CP for M = 0.6 and α = 2.0◦ for high-order,
low-order, and ML corrected solutions, RAE2822
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Figure 5.6: Pressure coefficient CP for M = 0.75 and α = 5.0◦ for high-order,
low-order, and ML corrected solutions, RAE2822

tendencies. For both models, the p = 1 corrections match the high-fidelity one
better than the p = 0 corrections.

Figure 5.7 and Figure 5.8 show the derived lift coefficients from low and high-
order solutions, as well as from the ML corrected solutions for both test sets, for
polynomial degree p = 0 and p = 1, respectively. Both ML models achieve in
general good performance at lower angles of attack. For the p = 0 corrections,
this performance degenerates at higher angles of attack, mirroring the trends
observed in the previous FV study, highlighting the similarity between FV and
DG discretization with p = 0. The uncorrected low-order solution shows a linear
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(a) M = 0.6 (b) M = 0.75

Figure 5.7: Lift coefficient CL for test sets and polynomial degree p = 0,
RAE2822

(a) M = 0.6 (b) M = 0.75

Figure 5.8: Lift coefficient CL for test sets and polynomial degree p = 1,
RAE2822

trend for the lift coefficient, which suggests that the flow field might lack sufficient
complexity, leading to feature inputs that are not rich enough for the ML models
to effectively learn meaningful corrections at high angles of attack. Examining the
lift coefficient derived from the p = 1 simulation in Figure 5.8, it is visible that
the low-order simulation already exhibits a non-linear behavior but nevertheless
deviates from the high-fidelity results, especially at high angles of attack which is
even more pronounced for the higher Mach number. Both ML model corrections
improve the low-fidelity lift coefficient, with the GNN showing superior corrective
capabilities for Mach M = 0.6 and higher angles of attack. At lower angles of
attack, the RF corrections match the high-order solutions better, while the lift
coefficients derived from the GNN corrections show noisier behavior. From this
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Figure 5.9: Test set metrics for p = 0 and M = 0.6, RAE2822
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Figure 5.10: Test set metrics for p = 0 and M = 0.75, RAE2822

it can be again concluded that the RF correction results in overall better surface
related values when shocks are not present, since its predictions at the boundary
layer elements is better and smoother compared to the ones from the GNN model.

Finally, to assess the overall corrective capabilities of both ML models quanti-
tatively, the coefficient of determination R2 (2.41), the MAE (2.40), and the MSE
(2.39), are given in Figures 5.9 and 5.10 for the p = 0 test set simulations and
in Figures 5.11 and 5.12 for the p = 1 test set simulations. Here, the metrics are
computed for the correction of each polynomial coefficient and evaluated across
all test instances. For the p = 0 predictions, both RF and GNN model show
high R2 values, with the GNN exhibiting slightly better performance. For the
test samples with Mach number M = 0.6, the lowest score for the RF is 0.972 for
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a0,Mx , i.e. the first polynomial coefficient of the momentum variable, while the
lowest score of 0.986 for the GNN is found for a0,ρE . For the test set at Mach
number M = 0.75, the RF has its lowest score with R2 = 0.944 for a0,Mx , while
the GNN reaches the lowest score of R2 = 0.984 for a0,ρ. Comparing the values
between RF and GNN indicate that the GNN returns slightly better predictions
across the whole flow field than the RF, which is also visible when looking at the
MAE and MSE. However, the previous evaluations of pressure and lift coefficient
values suggest that these metrics alone are not a sufficient indicator to assess the
models overall performance, if the main interest lies in surface related values.

In Figures 5.11 and 5.12 the metrics are given for both test sets for the p = 1
corrections, underlining the increased number of degrees of freedom when rising
the polynomial degree only by one, resulting in three times as many predictions.
Again, there is a trend for the GNN to achieve higher R2 values than the RF,
although this is not the case for all polynomial coefficients. In general, the second
degrees of freedom a1 exhibit a performance drop, especially for the density and
energy variable. Overall, the lowest value for Mach number M = 0.6 is for both
models found for the polynomial coefficient a1,ρ, resulting in R2 = 0.828 for the
RF, and a slightly lower value of R2 = 0.815 for the GNN. It is also again visible
that the RF achieves in general lower MAE values for Mach number M = 0.6.
Nevertheless, the MAE shows here for both models in general low values.

For higher Mach number M = 0.75, again both models exhibit the lowest
coefficient of determination for a1,ρ, with R2 = 0.555 for the RF and R2 =
0.650 for the GNN. This indicates again better corrective capabilities for the
GNN in cases with non-linearities. The MSE values also support this, showing
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Figure 5.11: Test set metrics for p = 1 and M = 0.6, RAE2822
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Figure 5.12: Test set metrics for p = 1 and M = 0.75, RAE2822

lower values for the GNN than for the RF. The MAE is lower for the RF. Spikes
across all metrics are visible for a1,ρE , the second polynomial coefficient for energy,
highlighting general difficulties for the correction of this specific variable.

5.2 3D Case - Delta Wing

To scale the proposed method, in this section both RF and GNN are trained to
infer the correction of low-order simulations of a 3D delta wing. For this, laminar
flow is considered with constant Reynolds number Re = 4′000. The trailing edge
of the delta wing geometry is blunt and the leading edge sharp and sloped. At
higher angles of attack, vortices are formed as the flow passes the leading edge.
In [112], multiple high-order DG simulations have been carried out on a series of
grids at flight conditions Minf = 0.3 and angle of attack α = 12.5◦, a test case
defined by a EU project called ADIGMA [97], which will be used as reference
condition.

5.2.1 Data Generation
In the following, the simulation setup is described, with which samples with vary-
ing polynomial degree are computed within a design space which is spanned by
different Mach numbers and angles of attack. The simulation results are compared
at Minf = 0.3 and angle of attack α = 12.5◦, a flight condition proposed by [97].
For this case, a reference lift coefficient is available from [112], with which the
simulation settings and accuracy of the high-order simulations can be confirmed.
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(a) Upper wing surface

(b) Lower wing surface

Figure 5.13: Grid used for the delta wing

Simulation Setup

For all simulations, the Navier-Stokes equations are solved. The same mesh with
26’356 linear elements is used for all polynomial degrees. So far, the previous
application cases were mainly focusing on surface and integral values. Employing
for this test case a grid with relatively many elements, in this case 26’356 compared
to the 8’236 in the 3D FV case, allows to resolve and correct for phenomena of
interest appearing in the flow field, which in this case are the vortices being formed
by the flow passing the wing edge. Employing linear elements are sufficient, since
the geometry does not show any curvature. The mesh of the upper and lower
wing surface is presented in Figure 5.13. No artificial viscosity is added, since no
significant discontinuities are anticipated in the chosen design space. As for the
previous 2D case, simulations are conducted for polynomial degrees p ∈ {0, 1, 2},
with the aim to correct the p ∈ {0, 1} solutions to approximate the highest order
solution obtained with p = 2. As the number of degrees of freedom scales with
polynomial degree p and dimensionality of the problem d, as described in (2.17),
this number rises significantly from p = 0 to p = 2, as given in table 5.5. The
table also shows that the high-order solution requires much more time, resulting
in an average wall clock time of over 7 hours for p = 2, while on average the lower
order simulations are conducted within minutes.

Table 5.5: Number of elements, degrees of freedom per equation, and average
wall clock time, delta wing

Polynomial degree Elements Degrees of freedom Time
p = 0 26’356 26’356 1 min
p = 1 26’356 105’424 17 min
p = 2 26’356 263’560 7 hrs 40 min
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Figure 5.14: Sampling points for train, validation and test sets, delta wing

For all polynomial degrees, simulations are computed at each sample point
given in Figure 5.14. The design space is spanned by angle of attack between
6.0◦ ≤ α ≤ 21.0◦ and Mach number between 0.25 ≤ M ≤ 0.75. Since vortices
are formed at higher angles of attack, values of α ≤ 5.0◦ have been removed
deliberately. Initially, a Halton sequence is used to generate 125 samples, out
of which 100 are used for the ML model training and 25 as hold out validation
samples. Early ML training results on the validation set have shown that the
predictive capabilities decrease at high and low angles of attack. Thus, additional
72 points are added using a full factorial sampling to increase the data density in
these areas, as indicated by the gray points in Figure 5.14. Finally, simulations
are conducted at Mach numbers M = 0.4 and M = 0.6, while sweeping the angles
of attack between 6.0◦ ≤ α ≤ 21.0◦. These samples act as test set to judge the
final ML model corrections.

Simulation Results

To assess the accuracy of the simulations, the reference point proposed by project
ADIGMA at M = 0.3 and α = 12.5◦ is selected [97]. Since the flow passing by
the delta wing creates a vortex, it is of interest to assess the simulations in this
regard. For this, Figure 5.15 displays the pressure field along a cut in the x-axis,
namely at x = 0.925 close to the trailing edge, for which the cut location is shown
in Figure 5.13. The simulation result obtained with highest polynomial degree
p = 2 shows a shedded vortex, with a relatively low pressure at its core, given
in Figure 5.15c. The p = 1 result in Figure 5.15b looks similar, but with higher
pressure at its center. For p = 0, given in Figure 5.15a, no shedding is visible.
Figures 5.15d and 5.15e in the bottom display the derived pressure field, after the
p = 2 degrees of freedom for the conservative variables have been truncated to
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(a) p = 0 (b) p = 1 (c) p = 2

(d) Truncation to p = 0 (e) Truncation of p = 1

Figure 5.15: Pressure field along cut at x = 0.925 at M = 0.3 and α = 12.5◦,
delta wing

the respective lower order discretization. It is visible that the vortex core retains
its strength and that the pressure field is quantitatively approximating the high-
fidelity solution. Thus, this suggests that a ML correction might possibly correct
the flow field to this extent.

To further assess if the high-fidelity solution obtained with p = 2 is indeed
accurate, the resulting lift coefficient CL is compared with the reference value
from [112], as presented in table 5.6, showing the respective lift count. The high lift
counts for lower polynomial degrees, especially for p = 0, highlight the inaccuracy
of these simulations, while the higher order simulation with p = 2 is comparably
close to the reference value. Thus, for this application case, it is a reasonable choice
to correct simulations of polynomial degree p ∈ {0, 1} to approximate solutions of
p = 2.

Table 5.6: Lift coefficient CL for p ∈ {0, 1, 2} and reference value at M = 0.3 and
α = 12.5◦, delta wing

Polynomial degree / reference CL Lift counts
p = 0 0.612 265
p = 1 0.366 19
p = 2 0.352 5

Ref. [112] 0.347 -
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5.2.2 Machine Learning Correction
The training of the ML models is based on the findings of the 2D case and de-
scribed in the following, whereas test set results are only presented for the model
which performs best on the validation data.

Training Setup

For the FV study, the GNN outperformed the other ML models and scaling it to
the 3D case was done by simply adapting the number of epochs. For the current
case, both models, the RF and the GNN, are evaluated, as the GNN did not
significantly outperform the RF model during the 2D DG case. Additionally, it
was shown that the GNN mainly achieves better performance for cases exhibiting
significant discontinuities or in areas where the lift coefficient behaves non-linear,
which is not encountered for the delta wing data set. The training is conducted
on the 172 training samples and validated on the 25 hold-out validation samples.
To learn the correction for p = 0, the same architectures are employed which
were found for the 2D case, while only adapting during a Bayesian optimization
the learning rate and the number of decision trees for the GNN and the RF,
respectively. The initial learning rate found for the GNN resulted in a value of
0.00139 and the number of decision trees reduced to 208. The resulting validation
metrics are reported in table 5.7. Both models achieve relatively high R2 and low
MSE. Nonetheless, as both these metrics indicate better predictive capabilities for
the RF, only this model is applied for the p = 1 training and the following results
present only the RF corrected simulations.

The RF training for p = 0 takes 9 hours and 25 minutes on CPU with 6 parallel
jobs. Compared to previous cases, also run on the same amount of parallel jobs,
this is a significant increase in training time, but reasonable due to increased
number of decision trees and the higher amount of training data: the training set
consists of 172 simulations with each simulation having 26’356 degrees of freedom
for p = 0, resulting in 4’533’232 training instances. Obviously, by increasing the
number of parallel jobs, the training could be accelerated. As an element-wise
correction is learned, the number of training instance is the same for the p = 1
training, but for each training instance there are significantly more input features
and four times more outputs to be predicted. With the variables of interest to
be corrected being ũ = [ρ,Mx,My,Mz, ρE]T and four polynomial coefficients per
variable, there are in total 20 outputs to be predicted and 241 input features per
element for p = 1. In contrast, for p = 0, there are 5 outputs and only 61 input
features. On the same hardware with the same amount of parallel jobs, the RF

Table 5.7: p = 0 validation metrics, delta wing

R2 MAE
RF 0.998 1.23× 10−6

GNN 0.966 8.64× 10−5
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training for the p = 1 correction takes 47 hours.

Correction Results

First results depicting the pressure field along the cut at x = 0.925 is shown
in Figure 5.16 for the p = 0 correction at Mach number M = 0.6 and angle
of attack α = 15.0◦. As previously shown, the difference between p = 0 and
p = 2 is significant, as former does not lead to vortex shedding. Applying the RF
correction, the pressure field highly resembles the high-fidelity solution obtained
with p = 2. The same holds true for the p = 1 correction given in Figure 5.17,
presenting the pressure field at the same cut location but for test sample at Mach

(a) p = 2 (b) p = 0 (c) RF correction

Figure 5.16: Pressure field along cut at x = 0.925 at M = 0.6 α = 15.0◦, delta
wing

(a) p = 2 (b) p = 1 (c) RF correction

Figure 5.17: Pressure field along cut at x = 0.925 at M = 0.4 α = 13.0◦, delta
wing
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(a) α = 18.0◦ (b) α = 20.0◦

Figure 5.18: Vortex trajectories based on minimum pressure criterion for
p ∈ {0, 2} and ML correction at M = 0.4, delta wing

(a) α = 16.0◦ (b) α = 21.0◦

Figure 5.19: Vortex trajectories based on minimum pressure criterion for
p ∈ {0, 1} and ML correction at M = 0.6, delta wing

number 0.4 and angle of attack 13.0◦. The differences between p = 1 and p = 2
are not as significant, but the RF correction ultimately improves the lower-fidelity
solution.

Using a minimum pressure indicator to find the core of a vortex, its trajectory
can be visualized, as given in Figure 5.18. For both presented test samples, the p =
0 simulation does not result in vortex shedding, which is indicated by the red line
following the leading edge. On the other hand, the high-fidelity simulation with
p = 2 starts to shed a vortex relatively early, more so for the higher angle of attack
on the right hand side. On the left, for test sample at Mach number M = 0.4 and
angle of attack 18.0◦, the vortex trajectory based on the RF correction perfectly
matches the high-fidelity trajectory. For slightly higher angle of attack 20.0◦,
deviations are visible towards the trailing edge of the delta wing. Nevertheless,
the correction overall improves the low-fidelity vortex trajectory.

Similarly, Figure 5.19 shows the vortex trajectories for p = 1 simulations and
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the respective corrections. On the left, results for sample point at Mach M = 0.6
and angle of attack α = 16◦ are shown, and on the right results for M = 0.6 and
angle of attack α = 21◦ are presented. This time, it is evident for both cases
that vortex shedding starts for the lower polynomial degree. Nevertheless, the
point of detachment starts later for p = 1 compared to p = 2. This behavior
is corrected by the RF predictions, resulting in vortex trajectories matching the
p = 2 trajectories.

Finally, Figures 5.20 and 5.21 depict the resulting metrics on the test sets, com-
puted between the predicted correction and true correction, including coefficient
of determination R2, MAE, and MSE. First of all, it is visible how significantly
high the R2 and low the MAE and MSE metrics are. For the test set at Mach
number M = 0.4, the MAE ranges between 2.26× 10−07 and 1.13× 10−06, while
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Figure 5.20: Test set metrics for p = 0 and M = 0.4, delta wing
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Figure 5.21: Test set metrics for p = 0 and M = 0.6, delta wing
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Table 5.8: Worst metrics R2, MAE, and MSE on test sets for p = 1, delta wing

R2 MAE MSE
M = 0.4 0.994 a3,Mx 3.61× 10−7 a0,Mz 2.06× 10−11 a0,Mz

M = 0.6 0.996 a3,Mx 4.68× 10−7 a0,Mx 2.98× 10−11 a3,My

the MSE values are even lower. The minimum R2 value here is found at 0.9987
for the polynomial coefficient for the density. Slightly higher values for MAE and
MSE are encountered for the test set at higher Mach number M = 0.6, although
they are overall still extremely low compared to the previous 2D case. Although
this test case, the delta wing, required significantly more simulation samples, it
can be concluded that learning the correction for the here encountered flow con-
ditions is an easier task than for the previously encountered cases. This, as only
laminar flow is considered and no significant discontinuities appear within the
design space. This explains the comparable high R2, as well as the low MAE
and MSE values. Additionally, this aligns with the fact that the RF model per-
formed better than the GNN model, as latter showed especially improved results
for conditions exhibiting discontinuities.

Similar results are obtained across all polynomial coefficients for the p = 1
correction. Since featuring a figure with all metrics does not add any significant
value to this evaluation, table 5.8 reports only the worst values for both test sets.

5.3 Limitations

The previously presented results highlight the correction capabilities of the trained
models. Nevertheless, as with the FV corrections shown in the previous chapter,
the proposed correction approach for the DG discretization exhibits several lim-
itations, which are shown in the following. Limitations posed by the low-fidelity
discretization itself are discussed, followed by restrictions given by the data-driven
modeling approach.

5.3.1 Low-Fidelity Discretization: Truncation Error
Since the correction term is defined with respect to the truncated high-fidelity
solutions, as given in (3.9), the ML corrected simulations can ultimately only ap-
proximate the truncation given in (3.8). This bears the question of how large the
error between high-order solution ũHO and its truncation ũT,LO is. As the trun-
cation error εT arises due to the omission of the high-order polynomial coefficients,
it can be quantified as:

εT = ũHO − ũT,LO =

NHO∑
i=NLO+1

ai,HOϕi. (5.1)
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(a) p = 0 (b) p = 1

Figure 5.22: Drag coefficient CD for test set at M = 0.4, delta wing

For previously presented results, including the lift and pressure coefficient for the
RAE2822 airfoil, as well as the pressure field and vortex trajectory for the delta
wing, this error showed no significant influence. Other values of interest are more
effected by this error, here we exemplarily show the drag coefficient CD for the
delta wing in Figure 5.22. Values requiring evaluations of derivatives, such as
CD, are strongly influenced by the truncation error, as derivatives magnify the
error. First of all, Figure 5.22 shows a gap between the solutions obtained with
p = 0 and p = 2. Truncation leads to an improvement of the drag coefficient,
but a gap remains, due to εT . For p = 1, the truncated solution similarly fails to
approximate the drag coefficient obtained on the p = 2 discretization.

Furthermore, Figure 5.23 depicts the lift coefficient CL for the test set at Mach
number M = 0.6 for the delta wing case. It presents the CL values for low-fidelity

Figure 5.23: Lift coefficient CL for test set at M = 0.6 for p = 0, p = 2,
truncation of p = 2 to p = 0, and RF correction
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simulation obtained with p = 0, high-fidelity simulation p = 2, the truncation of
low-fidelity solution onto the lower polynomial degree discretization, and the RF
correction. First of all it is again visible that a gap arises between truncation and
high-fidelity simulation, which was previously not the case for lift coefficient values
of the 2D RAE2822 DG test case. This additional gap can be explained due to the
relatively stretched elements on the wing surface, not sufficiently preserving the
high-fidelity accuracy. The RF correction matches well the truncation. Thus, the
main limitation of accuracy is here posed by the low-fidelity discretization itself.

5.3.2 Data-Driven Modeling Restrictions
For the FV chapter, the limitations posed by the data-driven method was pre-
sented first in terms of generalization capabilities. For the DG study, the same
generalization limits hold, and are thus not repeated. Instead, the physical sound-
ness of the corrected solutions will be discussed. After this, a short overview of
the time cost will be presented, summarizing the time needed to generate data
and train the models.

Preservation of Continuity

As discussed in the simulation setup of the delta wing, additional samples were
introduced at high and low angles of attack to address a decrease in accuracy
observed in the validation samples. This decline of accuracy was not reflected
in the validation metrics, including R2, MAE, or MSE. Instead, nonphysical val-
ues were obtained in the corrected solution, namely negative density in several
elements. By adding the 72 additional samples via full factorial sampling, as
described in 5.2.1, these occurrences were avoided. This outcome highlights a
fundamental limitation of a purely data-driven approaches, which do not pre-
vent nonphysical predictions. Potential strategies to mitigate this issue include
incorporating positivity preservation techniques or enforcing physical constraints
during model training.

Data Preparation and Training Time

Table 5.9 summarizes the number of simulation samples for the RAE2822 and
the delta wing, as well as the resulting simulation time. The time is computed
by using the reported average wall clock times given in table 5.1 and 5.5 for the
simulations of the high and the respective low polynomial degrees, as well as the
time needed to train the final ML models. For the RAE2822, the training time
for the GNN is chosen. Needing on average 50 minutes for a p = 2 simulation of
the RAE2822, the break even point, after which the proposed approach would be
beneficial, would be reached after 62 simulations using the p = 0 correction and
after 68 simulations using the p = 1 correction. For the delta wing, requiring 7
hours and 40 minutes for one high-fidelity simulation, the break even point would
be reached after 174 and 185 simulations for the p = 0 and p = 1 corrections,
respectively.
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Table 5.9: Number of training samples and total time needed for data collection
and final ML model training, DG study

RAE2822 Delta wing
p = 0 p = 1 p = 0 p = 1

No. of samples 60 60 172 172
Simulation time 50.5 h 55 h 1’321 h 32 min 1’367 h 24 min

Training time 45 min 1 h 9 h 25 min 47 h
Total time 51 h 15 min 56 h 1’330 h 57 min 1’414 h 24 min

Especially from the delta wing test case it is obvious that the main factor of
computational cost stems from conducting high-fidelity simulations. Nevertheless,
as previously emphasized in the FV chapter in section 4.3.2, it can be expected
that in industrial settings, in which a surrogate model for quick evaluations might
be beneficial, simulation data might already be available. The significant increase
in training time of 47 hours for the RF for the p = 1 correction of the delta
wing could further be improved. This, by restricting the depth of growth for each
decision tree or reducing the number of features considered for a split, although
these measures might simultaneously reduce the model’s performance. Another
point not leading to performance degradation would be to increase the number of
parallel workers to fit the decision trees.

5.4 Concluding Remarks

This chapter presented a procedure to quantify the discretization error between
DG solutions obtained on the same grid but with different polynomial degrees.
Subsequently to training ML models on collected data, they are employed to
infer a correction term. As for the FV chapter, the RF and GNN models show
on the RAE2822 improved results for flow field variables, pressure coefficient,
and lift coefficient. Differently to the previous FV chapter, the GNN does not
present superior performance with regard to the pressure coefficient, although the
overall metrics, such as the coefficient of determination, suggest that the GNN
prediction are of higher accuracy than the RF ones. Additionally, where shocks
are present, the GNN corrections are better than the RF ones. The procedure was
also applied to laminar flow around a delta wing, with the aim of assessing how well
the corrections reconstruct the vortex shedding phenomenon. As a greater design
space was considered, and nonphysical corrections were encountered at high and
low angles of attack, more sample points for training are needed. The corrected
flow fields and vortex trajectories show significant improvements compared to the
low-fidelity baseline simulations.

On the one hand, limitations of the proposed method were encountered for
certain values, such as the drag coefficient. Additionally, a major limitation of the
proposed method is that the corrections do not necessarily preserve the physical
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soundness of the simulation results, leading to negative values of density. On the
other hand, the significant improvement of accuracy, as was for example shown
for the vortex shedding, highlight that the discretization error with respect to
a low polynomial degree DG simulation can be quantified, learned and finally
corrected. Learning such corrections for a DG discretization allows to use a single
grid, simplifying the data generation. In the following, this will be exploited for
the correction of unsteady DG simulations.
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Chapter 6

Application: Correction of
Unsteady DG Simulations

To accurately resolve unsteady problems, a sufficiently resolved spatial and tem-
poral discretization is needed to account for relevant timescales, which renders
these simulations a computationally expensive task. Compared to high-order DG
solutions, the low-order ones require fewer degrees of freedom in space, evaluations
at fewer quadrature points, and allow for larger time steps, thereby considerably
reducing the computational effort. However, the trade-off is in general lower ac-
curacy.

Consider for example the flow around a 2D cylinder simulated with varying
polynomial degree p employing the same hardware, with the density field given
in Figure 6.1. p = 0 results in a steady state, not being capable to develop the
von Kármán vortex street behind the cylinder. The solution with p = 1 displays
vortex shedding with a time step size of ∆t = 0.5, whereas p = 2 requires a
smaller time step ∆t = 0.1 for robustness. Simulating 500 seconds, starting from
freestream conditions, requires around 11 minutes and 3.5 hours for p = 1 and
p = 2, respectively. Nevertheless, only the most expensive one is accurate, judged
by the vortex shedding interval of ts = 43s, deviating only by milliseconds from
the analytical value of ts = 42.5s. While the cylinder is only a simple showcase,
it nevertheless suggests that correcting unsteady low-fidelity simulations could

𝒑 = 𝟎
𝒕𝒔 = 𝑵/𝑨

𝒕𝒔𝒊𝒎 < 𝟓𝒎𝒊𝒏

𝒑 = 𝟏
𝒕𝒔 = 𝟓𝟓𝒔

𝒕𝒔𝒊𝒎 = 𝟏𝟏𝒎𝒊𝒏

𝒑 = 𝟐
𝒕𝒔 = 𝟒𝟑𝒔

𝒕𝒔𝒊𝒎 = 𝟑. 𝟓𝒉

Figure 6.1: Flow around a 2D cylinder across varying polynomial degrees
p ∈ {0, 1, 2}
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offer a promising approach to make the simulation of unsteady phenomena more
accessible.

This chapter focuses on the correction of low-order DG simulations for smooth
transport problems, avoiding discontinuities to concentrate on the added complex-
ity of time dependency. The DG discretization is a reasonable choice for smooth
problems and allows to obtain solutions with varying accuracy on the same grid.
Two different correction approaches and two different ML training methods are
investigated, as previously described in section 3.3. The first correction method
is a post-processing approach, in which the ML correction is applied completely
decoupled from the CFD solver iterations. Employing a GNN model and similar
input features, this approach builds mainly on the steady state work presented
in the previous chapter 5. The GNN is chosen since the NN has previously not
performed as well as the RF or the GNN, and the RF is not employed since the
RL approach requires a deep learning model.

The main goal is to extend the correction approach from steady to unsteady
simulations. The second correction approach investigates the robustness and ac-
curacy of an ML correction which is applied after each solver iteration, comparable
to [42, 118]. Similar investigations are conducted for the ML training: first, a de-
coupled ML training approach is conducted, by simply using supervised training
in an offline fashion. Secondly, an online training method is tested by employing
the PPO RL algorithm which interacts with the CFD solver during training and
prediction. With this, the aim is to investigate if RL is a viable tool to couple ML
with a CFD solver, and thus to answer the question if RL is a potential alternative
to differentiable solvers for the application of unsteady flow field corrections.

Overall, the generalization capabilities of the models are assessed in two ways:
firstly, in terms of different parameters within the design space, and secondly,
in terms of providing long-term stable corrections at time instances beyond the
training scope. The content of this chapter has previously been presented in [84].

6.1 1D Case - Linear Advection

The aim of using a simple 1D case is to test and compare the methodologies
presented in section 3.3 and to assess their generalization capabilities. For this,
the linear advection of a sine wave is investigated, which is described for a quantity
u and non-zero constant velocity coefficient c by the PDE given in (2.11).

6.1.1 Data Generation
In the following, the simulation setup is presented, including a description of the
design space and the sampling strategy. Subsequently, simulation results obtained
with varying polynomial degrees are shown, displaying the dissipative nature of
low-fidelity simulations, which is intended to be corrected by the ML predictions.
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Figure 6.2: Design of experiment for 1D linear advection samples

Simulation Setup

To approximate the solution of the boundary value problem, a modal DG dis-
cretization is chosen with a third order RK time discretization. The domain
from x = 0 to x = 1 is discretized with 100 equally spaced elements. For the
implementation, a code is written in Python, employing Legendre polynomials,
Gauss quadrature points and upwind flux for linear advection. A sine wave is
implemented for the initial condition and the domain uses periodic boundary in
flow direction. To generate parametrized data, simulations are carried out across
varying velocity coefficients c and amplitudes A. For this, a design of experiment
is created with a Halton sequence, as given in Figure 6.2, using the SMARTy
library [13]. The 20 black samples are used for the training of all models, and
the 10 green samples for the validation of the models trained with supervised
learning. For training and validation, the time span 0 ≤ t ≤ 0.5 is considered,
resulting in 100 snapshots per sample, since a time step of ∆t = 0.005 for the
low-order trajectories is kept constant. For testing, not only the red samples in
Figure 6.2 are considered for an extended time 0 ≤ t ≤ 5.0, but also the train and
validation samples within the time span 0.5 < t ≤ 5.0, with the goal of evaluating
the behavior of the models during temporal extrapolation.

Simulation Results

Simulations are conducted with polynomial degree p ∈ {0, 1, 2} for a sine wave
with amplitude A = 2.0 and velocity coefficient c = 1.5. Results obtained at
t = 0.5 and t = 5.0 seconds are presented in Figure 6.3. It is visible that the
solution with p = 0 is inaccurate, resulting in a discretization error which induces
high numerical diffusion, leading to an increase of the discretization error and thus
a decrease of the amplitude with time. Increasing the polynomial degree leads to
solutions which are sufficiently accurate and maintain the amplitude. With this,
the goal of this test case is to investigate if solutions with p = 0 can be corrected
with the aforementioned methods described in section 3.3.
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6.1.2 Machine Learning Correction
In this section, the ML training approaches are descibed. Then, the ML cor-
rected solutions are shown, first qualitatively on a selected test case, and then
quantitatively across the whole design space at different time steps.

In general, all ML methods follow an element-wise correction, that is the model
predicts for each element separately a correction. The underlying ML model for
all correction methods is a GNN with convolutional layers to incorporate informa-
tion from the surrounding neighborhood elements. The graph representation is
depicted in Figure 6.4. Each element k of the grid corresponds to a graph vertex
vk inside the set and is connected to its neighboring vertices vj ∈ N(vk) by the
edges ek,j . Note that first and last vertices are also connected, representing the
periodic boundary condition. The feature inputs shared across all methods are
the amplitude A, velocity coefficient c, and the first and second derivative of the
degrees of freedom a of the current element at the current time step t and at the
previous time step t−∆tLO. Thus, the feature vector for element k is

η(ũLO) =

[
A, c,

∂aLO

∂xi

∣∣∣
k,t−∆t

,
∂2aLO

∂xi∂xj

∣∣∣
k,t−∆t

,
∂aLO

∂xi

∣∣∣
k,t
,
∂2aLO

∂xi∂xj

∣∣∣
k,t

]
. (6.1)

The use of information from the previous time step allows to embed temporal
information. It was found that adding additional prior time steps did not increase
the accuracy of the prediction, but only leads to an increased feature dimension
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Figure 6.3: Solution ũ for wave with amplitude A = 2.0 and velocity c = 1.5 for
polynomial degrees p ∈ {0, 1, 2}
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and higher computational cost, especially during training. The output of the net-
work trained with supervised learning is the element-wise correction ∆ât for the
current time step t. For the RL approach, two GNNs are implemented, the policy
network and the critic network. In the RL framework, the described features are
the state observations, which the policy network receives as input. Based on this,
it predicts the mean µ of the distribution of the correction ∆ât, while the value
network predicts how good it is to be in a given state given the same inputs.

Supervised Learning Setup

To ensure a fair comparison between the two different supervised learning cor-
rection methods, i.e. the models trained for a post-processing correction and an
iterative correction, a Bayesian hyperparameter optimization based on minimizing
the validation MSE is conducted within the same hyperparameter search space.
The results of this search are reported in table 6.1. The supervised learning model
requires more layers. A possible contribution to this is the wider spread of the
corrective values to be learned. Besides this and the different correction to be pre-
dicted, both training methods employ the same hyperparameters. These include
an exponential decay of the learning rate and the same loss function, chosen to be
the MSE minimizing the difference between the predictions ∆â and the ground
truth corrections ∆a on the training data.

Table 6.1: Hyperparameters for supervised learning models, 1D test case

Hyperparameter Post-processing Iterative
No. of layers 5 2

No. of hidden channels 19 12
Initial learning rate 0.0013 0.0082

Furthermore, the same model with hyperparameters as described above, is trained
twice for the iterative correction approach. Once without and once with Gaussian
noise added to features related to the degrees of freedom, namely the derivatives.
The noise is applied for each batch separately and additionally standardized. The
architecture and training settings are kept the same for both models, as given
in table 6.1. To find an appropriate amount of noise another hyperparameter
optimization for the standard deviation of the Gaussian noise is conducted to
minimize the validation MSE. The final validation MSE values for all models
trained under supervised learning are shown in table 6.2.

Table 6.2: Validation metrics for supervised learning approaches, 1D test case

Correction approach MSE
Post-processing 3.07× 10−3

Iterative 1.30× 10−3

Iterative with noise 0.98× 10−3
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Reinforcement Learning Setup

To drive the RL agent, the reward function is chosen as the squared error between
the truncated high-order solution and the corrected solution, such that:

rk(t) = −(ũT,k(t)− ûk(t))
2. (6.2)

This value is computed for each element k after each time step ∆t, thus being a
non-sparse reward. Note, the leading negation of the function ensures that the
difference is minimized, since the reward is maximized by definition. Correcting a
solution with polynomial degree p = 0 with basis function ϕ1 = 1, (6.2) simplifies
to

rk(t) = −(a1,k,HO(t)− (a1,k,LO(t) + ∆â1,k(t)))
2. (6.3)

With this, the reward is comparable to the loss function of the models trained using
supervised learning, allowing to evaluate the final results under similar training
conditions. Two approaches, denoted as (a) and (b), are investigated to find
optimal hyperparameters.

For approach (a), no initial guess is taken for the network architectures, and
most of the hyperparameters are tuned using Bayesian optimization. The number
of maximum episodes is restricted, such that the training stops when reaching
200 episodes. The training also concludes before if the reward converges. The
tuned hyperparameters include the standard deviation for the action distribution,
the number of hidden channels for the actor and critic network, the number of
convolutional layers, the activation function, learning rate, the discount rate, the
number of time steps per batch, the number of network updates per episode, the
clipping factor ϵ, and the entropy coefficient.

For approach (b), the same network architecture is used for the actor net-
work as the one found for the iterative correction model with supervised learning.
Regarding hyperparameters, several best practices from [5] are followed. These
include initializing the weights of the last policy network layer to a small value, no
use of entropy for exploration, and having a wider critic network compared to the
actor network. For this, the number of hidden channels of the critic network is set
to 128. Then, only the standard deviation for the action distribution, the learning
rate, the number of time steps per batch, and the number of network updates per
episode are tuned. The number of maximum episodes is not restricted, such that
the training concludes as soon as the reward converges.

No validation set is used during training, typical for RL, as the observed states
behave non-stationary. Thus, the agents only encounter the 20 simulations from
the training set, which are all re-computed for each episode. The actor prediction
is used as correction after each solver iteration and the reward can be computed
according to (6.3). Figure 6.5 plots the resulting mean rewards for both training
approaches. First, employing a maximum number of episodes for (a) results in
early convergence of the reward, while approach (b) requires a total of 1’889
episodes to conclude.

The experienced mean rewards for approach (a) and (b) are given in Fig-
ure 6.5a. The reward for approach (a) with extensive hyperparameter optimiza-
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Figure 6.5: Mean reward across episodes for agent with (a) extensive
hyperparameter search with limited number of episodes, and (b) initial guess for

the model architecture

tion and limitation of maximum number of episodes again presented in Figure 6.5b
for better visualization. The initialization of the last layer does not seem to have
much effect, as both agents start in the first episode with a similar reward around
−6 × 10−3. The agent which was tuned more extensively and was limited in the
number of maximum episodes converges faster to a steady mean reward. Here,
the training stops at episode 177. The approach using initial guesses leads to more
exploration, visible by the noisy mean reward across the episodes in Figure 6.5a.
This leads to the agent needing more episodes, a total of 1’889 to be precise, un-
til convergence. Nevertheless, this results in finding a slightly higher final mean
reward. The final magnitude of the mean reward is comparable to the final val-
idation MSE of the models trained under the supervised learning framework -
although it has to be emphasized that for the RL agents, this value is based on
the training data as given in (6.3).

The agent exhibiting noisier behavior uses no entropy factor and the hyperpa-
rameter tuning resulted in a lower standard deviation for the action distribution,
favoring less exploration. The smoother progress of the other model can be ex-
plained by the limited number of episodes, restricting the agent to find an optimal
policy in a shorter time. Additionally, the model resulting in Figure 6.5b favors
a network with more parameters, here with 5 convolutional layers and 13 hidden
features, compared to the other one having 2 layers and 12 hidden features. More
convolutional layers include more neighborhood information, possibly leading to
increased regularization and thus less exploration. Although the reward curves
suggest two fairly different agents, similar trends with no significant differences
have been found while comparing the results. Thus, only corrections from agent
(b) resulting in a higher mean reward are presented in the following.
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Correction Results

For the ML correction results, first, qualitative findings are presented for the test
sample with the highest amplitude A = 1.9375 and velocity coefficient c = 2.263,
given in Figure 6.6. Time steps up to t = 0.5, still within the training time
window, can be regarded as extrapolation test in terms of amplitude and velocity
coefficients, since the sample is not surrounded by training samples in the design
space. Any snapshot at times beyond t = 0.5 is a test of temporal extrapolation.

At time t = 0.5, equaling 100 passed time steps, all models except for the one
trained under the RL framework show excellent results, matching the high-order
solution ũHO visually very well, as given in Figure 6.6a. The solution corrected
by the RL agent is closest to the low-order solution ũLO, showing only slight
corrective capabilities. At t = 2.0, after 300 more time steps, the post-processing
correction (PPC) degrades. This is expected, since under the post-processing
approach the error grows over time as the low- and high-order trajectories diverge,
and the greatest discrepancies occur at higher amplitudes and velocity coefficients.
The model is not able to extrapolate to such extents, resulting in less effective
corrections. The iterative correction (IC) models trained under the supervised
learning (SL) framework start to show slight deviations, but still correct the low-
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Figure 6.6: Qualitative results for test sample with amplitude A = 1.9375 and
velocity coefficient c = 2.263
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Figure 6.7: MAE across all samples for post-processing correction with
supervised learning. Legend: ○ training samples, □ validation samples, △ test

samples.

order solution overall. At t = 5.0, another 600 steps ahead in time, only the two
models trained under supervised learning using an iterative correction achieve
to approximate the high-order solution ũHO. Nevertheless, within these time
steps an error accumulation can be observed, and the amplitude of A = 1.9375 is
shrinking, distorting the initial wave. The model trained with regularizing noise
shows improved corrections compared to the one trained without noise.

A quantitative evaluation of the corrective capabilities within the design space
is given in Figures 6.7, 6.9, and 6.8. Here, the MAE is plotted for each model at
three time steps and is defined as

MAE =
1

K

K∑
i=1

|ũi,T − ûi| , (6.4)

with K = 100 denoting the number of elements in the grid. For each snapshot
at the indicated time, the MAE is computed across all elements, displaying the
difference between the ML corrected solution û and the truncated solution ũT .
Note the different scale for the last time step and that there are no validation
samples for the RL model, as denoted by the legend. Furthermore, since training
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Figure 6.8: Iterative correction with RL: MAE across all samples. Note that
there is no validation data. Legend: ○ training samples, △ test samples.
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and validation data is only considered up to t ≤ 0.5, all samples are labeled as
test sample at the final time t = 5.0.

For the post-processing correction trained with supervised learning, Figure 6.7
shows a low MAE across all training, validation and test samples inside the train-
ing time window up to t = 0.5. As was already shown in Figure 6.6 with the
qualitative results, it is also visible in the MAE that at later times, the post-
processing model fails to predict a sufficient correction. This is especially the case
for higher amplitudes and velocity coefficients, as the differences between low and
high-order solutions increase faster.

For the RL agent, a similar trend as for the post-processing correction model
is visible, as depicted in Figure 6.8. The agent fails for samples with high ampli-
tude A and velocity coefficient c, but even earlier during training times, already
visible after 50 time steps at t = 0.25. As the error accumulates for iterative cor-
rection approaches, the MAE grows from left to right for these samples located in
the upper right quadrant, where high amplitudes A and velocity coefficients c are
located. Additionally, the agent starts to exhibit increased MAE at high ampli-
tudes and low velocities at later time steps. Thus, it can be stated that the online
training approach using RL does not increase robustness leading to long-term
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Figure 6.9: MAE across all samples for iterative correction with supervised
learning: (a) without noise, (b) with noise regularization. Legend: ○ training

samples, □ validation samples, △ test samples.
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stability. On the contrary, the generalization capabilities to adapt to new cases
and into longer time spans are overall the poorest, including on training samples.
This is an interesting result, since it was expected that RL as an online learning
approach would incorporate the autoregressive errors during training, ultimately
making the agent more robust.

The two models trained under a supervised learning framework to predict an
iterative correction show the best long-term corrections, as displayed in Figure 6.9a
and Figure 6.9b. For the model trained without noise regularization, the MAE
increases significantly for one validation sample with highest velocity coefficient at
t = 0.5, which is amplified through the iterative correction approach, well visible
at t = 5.0 in Figure 6.9a. At this time, equaling a 1’000 time steps, the model
shows greater errors for samples with high velocity coefficient c as well as for
samples with high amplitude A and low c. Adding noise regularization during
the training reduces almost all of these errors, as shown in Figure 6.9b, with only
one remaining sample at t = 5.0 at the border of the design space exhibiting an
increased MAE.

6.2 2D Case - Convection of an Isentropic Vortex

Based on the results for the 1D test case, only the two most promising approaches
are further investigated: the post-processing correction with supervised learning,
showing reliable results within the design space, and the iterative correction with
supervised learning trained under noise regularization, providing long-term accu-
rate corrections. To further assess the models capabilities, a more complex test
case is investigated. The considered problem is based on [94], originally proposed
to test if high-order FV schemes exhibit numerical dissipation or dispersion. By
solving the compressible Euler equations, the case considers a uniform flow, which
convects a 2D isentropic vortex in one direction. The reader is referred to [94] for
detailed information regarding case and initial conditions.

6.2.1 Data Generation
This subsection presents the simulation setup and simulation results obtained with
different polynomial degrees.

Simulation Setup

For the grid, a uniform spacing is considered, with 20×20 equally spaced elements
along both axes, resulting in a total of 400 grid cells. Periodic boundaries are set
in the direction of the flow, from left to right along the x-axis. [94] describes a
strong vortex with β = 0.8, where β = vA/v∞ is the ratio between the maxi-
mum velocity induced by the vortex and the uniform flow velocity. As for the 1D
problem, data for training, validation and testing is collected with a design of ex-
periment via a Halton sampling sequence, shown in Figure 6.10. The design space
is spanned by vortex strength β = [0.25, 0.8] and vortex length Lv = [0.4, 1.0]. 15

115



CHAPTER 6. CORRECTION OF UNSTEADY DG SIMULATIONS

0.4 0.6 0.8 1.0
Vortex length L

0.25

0.50

0.75

V
or

te
x

st
re

n
gt

h
β

Training (15)

Validation (5)

Testing (5)

Figure 6.10: Design of experiment for 2D isentropic vortex

simulation samples are used for training, and 5 additional simulations are carried
out for the validation and test set, resulting in a total of 25 simulations. The DG
simulations are conducted with a Roe upwind scheme for the convective term. A
dual time stepping scheme is used to treat the temporal discretization, with lin-
earized implicit Euler employed for the inner iterations, and a diagonally implicit
RK scheme for the outer iterations.

The average wall clock time for simulations up to t = 25.0 for different polyno-
mial degrees is given in table 6.3. For all conducted simulations the same hardware
is used, that is one node with eight cores and eight threads per core on an HPC
cluster. Furthermore, the table reports the total number of degrees of freedom
across all elements per equations per time step, highlighting the increased cost for
high-order solutions, and the advantage of ML corrections for low-order simula-
tions.

Table 6.3: Average wall clock time for one simulation up to t = 25.0, and degrees
of freedom per time step and per equation

p ∆t Time Degrees of freedom
0 1.0 3 min 100
1 1.0 7 min 300
2 0.5 43 min 800
3 0.5 2 hrs 20 min 1’000

Simulation Results

Simulation results with M = 0.3 and vortex length Lv = 1.0 are plotted in
Figure 6.11 at different times, including t ∈ {5.0, 25.0, 50.0}. The density field for
polynomial degree p = 0 and time step size ∆t = 1.0 is given in Figure 6.11a,
and for polynomial degree p = 2 with ∆t = 0.5 in Figure 6.11b. Note that for
p = 0 the solution is a constant across each element, while for higher polynomial
degrees, the solution is described as a piecewise polynomial function as given in
(2.14). Thus, the solution for p ≥ 1 can be sampled and displayed at a higher
resolution than is given by the computational mesh - which is consistently done
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Figure 6.11: Simulation results for density field at varying times

in this chapter for all vortex visualizations. Figure 6.11 clearly shows that p = 0
is inaccurate, leading to significant numerical dissipation within only a few time
steps, whereas the solution with polynomial degree p = 2 retains the shape of the
vortex.

Figure 6.12 plots the density along a cut through the mid-plane of the vortex
at t = 25.0 for solutions obtained with polynomial degree p ∈ {0, 1, 2, 3}. This
plot confirms the numerical dissipation induced by p = 0, and shows the same
effect for p = 1, although less significant. Additionally, it can be seen that the
center of the vortex is for all solutions located at the same position, thus the
vortex retains the desired speed. From this it can be concluded that no dispersion

Coordinate X

D
e

n
s

it
y

0 2 4 6 8
0.92

0.94

0.96

0.98

1

p=0

p=1
p=2
p=3

Figure 6.12: Density cut through vortex center for β = 0.8 and Lv = 1.0 at
M = 0.3 and t = 25.0
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is encountered, which is to be expected for low wave numbers. Solutions of p = 2
and p = 3 are equal, indicating convergence with respect to the number of degrees
of freedom at p = 2. Thus, the goal of this study is to correct the inaccurate
solution with polynomial degree p ∈ {0, 1} to approximate the solution obtained
by p = 2.

This test case adds complexity compared to the previous 1D case by adding
another dimension and by correcting both p = 0 and p = 1. Additionally, with the
Euler equations a non-linear problem is solved and the aim is to correct not only
one unknown, but rather all variables of interest, such that ũ = {ρ,Mx,Mz, ρE}.

6.2.2 Machine Learning Correction
Since the reinforcement learning approach has not shown any significant advan-
tages on the 1D case, only two of the supervised learning methods are investigated
and described in the following. Then, the ML correction results are displayed, first
qualitatively by the density plotted along a cut through the vortex on a selected
test case, and then qualitatively across the whole design space at different time
steps.

Supervised Learning Setup

For each degree of freedom, all models predict one correction, which results in 4
outputs for p = 0 and 12 outputs for p = 1 per grid element. For the features,
the first and second derivative of each degree of freedom is computed, again for
each element separately, as well as for current and previous time steps. For the
1D problem, adding the amplitude A and the velocity coefficient c increased the
accuracy across all models. For this case, adding vortex strength β and length
Lv as features resulted in no significant benefit for metrics of the validation data,
and are thus removed from the feature inputs. Therefore, the feature vector for
element k is

η(ũLO) =

[
∂aLO

∂xi

∣∣∣
k,t−∆t

,
∂2aLO

∂xi∂xj

∣∣∣
k,t−∆t

,
∂aLO

∂xi

∣∣∣
k,t
,
∂2aLO

∂xi∂xj

∣∣∣
k,t

]
. (6.5)

This results in a total of 48 input features for the p = 0 correction and 144 for
p = 1. No extensive hyperparameter tuning was performed for the training of the
post-processing correction model. Instead, simple manual tuning of the learning
rate, the number of layers, and the number of hidden features quickly reached a
sufficiently low validation MSE, and further changes to the hyperparameters did
not significantly effect this metric. For the iterative correction model, the same
architecture is chosen as used for the post-processing model. Only noise is added
based on a grid search, resulting in a reduction of the validation MSE. As for the
1D problem, this noise is added at each epoch for every batch, and for each feature
the noise is scaled by subtracting the feature batch mean before a division by the
standard deviation of the batch. The standard deviation for noise regularization
amounts to σ = 0.0005 and σ = 0.00025 for the p = 0 and p = 1 correction, re-
spectively. The final validation MSE values are reported in table 6.4. On a GPU
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NVIDIA A100 unit, the training time for the models revolves around 10 minutes
for both p = 0 and p = 1 corrections.

Table 6.4: Validation metrics for supervised learning approaches, 2D test case

Correction approach MSE
Post-processing p = 0 0.052

Iterative with noise p = 0 0.030
Post-processing p = 1 0.063

Iterative with noise p = 1 0.035

Correction Results

First results are presented on a qualitative basis by plotting the resulting density
along a cut through the vortex, given in Figure 6.13 for the test sample with
highest vortex strength β = 0.7185 and length Lv = 0.9438. Note that not the
corrected degrees of freedom are plotted, but the resulting density. From left to
right, results are shown for time steps t = 5.0, t = 25.0, and finally t = 50.0. Since
all models are trained from 0.0 ≤ t ≤ 25.0, the latter is an additional test of time
extrapolation.

For the post-processing correction results given in Figure 6.13a, it is visible
that improvements are found within the training time for p = 0. The corrected
p = 0 solution at t = 5.0 approximates the density values of p = 2, with slight
deviations close to the vortex core. The corrected solution at later time t = 25.0
only approximates the p = 1 simulation results, which is nevertheless an increase
in accuracy of one polynomial degree. As for the extrapolation in time, the model
is not capable of predicting a smooth correction, such that the density exhibits
significant fluctuations and deviates from any solution. Looking at the p = 1 post-
processing corrections, it is first of all visible that this discretization is missing
higher frequencies. This results in a staggered solution rather than the smooth
curve obtained with p = 2. Nevertheless, the correction approximates the higher
order solution within the training time up to t = 25.0, such that no dissipation of
the vortex occurs. No significant improvements are visible at later time t = 50.0,
and the corrected curve only slightly increases the density at the vortex core.

Looking at Figure 6.13b, which shows the results of the iterative correction
model, it becomes evident that the model trained to correct p = 0 deviates early
from the expected corrections. This error grows in time, such that the ML aug-
mented vortex at t = 50.0 diverges from the expected p = 2 simulation result.
Similarly to the post-processing correction, the iterative correction model displays
better predictive capabilities for p = 1 than for p = 0. Up to t = 50.0, the p = 1
correction demonstrates increased accuracy, producing solutions that closely re-
semble the simulation results obtained with one polynomial degree increase, i.e.
p = 2.

Figures 6.14 and 6.15 depict quantitative results, in this case the MAE for each
sample at different times for both the post-processing and the iterative correction,
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Figure 6.13: Density plotted along the middle of the z-axis for simulations with
polynomial degrees p ∈ {0, 1, 2} and their corresponding ML corrections at times

t ∈ {5.0, 25.0, 50.0} for test set with β = 0.7185 and Lv = 0.9438

respectively. Circles represent training samples, squares validation samples, and
diamonds test samples. Here, only the resulting MAE for the density variable
ρ is shown, but similar trends are observed for the other corrected variables.
Considering the post-processing corrections in Figure 6.14, the trend that the ML
model is not capable to predict accurate corrections beyond the training time
is again confirmed by the results at t = 50. This is presented for both p = 0
and p = 1 in Figures 6.14a and 6.14b, and especially pronounced for increased
vortex strengths and vortex lengths. For the corrections within the training time
0.0 ≤ t ≤ 25.0, the models are capable to predict highly accurate results for
p = 1 across all samples and all variables. For p = 0, the training samples show
increased errors at the boundary of the design space where high β and Lv are
encountered. Not surprisingly, the maximum error is found for the test sample
with greatest vortex strength and length, for which the density was previously
plotted in Figure 6.13.

For the iterative correction of p = 0, given in Figure 6.15a, increased MAE
values are found early at t = 5.0, especially for greater vortex strengths. These
errors grow over time, as can be expected due to the autoregressive nature of the
iterative correction, leading to the poorest results. Thus, in this case, training
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under noise did not lead to a sufficient regularization to achieve stable long-term
predictions. The overall best performance is found for he iterative correction for
p = 1, given in Figure 6.15b. Here, the model which is trained under noise is also
capable to extrapolate in time, leading to excellent results across all samples after
100 time steps at t = 50.0.

In general, the plots indicate that the p = 0 correction is more difficult to learn
for both post-processing and iterative correction approaches. Better performance
for the p = 1 correction might have several reasons: first of all, the error grows
slower, decreasing the variance in the dataset for the post-processing correction
and leading to a slower grow of the ML model error in the iterative correction
approach. Secondly, p = 1 for a 2D problem with four equations leads to 12
degrees of freedom per element. Thus, employing first and second derivatives as
feature inputs, this results in three times as many inputs as for p = 0. Although
this also increases the number of outputs to be predicted, the additional feature
information might lead to improved results and an overall best performance for
the iterative correction for p = 1.
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(b) Correction of polynomial degree p = 1

Figure 6.14: MAE for corrected ρ across all samples for post-processing
correction with supervised learning. Note that training was conducted from

0.0 ≤ t ≤ 25.0, for ∆t = 0.5. Legend: ○ training samples, □ validation samples,
△ test samples.
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Figure 6.15: MAE across all samples for iterative correction with supervised
learning and noise regularization. Note that training was conducted from

0.0 ≤ t ≤ 25.0, for ∆t = 0.5. Legend: ○ training samples, □ validation samples,
△ test samples.

6.3 Concluding Remarks

This chapter investigated ML based corrections to increase the accuracy of low-
order unsteady DG simulations. Three different correction and ML training com-
binations were compared: firstly, a methodology decoupled from the CFD solver
with a model trained under supervised learning for a post-processing correction.
Beyond the training time, the resulting corrections show poor long-term predictive
capabilities. Nevertheless, this method is the most reliable correction approach
within the training time window across all samples, achieving accuracy compa-
rable to solutions of at least one polynomial degree higher. Another advantage
of this decoupled approach is its simplicity in terms of data generation, training,
and correction application - due to the clear separation between ML model and
CFD solver.

Secondly, with the aim to improve predictions beyond the training time, an
iterative correction approach trained under supervised learning was suggested.
On the 1D linear advection problem, this led to an increased accuracy at later
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time steps, and adding regularization in form of noise increased generalization
capabilities. For the 2D test case, the noise regularization approach shows the
best corrective capabilities for p = 1, but poor results for polynomial degree
p = 0. In general, it is concluded that this approach is not reliable, since the
fundamental limitation of autoregressive models is the risk of error accumulations.
This ultimately renders an otherwise robust CFD solver over long-term horizons
unstable.

Finally, to decrease autoregressive errors, RL was explored as an alternative to
adjoint-driven training or differentiable solvers, for coupling not only the correc-
tion, but also the model training with the solver. While RL enables interactions
with the CFD solver, allowing to incorporate the model error during training, the
resulting corrections for the 1D test case are not sufficient. Requiring up to 1’889
CFD simulations for each of the 20 training samples, the training is significantly
more expensive compared to the supervised learning approaches. Additionally,
the correction performance is the poorest among all methods. PPO is known
to be sample inefficient, such that other RL algorithms with improved sample
efficiency could be considered, for example the the Deep Deterministic Policy
Gradient (DDPG) algorithm [76]. However, this choice comes at the expense of
reduced training stability compared to PPO. Other aspects that could be revis-
ited include adjusting the level of exploration, the shape of the reward function,
and including a validation dataset - although improvements based on the latter
might be marginal, since it was shown that the model already performs poorly on
training samples. Overall, it can be stated that if dense training data is available
and if the state of the environment under consideration is high-dimensional, such
as in this case finding a correction for each element in the discretized domain at
every time step, the PPO algorithm is currently not a viable option. These find-
ings suggest that the here proposed online approach using PPO is not a feasible
substitute for differentiable solvers.

In summary, this chapter has shown that ML corrections of unsteady low-
order DG simulations are feasible but have in general several limitations. Using
the decoupled method of a post-processing correction with supervised learning can
be an attractive surrogate model within a constrained design space and confined
training time windows. For future work, the method could be extended to more
complex flows, including non-periodic, 3D, and high Reynolds number cases. As
for the aim of predicting long-term corrections beyond the training time with an
iterative approach, it can be concluded that the methods explored in this work
coupling ML model and CFD solver do not yet demonstrate sufficient reliability
to justify further investigations.
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Chapter 7

Conclusion and Outlook

To conclude this work, the main research question introduced in section 1.3 is
repeated here.

Main research question
Can ML methods be employed to increase the accuracy of inexpensive

low-fidelity CFD simulations?

To investigate this question, correction methods were developed and tested
across three different scenarios: the correction of coarse grid steady FV simula-
tions, low-order steady DG simulations, and low-order unsteady DG simulations.
The effectiveness of the proposed approaches has been demonstrated through-
out this work. For steady coarse grid FV simulations, corrections were tested
on turbulent flows around the RAE2822 airfoil and the LANN wing, employing
the RANS equations and the negative version of the Spalart-Allmaras turbulence
model. For steady DG simulations, the same airfoil geometry was used, and for
the 3D case, the laminar flow around a delta wing was investigated. For unsteady
problems, the proposed correction methods were first applied to a simple 1D linear
advection of a sine curve. Subsequently, the two most promising approaches were
further tested on the convection of an isentropic vortex described by the Euler
equations.

The results have shown that the proposed methods can be leveraged as ef-
fective surrogate models accurately reproducing certain values, including lift and
pressure coefficient, or reconstructing phenomena such as vortex shedding or con-
vection in time. Thus, this work can be leveraged in many-query problems, where
a multitude of parametrized simulations within a defined design space have to be
conducted.

In the following, the three sub-questions, which explore robustness, accuracy,
and efficiency of the proposed methods, are addressed to further elaborate on
the main research question in more detail. The advantages and disadvantages of

125



CHAPTER 7. CONCLUSION AND OUTLOOK

the proposed methods are discussed, and potential future research directions are
proposed.

7.1 Review of Results and Research Questions

Question 1
Can ML models robustly infer corrections for low-fidelity simulations under

varying conditions?

The first question asks if a consistent pattern exists between low-fidelity flow field
features and the discretization error, which can be learned by data-driven models.
This work has shown that ML models are powerful function approximators for the
inference of a point-wise correction for low-fidelity simulations. Thus, the trained
models have to a certain extent the potential to effectively find a relationship
between a low-fidelity simulation output and associated errors derived from high-
fidelity simulations.

The errors to be learned are related to the first and second derivatives of
the flow variables to be corrected or the polynomial coefficients, which are ef-
fectively used as feature inputs to the ML models. This is in line with classical
approaches, as derivatives are often utilized as error indicators for adaptive re-
finement techniques. Derivatives as error indicators are a natural choice, since it
can be assumed that steep gradients, encountered for example at shock positions,
are located in areas of high resolution of the respective discretization. Addition-
ally, using derivatives includes information not only from the local element, but
also from neighboring ones, which improves point-wise predictions significantly.
This observation resonates with the finding from the FV study, in which the GNN
demonstrates superior corrective capabilities compared to the NN and RF models,
especially in cases with discontinuities. Employing a GNN enables to efficiently
collect and aggregate feature information from neighboring elements, resulting in
a richer feature representation to effectively infer an element-wise correction. If
boundary values are of interest, such as the surface pressure or lift coefficient,
employing a local cell Reynolds number is of relevance, as it allows to embed
the wall distance as an input value of the models. Other values, such as global
ones, like the Mach number and angle of attack, or grid related values, including
skewness and cell volume, have not shown any significant influence. Nevertheless,
this finding does not seem to be generally valid, as for the considered unsteady
1D linear advection problem the use of global values, here the amplitude and
constant velocity coefficient, resulted in major improvements, whereas for the un-
steady problem in which the convection of a vortex was studied, including the
global features of vortex strength and vortex length, did not result in any relevant
performance boost.

As for any data-driven methodology, the extent to which the learned pat-
terns can generalize within the design space and to out of distribution data is
of importance. The robustness of the proposed methodology was assessed in dif-
ferent settings. Improved low-fidelity solutions are encountered for test samples
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within the training design space, which means that the trained models succeed
in interpolation tasks. Difficulties and decreased performance for all models are
nevertheless found for problems with discontinuities, specifically for shocks. Here,
the RF model shows inferior performance compared to deep learning models, i.e.
the NN and GNN, a finding which aligns with previous work [74, 144]. Examin-
ing extrapolation capabilities of the trained models was done in different ways.
First, the GNN model trained on coarse grid CFD simulations for the RAE2822
was applied to a slightly altered geometry, namely the RAE5212 airfoil. Here, a
tremendous drop of performance was found. Secondly, during the unsteady in-
vestigations, test samples at the boundary of the design space not surrounded by
training and validation samples can be seen as extrapolation test, although to a
lesser extent than the application to a different geometry. Similarly to difficulties
encountered at high angles of attack, increased errors are encountered for high
amplitudes and velocity coefficients for the 1D linear advection, as well as for
high vortex strengths and lengths for convection of a 2D vortex. Additionally,
the models trained under a supervised learning method showed the most robust
and accurate inferences, while an online learning approach based on reinforce-
ment learning did not increase the generalization capabilities within the design
space. The final and most intricate extrapolation test was conducted with respect
to time, assessing if the ML models are capable of predicting corrections beyond
their training time. Models trained for a post-processing correction naturally fail
here, as the error between low- and high-fidelity trajectories diverge over time,
leading to out of distribution data which is simply not encountered during the
training time. Enforcing an even distribution of the correction along the time di-
mension by applying an iterative correction approach lessens this issue, at the cost
of introducing autoregressive errors. Introducing regularization in form of noise
resulted in improved long-term performance for many cases, while the investigated
online learning approach, namely the PPO reinforcement learning algorithm, did
not increase the robustness in time. In general, none of the proposed methods
show satisfactory reliability in terms of extrapolation in time.

It was also assessed whether the model hyperparameters, which alongside the
model parameters define the predictions, can be transferred and reused to learn
new tasks. For both the FV and DG study, it was found that the problem could
be effectively scaled from 2D to 3D. Most of the RF and GNN hyperparameters
were reused from the 2D test cases, resulting in comparable performance, while
only changing for the GNN the learning rate and the number of epochs, as well as
the number of decision trees for the RF. This highlights the potential for trans-
ferring hyperparameters to scale problems within the same discretization scheme.
However, although the results of this were not shown here but presented in [85],
applying the same GNN hyperparameters to a different grid and discretization
method, specifically from FV to the DG scheme, under identical conditions for
the RAE2822 airfoil, a noticeable drop in performance was observed. This sug-
gests that while GNN hyperparameters may generalize well within the same dis-
cretization, they are less transferable across fundamentally different discretization
methods. In contrast, the RF model, which is influenced by fewer hyperparam-
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eters compared to NNs and GNNs, exhibited consistent performance when the
hyperparameters found during the 2D coarse grid FV study were applied to the
2D DG test case [85]. This robustness can be attributed to the RF model’s lower
sensitivity to hyperparameter choices, as its training relies mostly on ensemble
averaging of weak learners and less on architecture-specific tuning, as is the case
for deep learning models. The observed sensitivity of the GNN and the robust-
ness of the RF underline the importance of model choice and problem specific
hyperparameter optimization.

Question 2
Can the corrected solutions accurately approximate the respective high-fidelity

ones?

The second question deals with the results achieved with respect to the accuracy of
the ML augmented low-fidelity simulations. Significant improvements have been
achieved in terms of the corrected flow fields, leading to the accurate reconstruc-
tion of vortex shedding, as well as enhanced surface pressure and lift coefficients.
For example, within the design space and training time, accuracy of at least one
polynomial degree higher was achieved for the convection of a vortex. Thus, the
proposed methods can be employed as a potential surrogate model, resulting in
accurate and fast predictions for such values.

Limitations of the achievable accuracy are not only posed by extreme cases,
such as shocks or samples at the border of the design space, which require certain
extrapolation capabilities. In the proposed methods, the upper limit of accuracy is
ultimately defined by either the coarse grid or the low-order polynomial, as well as
by the transfer operator, which maps the high-fidelity solution to the low-fidelity
discretization. In the investigated cases, while the pressure and lift coefficients
were largely unaffected, other aerodynamic values of interest influenced by velocity
gradients showed reduced accuracy. This was presented in the FV study, in which
the derived skin friction coefficients from the ML corrected solutions closely match
those derived from the mapped solution, showing significant improvements over
the low-fidelity discretization. However, the achieved accuracy does not reach the
precision of the fine grid solution, since the boundary layer elements are generally
too coarse to capture accurate gradients.

Additionally, the accuracy is impacted not only by discretization and mapping
limitations but also by errors introduced by the ML models themselves. These
inaccuracies are especially evident in regions with shocks, despite the ML cor-
rections significantly improving the respective low-fidelity solutions. Some ML
models showed oscillatory behavior in derived properties like the pressure coeffi-
cient. For time-dependent problems, the contribution of the ML error becomes
even more pronounced. On the one hand, the model trained for a post-processing
correction showed high accuracy for interpolation tasks within the design space
and the training time, while an accuracy decrease is obtained beyond its train-
ing time, rendering the model incapable of extrapolation in time. On the other
hand, while an autoregressive approach with an iterative correction in-between
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solver iterations promises to extend stability over longer time periods, its accu-
racy diminishes due to the accumulation of prediction errors over successive steps.
This error propagation poses a fundamental limitation, rendering the correction
approach unreliable. As the predictions at each successive time step rely on the
outputs of previous steps, minor inaccuracies can amplify, leading to significant
deviations from the true solution over extended periods.

Question 3
Can all of the above be done efficiently to maintain the low cost of the

low-fidelity simulation?

The last question is concerned with the efficiency of the proposed methods. All
correction approaches rely on a point-wise inference, in the considered cases
vertex-wise predictions for the FV scheme and element-wise predictions for the
DG discretization. Correcting each vertex or element separately allows to obtain
more training instances from a single simulation and to apply the trained model
on new datasets, since it is not bound to the number of points in the grid. It was
also shown that the steady correction methods are scalable from 2D to 3D, while
the training cost increases with the number of training instances and feature in-
puts. Nevertheless, training an ML model is a one-time investment, after which it
can infer corrections within seconds. For example, considering the DG correction
for the 3D delta wing, the p = 0 simulation, which takes an average of 1 minute to
compute, can be corrected to approximate the pressure field and vortex shedding
obtained from the p = 2 simulation, which takes over 7 hours on average.

Additionally, employing the trained ML model only on low-fidelity discretiza-
tions with few degree of freedom ensures that computational demands remain
relatively low. This, since only the low-fidelity simulations have to be computed,
oftentimes feasible without HPC access. Additionally, depending on the complex-
ity of the ML model architecture, memory requirements can be kept low. Al-
though the training of GNN models are significantly sped up on GPUs, deploying
the trained model does not necessitate GPU hardware.

The major cost and challenge for the proposed methods stem from generating
high-fidelity data and the need to conduct resource intensive hyperparameter op-
timizations. However, in practical industrial applications, extensive datasets may
already exist due to years of accumulated simulation expertise in the respective
field. Leveraging such high-fidelity data could enable the training of ML models
to learn and correct discretization errors, although certain aspects of the meth-
ods, such as the injection for the FV discretization, would need to be revisited.
Nevertheless, using historical data could reduce the need for additional costly sim-
ulations, as low-fidelity simulations together with data-driven corrections can be
used to quickly sample new solutions.

As for the comparison between supervised and reinforcement learning ap-
proaches, the latter promises higher flexibility due to its reward function. Using
the PPO algorithm, the stochastic nature of training RL agents needing to explore
the interaction with its environment comes along with the disadvantage of high
simulation cost. For the investigated problem, the supervised learning approaches
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were deemed significantly more efficient than the RL method. As a conclusion, it
can be suggested to focus on supervised learning paradigms if the data allows to,
especially for high-dimensional problems.

7.2 Future Potential

In light of these conclusions, is there a way to improve the robustness, accuracy,
and efficiency of the proposed methods? Ultimately, the interplay between these
three traits involves a trade-off: employing ML methods for CFD tends to reduce
accuracy while shifting the computational cost to data generation and model
training. Although deploying the trained ML model is relatively efficient, its
generalization is confined within the training design space, and coupling correction
with solver iterations negatively affect the robustness of the CFD solver, ultimately
introducing stability and reliability issues.

Robustness can be discussed in terms of ML generalization capabilities and in
terms of the reduction of the stability when coupling ML methods with the CFD
solver. As for the first point, increasing the training design space, for example by
including several relevant geometries, will increase the range of applicability range
of any ML model. Furthermore, the proposed methods of this work are purely
data-driven, and a worthwhile further investigation is the use of physics-informed
aspects. This could involve for example relevant values such as resulting lift or
drag coefficient in a loss function, or imposing the conservation laws as well as
the boundary conditions of the problem during the training of the ML model, by
employing positivity preserving schemes. Using physics-informed methods does
not only potentially improve generalization capabilities but might also increase
the stability when coupling ML and CFD methods, as a physics-informed loss
acts as regularization, possibly reducing ML prediction errors. For the correction
of unsteady simulations, reinforcement learning has not shown to be a feasible
method. An alternative, investigated in other research work, is the use of adjoint
driven frameworks. Although requiring modifications within the CFD solver, this
might proof to be a more robust approach to couple ML and CFD methods.

To increase the accuracy of the proposed methods for relevant aerodynamic ap-
plications, the low-fidelity discretization needs to be adjusted close to the bound-
ary layer, where relevant values such as the drag coefficient are evaluated. For
coarse grids, the boundary layer can be refined, leading to anisotropic boundary
elements capturing velocity gradients more accurately. Such a grid refinement
can also be applied to the correction of DG solutions with low polynomial de-
grees, although here the possibility of retaining higher order close to the airfoil
might also be considered. Alternatively, the classical approach of using wall func-
tions could be used to capture the high-fidelity velocity gradients on low-fidelity
discretizations.

To decrease the cost of the proposed methods, the main limiting factors,
namely the dataset generation and model training, need to be addressed. Often-
times, ML methods are applied with the justification that there is an abundance
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of simulation and experimental data available. Unfortunately, this abundance
of data for aerodynamic applications is usually not publicly available, making it
necessary to generate costly high-fidelity data from scratch, as was done for this
work. Thus, to make ML for CFD methods more accessible and efficient, an ef-
fort is needed to create available and standardized datasets. To accelerate model
training, a possible suggestion is to not only reuse previously found hyperparam-
eters but also provide pre-trained models, which can subsequently be fine-tuned
for specific tasks. These two suggestions, providing generic datasets as well as
using pre-trained models, have lead to the success of large language models in the
field of natural language processing, and a similar effort is needed to make ML
methods successful for CFD applications.

Finally, it is important to reflect on how the proposed approaches compare to or
complement already existing methods. The approaches in this thesis could serve
as viable surrogate models, enabling fast many-query sampling of CFD solutions
on low-fidelity discretizations. Evaluating not only surface and integral values
but also the field variables allows for more insights, making these methods an
attractive alternative to established surrogate models, which often only predict
surface related variables.

Additionally, the proposed correction framework could complement classical
numerical methods which utilize low-fidelity discretizations, particularly multigrid
or adaptive refinement techniques, presented in chapter 1. In the context of
multigrid methods, ML predicted corrections could be used at intermediate levels
of the multigrid cycle, similarly to [102], potentially accelerating convergence.
The benefit of using ML predictions in this manner is to serve only as guidance to
enhance the convergence rate, while the final accuracy is ultimately dictated by the
discretization of the finest level. This ensures the reliability of the overall solution
- of course only if sufficient convergence is achievable. Similarly, for adaptive
refinement methods, the ML predictions could be utilized not as correction term
but as an error indicator. By identifying regions of high discretization error, these
predictions could guide the refinement of the mesh or the polynomial degree more
effectively.

Identifying such areas where the ML model would mainly act as a guidance,
while the preservation of the conservation laws is still ensured by the CFD solver,
offers a promising direction for future advancements of ML for CFD.
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