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1. Introduction

What would have gone unnoticed as just another foggy Wednesday in November

a decade ago prompted several German news outlets to launch investigations on

6th November, 2024 (Janzing, 2024; Krapp, 2024; Rönsch, 2024; WDR, 2024).

Not only were fog and clouds blocking sunlight from reaching photovoltaics (PV)

panels, but conditions were also largely windless across the country (Kaspar et al.,

2024). Germany was in the midst of an infamous so-called “Dunkelflaute” or dark

doldrum. Solar and wind energy supplied just 3.1% of the electricity consumed on

that day, compared to 42.0% over the year. As a consequence, day-ahead stock

market prices briefly exceeded 800 e/MWh – more than ten times the average

price of 78 e/MWh in 2024 (Burger, n.d.). In the end, the situation was managed

without any real risk of a power outage, thanks to existing reserves and imports

(Bundesnetzagentur, 2025). Nevertheless, a broad and sometimes heated public

debate was triggered, most notably after similar dark doldrums occurred again in

December and January (Klein, 2024; Saurugg, 2024). Is Germany prepared for

such situations in a future where solar and wind energy are expected to provide a

much higher share of the electricity demand, particularly if the electrification of the

transport and heat sectors further increase this demand (Deutschlandfunk, 2025;

Saurugg, 2024)? Had the country’s decision to phase out nuclear and eventually

fossil energy sources been a mistake (Deutschlandfunk, 2025)? And what measures

would be suitable to ensure a reliable and affordable power system in the years

ahead (Deutschlandfunk, 2025; Rönsch, 2024; Saurugg, 2024)?

Fortunately, researchers and power system operators were already well aware

of the issue. Since 2021, the European Network of Transmission System Operat-

ors for Electricity (ENTSO-E) annually conducts an elaborate European Resource

Adequacy Assessment (ERAA) that analyses the risks of electricity shortages over

a 10-year time horizon so that decision-makers can take informed action if the

need arises (ENTSO-E, 2025b). For the validity of this assessment, it is essential

to consider all relevant sources of uncertainty. In particular, the intrinsic vari-

ability of weather must be taken into account. Up until 2023, this was mainly

done by evaluating weather data from around 35 years of reconstructed histor-

ical climate data, so-called reanalyses (ENTSO-E, 2025a, pp. 55–60). However,
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as meteorologists have pointed out, historical weather scenarios may not realistic-

ally represent future weather conditions shaped by climate change (Kapica et al.,

2024). Therefore, the latest European Resource Adequacy Assessment (ERAA)

2024 used weather data from projections based on global climate models (ENTSO-

E, 2025c, pp. 64–66; M. Koivisto et al., 2023). These in turn come with their own

uncertainties. All climate models have biases, so a multi-model ensemble should

be used (H. C. Bloomfield et al., 2022). Additionally, they operate based on as-

sumptions about future developments, most notably the Shared Socioeconomic

Pathways (SSPs) defined for the Sixth Assessment Report of the United Nations’

Intergovernmental Panel on Climate Change (IPCC), from which scenarios of fu-

ture greenhouse gas emissions and climate policies are derived (Intergovernmental

Panel On Climate Change (Ipcc), 2023, pp. 12–14). Further variations arise from

differing assumptions about generator characteristics and random outages of gener-

ators (ENTSO-E, 2025c, p. 46; M. J. Koivisto & Murcia Leon, 2022). In summary,

future ERAAs are supposed to incorporate a wide range of weather years from an

ensemble of climate models, each operating based on a set of SSPs, technical scen-

arios and random outages. This can easily add up to thousands of scenarios that

need to be assessed. However, the detailed power flow simulations used in the main

analysis of the ERAA are computationally so demanding that this volume of data

can quickly overwhelm available resources (Biewald et al., 2025). Therefore, a fast

method to detect electricity shortages can be highly beneficial. Beyond enabling

research into such events without extensive computational resources, it could also

support the preselection of particularly critical subsets of data for comprehensive

analysis in the main part of a resource adequacy assessment.

In this thesis, I investigate five methods to detect electricity shortages without

the need for elaborate power flow simulations. Their predictive performance is

evaluated at three levels of accuracy, reflecting the specific requirements of differ-

ent tasks: The ability to identify exact hours at which electricity shortages occur

is relevant, if timing and patterns of such events are of interest. However, for

assessing adequacy risks, it may suffice to know the aggregated duration of electri-

city shortages within a year. Finally, selecting the climate years with the highest

adequacy risk requires only a proper ranking.

My analysis shows that established methods for detecting dark doldrums which
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consider only the supply side of the electricity balance perform comparatively

poorly (Kittel & Schill, 2024; Mockert et al., 2023). As electricity shortages occur

exactly when electricity demand and supply are not balanced, it might not come

as a surprise that an approach additionally incorporating demand data yields the

best results (Otero et al., 2022). However, its reliance on demand data can limit its

applicability, as such data is not always readily available. As an alternative, I de-

veloped a data-driven method that does not require demand estimates but instead

uses temperature and time data as proxies. Provided sufficient training samples,

the approach achieves a predictive performance close to that of the method de-

pendent on load data.

In the following Methods and Background section, I explain the context in more

detail and introduce the four investigated methods taken from other authors as

well as the measures chosen for their evaluation. Section 3, gives an overview

of the datasets used. In Section 4 I define my novel approach, which sets the

stage for the main analysis. I begin by evaluating the predictive performance of

the selected approaches across different datasets and tasks in Section 5 and finish

by discussing their strengths and limitations in detail in Section 6. In Section 7,

as an exemplary application of my approach, I assess the impact of the switch

from reanalysis-based weather data to climate projections on adequacy concerns.

Finally, Section 8 concludes the thesis.

2. Methods and Background

2.1. Considered Variables and definitions

Before describing the investigated methods, I will define some concepts that are

used throughout this thesis.

Nameplate capacity: The nameplate capacity of an electricity generator is the

maximal power output of a generator that is provided under benchmark conditions

(U.S. Energy Information Administration (EIA), n.d.). For VRE sources like solar

PV, it is often much higher than the typical power output the generator will provide

(Mockert et al., 2023).
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Capacity factors: The capacity factor, cf, of an electricity generator is the ratio of

the available capacity to its nameplate capacity at a given point in time (“Capacity

factor”, 2023). It can be generalized to a set of generators stating the ratio of

their combined available capacity to their combined nameplate capacity. Given n

generators with capacity factors cf1, . . . , cfn and nameplate capacities Pi, . . . , Pn

their combined capacity factor is defined as

cf =

∑n
i=1 Picfi∑n
i=1 Pi

. (1)

In this thesis, I mainly use the combined capacity factor of the major VRE sources,

namely solar PV and on- and offshore wind. In the following, I will call it the

combined capacity factor or cf.

Full load hours: The full load hours of an electricity generator are the hours the

generator would have to produce at nameplate capacity to generate the total power

it produces in a given time frame, often a calender year (Heylen et al., 2018). One

way to calculate them is by taking the sum of an hourly time series of capacity

factors over a year. They can be aggregated analogously to capacity factors.

The residual load: The residual load of an energy system is often defined as

the difference of electricity demand and supply by VRE sources (Schwab, 2015,

pp. 22–23; Do et al., 2016). In this thesis the considered VRE sources for the

calculation of the residual load are solar PV and on- and offshore wind power.

Other definitions include further renewable energy sources such as hydro power

and sometimes power plants for which it is assumed that they have to run, e.g.,

because they produce industrial process heat (Gerke, 2014).

Electricity shortages The situations studied in this thesis are situations during

which electricity supply can not meet electricity demand at a certain node in the

grid. This can be due to an overall lack of electricity production or transmission

constraints in the grid. Several names for such situations are used in the literat-

ure, including ’power supply-demand imbalance’, ’energy shortage’ and ’electricity

supply shortfall’ (Biewald et al., 2025; North American Electric Reliability Corpor-
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ation [NERC], 2024; Shen et al., 2024). I will use the term ’electricity shortage’ as

it is brief and more specific than ”energy shortage”. Other authors use the similar

term ’energy shortfall’ to refer to the residual load (van der Wiel et al., 2019).

Loss of load hours (LOLH): The loss of load hours (LOLH) of a power system

are the expected number of hours in a year with an electricity shortage (Ibanez

& Milligan, 2014). The term loss of load expectation (LOLE) is sometimes used

interchangeably in the literature (Avdijaj et al., 2024). However, the LOLE can

also refer to the number of days in a year in which electricity shortages occur

(Ibanez & Milligan, 2014). To avoid confusion, I used the unambiguous term

LOLH.

Capacity mechanisms: Capacity mechanisms are measures taken to ensure the

availability of sufficient generation capacities to meet demand at all times, even if

these capacities are not economically competitive. This is mostly done by subsidies

to providers of generation capacities. (Simoglou & Biskas, 2023)

Climate Reanalyses: Climate reanalyses are consistent and complete datasets

of climate variables that aim to recreate historical weather data and are based

on observations. The need for reanalysis arises from the fact that the available

measurements of climate variables are incomplete. While there is a lot of meas-

urements available for some areas of the world, others are only sparsely sampled.

This becomes especially relevant for data in the pre-satellite era. To obtain com-

plete, gridded data sets from the available measurements, they are fed into modern

numerical weather prediction models. The outputs of those models are then taken

as recreations of the historical weather. It is, thus, important to keep in mind that

reanalysis data is not raw recorded data, but has undergone a complex preparation

step that introduces some uncertainties and biases. (Jeppesen, 2023)

Climate projections: Climate projections are predictions of weather realisations

in the future that are mostly obtained from elaborate climate models. While

modern climate models have remarkable complexity and can be trusted to achieve

reliable results on the trends of the climate represented by statistical properties of

5



the weather, the chaotic nature of the Earth’s system itself renders it impossible to

predict the weather with any certainty on the scale of years (Etling, 2008, p. 250;

Slingo & Palmer, 2011). Therefore, the weather predicted by climate models for

future years has to be interpreted as a possible realisation of the weather in the

predicted climate.

To be usable for the assessment of resource adequacy, it is important that rare

events are properly represented in those synthetic weather years as these can cor-

respond to critical situations for power systems (H. C. Bloomfield et al., 2021).

The rare events of interest here, such as long periods with low wind speeds, do not

automatically coincide with those that climate modellers have in mind when they

assess the representation of extreme weather events.

2.2. The European Resource Adequacy Assessment (ERAA)

The European Resource Adequacy Assessment (ERAA) is a thorough evaluation

of the resource adequacy of the European power system with a time horizon of up

to ten years (ENTSO-E, 2025b, p. 6). It is annually conducted by the European

Network of Transmission System Operators for Electricity (ENTSO-E) as required

by Regulation (EU) 2019/943 of the European Parliament and of the Council of

5 June 2019 on the internal market for electricity (recast) (2019). Since its first

edition was published in 2021, its methodology was improved every year. It now

consists of two main modules. First an economic viability assessment (EVA) is

conducted that analyses which generation units are economically feasible in what

time periods (ENTSO-E, 2025c, pp. 39–51). These results are then used as input

for simulations of the predicted power system with different climate datasets and

assumptions about technical parameters (ENTSO-E, 2025c, pp. 52–62). The main

output are hourly sampled time series that indicate if the power demand could be

served and if not how much of the load remained unmatched.

The reliability of the results is double checked by the European Union Agency

for the Cooperation of Energy Regulators (ACER), a decentralized agency of the

European Union (EU) which, unlike the ENTSO-E that in part works for the in-

terests of transmission system operators (TSOs), has to work for the good of the
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European people.1 Interestingly, the ACER did not approve the first two editions

of the ERAA, not only because they decided the model needed general improve-

ment, but specifically because they claimed that risks were overestimated. This

emphasises that adequacy assessments must neither over- nor underestimate the

risks (ACER, 2022, p. 18; ACER, 2023, p. 19). While too optimistic results risk

electricity shortages, too pessimistic ones might lead to the implementation of

expensive, oversized capacity mechanisms. Actually, the ERAA is the official ref-

erence for adequacy concerns in the EU, which means that capacity mechanisms

can only be implemented if the ERAA supports concerns that can not be resolved

by other measures.2. More details on the involved institutions, legal foundations

and methodology of the ERAA can be found in Appendix A.

2.3. The scope of the predictive models

As described in the introduction, I studied methods that can predict electricity

shortages from the input data of a resource adequacy assessment without needing

extensive resources. Of course, this requires major simplifications. I decided to

only look at methods, that do not use the network structure of the grid directly.

Therefore, the approaches do not have an explicit spatial component. Instead

they work with the input data, such as capacity factor time series, aggregated for

a spatial area. I only looked at data, that is aggregated to the country level and

all analyses in this thesis are done with data for Germany. So when I write about

the combined capacity factor of solar and wind generators, I refer to the combined

capacity factor of all wind and solar generators in Germany. For the aggregation I

assume lossless and instantaneous transmission of electricity within the aggregated

area (’Copperplate model’).3

1Regulation (EU) 2019/942 of the European Parliament and of the Council of 5 June 2019
establishing a European Union Agency for the Cooperation of Energy Regulators (recast),
2019, Article 1(3); ENTSO-E, n.d.-a.

2Regulation (EU) 2019/943 of the European Parliament and of the Council of 5 June 2019 on
the internal market for electricity (recast), 2019, Articles 20 & 21.

3See the paragraph on capacity factors in Section 2.1 for the details of the combination of
capacity factors.
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2.4. Evaluation metrics

To analyse the predictive performance of the considered indicators of electricity

shortages I used a range of different metrics that focus on three different levels of

interest, reflecting the needs of different tasks. The levels are:

1. The prediction of exact hours at which electricity shortages occur.

2. The prediction of annual LOLH.

3. The skill at ranking scenarios according to their annual LOLH.

In all cases results of power flow simulations are used as reference (See Section 3.2

for more details on these simulations). More precisely, I looked at hours during

which more than 1MWh of electricity demand can not be served according to

the power flow simulations. These are used as reference hours with an electricity

shortage.

2.4.1. Performance measures of binary classifiers

To evaluate the performance of different methods to predict the exact hours with

electricity shortages they were interpreted as binary classifiers that sample hours

into hours with and without electricity shortages. A binary classifier that classifies

samples as positive or negative can be evaluated using the number of samples it

correctly classifies as positives (true positives (TP)), respectively negative (true

negatives (TN)) and the number of samples it incorrectly classifies as positives

(false positives (FP)), respectively negative (false negatives (FN)). Here, a positive

sample is an hour with an electricity shortage. Three common performance metrics

of binary classifiers are used in this thesis to quantify the performance of the

methods: Sensitivity, precision and Fβ-score.

Sensitivity: The sensitivity (or recall) of a binary classifier is the ratio of true

positives to all positive samples (Tharwat, 2021).

sensitivity =
TP

TP + FN
(2)
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Here: The ratio of hours with an electricity shortage that were detected to all

hours with an electricity shortage.

Precision: The precision of a binary classifier is the ratio of the number of true

positives to the number of all samples that are classified as positive (Tharwat,

2021).

precision =
TP

TP + FP
(3)

Here: The ratio of hours with an electricity shortage that are detected to all hours

for which an electricity shortage is predicted.

Fβ-score: The Fβ-score combines sensitivity and precision in one measure. The

parameter β allows to prioritize one over the other. While the F1-score is simply

the harmonic mean of precision and sensitivity, values of β above 1 prioritize

sensitivity and values below 1 put a higher weight on precision (Christen et al.,

2023).

Fβ = (1 + β2)
precision · sensitivity

(β2 · precision) + sensitivity
=

(1 + β2)TP

(1 + β2)TP + β2FN + FP
(4)

Here, the F2-score was used alongside the F1-score, reflecting the assumption that

for certain tasks it is more important to detect most hours with an electricity

shortage than to avoid predicting some where none occur.

2.4.2. Error measures for numerical variables

For the evaluation of the prediction of annual LOLH, I used established error

measures for numerical variables. When predicting a numerical variable xi with

predictions x̂i, a wide range of error measures are available. An overview of com-

mon measures and their capabilities and deficiencies is given by Hyndman and

Koehler (2006). The methods they introduce can be categorized into two types.

For one, they introduce scale dependent measures, that change when a dataset is

scaled and often have the dimension of the variable. While these measures are

widely used they can not be used to directly compare the quality of predictions

for different datasets. Secondly, they introduce a range of measures that adjust
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the scale dependent ones to be independent of scale and allow for comparisons

between different datasets. I will use the mean absolute error (MAE), an intuitive

but scale dependent measure, and the mean absolute scaled error (MASE), a more

complicated but scale independent measure.

Mean absolute error (MAE): The MAE is defined as

MAE = mean(|x− x̂|) = 1

n

n∑
i=1

|xi − x̂i|, (5)

where n is the number of samples (Hyndman & Koehler, 2006). It is recommended

by Willmott and Matsuura (2005) as error measure for its straight forward inter-

pretation as average absolute error, specifically compared with the very common

root mean square error (RMSE). The MAE has the same dimension as x and de-

pends on the scale of the data, which also facilitates its interpretation but prohibits

comparisons of the predictive performance of algorithms on different datasets.

Mean absolute scaled error (MASE): The MASE adjusts the MAE to be in-

dependent of scale by dividing the errors with the MAE of a simple benchmark

prediction method. The original paper suggests theso-called näıve forecast method

as benchmark for time series data (Hyndman & Koehler, 2006). In my case I use it

to compare weather years that are treated as examples of possible weather realiza-

tions that do not always constitute a time series as they might stem from different

climate projections. Therefore, I use the version for general data samples with the

arithmetic mean of x, x̄, as benchmark prediction, as was proposed in a forum post

by Hyndman (https://stats.stackexchange.com/users/159/rob-hyndman) (2014).

The resulting definition of the MASE is:

MASE =
1

n

n∑
i=1

∣∣∣∣∣ xi − x̂i

1
n

∑n
j=1 |xj − x̄|

∣∣∣∣∣ = 1
n

∑n
i=1 |xi − x̂i|

1
n

∑n
j=1 |xj − x̄|

=
MAE

MAD
, (6)

where MAD = 1
n

∑n
j=1 |xj − x̄| is the mean absolute deviation. So, the MASE is

simply the MAE scaled by the mean absolute deviation (MAD) in my case.4 Its

values can be interpreted as showing how well the prediction is on average com-
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pared to always predicting the mean of the measurements. Values greater than 1

indicate a worse prediction and values below 1 a better one. While the prediction

of the mean seems to be trivial, it should be noted that it is possible that no

available approach achieves a comparably well prediction, as it uses information

on the measurements that will often not be available to other methods. Therefore,

a MASE value above 1 does not necessarily indicate a bad predictive performance.

The MASE is proposed as a standard measure for the evaluation of forecast accur-

acy by Hyndman and Koehler (2006). Unlike similar measures, such as the mean

absolute percentage error (MAPE) or the mean relative absolute error (MRAE),

it is always defined and finite except for trivial cases were the data is constant.

2.4.3. Measures of the ranking of variables

Sometimes, the absolute values of a predicted variable are not relevant but only

the ranking assigned to a data point, so, the order of data points from the lowest

to the highest value. This can for example be the case in the context of resource

adequacy assessments when the most critical scenarios for a thorough analysis

have to be selected and the number of scenarios that can be processed is already

fixed. I use two measures in this context, one that assesses the overall similarity

of the ranking given by a prediction and a reference and one that focuses on the

similarity for a certain amount of the highest ranks.

The Spearman rank correlation: The spearman rank correlation of two vari-

ables, X and Y is defined as the Pearson correlation coefficient of the rankings of

the variables (Myers & Well, 2003, p. 508). If ties occur, all data points with the

same value are assigned an average rank (Dodge, 2010, p. 502). Hence, if exactly

n data points have a lower value than m other data points that have the exact

4This makes the MAE equivalent to the relative mean absolute error (RelMAE) with the mean
as benchmark prediction in my case. The original context in which the MASE was developed
is the prediction of time series, for which in many cases previous parts are available. In that
context, the RelMAE uses the MAD computed on the previous data (”out of sample”) while
the MASE computes the MAD of the sample (”in sample”).
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same value, these m data points all get the rank

1

m

m∑
i=1

n+ i.

Like the Pearson correlation coefficient, it varies between −1 and 1, where 1 in-

dicates a perfect match of the rankings and -1 an opposite ranking.

The Sørensen-Dice coefficient: The Sørensen-Dice coefficient or Dice similar-

ity coefficient (DSC), originating in ecology, was developed as a measure of the

similarity of two statistical samples (Dice, 1945). Given two finite samples A and

B, the DSC is defined as:

DSC(A,B) =
2|A ∩B|
|A|+ |B|

∈ [0, 1]. (7)

In the case of finite sets it is equal to 1 if and only if both sets are identical and

equal to 0 if and only if the sets do not intersect. I use it to quantify the ability

to detect the most critical weather years by computing the DSC of the two sets

of the n weather years with the most LOLH predicted by the analysed indicator

and the reference. Here, n can be varied according to the number of weather years

that are considered to be of interest.

2.4.4. Box-and-whisker plots

Box-and-whisker plots are a very common way to depict the univariate distribution

of a data set. Because their precise definition can vary between publications I

will give a short explanation of the definition used in this thesis. As depicted in

Figure 1, the box is delimited at its upper and lower end by the first and third

quartile of the underlying empirical distribution. Between those two is a third line

representing the median. The length of the box, so the difference between third

and first quartile, is called inter quartile range. The whiskers of the box extend to

the data point furthest away from the quartiles that are within a 1.5 inter quartile

range distance from the quartiles. All data points outside this range are considered

to be outliers and are depicted by small circles (du Toit et al., 1986, p. 29).
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Figure 1: Illustration of a box-and-whisker plot. IQR stands for the inter quartile
range.

2.5. Established indicators of variable renewable energy

shortages

The challenges that VRE sources pose for a power system that heavily relies on

them are subject of research for several decades now and over the years, several

viewpoints and definitions of critical situations caused by the variability of VRE

sources have been established. Kittel and Schill (2024) assembled a comprehensive

collection of different types and measures of variable renewable energy shortages.

I will follow the nomenclature proposed in their work where they use the term

’variable renewable energy shortage’ or ’VRE shortage’ as an umbrella term for

different types of events during which VRE sources are scarce. They identified

four subtypes of VRE shortages:

1. Variable renewable energy droughts: VRE droughts are focused on

the supply side of the energy balance and only consider availability time

series of VRE sources. They are defined using a threshold under which the

availability time series has to fall. The considered time series can be relevant

meteorological data such as wind speeds or further processed data such as

capacity factors and while some definitions consider only one energy source

others include a broader range.

2. Positive residual load (PRL) events: As their name gives away, positive

residual load events additionally include the energy demand side and are

focused on the balance of supply and demand. Situations where electrical

load exceeds VRE supply are called PRL events.
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3. Variable renewable energy anomalies: Focused on the supply side, VRE

anomalies are defined by the accumulated deviation of VRE availability time

series from a reference over a given time frame.

4. Electricity system stress events: Electricity system stress events take an

economic point of view and are defined by high electricity prices, which are

understood to indicate VRE shortages that create system stress.

VRE anomalies classify whole periods of time, so they are not well adapted to

the task of identifying exact hours at which electricity shortages occur. Electricity

system stress events on the other hand rely on market data, which is not provided

as input to the ERAAs. Therefore, they can not be used for a pre-selection of

relevant scenarios. Thus, I restricted my analysis to VRE droughts and PRL

events in this thesis.

2.6. Variable renewable energy droughts

All VRE drought definitions given by Kittel and Schill (2024) have in common that

they use a time series characterizing VRE supply and identify situations in which

that time series falls below a given threshold θ ∈ [0, 1]. I always use the combined

capacity factor of on- and offshore wind and solar PV, cf, as time series for the

VRE droughts. Furthermore, Kittel and Schill (2024) are not only interested in

the individual hours of VRE droughts, but aggregate them to events defined by

consecutive hours in which the drought condition holds. This can be important

in the analysis of VRE droughts because longer droughts have the potential to

become much more critical to the power system. In the following the different

definitions of VRE droughts are introduced.

2.6.1. The Constantly-Below-Threshold method

A straightforward way to define a VRE drought is to consider every point in

time where cf is below the threshold to be part of a VRE drought. Kittel and

Schill (2024) call this a Constantly-Below-Threshold (CBT) VRE drought, as the

capacity constantly has to stay below the threshold during the VRE drought.
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They further point out though, that the CBT method tends to underestimate the

size of energy droughts, as already one sample above the threshold ends the event.

This can lead to the identification of a multitude of small VRE droughts shortly

after one another in a situation where the relevant time series fluctuates around the

threshold. Each one of these droughts might be harmless if seen as isolated events.

Capacity reserves and storage solutions such as pumped hydro storage or batteries

might be expected to be able to compensate for the lack of VRE sources for such

short times. The accumulation of those events can, however, pose a much greater

risk to system stability, as the short interim with higher energy availability might

not suffice to refill energy storage. Thus, it is often more insightful to combine

these events and consider them as one big event. This process, called pooling, can

be done by various means, some of which will be introduced below.

2.6.2. The Mean-Below-Threshold approaches

One pooling procedure relies on a running mean to determine if VRE drougth

events should be pooled or considered to be seperate events. The Mean-Below-

Threshold (MBT) method, applies a running mean to the time series before com-

paring it to the threshold. The publications Kittel and Schill cite for this definition

differ in their details. Some authors define the VRE drougth as all points in time

where the running mean falls below the threshold (Potisomporn et al., 2024).

Another definition is given by Mockert et al. (2023). Every point in time that con-

tributes to a running mean below the threshold is associated with a dunkelflaute

by them.

A common approach to the MBT method is to choose a fixed time span TMA for

the running mean. Kittel And Schill refer to this as the fixed-duration mean below

threshold (FMBT) approach. They criticize that the choice of TMA is arbitrary

and argue that the approach is of limited utility as the results for different TMA

vary significantly. To avoid this, they propose their own variable-duration mean

below threshold (VMBT) approach. They start with a big initial TMA and repeat

the whole process for successively decreasing values of TMA. This way, they claim

to capture VRE drought events on all temporal scales without ambiguities that

the choice of a parameter would create. This can only be guaranteed if they start
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with a sufficiently large value of TMA, such that no higher values of TMA would find

any VRE drought events. To achieve this, they claim that it suffices to start with

any large value of TMA such that no drought event is detected for it. However, this

is not true in general as can be proven by counter example. Suppose the capacity

factor were given by

cf(ti) =

0.01 if i is divisible by 20

0.2 otherwise.
(8)

Given a threshold θ = 0.19 and a running mean with length TMA = 20, the

running mean would be at a constant level of (19× 0.2+0.01)/20 = 0.1905, above

the threshold. Setting TMA = 21 the running mean would attain values of about

0.1819, below the threshold. This counterexample albeit a bit artificial shows

that the VMBT approach is not as unambiguous as they assume. Furthermore

it would be necessary to take every possible smaller value of TMA to ensure, that

no droughts are missed. This makes this approach quite costly if started with a

really high value. I would conclude that the approach allows to capture droughts

on different scales but does not provide the unambiguity Kittel and Schill (2024)

promise without significantly increased use of resources. Therefore, I decided to

use the FMBT approach used by Mockert et al. (2023) for my evaluation of the

MBT pooling approach.

2.6.3. The Sequential Peak Algorithm

A different pooling approach is given by the Sequent Peak Algorithm (SPA), ori-

ginating in hydrology. It utilizes the cumulative energy deficit of a drought event

and does not need additional parameters. With the SPA method an event starts

when the considered time series, e.g. cf, falls below the threshold. Afterwards a

cumulative deficit function EDSPA is calculated:

EDSPA(ti) = max(0, EDSPA(ti−1) + θ − cf(ti)) (9)

The VRE drought event is then defined to end when EDSPA attains its maximal

value before the next zero. Due to its independence of parameter choice beside the

choice of a threshold θ, Kittel and Schill see the SPA as one of the best methods
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to define VRE droughts, together with their own VMBT method.

2.7. The considered VRE drought definitions

In total I decided to consider three VRE drought definitions:

1. The FMBT method as defined by Mockert et al. (2023), with a running mean

of 48 h and a threshold of 0.06.

2. A variation of the first, with a threshold of 0.12 and a running mean of 72 h.

These parameters were chosen after some experimentation with the goal to

increase the amount of electricity shortages that are correctly detected.

3. The SPA algorithm with a threshold of 0.06.

2.8. Positive residual load events

Another approach to the detection of critical situations in energy grids are positive

residual load (PRL) events, i.e., situations in which electricity demand exceeds

supply by VRE sources. As most energy systems nowadays still have a relevant

share of non-renewable energy sources, the residual load is positive most of the

time. So, actually, high residual load event might be a better term for the situations

of interest.

A straightforward approach to define high residual load events is proposed by

Otero et al. (2022). They define the days with the highest 10% of residual loads as

energy droughts. Using the terminology of Kittel and Schill (2024) this is similar

to a CBT method with a threshold set to the 0.9-quantile of the dataset. Of

course in this case the approach would have to be changed to not identify the data

points below but above the threshold. As the LOLH are far below 10% of the total

time, this exact definition will systematically overestimate the resource adequacy

concerns. Therefore, I consider the quantile at which to set the threshold to be

a hyperparameter to optimize, similar to the approach taken by Biewald et al.

(2025). This also addresses the criticism that the CBT approach can produce

somewhat arbitrary results due to the need to choose a threshold (Kittel & Schill,

2024). To an extent this issue is resolved because a criterion for the choice of
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the threshold is given. However, the solution is not perfect, as training data with

reference values for hours with electricity shortages is required and the threshold

depends on the particular dataset in question. To achieve comparability to the

other considered approaches, I, furthermore, adjusted the method to use an hourly

sampled time series instead of a daily sampled one.

By its definition this approach will always detect the same percentage of hours

with electricity shortages. This can be detrimental to its prediction skill on other

data sets than the one the quantile is optimized for or even subsets of the data set it

is optimized for. Consider, for example, a subset of the original dataset consisting

of a single weather year. The approach will always detect the same LOLH no

matter if the year is a particularly critical one or not. To avoid this shortcoming,

I adjust the approach by setting a threshold defined by the optimized quantile, so

a certain level of the residual load, instead of using the percentage of critical data

points as definition. I will refer to this definition as the residual load approach

after Otero et al. (2022) or simply residual load approach in the remainder of this

thesis.

3. Data

The data used in this thesis is mainly the publicly available input data of the

European Resource Adequacy Assessments complemented by climate data from

two other sources and results of economic dispatch (ED) power flow simulations

conducted at the German Aerospace Center (DLR). While the power flow simula-

tions provide reference predictions of electricity shortages, the ERAA input data

supplies time series of capacity factors of VRE sources, temperature and electricity

demand.

3.1. The ERAA data

On the highest level, the data is divided into two datasets: one compatible with

the ERAA 2022 and one with the ERAA 2024. Before describing them in more

detail I will briefly introduce two publicly available databases in which most of the

input data of the ERAAs is published .
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3.1.1. The Pan-European Market Modelling Database (PEMMDB)

The data on installed capacity resources and interconnection capacities is compiled

by the TSOs based on the National Energy and Climate Plans (NECPs), European

plans such as the ”Fit for 55”-target of the EU as well as estimates from TSOs and

distribution system operators (DSOs) and independent research institutions. It is

then collected, harmonized and amended by the ENTSO-E and made available to

the public in theso-called Pan-European Market Modelling Database (PEMMDB).

(ACER, 2020, Article 5)

3.1.2. The Pan-European Climate Database (PECD)

The climate data used for the ERAA was compiled by the European Centre

for Medium-Range Weather Forecasts (ECMWF) and is published in the Pan-

European Climate Database (PECD) (Copernicus Climate Change Service (C3S)

Climate Data Store (CDS), 2024). It includes several climate variables such as

wind speeds on different altitudes, air temperature and solar surface irradiation

that can be attained as spatially gridded data or aggregated to time series on bid-

ding zone or (sub-)country level. All variables are available from different sources.

At first the only source of meteorological data was the ERA5 reanalysis, created

by the Copernicus Climate Change Service (C3S) at the ECMWF (Copernicus

Climate Change Service, 2019). In version 4.1 of the PECD, meteorological data

from three CMIP6 climate models are introduced in accordance with the official

ERAA methodology (ACER, 2020, Article 4 (e)). The climate variables are further

processed to attain hourly capacity factor time series aggregated to the available

levels. The wind power availability time series were created at the Technical Uni-

versity of Denmark (DTU), while the solar PV capacity factors were estimated at

the Paris Sciences et Lettres University (PSL) (M. Koivisto et al., 2023).

3.1.3. The ERAA 2022 dataset

The available network infrastructure is defined in the corresponding PEMMDB

available at the website of the ENTSO-E (n.d.-b). The electricity demand data

was also taken from this location. For my analysis, I focused on the target year

2030, so, the assumptions about the network infrastructure are predictions about
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Resource Capacities [GW] solar PV onshore wind offshore wind
ERAA 2022 215.0 110.0 30.2
ERAA 2024 97.0 + 118.0 115.0 28

Table 1: Installed VRE capacities in the PEMMDBs corresponding to the 2022
and 2024 ERAAs after the economic viability assessment (EVA). The
given capacities pertain to Germany and the target year 2030.

the situation in 2030. Table 1 lists the most important figures from the PEMMDB

for said target year in Germany.

The availability of the generation capacities is given by capacity factor time

series compiled in weather years. Weather years refer to the year that the weather

data is coming from. In case of the ERAA 2022 the climate data comes from the

ERA5 reanalysis with a bias correction of the wind speeds based on the Global

Wind Atlas in its second version, that was found to be more accurate than ERA5,

especially in mountainous regions (Murcia et al., 2022). I used the 31 weather years

from 1985 to 2015. This is supposed to account for the variability in weather data.

Additionally, the DTU, that modelled the wind capacity factors, provided several

variations of their results based on different assumptions about the distribution and

technical specifications of the installed wind energy generators as part of the PECD

2021 update (M. J. Koivisto & Murcia Leon, 2022). The considered parameters of

these scenarios are the hub height and specific power of the generators, as well as

the resource grade of their locations. The resource grade describes the quality of

the location, measured by the mean wind speed. The top 10% percent of locations

in a bidding zone get resource grade A. Locations with mean wind speeds between

the fiftieth and ninetieth percentile get resource grade B and the 50% of worst

locations get resource grade C. I used 10 of the scenarios provided by the DTU as

the results of power flow simulations for all 31 weather years were available to me:

The ”existing” scenario: The ”existing” scenario assumes that the distribution

of the specific power, hub height and resource grade of the onshore wind generators

are the same as in the year of the modelling (M. J. Koivisto & Murcia Leon, 2022).

The product user guide of the PECD 4.1 states that its ”existing” scenario relies on

data pertaining to the year 2020 attained from the WindPowerNet (ECMWF, n.d.,
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Section 2.9.1. “Wind energy database”, n.d.). As I could not find more specific

information on the ”existing” scenario of the PECD 2021 update, I assume it refers

to the same data. Note, that this does not imply that the amount of installed

capacities in the target year is the same as it were in 2020.

The uniform scenarios: Nine scenarios are defined by the assumption that all

on-shore wind generators have the same specifications. These specifications are

combinations of one of three hub heights, 100m, 150m and 200m, with one of

the three resource grades. The DTU additionally provides scenarios varying the

specific power. I only had access to the results of power flow simulations of the

scenarios with a specific power of 199W/m2. The average specific power of onshore

wind generators installed in Germany in 2024 was 302W/m2 and the overall fleet

in Germany had a specific power of about 380W/m2 in 2020 with a negative trend

coming from about 400W/m2 (Janal et al., 2025; Lüers & Heyken, 2024). So,

the 9 scenarios assume a relatively low specific power and wind turbines with a

lower specific power generally have higher capacity factors as they can operate more

efficiently, particularly with lower wind speeds (Johansson et al., 2017). Therefore,

the 9 scenarios will tend to overestimate the capacity factors of onshore wind power.

Additionally to the scenarios provided in the PECD, I used two other sources for

capacity factor time series:

The Reading dataset: The Department of Meteorology of the University of

Reading, Reading, UK, provides another dataset (H. Bloomfield & Brayshaw,

2021). It is also based on the ERA5 with a bias correction of the wind speeds to

match the magnitudes of the Global Wind Atlas version 2 dataset (H. C. Bloom-

field et al., 2022; “Global Wind Atlas”, n.d.).

The Renewables.Ninja dataset: Finally, capacity factors from the Renewables.Ninja

website were used (Pfenninger & Staffell, 2016; Staffell & Pfenninger, 2016). Other

than the previously described datasets, it is based on the MERRA-2 reanalysis

provided by the NASA.
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While scenarios for the offshore wind generation were available, I had only access

to power flow simulations based on the reference scenario. Apart from that, I used

the 2m air temperature provided by the ECMWF for the PECD 4.1 (Copernicus

Climate Change Service (C3S) Climate Data Store (CDS), 2024).

3.1.4. The ERAA 2024 dataset

Again, the general assumptions about the network infrastructure are taken from

the website of the ENTSO-E (n.d.-c). An important change in the ERAA 2024

data compared to earlier versions is hidden in the definition of the electricity de-

mand data. Unlike in earlier versions of the data, times with negative loads occur.

Sometimes these negative loads go up to about 20GWh and while the average

load before was at about 88GWh it is now at only approximately 63GWh. This

sudden change is due to a decision to model all electricity storage units that are

not participating in the electricity market as part of the demand. More precisely,

this means that for example behind-meter batteries are accounted for as negative

loads and not as storage units (ENTSO-E, 2024a, p. 27). This can be beneficial

for TSOs as they can concentrate on modelling the units they can control. For

other applications this new definition of the demand can be challenging, however.

Unfortunately, the data provided is somewhat ambiguous. For instance, it was not

clear at the time of the creation of the power flow simulations, if the 118.0GW of

rooftop PV capacities are also modelled as part of the demand. As the differences

in the average electricity demand was so significant, it was assumed that this was

the case. So, the power flow simulations assume only 97.0GW of PV capacities in

the market.

The meteorological data is now completely taken from the PECD 4.1, the first

PECD to provide data from climate projections in addition to the reanalysis data

(Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2024). I

used data from all three available climate models: The CMCC-CM2-SR5 (CMR5)

model, the EC-EARTH3 (ECE3) model and the MPI-ESM1-2-HR (MEHR) model

(Döscher et al., 2022; Lovato & Peano, 2020; von Storch et al., 2017). Again,

several technical scenarios are provided, this time given id numbers:
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scenario id 31 32 33 34 35 36 37 38 39
specific power [Wm−2] 199 199 199 277 277 277 335 335 335

hub height [m] 100 150 200 100 150 200 100 150 200

Table 2: Technical specifications of the uniform onshore wind generation scenarios
in the PECD 4.1.

scenario id 21 22
specific power [Wm−2] 316 370

hub height [m] 155 155

Table 3: Technical specifications of the uniform offshore wind generation scenarios
in the PECD 4.1.

The ”existing” scenarios: As stated before, the ”existing” scenario assumes that

the distribution of the technical parameters of the wind generators is the same in

the target year as in 2020 (ECMWF, n.d., Section 2.9.1.). The id number of the

”existing” scenarios for on- and offshore wind are 30 and 20, respectively.

The uniform scenarios: Again, these scenarios assume all on- or offshore wind

generators to have the same technical specifications. Other than in the PECD

2021 update, the resource grade is not varied but always set to B (ECMWF,

n.d., Section 2.9.1.3.). The specifications for specific power and hub height of

the 9 onshore and 2 offshore wind scenarios are shown in Table 2 and Table 3,

respectively.

While meteorological data for the 51 weather years from 2015 to 2065 are available

for the climate models, I had only access to time series for the electricity demand

for the 12 weather years from 2025 to 2036 that were provided to the DLR by a

TSO. Therefore, the main part of my analysis uses only these 12 weather years

and only the ”existing” scenarios for the technical specifications, as they were

published first. However, for the exemplary application of my indicator in section

7, I studied all 30 combinations of technical on- and offshore wind scenarios for all

42 years of historical data and the 50 years from 2015 to 2064 of the projections.
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3.2. The power flow simulations

To assess the quality of the predictions of the considered indicators, a reference

for the occurrence of electricity shortages is necessary. While the ERAA provides

energy not served (ENS) time series, they are not available for the various technical

scenarios I wanted to analyse. Instead, I used results of a power flow simulation

model of the European power grid that was originally developed as part of the

Destination Earth (DestinE) project of the EU by the DLR (Schyska, Bruno U.

et al., 2024).

The model is based on the PyPSA package of the Python programming language,

that provides a comprehensive open-source environment for the modelling of power

systems (Brown et al., 2018). Compared to the models employed by the ENTSO-E,

the model is heavily simplified and aggregates all variables to the country level. So,

while the transmission of electricity between countries is explicitly modelled and

constrained by the available network capacities, the transportation of electricity

within countries is assumed to be instantaneous and unconstrained (”copper plate

model”). The optimisation of the model is done for a whole year as an economic

dispatch with a linear optimal power flow and perfect foresight. So, the result will

use the available resources in a way that minimizes the total costs over the year

and provides the demanded energy supply whenever possible while modelling the

power flow linearly. Generation units are assumed to have no ramping constraints,

i.e., they can be switched on and off immediately. Despite these simplifications the

results are quite similar to the ones obtained by the TSOs if these are aggregated

to the country level.

While the simulations for the ERAA 2022 dataset were conducted with the

original model from the DestinE project, the computations for the ERAA 2024

dataset were done with an updated model that was benchmarked to achieve results

as close as possible to ones obtained by a TSO as part of a joint project. I did not

conduct any of these simulations myself, but only used the results.
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4. A novel method for the detection of electricity

shortages

The residual load approach has one major caveat. It depends on demand data, that

is not always available. On the other hand, my first analyses using VRE drought

definitions clearly suggested that the demand side has a significant influence on the

occurrence of electricity shortages that can not be captured by only considering

indicators of supply. Therefore, I developed a data-driven novel predictor of energy

shortages that uses readily available temperature and time data as proxies for the

electrical load. This way, it incorporates the demand side of the electricity balance

without the need for explicit load time series. This has been helpful for example

for the evaluation of the PECD 4.1 climate data, as demand predictions for the

dataset were not publicly available in June 2025, to the best of my knowledge.

As part of my algorithm, I needed a method for the classification of samples.

I tried different established methods and decided to use linear support vector

machines (SVMs), as they show one of the best results while being rather simple

and therefore resilient to overfitting. Before explaining the details of my novel

method, I will give a brief introduction to linear SVMs following the work of Zhou

(2021, pp. 130–142).

4.1. Linear support vector machines

Given a set of data samples x1, . . . , xn ∈ Rm with labels y1, . . . , yn ∈ {−1, 1},
the aim of a linear support vector machine is to find a hyperplane that separates

samples with negative and positive labels as well as possible. Like all learning

algorithms, it has an inductive bias that, here, defines what exactly is meant by

a good separation (Zhou, 2021, pp. 7–11). In the case of a training set that can

be separated, SVMs will maximise the distance of the hyperplane to the closest

training points. To be able to put that into a formula, at first, the hyperplane can

be defined as all points x ∈ Rm that solve an equation of the form

w⊤x+ b = 0 (10)
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where w ∈ Rm \ {0} is the normal vector of the hyperplane, which controls its

orientation, and b ∈ R is its distance to the origin. The distance d(x) of any point

x ∈ Rn to the plane is given by

d(x) =
|w⊤x+ b|

∥w∥
. (11)

The condition that the samples with negative labels are on one side of the hy-

perplane and the samples with positive labels on the other can then be formulated

as w⊤xi + b > 0, for yi = 1,

w⊤xi + b < 0, for yi = −1.
(12)

or equivalently

yi(w
⊤xi + b) > 0, ∀i. (13)

The objective for the training of the SVM is then to find w ∈ Rm \ {0} and b ∈ R
that maximise the minimal distance to any of the training samples while respecting

Condition (13):

max
w,b

min
i

d(xi)

such that yi(w
⊤xi + b) > 0, ∀i.

(14)

This can be further simplified by using that the solution to Problem (14) is not

unique. Actually, if w ∈ Rm\{0} and b ∈ R define a hyperplane, then c ·w and c ·b
define the same hyperplane for all non-zero c ∈ R, as can be seen by multiplying

Equation (10) with c. Now, if w′
0 ∈ Rm \{0} and b′0 ∈ R are a solution to Problem

(14) and do the distance of the closest training point to the hyperplane, we can

always replace w′
0 and b′0 by w0 = d−1

0 ∥w′
0∥

−1w′
0 and b0 = d−1

0 ∥w′
0∥

−1b′0. Using

Equation (11), we get that the assumption

d(xi) > d0, ∀i (15)

is equivalent to

|w0⊤xi + b| > d0∥w0∥ = d0d
−1
0 ∥w′

0∥
−1∥w′

0∥ = 1, ∀i. (16)
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This means we can without loss of generality replace Condition (13) by

yi(w
⊤xi + b) ≥ 1, ∀i, (17)

with an equality for the samples closest to the hyperplane. The minimum in

Problem (14) can then be rewritten as

min
i

d(xi) = min
i

|w⊤xi + b|
∥w∥

=
1

∥w∥
. (18)

So, we can replace Problem (14) with

max
w,b

1

∥w∥
such that yi(w

⊤xi + b) ≥ 1, ∀i.
(19)

As the norm is not differentiable and problems are often defined as minimisations,

this is often replaced by the equivalent formulation

min
w,b

1

2
∥w∥2

such that yi(w
⊤xi + b) ≥ 1, ∀i.

(20)

So far we assumed that the training data actually is separable by a hyperplane. As

this is often not the case, Condition (17) is softened in the sense that it does not

have to hold. Instead, its violation is factored in by a penalty in the optimisation.

Different options for a penalty function are available. Notably the hinge loss,

defined as

ℓhinge(z) = max(0, 1− z), ∀z ∈ R, (21)

which has nice mathematical properties for optimisations such as being convex.

The modified objective function with hinge loss is then given as

min
w,b

1

2
∥w∥2 + C

n∑
i=1

max
(
0, 1− yi(w

⊤xi + b)
)
, (22)

where C > 0 is a regularising constant that determines how strong the penalty for
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violating Condition (17) should be. This problem can be solved very efficiently by

optimised algorithms (Zhou, 2021, pp. 133–134).

The straightforward way to predict a class would now classify all samples on

one side of the hyperplane as one class and all samples on the other side as the

other, i. e., 1 if w⊤xi + b > 0 and −1 otherwise. However, it can often make sense

to use another threshold θ ∈ R instead of 0. So, predict 1 if w⊤xi + b > θ and

−1 otherwise. This can, for example, be the case if the amount of samples of each

class in the training set is imbalanced. Since the standard algorithm penalises each

misclassified sample the same, it will tend to have a low sensitivity on the smaller

dataset as each of the misclassified samples has a higher impact on the sensitivity.

If this is not desired, the threshold can be tuned to optimise a scoring function,

such as the Fβ-score on a given set of training data. (He, 2013, p. 72; “Tuning the

decision threshold for class prediction”, n.d.)

4.2. Definition of the novel predictor of electricity shortages

Using linear SVMs, I can now define the details of my method. As stated above, I

used proxies of the electricity demand to incorporate it into my indicator. I tried

to choose proxies that have a high impact on the variability of the demand and

are readily available. In the end, I used the air temperature 2m above the ground,

the hour of the day and the information whether the day in question is a regular

workday or not. Workdays are taken to be Monday to Friday, unless they are

national German holidays. With an increasing electrification of heating systems,

heat demand and therefore air temperature will become an increasingly relevant

driver of electricity demand in the near future in Germany and similar countries

with cold winters (Connolly, 2017). The daily routines of people and society have

a relevant impact on demand as well (Castillo et al., 2022).

To capture the relationship between these proxies of the electricity demand with

electricity shortages, I applied a data driven approach. Using the data on electricity

shortages from scenarios and weather years that were simulated with the power

flow model described in Section 3.2, an SVM classifier was trained. More precisely,

the available training data is split into regular workdays and other days at first.

These two subsets are again split by the hour of the day. Then, for each of the
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48 resulting subsets, a linear SVM is trained to classify samples into hours with

and without electricity shortages. The 2-dimensional space the SVM is trained on

is spanned by the combined capacity factor in the first dimension and the 2m air

temperature in the second.

I used the ’LinearSVC’ class provided by the ’scikit-learn’ package of the Py-

thon programming language as implementation of SVM classifiers (Pedregosa et

al., 2011). As parameters I chose the standard values of the package: A regu-

larisation constant C = 1 and the square of the hinge loss as loss function for

misclassified samples. Since my training data was heavily imbalanced with far

less samples with electricity shortages than without, I had to tune the decision

threshold of the classifier. Here, I used the Fβ-score with β ∈ {1, 2} as scoring

function. Additionally, I standardised the temperature and the capacity factor in

a preprocessing step, i. e., I subtracted the mean of the dataset from each value

and divided it by the standard deviation. Thus, both features have a mean of 0

and a standard deviation of 1. This is a very common step in machine learning,

ensuring that all features have the same impact on the optimisation (Han et al.,

2012, pp. 113–115). Otherwise, the optimisation of the SVM would be as sens-

itive to an error of 0.1 ◦C in the temperature dimension as an error of 0.1 in the

dimension of the capacity factor.

To enable the SVMs to be trained, sufficient samples with energy shortages need

to be in each of the 48 subsets of the training data. Subsets for which that is not

the case are skipped until all other subsets are processed. Then, each subset that

no SVM is trained for is assigned the SVM from the pool of trained ones that

achieves the highest value of the scoring function on the training set.

5. Results and Discussion

Having introduced several candidates for the fast prediction of electricity shortages

in section 2, the question of their predictive performance in different situations

remains and is answered in this section. The level of accuracy that is of relevance

here can differ between applications. For some applications, the exact hours at

which electricity shortages occur are relevant. For others, the annual LOLH or

the capability to select the most severe scenarios suffice. Thus, I assess different
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metrics corresponding to these requirements.

As two of the approaches use electricity shortage data from power flow simu-

lations for the optimization of their parameters, a cross-validation was conducted

to analyse the dependence on the choice of training data. Furthermore, the ana-

lysis originally conducted on the data from the ERAA 2022 was repeated on the

dataset from the ERAA 2024, with different weather years, technical scenarios and

assumptions about the underlying power system. Finally, the models trained on

the ERAA 2022 dataset are applied on the ERAA 2024 dataset to examine how

well they can be applied if no training data is available.

5.1. The exact prediction of hours with electricity shortages

I evaluated the predictions of the exact hours with an electricity shortage by ana-

lysing the sensitivity, precision, F1- and F2-score of the considered indicators as

predictors of electricity shortages obtained from power flow simulations. More

precisely, I calculated these four metrics for the 31 weather years and 12 technical

scenarios from the ERAA 2022 for which I had access to predictions from power

flow based simulations as reference. The results of these calculations are depicted

in the box-and-whisker plots in Figure 2. Each of the boxes shows the distribution

of one of the metrics for one indicator over the 12 scenarios.

5.1.1. The exact prediction of hours with electricity shortages using VRE

droughts

The first three indicators are the VRE drougth or dunkelflaute definitions. The

FMBT definition developed by Mockert et al. (2023) achieves sensitivities between

0.118 and 0.355 for the different scenarios, a precision ranging from 0.167 to 0.281

and F2-scores between 0.126 and 0.335. While the indicator is balanced between

sensitivity and precision its overall performance is rather poor for this purpose.

The adjustment of the FMBT approach with a longer running mean and higher

threshold achieves better sensitivities between 0.566 and 0.891 but at the price

of a high share of false positives resulting in a low precision between 0.076 and

0.118. The resulting F2-scores are comparable in the end, ranging from 0.254 to

0.385. Finally, the SPA, one of the two VRE drought definitions recommended
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Figure 3: Histogram of the combined capacity factor for hours with electricity
shortages in the ERAA 2022 dataset. The median of the general dis-
tribution of the combined capacity factor is indicated by a vertical line.

by Kittel and Schill (2024), gives similar results with a sensitivity between 0.494

and 0.732, a precision between 0.093 and 0.132 and thus F2-scores between 0.266

and 0.384. Overall, VRE drought definitions, that only consider the supply side

of the electricity balance, are either too restrictive and miss most of the electricity

shortages or greatly overestimate the total amount of LOLH.

Looking at the distribution of the combined capacity factor during hours with

electricity shortages, depicted in the histogram in Figure 3, this does not come as a

surprise. Electricity shortages do not only occur during times with extremely low

capacity factors but even at capacity factors above the median of the distribution

of the combined capacity factor at about 0.216. A threshold that would capture

most of the loss of load hours would therefore detect more than 50% of the data

points, while electricity shortages only occur for approximately 1.7% of the total

time in this dataset. As mentioned earlier, it is therefore inevitable to include the

second side of the electricity balance into the analysis: the demand.
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5.1.2. The exact prediction of hours with electricity shortages using the

residual load

The adjusted approach of Otero et al. (2022) described in subsection 2.8 incor-

porates the demand directly in form of the residual load. The optimization of the

quantile above which residual loads are indicating an electricity shortage yields a

residual load of about 104.3GWh or 101.9GWh as threshold for an optimization

of the F1- or F2-score, respectively. The orange boxes in Figure 2 show the per-

formance of the indicator with these thresholds. When the F2-score is optimized,

the sensitivity has a higher weight than the precision. In this case, the sensitivity

lies between 0.842 and 0.959, the precision ranges from 0.818 to 0.894 resulting in

an F2-score between 0.852 and 0.927. The results for the optimisation of the F1-

score are slightly worse for the sensitivity but better for the precision. In the end

the Fβ-scores are quite similar. This indicates an ability to adapt the approach to

tasks where either of the metrics is to be prioritized over the other without com-

promising on the overall predictive performance too much. Overall, the approach

achieves the best Fβ-scores of all indicators.

A potential disadvantage of all approaches that use the residual load is their re-

liance on demand data as the estimations of the electricity demand are not always

available. For example, the PECD 4.1 was updated in January 2025 including met-

eorological time series for 51 weather years (Copernicus Climate Change Service

(C3S) Climate Data Store (CDS), 2024). However, in May 2025, the corresponding

demand time series were still only publicly available for 12 of these years, to the

best of my knowledge. To be able to analyse the full set of available weather years,

an approach that indirectly incorporates the electricity demand without using the

detailed demand data is needed.

5.1.3. Electricity shortage Prediction with the novel Indicator

My indicator, once trained, only uses the air temperature and time data as proxies

of the electricity demand. Optimized to achieve the highest possible F2-score its

sensitivity is better than that of any of the other considered indicators. Its precision

is far better than the one achieved by the VRE drought indicators, but it is also

significantly worse than the one of the residual load approach by Otero et al.
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(2022). The F2-score is on average slightly lower than the one accomplished by

the residual load method. However, due to the small range of the distribution over

the 12 scenarios, the predictive performance for some of the scenarios is actually

better. Optimizing the F1-score instead leads to greater changes than for the

residual load approach. The precision increases by more than 10 percent while

the sensitivity drops about 5 percent such that the resulting Fβ-scores are, again,

similar. This suggests a stronger ability to adapt to situations where one metric

takes precedence over the other.

5.2. Prediction of Loss of Load Hours

In many situations the exact hours in which electricity shortages occur are not

relevant. For the assessment of resource adequacy concerns, it suffices to know

if electricity shortages occur and if so how many. The ENTSO-E, for example,

focuses its analysis on the annual LOLH in its ERAA reports.

Figure 4 shows box plots of the MAE and MASE of the predicted annual LOLH

of the five considered indicators. Again, the boxes show the distribution over

the 12 technical scenarios of the ERAA 2022. Interestingly, the VRE drought

definition after Mockert et al. (2023) achieves a median MAE of about 69.7 h

and, thus, performs much better than the other two VRE drought definitions with

median MAE values of approximately 477.7 h for the SPA and 850.8 h for the longer

FMBT approach. An explanation for this is likely given by the comparatively well

balanced precision and sensitivity of Mockert’s approach compared to the two

other methods, that prioritise the sensitivity at the cost of an overestimation of

the LOLH. This indicates that a good balance between sensitivity and precision

might be beneficial for the task.

Looking at the MAE of my indicator and the residual load approach after Otero

et al. (2022), it is evident that the approach using the residual load performs best,

while my approach still achieves good results. I, again, optimized both indicators

to maximize the F1- and F2-score and both indicators perform significantly better

when optimized for the F1-score, which also supports the idea, that a balance

between sensitivity and precision should be aimed for in this context. My indicator

improves its median MAE by about 63% when the F1-score is optimised instead of
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Figure 4: Box plots of the MAE and MASE of the predicted annual LOLH of the
five considered indicators compared to reference results from power flow
simulations for the ERAA 2022 data. The boxes show the distribution
over the three climate models of the ERAA 2024 data.

the F2-score, while the residual load approach only improves by about 40%, again

suggesting that my approach adjusts more flexibly to different optimisation goals.

The distributions of the MASE depicted in the right panel of Figure 4 are far

more concentrated than the ones for the MAE. As is describe in section 2.4.2,

in my case the MASE is simply the MAE divided by the MAD, a measure of

the dispersion of the data. So, the concentrated distributions of the MASE show

that the predictions of the indicators achieve a similar predictive performance for

all scenarios relative to the variability of the data of the scenarios. More than

that, the MASE can provide an intuition of the absolute predictive performance

of the indicators as it compares the achieved MAE to the MAE of the method

that always predicts the mean of the annual LOLHof the power flow simulations.
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The FMBT approach after Mockert et al. (2023) has a median MASE of 1.14 and

is therefore about as good as the mean method, while the other VRE drought

definitions perform about an order of magnitude worse. The two indicators that

incorporate the demand side of the electricity balance both achieve clearly better

values if they are trained for the F1-score. In this case their MASE values are well

bellow 1, indicating that they are able to predict a good part of the variability of

the LOLHs.

5.3. Prediction of the most relevant weather years

For other tasks like the preselection of the most relevant scenarios for a more thor-

ough analysis, it can suffice to predict a ranking of the relevance of the scenarios. In

the context of resource adequacy assessments, I decided to take the annual LOLH

of a scenario as measure of its relevance. I used two metrics to assess the ability

of the considered indicators to detect the most relevant scenarios: The Spearman

rank correlation of the annual LOLH predicted by an indicator with the reference

assesses how well the indicator predicts the overall ranking of the scenarios. Addi-

tionally, the Sørensen-Dice coefficient of the sets of the ten scenarios with the most

LOLH predicted by an indicator and the reference shows how well the indicators

predict the ten most relevant scenarios. Figure 5 shows box-and-whisker plots of

the distribution of the two measures over the 12 scenarios for which I had access

to the results of power flow simulations.

Looking at the three VRE drought definitions first, their overall ranking perform-

ance is rather insufficient with median values for the Spearman rank correlation

coefficients between 0.228 and 0.506. Interestingly, the definition after Mockert et

al. (2023) clearly performs worst with values of ρ going as low as 0.024, although

it performed best at the seemingly similar task of predicting the annual LOLH.

This can be understood by looking at the median of the predicted annual LOLH

of the other two definitions which is so much higher than that of the reference

that the MAE is dominated by that bias. Apparently, they are, however, better

at predicting the relative year-to-year variability of the variable, while Mockert’s

approach predicts the overall level of the annual LOLH well, but seems to fail at

predicting its variability. Looking at the Sørensen-Dice coefficients, the approach
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Figure 5: Box plots of the Spearman rank correlation coefficient (left panel) and the
Sørensen-Dice coefficient (right panel) of the five considered indicators
on the ERAA 2022 dataset. The boxes show the distribution of the
achieved values over the 12 scenarios in the ERAA 2022 dataset. Each
indicator was optimised for the Fβ-score with two choices of beta: β = 1
and β = 2.

by Mockert et al. (2023) performs comparable to the SPA. Both achieve a median

value of 0.5 indicating that 5 of the 10 weather years with the most annual LOLH

of the reference were in the top ten weather years predicted by the indicators. So,

Mockert’s approach seems to be better at predicting the most relevant scenarios

than the overall ranking. The best Sørensen-Dice coefficient of the VRE drought

definitions is achieved by the long FMBT approach, with a median value of 0.6.

When looking at how many of the top 5 years of the reference are in the top 10 of

the three indicators, they only detect 3 to 4 in the median.

The two approaches that also include the demand side perform much better with

median Spearman rank correlation values between 0.945 and 0.990. Again, the
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approach after Otero et al. (2022), that directly uses the residual load performs

best and achieves values above 0.979 for all scenarios. The choice of β for the

optimization of the Fβ score does not have a big effect on the resulting values of

Spearman’s ρ. The median is slightly better for β = 1 but the minimum is higher

for β = 2. For the Sørensen-Dice coefficient, my approach achieves a median of

0.9 for both values of β, while the median for the residual load approach is 1

for β = 2 and 0.95 for β = 1. When only looking at the number of the 5 most

relevant scenarios predicted by the reference that are in the top 10 predicted by

the indicators, both approaches detect all 5 of them in each scenario.

5.4. Cross-validation of the data-driven approaches

While the two approaches that incorporate the demand side showed the best res-

ults for all tasks so far, they also both rely on training data from the power flow

simulations that were used as reference. These results will, however, not be avail-

able in the typical use case where the indicators I assessed would be used for a

pre-analysis. One way to solve this problem is to run power flow simulations for

a few randomly selected scenarios and use the results to train the indicators. To

assess how well the indicators perform when trained on such a subset of scen-

arios, I conducted a cross-validation on 100 subsets each with 5 randomly sampled

weather years from the 31 weather years of the ERAA 2022 dataset. More pre-

cisely, I trained both indicators on each of these subsets including all technical

scenarios and then predicted the hours with electricity shortages for the whole

dataset.

Figure 6 shows box-and-whisker plots of the sensitivity and precision as well

as the F1- and F2-score that the indicators trained on the subsets achieve. Each

box shows the distribution of the values over each of the 100 × 12 combinations

of a subset and a technical scenario. As before, each optimisation was done twice:

With the goal to maximise either the F1-score or the F2-score.

Overall, the median values achieved for each of the 4 measures, 2 indicators

and 2 optimisation goals do not change substantially compared to the case where

the whole dataset was used for training. The biggest change can be seen for the

precision of my indicator when optimised for the F1-score. It decreases by 0.017
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Figure 6: Box-whisker plots of the distributions of sensitivity, precision, F1- and
F2-score of the 2 trained indicators in the cross-validation. The indicators
are optimised for the Fβ-score with two choices of beta: β = 1 and
β = 2. The boxes show the distribution of the achieved values over
100 × 12 configurations of 100 random choices of 5 weather years for
training years and the 12 scenarios in the ERAA 2022 dataset.

from 0.812 to 0.795. A greater deviation can be seen in the worst case performance.

The changes generally stay below losses of 0.1 though, with only two exceptions.

The approach after Otero et al. (2022) looses 0.159 of its minimal precision when

optimised for the F2-score, dropping to 0.659, while the minimal precision of my

indicator when optimised for the F1-score is decreased by 0.107 to 0.695. Looking

at the Fβ-score that the algorithms were optimised for the corresponding values

did not fall below 0.798, which is still a good value compared with F1-scores below

0.5 attained in a similar analysis for daily time series by Biewald et al. (2025).

Analogously, Figure 7 depicts the distribution of the MAE and MASE for the

results of the cross-validation. As the precision is most affected by the reduction
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Figure 7: Boxplots of the MAE of the predicted annual LOLH of the two trained
indicators in the cross-validation. The boxes show the distribution of
the achieved values over 100 × 12 configurations of 100 random choices
of 5 weather years for training and the 12 scenarios in the ERAA 2022
dataset. Each indicator was optimised for the Fβ-score with two choices
of beta: β = 1 and β = 2.

of the training data, a tendency to overestimate the LOLH can be expected. In

fact, the impact on the MAE is greater than on the binary prediction measures. It

increases by about 26.95% from 18.02 h to 22.87 h for my indicator when optimised

for the F1-score and by about 25.84% from 18.66 h to 23.48 h for the residual load

approach when optimised for the F2-score. The resulting absolute change in the

median MASE stays below 0.032, though, for all four configurations. Again, the

outliers of the distribution increased more, however, resulting in an increase of the

maximal MAE by up to 42.74 h or 53.34% for my indicator when optimised for the

F2-score.

The results for the rank correlation change only marginally with deviations of

the median and minimum below 0.01 and 0.04 respectively (see Figure 8). Inter-

estingly, the median Sørensen-Dice coefficient actually improved slightly from 0.95
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Figure 8: Box plots of the Spearman rank correlation coefficient (left panel) and
the Sørensen-Dice coefficient (right panel) of the two trained indicators
on the ERAA 2022 dataset in the cross-validation. The boxes show the
distribution of the achieved values over 100 × 12 configurations of 100
random choices of 5 weather years for training and the 12 scenarios in
the ERAA 2022 dataset. Each indicator was optimised for the Fβ-score
with two choices of beta: β = 1 and β = 2.

to 1 for the residual load approach after Otero et al. (2022), indicating that for

more than half of the considered scenarios all of the ten weather years with the

most annual LOLH in the reference were also ranked in the top ten positions by the

indicator. The Sørensen-Dice coefficient for my indicator stayed the same in the

median but got worse by 0.1 if trained for the F2-score. In fact my indicator only

always identified all of the 5 weather years with the most LOLH in the reference

as being within the most critical ten scenarios if trained for the F1-score.

Overall, the cross-validation shows that a training set of five random weather

years suffices to train the two indicators and retain most of the predictive per-

formance. More than that, the cross validation gives an indication about the

appropriate choice for the parametrization of the Fβ-score. While the analysis of
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the indicators trained on the complete dataset suggest that the choice of β depends

on the task at hand, the cross-validation show preferable results for β = 1 for all

tasks.

5.5. Transferability to a different dataset

As another test of the generalisability of the approaches, I repeated the analysis

for the ERAA 2024 data as a second dataset. As described in section 3.1.4, the

data looks quite different from the ERAA 2022 data. Especially the redefinition

of the demand, that incorporates out-of-market capacities as negative loads, poses

a challenge for my indicator as it is structurally blind to these changes. While

the approach after Otero et al. (2022) is aware of these changes, it is, like my

indicator, ignorant toward changes in storage and transmission capacities as well

as the availability of other electricity sources than on- and offshore wind and solar

PV. Thus, the indicators have to be retrained on the new dataset to achieve reliable

results. An analysis of the performance of the indicators trained on the ERAA

2022 data at predicting electricity shortages in the ERAA 2024 data is given in

Section 5.6.

5.5.1. The exact prediction of hours with electricity shortages on the ERAA

2024 data

Analogously to Figure 2, Figure 9 shows the sensitivity, precision, F1- and F2-

score of all five indicators achieved on the ERAA 2024 dataset. First looking at

the three VRE drought definitions, an increased sensitivity can be seen compared

to the results on the ERAA 2022 data. This high sensitivity is however a result

of a vast overestimation of the annual LOLH, which leads to very low precision

values below 0.025. The resulting poor results for the Fβ-scores show the missing

adaptability of the VRE drought definitions to different circumstances.

Unsurprisingly, the two indicators trained on the data show better results, al-

though not on the level of the results for the ERAA 2022 data. My indicator has

a slightly better sensitivity but significantly worse precision than the residual load

approach after Otero et al. (2022), again due to an overestimation of the total

amount of electricity shortages. The resulting median F1-scores of 0.597 and 0.507
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for an optimisation of the F1- respectively F2-score are still god compared to the

results attained for daily time series by Biewald et al. (2025) in a similar analysis

but 0.147 and 0.189 points worse than the results of the residual load approach.

The values for the F2-score are more similar but show an interesting feature that

seems to be contradictory at first sight. The F2-score of my indicator is better

when the SVMs are optimized for the F1-score and not the F2-score. This is not

a problem with the optimisation of the individual SVMs, but an effect of the lack

of sufficient samples with an electricity shortage. 38 of the 48 subsets defined by

the hour of the day and the classification in regular workdays and other days do

not exhibit at least 5 samples with an electricity shortage. Therefore, no SVM

can properly be trained on them and the SVM of another subset is used as de-

scribed in Section 4. So, most of the samples are not classified by an SVM that is

optimised on the appropriate subset. Thus, the F2-score can not be expected to

be optimised. As the optimisation for the residual load approach is done on the

whole dataset, it does not need as many positive samples to be trained properly.

Again, I conducted a cross-validation for which the indicators are trained on 100

subsets of the whole dataset, each consisting of five randomly sampled weather

years, each with three scenarios from the three considered climate models. The

results are depicted in Figure 10. The problem of too few positive training samples

is exacerbated in the cross-validation. The sensitivity of both indicators only de-

creases by less than 0.06 in the median. However, the already low median precision

of my indicator almost halves to only 0.199 in the case where it is optimised for the

F2-score. The median F1-scores are accordingly low, but at 0.404, when optimized

for the F1-score, still approximately at the level achieved with daily sampled resid-

ual load time series by Biewald et al. (2025). The changes in the minimal values

were again bigger leading to worst-case F1-scores well below 0.2 for my indicator.

The residual load approach after Otero et al. (2022) performs much better and ac-

tually gains 0.044 in its median precision, again showcasing the lesser dependence

on the amount of positive training samples. The median Fβ-scores stayed almost

constant and even the minimal values do not drop below 0.691 if trained for the

considered score. This can still be regarded to be a good performance compared

to the results of Biewald et al. (2025), who used the same approach with daily

time series.
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Figure 10: Box-whisker plots of the distributions of sensitivity, precision, F1- and
F2-score of the 2 trained indicators in the cross-validation. The indic-
ators are optimised for the Fβ-score with two choices of beta: β = 1
and β = 2. The boxes show the distribution of the achieved values
over 100 × 3 configurations of 100 random choices of 5 weather years
for training and the 3 climate models in the ERAA 2024 dataset.

5.5.2. The prediction of annual LOLH on the ERAA 2024 dataset

Figure 11 shows the distribution of the MAE and MASE of the predicted annual

LOLH for the ERAA 2024 data. As was indicated by their very low precision

values, the three VRE drought definitions vastly overestimate the annual LOLH.

While the power flow simulations predict 9 h of electricity shortages per year in

the median, the VRE droughts predict between 355 h and 2685.5 h.

As before, the optimisation of the F1-score achieves better results at this task,

so, I will focus my analysis on the corresponding values. When trained on all

available data, my indicator performs much better than the VRE droughts with

a median and maximal MAE of about 9.7 h and 12.5 h respectively. However, the
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Figure 11: Box plots of the MAE and MASE of the predicted annual LOLH of the
five considered indicators compared to reference results from power flow
simulations for the ERAA 2024 data. The two trained indicators are
optimised for the Fβ-score with two choices of beta: β = 1 and β = 2.
The boxes show the distribution over the three climate models of the
ERAA 2024 dataset.

median MASE of 1.29 indicates that the constant prediction of the mean annual

LOLH would achieve a better MAE.

The cross-validation, depicted in Figure 12, shows that my indicator predicts

significantly higher levels of annual LOLH if only 5 years are used for training. This

can be explained by the lack of sufficient examples of electricity shortages. The

SVM are only trained for the hours of the day with sufficient amounts of electricity

shortages, which are hours with above average electricity demand. Therefore, the

available SVM will overestimate the electricity demand for the other hours of

the day that they are assigned to. As a result, too many hours with electricity

shortages will be predicted for these hours of the day. This suggests, again, that
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Figure 12: Box plots of the MAE (left panel) and MAE (right panel) of the annual
LOLH for my indicator and the residual load approach on the ERAA
2024 dataset. The indicators were trained on 100 randomly chosen sub-
sets of 5 weather years from the ERAA 2024 dataset. The optimisation
was done for the Fβ-score with two choices of beta: β = 1 and β = 2.
The boxes show the distribution of the values achieved for the 3× 100
combinations of climate models and training sets.

the problems of my indicator on the dataset mainly stem from the lack of positive

samples to train a sufficient amount of the 48 SVMs.

The residual load approach after Otero et al. (2022) achieves a median and

maximal MAE of about 2.4 h and 3.3 h respectively. The resulting maximal MASE

of 0.50, that is not increased in the cross-validation, shows that the approach is

still able to predict a good part of the year-to-year variability of the annual LOLH.

5.5.3. The prediction of the most critical weather years on the ERAA 2024

data

As before, I also assessed the ability of the indicators to predict the relative crit-

icality of the weather years for resource adequacy concerns. Figure 13 shows the
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Figure 13: Box plots of the Spearman rank correlation coefficient (left panel) and
the Sørensen-Dice coefficient (right panel) of the five considered in-
dicators on the ERAA 2024 dataset. The two trained indicators are
optimised for the Fβ-score with two choices of beta: β = 1 and β = 2.
The boxes show the distribution of the achieved values for the three
climate models in the ERAA 2024 dataset.

distribution of the Spearman rank correlation ρ and the Sørensen-Dice coefficient

for the ERAA 2024 data, analogously to Figure 5. Because only 12 weather years

are available per climate model, here, the Sørensen-Dice coefficient of the 5 years

with the highest annual LOLH predicted by the indicators and the reference is

shown.

The VRE drought definitions, again, show rather poor results for the Spearman

rank correlation. Notably, the long FMBT approach, that performed best at this

task on the ERAA 2022 data, exhibits the lowest values here, with a minimum of

−0.340. The other two VRE droughts on the other hand have higher values than

before for both the Spearman rank correlation and the Sørensen-Dice coefficient.
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Figure 14: Box plots of the Spearman rank correlation coefficient (left panel) and
the Sørensen-Dice coefficient (right panel) for my indicator and the re-
sidual load approach on the ERAA 2024 dataset in the cross-validation.
The indicators are optimised for the Fβ-score with two choices of beta:
β = 1 and β = 2. The boxes show the distribution of the achieved
values over 100 × 3 configurations of 100 random choices of 5 weather
years for training and the 3 climate models in the ERAA 2024 dataset.

They actually detect all 3 weather years with the highest annual LOLH as being

in the top 6 for all climate models.

The Spearman rank correlation of my indicator is clearly decreased compared

to the ERAA 2022 data. With values between 0.728 and 0.898 its performance

is however still acceptable which is confirmed by the Sørensen-Dice coefficient of

0.8 and its ability to predict the set of the 3 most critical weather years for all

6 configurations. However, the cross-validation shows that the performance can

drop significantly if the training data is reduced to 5 years. The Spearman rank

correlation in the worst case is only 0.292 and the Sørensen-Dice coefficient drops

to 0.4 indicating that for some configurations only 2 of the 5 most critical weather

years were ranked in the top 5. Consequently, the indicator is only able to predict
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all 3 most critical weather years to be in the top 6 for 471 of the 600 configurations.

The residual load approach after Otero et al. (2022) again performs best, and

while its worst case performance is lower than before its median Spearman rank

correlation is still above 0.966 in the cross validation. Furthermore, it correctly

classifies all 3 most critical weather years as being in the top 6 in all configurations

of the cross-validation.

5.6. Transferability to another dataset without renewed

training

As a final test of the transferability of the indicators, I trained my indicator and

the residual load approach after Otero et al. (2022) on the complete ERAA 2022

dataset and applied them on the ERAA 2024 data without a renewed training.

5.6.1. The exact prediction of hours with electricity shortages on the ERAA

2024 data with pretrained indicators

Figure 15 shows box plots of the sensitivity, precision, F1- and F2-score of the two

indicators. While my indicator achieves nearly perfect sensitivity, its precision is

very low, with values between 0.060 and 0.089. Consequently, the resulting Fβ-

scores are unsatisfactory but still clearly preferable to the results of the three VRE

drought definitions.

The residual load approach exhibits its lowest sensitivity values at 0.409, but

achieves good precision values above 0.821. As a result, the Fβ-score values are

still relatively high. Interestingly, the indicator performs significantly better in

both scores if it was optimized for the F2-score on the ERAA 2022 data. In this

case it has F1-scores between 0.690 and 0.767, well above the ones achieved by

Biewald et al. (2025).

The poor performance of my indicator compared to the residual load approach is

partly due to the redefinition of the electricity demand in the ERAA 2024 that leads

to much lower demand values for otherwise similar circumstances. Consequently,

the indicator overestimates the demand and therefore the severity of a situation

as it learned the dependence of the demand on temperature and time in the old
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Figure 15: Box-and-whisker plots of the distributions of sensitivity, precision, F1-
and F2-score of my indicator and the residual load approach on the
ERAA 2024 data. Both were pretrained on the ERAA 2022 dataset
with an optimisation of the Fβ-score for two choices of beta: β = 1 and
β = 2. The boxes show the distribution of the achieved values over the
3 climate models in the ERAA 2024 dataset.

dataset. The residual load approach on the other hand has access to the demand

data directly and therefore automatically adjusts to the redefinition.

5.6.2. The prediction of annual LOLH on the ERAA 2024 data with

pretrained indicators

Figure 16 shows box plots of the MAE and MASE of the prediction of the annual

LOLH as achieved by the two pretrained indicators on the ERAA 2024 data. As

could be expected from the low precision values, my indicator performs poorly with

MAE and MASE values above 121.7 h and 12.91, respectively. The residual load

approach performs much better, especially, when it was trained to optimize the
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Figure 16: Box plots of the MAE (left panel) and MASE (right panel) of the pre-
dicted annual LOLH for my indicator and the residual load approach on
the ERAA 2024 dataset. Both indicators were pretrained on the ERAA
2022 dataset with an optimisation of the Fβ-score with two choices of
beta: β = 1 and β = 2. The plots show the distribution over the 3
considered climate models.

F2-score. In this case it has a MAE and MASE below 4.5 h and 0.47, respectively.

So, the predictions are still twice as accurate as always predicting the mean, which

would not even be possible without training data.

5.6.3. The prediction of the most critical weather years on the ERAA 2024

data with pretrained indicators

Finally, Figure 17 depicts box plots of the Spearman rank correlation and the

Sørensen-Dice coefficient, analogous to Figure 13. My indicator achieves a Spear-

man rank correlation between 0.596 and 0.816 indicating that it is able to rank the

weather years reasonably well. With a Sørensen-Dice coefficient between 0.6 and

0.8 it is however only able to predict 3 to 4 elements of the set of the 5 weather
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Figure 17: Box plots of the Spearman rank correlation coefficient (left panel) and
the Sørensen-Dice coefficient (right panel) for my indicator and the
residual load approach on the ERAA 2024 dataset. Both indicators
were pretrained on the ERAA 2022 dataset with an optimisation of the
Fβ-score with two choices of beta: β = 1 and β = 2. The plots show
the distribution over the 3 considered climate models.

years with the highest annual LOLH. Furthermore, it successfully identifies the 3

most critical weather years as being within the 6 most critical ones in only 4 of

the 6 considered configurations.

The residual load approach, again, performs better, achieving a rank correlation

between 0.835 and 0.979, with the minimum value taken if the indicator was trained

to optimize the F2-score. However, this optimization achieves a higher Sørensen-

Dice coefficient in the mean and enables the indicator to identify all 3 of the

most critical weather years as being within the 6 most critical ones unlike the

optimisation for the F1-score.
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6. Discussion

In the previous section I assessed the ability of the five considered indicators to

predict electricity shortages on three different levels of accuracy: The prediction

of exact hours at which electricity shortages occur, the prediction of annual LOLH

and the identification of the climate years with the highest annual LOLH. To

evaluate the sensitivity to the choice of training data, a cross-validation was con-

ducted for the two data-informed indicators. Furthermore, the whole process was

repeated for a different dataset that has different characteristics. Finally, the two

data-informed indicators were trained on the first dataset and applied to the second

in order to evaluate the ability to adapt to new circumstances without a renewed

training. In the following, I will discuss the strengths and limitation of the five

methods as predictors of electricity shortages based on the previous observations.

6.1. Discussion of the VRE drought indicators as predictors of

electricity shortages

The three VRE drought indicators, that only consider the supply side of the elec-

tricity balance, show unsatisfactory results on all three levels of accuracy. As

pointed out in section 5.1.1, this can be explained by their structural ignorance

of the electricity demand. They can not distinguish between a dark doldrum on

a warm Sunday night in June, where the electricity demand can be expected to

be low, and a dark doldrum on a cold Tuesday evening in January, where electri-

city demand will typically be much higher. Therefore, they either have to predict

an electricity shortage for comparatively high capacity factors in order to detect

situations like the aforementioned Tuesday evening in January at the price of false

alarms in warm summer nights or they do not detect either. This is reflected in

the results achieved by the indicators. The FMBT approach after Mockert et al.

(2023) has a low sensitivity compared to the other two VRE drought definitions, so

it misses a lot of electricity shortages, but, on the other hand, it does not produce

as many false alarms. Overall, all three definitions achieve similar, low, Fβ-scores,

showing that their ability to prioritise sensitivity or precision over the other is not

able to overcome their structural shortcomings. This is in accordance with the
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results of Biewald et al. (2025), who varied the threshold parameter of a similar

CBT VRE drought definition for daily sampled time series and achieved F1-scores

below 0.3 for all parameter values.

6.2. Discussion of the residual load approach as an indicator of

electricity shortages

The residual load approach after Otero et al. (2022) achieves the best results of

the five indicators for all considered levels of accuracy and datasets. The reason

for this success is likely to be found in the direct use of the residual load. To better

understand how exactly that helps to predict electricity shortages and under which

circumstances the indicator might be less effective, it is insightful to look at the

energy flow balance:

EV RE + EoRES + Econv + Estore + Eimp = Eload, (23)

where EV RE, EoRES, Econv, Estore, Eimp and Eload are the electrical energy provided,

or taken up by VRE energy sources, other renewable energy sources, conventional

electricity generators, storage options, the net import from neighbouring countries

and the electrical load, respectively.5 Now, by definition, electricity shortages occur

exactly when Equation (23) does not hold. An approach that uses the residual

load can then simplify Equation (23) significantly by reshuffling the terms to get:

residual load = Eload − EV RE = EoRES + Econv + Estore + Eimp. (24)

As the residual load is assumed to be known, this removes Eload and EV RE from

the equation. And these two variables are especially hard to predict: For one, they

vary a lot over time. Additionally, the control of Eload in the form of demand

response is very limited, and ERES can be reduced at will but not increased. An

oversupply of energy can be handled easily most of the time, e.g., by shutting

down generators, and can be neglected as cause of energy shortages here because

the power flow simulations used as reference assume that all generators can be

5Note, that only on- and offshore wind and solar PV are considered to be VRE sources here,
as in the rest of this thesis.

55



turned off instantaneously. Therefore, it is valid to focus on the situation where

the right hand side of Equation (24) falls short of the residual load. The residual

load approach after Otero et al. (2022) now simply assumes that this is always

the case if a constant level of the residual load is crossed. So, why does this

assumption work so well? The conventional power plants are modelled to be

always and instantaneously available with their full nameplate capacity. Thus,

they always max out at a constant level, which only leaves EoRES, Estore and Eimp

as sources of variation. Apparently, these three variables either usually balance

out quite well or the variations of their maximal supply in critical situations are

small compared to the critical residual load in the considered datasets. Therefore,

the residual load approach can be expected to show a good predictive performance

if it has sufficient training data to calibrate its threshold and the variation of the

maximal output of EoRES, Estore and Eimp in critical situations does not increase

compared to the critical residual load. In the upcoming decades the share of other

renewable energy sources, such as hydro power, in the energy mix is not expected

to grow in Germany (Spänhoff, 2014). However, storage solutions and transmission

capacities are planned to be increased significantly and can play a crucial role in

reducing the risk of electricity shortages (ENTSO-E, 2024b; Hagspiel et al., 2018;

Luburić et al., 2018; Solar Power Europe, 2025). An analysis of the sensitivity

to changes in the available transmission and storage capacities by means of power

flow simulations could estimate the reliability of the indicator for the analysis of

power systems further in the future and could be a worthwhile endeavour.

Apart from the better results, the residual load approach has the advantage

of needing less data samples for training than my indicator, as it has only one

parameter. This is confirmed by the comparatively small impact of the reduction

of training data in the cross-validation. The optimisation of the Fβ-score in the

calibration of the threshold, generally showed better results for the F1-score, that

gives equal weights to precision and sensitivity, compared to the F2-score. For

tasks, where either precision or sensitivity is more important than the other, an-

other choices of β might still be more appropriate though. For a higher weight on

the sensitivity, so an increased β, this will move down the threshold and thereby

increase the amount of detected electricity shortages. Analogously, smaller values

of β will move up the threshold.

56



This also explains why the indicator trained for the F2-score on the ERAA 2022

dataset showed better results on the ERAA 2024 dataset than the one trained for

the F1-score. The optimisation on the 2024 dataset yielded thresholds for β = 1

(100.4GWh) and β = 2 (98.7GWh) that were lower than both thresholds attained

on the ERAA 2022 data (104.1GWh for β = 1, 101.9GWh for β = 2). Therefore,

the lower threshold on the old dataset, corresponding to β = 2 as explained above,

was closer to the optimal values of the threshold for the F1- and the F2-score on

the ERAA 2024 dataset. However, this would be the other way around if I had

used the indicator trained on the ERAA 2024 dataset on the ERAA 2022 data.

Consequently, if no information is available that could help decide if the optimal

threshold of a new dataset is higher or lower than the one the indicator is trained

on, I still suggest to optimise the F1-score. However, in many cases an indication of

where the threshold should move might be available. For example, if the capacity of

conventional power plants is changed, the threshold can be expected to be changed

accordingly. Again, an analysis of the impact of a change of available capacities

that are not considered in the residual load by means of power flow simulations

would be beneficial. It could provide a rule of thumb of how to move the threshold

if the dataset is changed and no training data is available.

Concluding, the residual load approach optimised for the F1-score seems to be

an excellent choice for the fast evaluation of resource adequacy concerns if power

flow simulations are not an option. It attains the best results of all indicators

considered in this thesis. Additionally, the attained F1 scores are about twice as

high as the ones reported by Biewald et al. (2025) with the same approach but

daily time series. So, the use of hourly time series is to be preferred if they are

available. Of course, the residual load approach has one caveat: It requires the

availability of load estimations. If this is not the case, my indicator is a good

alternative.

6.3. Discussion of the novel indicator

My indicator performs almost as good as the residual load approach on the ERAA

2022 dataset, which included sufficient samples of electricity shortages to train

all 48 SVMs corresponding to the combinations of the 24 hours of the day and
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2 types of days. As claimed earlier, this works so well without any direct data

on the electricity demand because the temperature and time are good proxies of

the demand in the considered datasets. This can be understood by looking at the

relationship of the temperature and the electrical load.

Panel (a) of Figure 18 shows a scatter plot of all data points from the ERAA 2022

dataset with the mean temperature on the horizontal and the load on the vertical

axis. Although, a broad range of loads occur for a given temperature, a clear

negative trend can be seen for lower temperatures that plateaus at about 10 ◦C.

This shape, a linear decrease for low temperatures and a constant plateau for higher

temperatures, is a typical model for the relationship of load and temperature, also

called Temperature Response Function (TRF) (Hu et al., 2024). In general, this

model would predict increasing loads again after some higher temperature due to

a demand for space cooling. While this trend is detected for other countries such

as Greece and Italy, no such effect was recorded in Germany in the Summer of

2022 (Hu et al., 2024). This is not too surprising considering the relatively low

availability of cooling devices such as Air Conditioner (AC) units in the country

(Pezzutto et al., 2016). It is however interesting to note that no such trend can

be seen in the demand data from ENTSO-E for 2030 depicted on Figure 18. The

TSOs apparently assume no significant change in the cooling demand until 2030,

although they assume an increasing penetration rate of heat pumps that would

provide consumers with an effective tool for cooling their buildings (ENTSO-E,

2022, p. 64; Luo et al., 2015).

In order to utilise the TRF encoded in the data, it helps to isolate the other

sources that influence the electricity demand. One important such driver is given

by the hour of the day. Panels (b)-(e) of Figure 18 show the data split by the hour of

the day, again as scatter plots with the same axes as in Panel (a) for four exemplary

hours: 6am, 12am, 6pm and 12pm. Additionally, the data points stemming from

different types of days are distinguished by colour. The three considered types

of days considered here are: regular workdays, Saturdays & national German

holidays and Sundays. Looking at the Panel with data from 6am for each day of

the week the relationship between temperature and demand can now be described

with a TRF as above but with a lot less noise. Unsurprisingly, the demand is

lowest on Sundays, a bit higher on Saturdays and highest on regular weekdays. At
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Figure 18: Scatter plot of ERAA 2022 data with the temperature on the horizontal
axis and the electrical load on the vertical axis. Panel (a) shows all data
points. Panels (b)-(e) show the data samples corresponding to one hour
of the day each. Different day types are distinguished by colour.
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Figure 19: MAET as a function of the temperature T, where MAET is the MAE of
the approximation of the residual load of a data samples by the mean
residual load of all data points with the same rounded temperature.
The black line in all panels shows the MAET for the whole ERAA 2022
dataset. Each panel then shows the standard deviation for the data at
a given hour of the day in blue. The standard deviation for an addi-
tional restriction to regular workdays, Saturdays or national holidays
and Sundays are depicted in orange, green and red, respectively.

12am the overall demand is higher and the constant part of the TRFs is longer as

higher temperatures are more prevalent. At 6pm the average demand is still high at

95.2GWh although it is lower in the constant part of the TRF for regular workdays.

At 12pm the overall demand is low and weekdays, Saturdays and Sundays are much

closer to each other.

The temperature can now be used to approximate the load by means of the

observed distribution of loads for similar temperatures. For this analysis, I grouped

the samples by rounding their temperatures to the next integer. This ensures the

availability of sufficient samples for each group. The mean of the residual loads
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for a given temperature can now be used as an approximation of the residual

load for samples with that temperature. The reliability of this approximation can

be assessed by the mean absolute error (MAE) for each group of samples with

a given temperature T , which I denote by MAET . Figure 19 shows MAET of

the approximation of the residual load as a function of the temperature in black.

While it is low for very low temperatures, it increases steeply to about 12GWh

and fluctuates around that level for temperatures between −15 ◦C and 15 ◦C. For

higher temperatures it declines to about 7GWh. The overall MAE of an estimation

of the residual load is then given by the average of MAET weighted by the amount

of samples available for each temperature. To put this into a formula, let rli and

T i be the residual load and the temperature of the i-th data sample, N and NT the

overall number of samples and the number of samples with temperature T and rlT

the mean of the residual load for samples with temperature T . Then, the overall

MAE is given as

MAE =
1

N

N∑
i=1

|rli − rlT i | = 1

N

∑
T

∑
i∈{i|T i=T}

|rli − rlT | =
1∑
T NT

∑
T

NTMAET .

(25)

For the whole ERAA 2022 dataset, a value of approximately 11.9GWh is attained.

The four panels of Figure 19 show MAET for the subset of samples for four exem-

plary hours of the day in blue. It can be seen, that for all hours the estimation

with the reduced set has a lower error. While the improvement is not too high at

noon, the error is less than half as big as in the general case at midnight. This

is in agreement with the better overlap of the TRFs for weekends and weekdays

during the night. Averaging over all hours, the overall mean absolute error is

about 7.3GWh for the data split by the hour of the day, which is only approxim-

ately 61% of the error without this split. The effect of the additional separation

into regular workdays, Saturdays & national holidays and Sundays is depicted by

the orange, green and red graphs, respectively. Especially during the day, where

the difference between regular workdays and weekends is more pronounced, the

MAE of the further restricted data sets is significantly smaller, yet again. Using

this split, the overall MAE of an estimation of the load given the temperature,

hour of the day and type of day is only about 2.2GWh for the ERAA 2022 data.
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Unfortunately, the use of this split for my indicator would require the training of

72 SVMs: One for each combination of the 24 hours of the days and the 3 day

types. The exacerbated problem with too few samples of electricity shortages for

the training of the SVMs is the reason I decided to only differentiate between

regular workdays and other days. The corresponding split of the data allows for

an estimation of the electrical load with an overall MAE of about 2.5GWh on the

ERAA 2022 data. This is still only 34% of the MAE obtained if only the hour

of the day and temperature are considered and 21% of the MAE that has to be

expected if only the temperature is used. For very low temperatures, −10 ◦C and

below, where electricity shortages are particularly abundant, the MAE is even a

bit lower at about 2.4GWh for the separation into hours of the day and regular

workdays and other days.

Having the relationship of electric load and temperature and time variables in

mind, the effectiveness of my indicator on the ERAA 2022 dataset can be un-

derstood. In the dataset, electricity shortages only occur for temperatures below

8 ◦C in Germany. Thus, only the linear part of the TRF is of importance. So,

the electrical load can roughly be seen as a linear function of the temperature.6

If we now look at the space the SVMs are trained on, which is spanned by the

combined capacity factor and the temperature, the data points with equal residual

load will roughly be situated along a straight line or, mathematically speaking, a 1-

dimensional hyperplane in R2. Fittingly, the decision boundaries that linear SVMs

learn are exactly hyperplanes. So, if my approach learns one of the hyperplanes

of roughly equal residual load, it basically reduces to the residual load approach

after Otero et al. (2022) with an additional error due to the uncertainty of pre-

dicting the residual load. Therefore, all sensitivities of the residual load approach

discussed in section 6.2 apply also for my indicator. Of course, my indicator will

not exactly learn such a hyperplane, but considering the success of the residual

load approach it can be expected to learn a similar one if sufficient training data is

available. Unsurprisingly, my indicator generally also provides better predictions

if it is trained to optimise the F1-score instead of the F2-score, which therefore

should be the standard. However, by choosing a different Fβ-score for the optim-

6Here, linear function refers to a polynomial function of degree 1, not a linear map as defined
in linear algebra.
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isation, it is capable to adapt well to a situation where precision or sensitivity are

prioritised without compromising the F1-score significantly.

Apart from the sensitivities to changes in the available capacities for other re-

newable sources, energy storage and transmission discussed for the residual load

approach, my indicator depends on the relationship of the temperature and time

variables with the electricity demand that it learns. So, if this relationship is

changed significantly, it will need renewed training. This was the case for the

ERAA 2024 dataset, for which the definition of the load was changed to include

non-market batteries and solar PV. Additionally, like all indicators that rely on

capacity factors instead of capacities, my predictor is blind to changes in the over-

all installed capacities. It could even happen, that my indicator predicts more

electricity shortages when capacities are added if these capacities come from a

technology with relatively low capacity factors, such as solar PV.

Probably the greatest weakness of my indicator is its dependence on sufficient

samples of electricity shortages for each of the subsets that an SVM is trained

on. As described in Section 5.5.1, these were not available for the ERAA 2024

dataset. In such cases, it might be advisable to use other methods. For example,

the prediction of the annual LOLH had a MASE above 1 in the median, indicating,

by the definition of the MASE, that the constant prediction of the mean annual

LOLH would have a better MAE than my indicator. As this was even the case

when my indicator was trained on the whole dataset, the prediction of the mean

might be a better option in this situation. The reliability of my indicator if not all

of its SVMs are trained can be estimated by assessing its predictive performance

on the available training data.

A future improvement of my indicator could be achieved by reducing the number

of its parameters to decrease its need for training data. One option would be to not

train a different SVM for each subset but transform the input data according to a

pre-defined function that takes the hour of the day and type of day into regard and

then feed the transformed data to a single SVM. For instance, the temperature

could be moved up and down to account for a typical hourly load curve of the

type of day. Such a function could either be parametrized itself, which would

make the optimisation process more challenging, or it could be fixed. In the case

of a parameter-free function the overall number of parameters would have been
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reduced from 96 (2 for each SVM) to 2. This would allow the one remaining SVM

to be trained on the whole training data, which would mean that the approach

could be trained with a comparative amount of data as the residual load approach.

Summarised, my approach is a valuable alternative to the residual load approach

after Otero et al. (2022) for analyses involving electricity shortages if no load data

is available. Due to its ability to approximate the electricity demand by means of

temperature and time data, it achieves results that are almost as reliable as the

ones of the residual load approach. However, care should be taken when training

data is scarce as the indicators predictive performance is severely compromised if

not all SVMs are optimised.

7. Exemplary application

Before concluding my thesis in Section 8, I will demonstrate an exemplary applic-

ation of my indicator that highlights its utility for tasks that can not be assessed

by the residual load approach.

7.1. The switch from reanalysis based data to climate

projections in the ERAA 2024 and its impact on resource

adequacy concerns

The consideration of potential effects of climate change on resource adequacy con-

cerns is one of the methodological requirements of the ERAA (ACER, 2020, Article

4.1. (f)). Up until 2023, this was attempted by detrending the temperature of his-

torical climate data and adjusting it to match the temperature expected in the

target year (ENTSO-E, 2025a, pp. 56–57). However, this preliminary method is

considered to be insufficient as it neglects other potential effects for example on

the wind (ENTSO-E, 2025c, p. 64). Therefore, the ERAA 2024 used data from

the 3 climate models included in the PECD 4.1. To ensure that the climatolo-

gical conditions are representative of the target years, only the 12 surrounding

years from 2025 to 2036 were used for the analysis (ENTSO-E, 2025c, p. 66).

However, the impact of this change of input data on adequacy concerns can not

easily be evaluated using the ERAA results alone, especially compared to other
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uncertainties such as technical specifications of generators. The ERAA 2024 uses

only the climate projections and not the historical data, and a comparison with

earlier ERAAs is not immediately possible either because their assumptions about

other parameters, e.g., the available infrastructure, are also different. M. Koivisto

et al. (2023) studied the differences between reanalysis data and projections in an

earlier version of what later became the PECD 4.1. They focused on the availab-

ility of solar PV and found the effect of climate change to be smaller than that of

a change in the technical specifications of available wind generators. The general

impact of climate change on adequacy concerns has also been examined (e.g. Ho

et al., 2023), but the effect of the choice of climate years from either reanalysis

or climate projections on resource adequacy assessments with a time horizon of

less than 10 years is another question, that seems to be open for now. Therefore,

an exploration of this question with the resource adequacy indicators evaluated in

this thesis can be of interest for the energy systems modelling community. Since

time series of the electricity load are only publicly available for 3 × 12 years of

the projections, the residual load approach is not an option for this task. Thus, it

seems to be the perfect task for an exemplary application of my indicator.

7.1.1. Analysis of the differences between the reanalysis and climate

projection based datasets in the PECD 4.1

For this analysis, I used a total of 5760 years of climate data: reanalysis data for

the 42 weather years from 1980 to 2021 and projections for the 50 weather years

from 2015 to 2064 from all three climate models of the PECD 4.1 combined with

all combinations of the 3 offshore and 10 onshore technical wind scenarios. As the

focus of my analysis was the difference between the results from reanalysis and

projections, the total installed capacities were of secondary interest and I decided

to use the assumptions of the PEMMDB for the ERAA 2022. This allowed me

to use the version of my indicator that was trained on the ERAA 2022 dataset

for the prediction of electricity shortages. Based on my discussion in Section 6,

it is reasonable to believe that the problems of my indicator with the ERAA

2024 dataset were mainly due to the changes in assumptions about the installed

infrastructure and especially the redefinition of the electricity demand. Therefore,

65



I assume that my indicator has a predictive performance comparable to the one

on the ERAA 2022 dataset in this analysis. However, it would be interesting to

evaluate this by comparing with results of power flow simulations for the same

configurations. Unfortunately, this was not possible to me because I did not have

access to the corresponding demand data.

Figure 20 gives a first idea of the datasets. It shows the annual full load hours

and LOLH for the 30 technical scenarios and climate data from the reanalysis and

the MEHR model. The results for the other two climate models look similar in

the aspects I want to point out in the figure. For both variables the transition

from reanalysis data to the projections is not obvious at first glance. Looking

at the full load hours, it is clear that the choice of the technical scenario for the

onshore wind generators has a much higher impact than the choice of the offshore

scenario or the decision to use climate projections or reanalysis data. Interestingly,

the onshore scenarios 31, 35 and 39 show very similar results. For the predicted

LOLH, the situation is not so clear as the overall data level is mostly dominated by

a great variation between the years. Figure 21 shows the same situation but with

a running mean of 10 years applied to the time series. It becomes clear that the

choice of the onshore wind scenario also has the highest impact on the predicted

LOLH. More than that, there seems to be a decreasing trend over the years in the

reanalysis data. The running mean of the annual full load hours shows a difference

of the general data level between the historical data and the projections. This is,

however, not the case for all three models. In the following, I will assess this

difference more rigorously with particular attention to the variation given by the

three climate models.

In order to see the differences between the reanalysis dataset and the projec-

tion dataset and not between the scenarios, I calculated the mean values over the

years of both variables for each of the scenarios and each dataset separately. Then

I studied the percentage change of these means for the change from the reana-

lysis data to the projections, so the percentage of increase or decrease from the

reanalysis data to the projections. To put this into a formula for the LOLH, let

LOLHyear
model,on,off be the annual LOLH of the year specified by the superscript for

the climate model or reanalysis defined by model and the on- and offshore wind

scenarios defined by on and off . Then, the percentage change of the mean annual
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Figure 20: Annual full load hours (Panel (a)) and predicted annual LOLH (Panel
(b)) for the 30 combinations of the 10 technical onshore wind scenarios
(distinguished by colour) and 3 technical offshore wind scenarios (dis-
tinguished by line style) of the PECD 4.1. Results are shown for the
ERA5 based reanalysis data and the MEHR climate model.
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Figure 21: 10 year running mean of annual full load hours (panel (a)) and predicted
annual LOLH (panel (b)) for the 30 combinations of the 10 technical on-
shore wind scenarios (distinguished by colour) and 3 technical offshore
wind scenarios (distinguished by line style) of the PECD 4.1. Results
are shown for the reanalysis data and the MEHR climate model.
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Figure 22: Box plots of the percentage change of the mean annual full load hours
(panel (a)) and the mean predicted annual LOLH for the change from
the reanalysis based dataset to the climate projections in the PECD
4.1. Hereby, the mean is taken over the years of the datasets. Each box
corresponds to one of the three considered climate models and shows
the distribution over the 30 technical scenarios.

LOLH, ∆%LOLHmodel,on,off, is given by

∆%LOLHmodel,on,off =∑2064
year=2015 LOLHyear

model,on,off −
∑2021

year=1980 LOLHyear
ERA5,on,off∑2021

year=1980 LOLHyear
ERA5,on,off

× 100. (26)

The equation for the percentage change of the mean annual full load hours looks

analogously. Figure 22 shows box plots of the distribution over the 30 technical

scenarios of this percentage change for each of the three climate models. The

change in the full load hours is not very large and actually the CMR5 and MEHR

model gain full load hours compared to the historical data while the ECE3 model

looses about 2.13% in the median. The change in the predicted LOLH is much

more pronounced and all three models predict a significant decrease of 17.34% to

22.56% in the median. Interestingly, the ECE3 model shows the biggest decrease
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although it had a decrease in full load hours. Apparently, the negative correlation

between a change in full load hours and LOLH is not very strong. Considering the

earlier observations of this thesis, this might not come as a surprise, as the full

load hours do not incorporate the demand side of the electricity balance that is so

crucial for the occurrence of electricity shortages.

A look at the annual mean temperatures, depicted in Figure 23, gives an idea

why the projections predict so significantly less LOLH. The temperature in the

PECD 4.1 was not detrended as was done for earlier versions of the ERAA as

this was only a measure to obtain climate data that was closer aligned with es-

timations for the target year. Consequently, the temperature has a significant

increasing trend that causes my indicator to predict less electricity shortages the

further the years progress. The box plots in panel (b) of Figure 23 also give a

plausible explanation why the ECE3 model showed such an increase in annual

LOLH compared to the reanalysis data although the full load hours were lower.

It has the highest temperatures of the three climate models and a median tem-

perature that is about 1.50 ◦C above the one of the historical dataset and maybe

more importantly a high minimum annual mean temperature at about 8.50 ◦C.

Of course the annual mean temperatures can also only give a hint as the more

important figure for adequacy concerns are the temperature extremes.

However, the original goal of my analysis was to assess the impact of the change

from reanalysis data to climate projections in the ERAA 2024, and the earlier

versions of the ERAA used detrended temperatures that were adjusted to align

with temperatures expected for the target year. Therefore, a more appropriate

test might be to compare the results of the reanalysis data with such a detrending

to the results of the projections for the 12 weather years from 2025 to 2036 used

in the ERAA 2024.

7.1.2. Analysis of the differences between temperature adjusted reanalysis

data and climate projections in the PECD 4.1

In order to obtain temperatures that are comparable to the ones expected in the

target year 2030, I detrended the temperature time series following a methodology

described in Annex 2 of the ERAA 2023 report (ENTSO-E, 2025a, pp. 56–57).
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Figure 23: Line plot (panel (a)) and box plots (panel (b)) of annual mean tem-
peratures for the ERA5 based historical dataset and the three climate
models of the PECD 4.1. The box plots characterize the distribution
over the years of the corresponding dataset.

Specifically, I chose the second methodology, detrending each month individually,

combined with the first extrapolation adjustment approach, adjusting only the

mean and not the standard deviation of the temperature. The details of the

detrending are described in the following paragraph.

First, monthly mean temperatures are computed. Then, for each month a linear

trend over the years is determined using a linear regression model. The slope of

these regressions can be understood as the temperature adjustment needed per year

of the difference between the target year and the year of the month that is to be

adjusted. To avoid jumps between months that are adjusted by different amounts,

the slopes are interpolated to an hourly time series over the whole year using

the Piecewise Cubic Hermite Interpolating Polynomial method (PCHIP) (Fritsch

& Carlson, 1980). The PCHIP method provides a rather smooth interpolation

compared to a linear approach without overshooting extrema like a general spline

approach might.7

7More precisely, the interpolating function is continuously differentiable and monotone between
data points (Fritsch & Carlson, 1980).
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Figure 24: Line plot (panel (a)) and box plots (panel (b)) of annual mean temper-
atures. The ERA5 based historical data of the PECD 4.1 was adjusted
to match the climate expected for the target year 2030 by following a
linear trend. The projections are restricted to the 12 years used in the
ERAA 2024. The box plots characterise the distribution over the years
of the corresponding dataset.

Figure 24 shows the results of the detrending together with the 12 weather years

of projections considered in the ERAA 2025. The box plot in Panel (b) shows,

that the temperatures of the reanalysis data are now comparable to the ones of the

ECE3 model which also has the highest temperatures of the climate projections

in the considered subset of weather years. The CMR5 has the lowest median

temperature but, on the other hand, the highest minimum.

The effects of the temperature adjustment and the restriction of weather years on

the annual full load hours and the predicted annual LOLH can be seen in Figure 25.

Analogously to Figure 22, it shows the distributions over the 30 technical scenarios

of the percentage change of the 2 variables between the reanalysis dataset with

adjusted temperatures and the climate projections. Panel (a) looks very similar to

its counterpart in Figure 22, although the values for the CMR5 and MEHR model

are a bit lower. Apparently, the change in mean full load hours is similar for the

subset of weather years as on the whole set. The percentage change for the mean
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Figure 25: Box plots of the percentage change of the mean annual full load hours
(panel (a)) and the mean predicted annual LOLH (panel (b)) for the
change from the temperature adjusted reanalysis dataset to the 12 years
of climate projections used in the ERAA 2024. Hereby, the mean is
taken over the years of the datasets. Each box corresponds to one of
three considered climate models and shows the distribution over the 30
technical scenarios of the PECD 4.1.

of the predicted annual LOLH is very different though to the one observed without

the temperature adjustment. Now, the predicted LOLH increase significantly for

all three climate models with a median change over all 90 scenarios of about

39.14%. The increase for the ECE3 model is actually the highest in the median

with a value of 55.53%, although it has the highest median temperature. Part of

the explanation is probably given by its low full load hours and the one outlier year

with the lowest mean temperature in the comparison. However, I assume that an

analysis of the corresponding time series with a higher resolution is necessary to

get a satisfactory answer.

7.2. Evaluation

The analysis of the different technical scenarios showed, that the onshore scenarios

31, 35 and 39 show very similar results. This offers an opportunity to save com-
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putational resources by only considering one of these. The significantly increased

LOLH predictions for the climate projections shows that the choice of climate data

from either reanalysis or projections is important. Interestingly, the power flow

simulations predict substantially less electricity shortages for the ERAA 2024 with

data from projections than for the ERAA 2022 with reanalysis based data. Seeing

the even greater impact of the technical scenarios on the predicted LOLH, com-

pared to the choice of climate data, this can likely be explained by the simultaneous

changes in technical assumptions between the two ERAAs. In conclusion, I suggest

the development of a realistic scenario for the spatial distribution and technical

specifications of onshore wind generators should be a priority in the preparations

for future ERAAs.

8. Conclusion

The reliable evaluation of resource adequacy concerns is a central challenge in the

transition towards a climate neutral energy system. However, the amount of data

that needs to be processed to factor in uncertainties such as climate variability

can easily overwhelm the capacities of elaborate models. Therefore, a simplified

approach that allows a preselection of the most relevant subsets of data can be of

great value. I evaluated five methods to detect electricity shortages that are able to

process thousands of scenarios within minutes. Commonly used VRE drought or

dark doldrum indicators, that focus on the supply side of the electricity balance,

performed poorly and should not be used for the task. In accordance with the

results of Biewald et al. (2025), I found that the incorporation of the demand

side is essential for a reliable detection of electricity shortages. The best results

are achieved by the straightforward approach based on the residual load after

Otero et al. (2022). However, its reliance on demand data, which is not always

available, can be a hurdle for its application. The data-driven indicator I developed

serves as an alternative, as it only uses temperature and time data as proxies

for the electricity demand, and it performs almost as well as the residual load

approach if sufficient training data is available. While both indicators need data

to calibrate their parameters, the residual load method only has one parameter

in contrast to the 96 of my approach. Consequently, the residual load approach
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is less sensitive to a reduction of the training data. Comparing the results to

the ones of Biewald et al. (2025), it is evident that an hourly instead of a daily

temporal resolution substantially improves the F1-score. Furthermore, for most

applications, the F1-score was found to be preferable to the F2-score as objective

function in the optimisation.

Overall, the two indicators combining the supply and demand side are able to

detect electricity shortages sufficiently well to allow for the reliable preselection of

the most critical weather years and the identification of similar technical scenarios.

Thus, they are appropriate tools to reduce the input data of resource adequacy

assessments, allowing to account for a great range of uncertainties while keeping

the amount of data that needs to be processed by computationally demanding

simulations manageable. This can not only save money in the making of adequacy

assessments, but, by helping to ensure that the available resources are used on

relevant data, it can also improve the reliability of the results of the assessment

(Biewald et al., 2025). This in return has the potential to reduce the costs of the

overall power system, for example, by aiding the implementation of appropriately

scaled capacity mechanisms.

Beyond their utility for resource adequacy assessments, the indicators are a

valuable toolset for researchers investigating other sorts of questions involving

electricity shortages, especially if power flow simulations are not feasible. In this

context, my indicator can be particularly useful, as climate data is often more

readily available than demand estimations. This was demonstrated in an analysis

of the impact of the change from temperature adjusted reanalysis based climate

data to climate projections in the ERAA 2024. I found that the change of data

source leads to increased adequacy concerns, with mean annual LOLH increasing

by 39.14% in the median of the considered scenarios. While this is a substantial

change, switching from one technical scenario for the onshore wind production to

another can have an even larger impact. Consequently, devising a well designed

technical scenario for the ERAAs might be even more important than the choice

of the best climate models and CO2-reduction pathways.

Summarising, my analysis supports earlier findings by Biewald et al. (2025)

that suggest that computationally efficient methods for the detection of electri-

city shortages can greatly benefit the study of resource adequacy concerns if they
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incorporate the demand and supply side of the electricity balance. As my main

contribution, I developed a novel SVM-based method that, given sufficient training

data, provides reliable results without depending on demand data.
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Acronyms

AC Air Conditioner. 58

ACER European Union Agency for the Cooperation of Energy Regulators. 6, 7,

93–96

C3S Copernicus Climate Change Service. 19, 80

CBT Constantly-Below-Threshold. 14, 15, 17, 55, See Section 2.6.1.

CMR5 CMCC-CM2-SR5. 22, 69, 72, Glossary: CMR5

DLR German Aerospace Center. 18, 23, 24

DSC Dice similarity coefficient. 12

DSO distribution system operator. 19, 94

DTU Technical University of Denmark. 19–21

ECE3 EC-EARTH3. 22, 69, 70, 72, 73, Glossary: ECE3

ECMWF European Centre for Medium-Range Weather Forecasts. 19, 22, 80

ED economic dispatch. 18, 24, 96

EENS expected energy not served. 96

ENS energy not served. 24

ENTSO-E European Network of Transmission System Operators for Electricity.

1, 6, 19, 24, 34, 58, 93–95

ERAA European Resource Adequacy Assessment. 1, 2, 6, 7, 14, 18–20, 22, 24,

30–32, 34, 35, 37–43, 45–53, 57–66, 70, 72–75, 93, 95, 96

ETSO European Transmission System Operators. 93

EU European Union. 6, 7, 19, 24, 93–95
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EVA economic viability assessment. 6, 20, 96

FMBT fixed-duration mean below threshold. 15–17, 30, 34, 36, 37, 48, 54, See

Section 2.6.2

IPCC Intergovernmental Panel on Climate Change . 2, 80, Glossary: IPCC

LOLE loss of load expectation. 96

LOLH loss of load hours. 5, 8, 9, 12, 17, 18, 29, 32, 34–37, 40–42, 45–49, 51–54,

63, 66–70, 72–75

MAD mean absolute deviation. 10, 11, 35

MAE mean absolute error. 10, 11, 34–36, 39, 40, 45–47, 51, 52, 60–63

MASE mean absolute scaled error. 10, 11, 34–36, 39, 40, 45–47, 51, 52, 63

MBT Mean-Below-Threshold. 15, 16, See Section 2.6.2

MEHR MPI-ESM1-2-HR. 22, 66–69, 72, Glossary: MEHR

NECP National Energy and Climate Plan. 19, 96

NRA national regulatory agency. 94

PECD Pan-European Climate Database. 19–23, 25, 33, 64, 65, 67–73

PEMMDB Pan-European Market Modelling Database. 19, 20, 65

PRL positive residual load. 17

PV photovoltaics. 1, 3, 4, 14, 20, 22, 42, 55, 63, 65

RMSE root mean square error. 10

SPA Sequent Peak Algorithm. 16, 17, 30, 34, 37

SSP Shared Socioeconomic Pathway. 2
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SVM support vector machine. 25, 26, 28, 29, 44, 46, 47, 57, 62–64, 76

TRF Temperature Response Function. 58, 60–62

TSO transmission system operator. 6, 19, 22–24, 58, 93, 94, 96

UN United Nations. 80

VMBT variable-duration mean below threshold. 15–17, See Section 2.6.2

VRE variable renewable energy. ii, 3, 4, 13–18, 20, 25, 30, 32–34, 36, 37, 42, 45,

48, 50, 54, 55, 74
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Glossary

CMIP6 Stands for Coupled Model Intercomparison Project Phase 6. It is a project

to coordinate a common framework for different climate models to allow for

intercomparison. The Models are used by the IPCC. 19, 80

CMR5 Is short for CMCC-CM2-SR5. It is an earth system model developed at

the Euro-Mediterranean Center on Climate Change in Bologna, Italy, that

was used for the CMIP6 (Lovato & Peano, 2020). 22, 77

ECE3 Is short for EC-EARTH3. It is an earth system model developed by the EC-

EARTH consortium, version 3.3 of which was used for the CMIP6 (Döscher

et al., 2022). 22, 77

ERA5 Is the fifth generation of atmospheric reanalysis created by C3S at ECMWF.

19–21, 67, 71, 72

IPCC Stands for Intergovernmental Panel on Climate Change and is the body of

the United Nations (UN) that assesses the science related to climate change..

2, 78

MEHR Is short for MPI-ESM1.2-HR. It is an earth system model of the Max

Planck Institute that was used for the CMIP6 (von Storch et al., 2017). 22,

78

PyPSA Stands for Python for Power System Analysis. It is a project providing a

comprehensive open-source python environment for power system modeling.

24
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A. The European Resource Adequacy Assessment

In order to ensure a reliable electricity supply within a transforming energy sys-

tem, a robust assessment of the adequacy of the available resources is of vital

importance to allow policy makers and other stakeholders to come to informed

decisions. Assessments on the national level are seen to not sufficiently recognize

the situations in neighbouring countries.8 However, a coordinated approach to ad-

equacy concerns is seen to be crucial to ensure properly functioning cross-border

electricity markets, facilitating a more robust and cost effective system for all in-

volved countries. Consequently, in 2019, the EU set the legal framework for the

conduction of a European Resource Adequacy Assessment (ERAA). As the ERAA

provides the context for which my work has the most relevance, I will introduce its

legal foundations, involved parties and methodology before delving into the main

part of my thesis.

A.1. Involved institutions

On the highest level, two European institutions are mainly responsible for the

ERAA: the ENTSO-E for the creation and the ACER in a supervisory function.

A.1.1. The European Network of Transmission System Operators for

Electricity (ENTSO-E):

The European Network of Transmission System Operators for Electricity (ENTSO-

E) is the association of European TSOs, facilitating the cooperation of TSOs

to ensure a reliable, coordinated operation of the European power grid. It was

founded in 2009 as the successor of the European Transmission System Operators

(ETSO).9 Membership in the ENTSO-E is mandatory for all TSOs in the EU.10 Its

tasks include the development of operational standards and rules for the effective,

8Regulation (EU) 2019/942 of the European Parliament and of the Council of 5 June 2019
establishing a European Union Agency for the Cooperation of Energy Regulators (recast),
2019, Recital 5.

9Regulation (EC) No 713/2009 of the European Parliament and of the Council of 13 July 2009
establishing an Agency for the Cooperation of Energy Regulators, 2009.

10Regulation (EU) 2019/943 of the European Parliament and of the Council of 5 June 2019 on
the internal market for electricity (recast), 2019, Article 28.
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reliable and competitive operation of the European electricity market in the form

of network codes. Furthermore, the ENTSO-E biennially publishes a Union-wide

ten-year network development plan, supports the coordination of stakeholders and

has to conduct resource adequacy assessments on different time scales. Beyond

that the ENTSO-E sees itself as ”the common voice of European TSOs”(ENTSO-

E, n.d.-a) and claims to provide ”expert contributions and a constructive view to

energy debates to support policymakers in making informed decisions”(ENTSO-E,

n.d.-a), as declared in its Mission statement. Thus, it has to be seen in part as

a lobbying organization of the interests of TSOs and is registered in the official

transparency register of the EU since February 2012 (European Commission, n.d.).

A.1.2. The European Union Agency for the Cooperation of Energy

Regulators (ACER):

The ACER is the decentralized agency of the EU that was created for the Union-

wide regulation and coordination of the European energy market.11 It coordinates

the cross-border cooperation among TSOs, DSOs and national regulatory agencies

(NRAs). Thereby, it aims to mitigate the serious problems for the cross-border

energy market that national regulatory measures are seen to cause if they are

not properly coordinated internationally.12 Other tasks are the counseling of other

institutions and bodies of the EU on questions pertaining the energy system as

well as the issuing of opinions and recommendations to other stakeholders, such

as TSOs, DSOs and NRAs. Furthermore, the ACER has a supervisory role over

other institutions such as the ENTSO-E, ensuring EU regulations are met. It has

to work for the good of the EU, independently of private and business interests.13

11Regulation (EC) No 714/2009 of the European Parliament and of the Council of 13 July 2009
on conditions for access to the network for cross-border exchanges in electricity and repealing
Regulation (EC) No 1228/2003, 2009.

12Regulation (EU) 2019/942 of the European Parliament and of the Council of 5 June 2019
establishing a European Union Agency for the Cooperation of Energy Regulators (recast),
2019, Recitals 3-5.

13Regulation (EU) 2019/942 of the European Parliament and of the Council of 5 June 2019
establishing a European Union Agency for the Cooperation of Energy Regulators (recast),
2019, Article 1(3).
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A.2. The legal foundations of the European Resource

Adequacy Assessment

The legal framework of the ERAA is mostly defined in Chapter IV of Regulation

(EU) 2019/943 of the European Parliament and of the Council of 5 June 2019

on the internal market for electricity (recast) (2019), in the following referred to

as ”Electricity Regulation”. Article 23 of said regulation defines that the ERAA

shall identify concerns regarding the adequacy of the electricity system to supply

current and projected demands within the EU, on member state and bidding zone

levels, over a 10-year period. The ENTSO-E is responsible for the annual conduc-

tion of the assessment. It is required to submit a draft of a methodology to the

ACER by January 2020. The methodology should be transparent and consider

various scenarios anticipating future developments while using probabilistic calcu-

lations and market models to ensure thorough and reliable risk estimations. The

methodology and the results of the ERAAs shall be subject to a prior consultation

of the member states of the EU, ACER and other relevant stakeholders. Article 27

of the Electricity Regulation determines that ACER has to decide if it can approve

the methodology and ERAAs as they are, with amendments or not at all.

Furthermore, the regulation declares the ERAA to be the official basis for the

evaluation of resource adequacy concerns in the EU. It may be complemented

by national assessments that include additional sensitivities but follow the same

general methodology. If resource adequacy concerns are identified, the affected

states have to devise a plan for their elimination, that has to be approved by the

Commission of the EU and monitored by annual reports.14 Only if these plans do

not suffice to dismiss concerns, may so-called capacity mechanisms be introduced

and only for a limited time of no more than 10 years.15 Capacity mechanisms

are measures taken to ensure the availability of sufficient generation capacities to

meet demand at all times, even if these capacities are not economically competitive.

This is mostly done by subsidies to providers of generation capacities (Simoglou

& Biskas, 2023).

14Regulation (EU) 2019/943 of the European Parliament and of the Council of 5 June 2019 on
the internal market for electricity (recast), 2019, Article 20.

15Regulation (EU) 2019/943 of the European Parliament and of the Council of 5 June 2019 on
the internal market for electricity (recast), 2019, Article 21.
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A.3. Methodology

In October 2020 ACER approved an amended methodology for the European re-

source adequacy assessment, which serves as the foundation of the conduction and

evaluation of the ERAAs (ACER, 2020). The assessment is centered around cent-

ral reference scenarios that define projected demand, supply and grid assumptions

collected by the TSOs. These scenarios are to be consistent with the NECPs,

defining the national road maps for the energy transition and goals for greenhouse

gas emissions. They should, furthermore, anticipate the impact of other policy

measures concerning the energy system, particularly the plans for the elimination

of resource adequacy concerns. One central reference scenario is then to consider

capacity mechanisms, while another is to neglect them except for already awarded

contracts (ACER, 2020, Article 4).

Given this input data, an EVA is to be conducted. The EVA aims to predict at

what times capacity resources are removed, mothballed, reintroduced or added to

the market based on their economic feasibility. This information is used to adjust

the input data to have a more realistic estimation of the available technologies

at a point in time (ACER, 2020, Article 6). The modified scenarios are used

for an economic dispatch (ED) model, that determines what capacity resources

are to be used to what extent for every hour of a target year. The ED model

assumes perfect foresight of availability and demand time series and determines

the dispatch of generation, storage, and demand units to meet demand while

minimising the total operating costs of the system. For this, it has to account

for various inherent constraints such as cross-zonal transmission capacities. It

produces a variety of outputs notably the expected energy not served (EENS) and

the loss of load expectation (LOLE) before and after activation of out-of-market

capacities (ACER, 2020, Article 7).
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