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A B S T R A C T

Accurate estimation of spatially explicit forest aboveground biomass density (AGBD) is essential for supporting 
climate change mitigation strategies. Recent studies have demonstrated the predictive effectiveness of the 
random forest (RF) algorithm in forest AGBD estimation utilizing multi-source remote sensing (RS) data. 
However, the RF-based estimates may be further enhanced by integrating RF with kriging techniques that ac-
count for spatial autocorrelation in model residuals. Therefore, we investigated the performance of random forest 
ordinary kriging (RFOK) and random forest co-kriging (RFCK) for estimating AGBD in Central Vietnamese forests 
using Advanced Land Observing Satellite-2 Phased Array L-band Synthetic Aperture Radar-2 (ALOS-2 PALSAR- 
2), Sentinel-1 (S1), and Sentinel-2 (S2) imageries. 277 predictors, including spectral bands, radar backscatter 
coefficients, vegetation indices, biophysical variables, and texture metrics, were derived from these RS datasets 
and statistically linked to field measurements from 104 geo-referenced forest inventory plots. The results showed 
that textures, modified chlorophyll absorption ratio index (MCARI), and radar backscatters were key contributors 
to AGBD variability. The fusion of ALOS-2 PALSAR-2 and S2 data yielded the highest RF performance, with 
coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE) achieving 
0.75, 39.15 t.ha-1, and 32.20 t.ha-1, respectively. Incorporating interpolated residuals by ordinary kriging and co- 
kriging into RF predictions enhanced estimation accuracy, with relative improvements of 5.74–7.04 % in R2, 
8.73–10.91 % in RMSE, and 13.62–15.27 % in MAE, yet these gains remained limited. Although RFOK achieved 
marginally better accuracy (R2 = 0.80, RMSE = 34.88 t.ha-1, MAE = 27.28 t.ha-1) compared to RFCK (R2 = 0.79, 
RMSE = 35.73 t.ha-1, MAE = 27.81 t.ha-1), the latter reduced estimation bias more effectively, likely due to the 
inclusion of elevation as a covariate in the co-kriging process. These findings underscore the potential of the 
hybrid RF-kriging frameworks for improving spatial AGBD estimation, offering a robust approach for carbon 
accounting in tropical ecosystems.

1. Introduction

Forest ecosystems play a crucial role by effectively reducing atmo-
spheric carbon levels (Canadell and Raupach, 2008; Ji et al., 2024). 
Prior research has demonstrated that forest ecosystems on a worldwide 
scale absorb over 30 % of human-caused carbon dioxide emissions by 
extracting nearly 2 Pg carbon from the atmosphere per year (Bellassen 
and Luyssaert, 2014). Among forest ecosystems, tropical forests serve as 
vital contributors to carbon sequestration and storage, surpassing other 
types of forests (Nesha et al., 2020). Specifically, on average, tropical 
forests store 303 t carbon ha-1 (Lü et al., 2010), while temperate and 

boreal forests store 66 and 44 t carbon ha-1, respectively (Thurner et al., 
2014). However, in most tropical nations, deforestation and forest 
degradation substantially affect the carbon cycle globally (Mwambala 
et al., 2023; Pearson et al., 2017) since the aboveground biomass (AGB), 
which includes the trunks, branches, and leaves of forest trees, holds the 
vast majority of the forest carbon reservoir (Pan et al., 2011). In addi-
tion, the United Nations Framework Convention on Climate Change 
(UNFCCC) has acknowledged AGB as a crucial climate parameter for 
monitoring carbon storage in forest landscapes (Rodríguez-Veiga et al., 
2016). Thus, spatially explicit estimates of aboveground biomass density 
(AGBD) are a critical quantitative approach to estimating terrestrial 
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carbon stocks and enhancing our comprehension of the mechanisms that 
control carbon storage and release in tropical forests where uncertainty 
remains high (Rodríguez-Veiga et al., 2017; Vorster et al., 2020).

To estimate AGBD, conventional methods using field measurements, 
such as destructive sampling and allometric models, are the most ac-
curate, yet pose challenges when used in broad regions due to their 
negative impacts on the environment, high costs, time requirements, 
and labor intensiveness (Sinha et al., 2015; Timothy et al., 2016). 
Meanwhile, remote sensing (RS) is widely acknowledged as a promising 
approach for estimating AGBD, as it enables low-cost, rapid data 
acquisition and provides coverage of forested areas that are otherwise 
difficult or hazardous to access through ground-based methods (Barbosa 
et al., 2014; Koch, 2010; Lu, 2006; Yu et al., 2022). The primary types of 
remotely sensed data for extracting information on AGBD are optical RS 
data, synthetic aperture radar (SAR) data, and Light Detection and 
Ranging (LiDAR) data (Sinha et al., 2015). Although optical RS data 
have been widely employed for estimating forest AGBD because of their 
accessibility and cost-effectiveness (Cutler et al., 2012; Foody et al., 
2003; Timothy et al., 2016), they typically have constraints when dis-
tinguishing ecosystems that exhibit moderate to high amounts of AGBD 
(GFOI, 2013). Whereas, SAR data can penetrate the forest canopy, a 
capability completely lacking in optical data (Sinha et al., 2015). Most 
AGBD estimation studies frequently use the C-, L-, and P-band SAR data 
(Ghasemi et al., 2011). Among these, the L-band is regarded as the most 
appropriate frequency for estimating forest biomass because it can 
penetrate deeper into vegetation canopies and interact with the limbs 
and trunks of trees, with minimal sensitivity to environmental condi-
tions (Berninger et al., 2018; Hamdan et al., 2015; Sun et al., 2002). In 
addition to its benefits, SAR data presents drawbacks related to speckles 
and image distortions in uneven terrain areas (Sinha et al., 2015). The 
LiDAR technology is deemed more precise than optical or radar sensors 
for estimating AGBD because of its robust correlation with biomass level 
and better resistance to the saturation effect (Lu et al., 2012; Yavaşlı, 
2012; Zolkos et al., 2013). However, the exorbitant expenses related to 
the collecting and processing of LiDAR data continue to be a significant 
obstacle, especially for large-scale forest monitoring programs (Su et al., 
2020; Xu et al., 2021). To improve the prediction accuracy in estimating 
forest AGBD, the multi-frequency SAR data (Berninger et al., 2018; 
Huang et al., 2018; Sivasankar et al., 2018; Zeng et al., 2022) and the 
integration of SAR and optical sensor data (Li et al., 2020a; Z. Li et al., 
2022; Monsalve-Tellez et al., 2022; Naik et al., 2022; Pham et al., 2020; 
Vafaei et al., 2018) are considered potential ways.

As opposed to direct forest biomass estimations, RS techniques 
generally estimate forest AGBD by establishing relationships between 
ground measurements and RS-derived parameters, such as spectral 
indices, canopy cover and height, texture, shaded fraction, leaf and basal 
area, and timber volume, through the use of predictive models (Goetz 
et al., 2009; Li et al., 2020a; Tian et al., 2023). Over the past decade, 
machine learning (ML) algorithms, including random forest (RF), sup-
port vector regression (SVR), artificial neural networks (ANN), k-nearest 
neighbors (kNN), stochastic gradient boosting (SGB), and extreme 
gradient boosting (XGBoost), have been widely employed as predictive 
models for estimating AGBD in forest ecosystems (Li et al., 2020a; Su 
et al., 2020; Zhang et al., 2020). Their advantages over traditional sta-
tistical regression methods include the ability to handle nonlinear data 
and require no assumptions about the underlying data distribution or 
the relationships between AGBD and RS features (Wu et al., 2016; Zhang 
et al., 2019). Existing research indicates that RF frequently achieved 
improved accuracy in forest AGBD estimation compared to other ML 
algorithms and traditional statistical regressions due to its less sensi-
tivity to noise in the training data and multicollinearity issue (Li et al., 
2024; Su et al., 2020). For example, Wu et al. (2016) compared stepwise 
linear regression, kNN, SVR, RF, and SGB approaches for estimating 
forest AGBD from Landsat imagery in northwestern Zhejiang Province, 
China, and found that RF yielded the highest accuracy. Ghosh and 
Behera (Ghosh and Behera, 2018) evaluated RF and SGB using multiple 

data sources in a dense tropical forest and concluded that RF achieved 
greater accuracy. Similarly, Ramachandran and Dikshit (2022) assessed 
the performance of RF, ANN, and XGBoost using airborne L-band SAR 
data to predict AGBD across forested landscapes and reported that RF 
outperformed the other methods. Kumari and Kumar (2023) also 
confirmed the superior performance of RF over SVR in estimating forest 
AGBD from MODIS data in Uttarakhand, India. However, one of the 
limitations of RF is its inability to account for the influence of neigh-
boring observed data, known as spatial autocorrelation, when predicting 
the spatial distribution (Chen et al., 2019a), making it difficult to 
completely mine the relationship between the regionalized variable and 
its predictors. Consequently, the relationship that is not captured by the 
trend component is transferred to the residuals, causing them to still 
retain spatial autocorrelation structure (Zhu et al., 2022). To overcome 
the disadvantage, the kriging methods can be used to capture the spatial 
dependence of the residual components obtained from RF (Islam et al., 
2017). Utilizing variogram theory and structural analysis, the kriging 
methods can not only characterize the underlying spatial structure but 
also achieve the best linear unbiased estimation of regionalized vari-
ables (Jiang et al., 2022). Integrating the predictive power of RF for 
generating deterministic trends with the capability of ordinary kriging 
(OK) or co-kriging (CK) for capturing spatial autocorrelation in residuals 
is likely to provide an initiative to yield more accurate estimates 
compared to using standalone RF in various environmental fields, such 
as soil attributes and pollutant concentrations (Su et al., 2020). How-
ever, these hybrid methods do not consistently yield improved accuracy 
in estimating forest AGBD, as spatial autocorrelation is not uniformly 
present across all forest ecosystems because of its strong dependence on 
the heterogeneity and structural complexity of local forest landscapes 
(Viana et al., 2012).

Tropical forests present significant challenges for field access due to 
their characteristic dense vegetation and complex topography, leading 
to a scarcity of in situ data (Saatchi et al., 2011; Sinha et al., 2015). This 
data limitation often results in AGBD prediction models, those 
employing RF trained over extensive areas, being susceptible to over-
fitting and failing to capture local variability adequately (Jha et al., 
2021; Su et al., 2020). In such cases, the synergistic integration of optical 
and multi-frequency SAR data, combined with hybrid approaches that 
fuse RF and kriging techniques, offers promising avenues. However, the 
effectiveness of these methodologies in tropical forest ecosystems re-
mains underexplored and warrants further investigation. Taking these 
issues above into account, we conducted this study to (1) identify the 
most influential RS-derived predictors, (2) evaluate the performance of 
different RS data fusion strategies with RF, and (3) assess the extent of 
improvement of the random forest ordinary kriging (RFOK) model and 
the random forest co-kriging (RFCK) model compared to RF for esti-
mating AGBD in tropical forests. The findings of this study are expected 
to contribute to the strategic development of carbon sequestration for-
ests and to inform evidence-based approaches for sustainable forest 
management.

2. Materials and methods

2.1. Study area

Danang is one of six centrally-controlled cities in Vietnam, roughly in 
the nation’s center. The study area is located between 15.920 and 
16.22◦N latitude and 107.810 and 108.34◦E longitude (Fig. 1), covering 
approximately 960 km2 (Thi An et al., 2022). The city comprises two 
distinct primary topographic settings: mountains and plains. Over half of 
the city’s territory is covered by mountainous areas along the northern 
and northwestern borders, with altitudes varying from 700 m to 1,500 
m. The coastal lowlands are dominated by plains to the east of the city. 
Danang experiences a tropical monsoon environment characterized by 
rainy and dry seasons. The rainy season typically runs from August to 
December, with heavy rains and typhoons, while the dry season occurs 
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during the remainder of the year in hot and humid conditions (Hoang 
Khanh Linh and Van Chuong, 2015). Besides, Danang lies in a tropical 
rainforest zone (Iremonger and Gerrand, 2011), leading to the domi-
nation of evergreen broadleaf vegetation (e.g., Lithocarpus annamensis, 
Polyalthia nemoralis, Scaphium lychnophorum, Syzygium levinei, Shorea 
farinosa, and Aglaia roxburghiana) in the forest ecosystems (Huy et al., 
2016).

Since the initiation of the Doi Moi (renovation) policy in 1986, 
Danang and the broader central region of Vietnam have undergone rapid 
land use/land cover (LULC) transformations. These changes, driven by 
accelerated economic development and globalization, have led to the 
conversion of tropical forests into built-up and agricultural land (Liang 
et al., 2022). Consequently, there has been a substantial decline in 
ecosystem carbon storage, particularly in forested zones (Shi et al., 
2024). In response to growing environmental concerns, the Vietnamese 
government has committed to achieving national carbon neutrality by 
2050 (Hoang Ha and Da Hanh, 2024). To support this objective, the 
development of appropriate LULC strategies aimed at minimizing car-
bon loss in Central Vietnam is crucial, highlighting the need for accurate 
quantification of both the magnitude and spatial distribution of forest 
carbon stocks, with particular emphasis on AGBD which typically ac-
counts for nearly half of the total carbon stored in tropical forest eco-
systems (Ghosh and Behera, 2018).

2.2. Data

2.2.1. In situ data
The field data, including living trees, shrubs, and herbs, were 

collected from 104 nested sampling plots between 13th July and 21st 

September 2023. The sampling plots were established within the forest 
land layer using a systematic unaligned sampling design, whereby one 
plot was randomly located within each 2.5 × 2.5km grid. The co-
ordinates of the generated sampling plots were transferred to portable 
global positioning system (GPS) receivers (Garmin GPSMAP 64x) for 
navigation during field data collection, and to ensure consistency across 
measurements, all plots were oriented with their northern edge aligned 
to geographic north.

The 900-m2 (30 × 30 m) plots were designed for living trees with a 
diameter at breast height (DBH) of above 5 cm. In each plot, DBH was 
measured by using D-tapes. For herbaceous and shrub vegetation, three 
1-m2 subplots were systematically placed along a 14.14-meter interval 
transect, extending from the southwest to the northeast corner of a 900- 
m2 plot (Fig. 2). All herbs and shrubs in these subplots were cut into 
pieces and subsequently weighed directly in the field. Mixed subsamples 
were stored in sample plastic bags and brought to the laboratory to 
determine moisture content (Pearson et al., 2007).

Tree AGB is usually quantified by allometric equations that relate 
essential plot-level variables to AGB (Roy et al., 2021; L. Zhang et al., 
2023). The tree AGB in our study area was calculated based on an 
allometric equation with a single variable (DBH only) created for the 
south-central coastal regions of Vietnam (Eq. (1)). The suggested 
equation demonstrated more excellent reliability than the single vari-
able equations by Brown (1997) and IPCC (2003), as well as generic 
equations with up to three variables proposed by Chave et al. (2014) for 
tropical forests in the study site (Huy et al., 2016). 

AGBtree = 0.104189 × DBH2.491453 (1) 

Where: AGBtree is tree aboveground biomass (kg), and DBH is the 

Fig. 1. The location of the study site (top); the LULC map of Danang for 2023 and the location of sampling plots (bottom right).
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diameter at breast height (cm).
Tree aboveground biomass density was then calculated as follows: 

AGBDtree =

∑
AGBtree

Aplot
× 10 (2) 

Where AGBDtree is tree aboveground biomass density (t.ha-1), Aplot is 
the area of the 30 × 30m plot (m2).

The estimation of herb/shrub biomass density was conducted with 
the formula: 

HBD
/

SBD =
Wherb/shrub field

Asubplots
×

[
Wherb/shrub− subsample(dry)

Wherb/shrub− subsample(fresh)

]

× 10 (3) 

Where HBD/SBD is biomass density of herb/shrub layer (t.ha-1), 
Wherb/shrub field is the fresh weight of herb/shrub sample (kg), Asubplots is the 
total area of 3 × 1 × 1m subplot (m2), Wherb/shrub− subsample(dry) is the oven- 
dried weight of herb/shrub subsample (g), and Wherb/shrub− subsample(fresh) is 
the fresh weight of herb/shrub subsample (g).

AGBD was calculated as the sum of AGBDtree, HBD, and SBD in each 
sampling plot.

2.2.2. Remote sensing data and processing
The Advanced Land Observing Satellite-2 Phased Array L-band SAR- 

2 (ALOS-2 PALSAR-2) is a SAR sensor developed by the Japan Aerospace 
Exploration Agency (JAXA). The sensor was released on May 24, 2014, 
and can be used to monitor tropical rainforests and detect carbon sinks 
(Baig et al., 2017). In this study, we obtained ALOS-2 PALSAR-2 fine 
beam dual–polarized (HV, HH) mode level 2.1 CEOS format data from 
the https://www.eorc.jaxa.jp website.

Sentinel-1 (S1), operated by the European Space Agency (ESA), 
performs C-band SAR imaging of the Earth (Yang et al., 2021). The S1 
SAR sensor is capable of operating in both single and dual polarizations 
with a temporal resolution of 12 days (Abdikan et al., 2016). Sentinel-2 
(S2), also launched by the ESA, is equipped with a multispectral (MSI) 
instrument, an optical sensor capable of capturing 13 spectral bands 
with an average revisit time of 5 days (Dong and Fu, 2023). S1 and S2 
images were acquired from the https://dataspace.copernicus.eu web-
site. The details of the Sentinel and ALOS-2 PALSAR-2 scenes are shown 
in Table 1. The preprocessing and use of RS data products are outlined in 
Fig. 3.

RS data was processed by the ESA SNAP toolbox in this study. The 
ALOS-2 PALSAR-2 images were transformed into normalized radar 
backscattering coefficients by applying the equation provided below: 

σ0 = 10.log10(DN)
2
+ CF (4) 

γ0 =
σ0

cosφ
(5) 

Where σ0 is the backscattering coefficient in decibels (dB), γ0 is the 
normalized radar backscattering coefficient in dB, φ is the incidence 
angle, DN is the digital number of the amplitude image, and CF is the 
calibration factor. For ALOS-2 PALSAR-2 imageries, CF was set to -83dB 
(Shimada et al., 2009).

The ALOS-2 PALSAR-2 images continued to undergo a Lee speckle 
filter with a 3 × 3-pixel kernel to decrease speckle noise. For the S1 
image, an array of processing procedures was implemented, encom-
passing orbit file application, removal of border and thermal noise, 
radiometric calibration, terrain correction, and conversion to the 
normalized radar γ0 in dB (Filipponi, 2019). For S2, considering cloud 
cover, we used 09 level 1C products exclusively with cloud cover below 
10 % to create a cloud-free mosaic. These S2 level 1C orthorectified 
images were converted into orthoimage bottom-of-atmosphere cor-
rected reflectance level 2A data by the Sen2Cor plug-in, while cloud 
covers were also automatically created by the Idepix-assembly plug-in. 
The S2 images without cloud were subsequently created, mosaicked 
together, and processed by averaging using a 3 × 3-pixel mean filter to 
minimize noise or random variations in raster data. All RS data were 
resampled to 10 m spatial resolution using bilinear interpolation and 
co-registered to the pixel grid of the reference layer (band 2 from S2). To 
ensure spatial correspondence, the center of each sampling plot was 
aligned with the nearest pixel center of the reference layer for the 
extraction of corresponding satellite-derived values.

To study the potential of ALOS-2 PALSAR-2, S1, and S2 for forest 
AGBD estimation, we selected spectral bands, SAR backscatter co-
efficients, vegetation indices (VIs), biophysical variables (BIs), and 
textures as input variables. Specifically, the S2 spectral bands included 
band 2 (B2), band 3 (B3), band 4 (B4), band 5 (B5), band 6 (B6), band 7 
(B7), band 8 (B8), band 8A (B8A), band 11 (B11), and band 12 (B12), 
while S1 provided VV and VH polarizations, and ALOS-2 PALSAR-2 
contributed HH and HV polarizations. A total of 20 widely used VIs 
associated with forest AGBD estimation were calculated from the S2 
mosaic (as shown in Table 2). Additionally, 03 BIs, including leaf area 
index (LAI), fraction of absorbed photosynthetically active radiation 

Fig. 2. Plot design for field survey.

Table 1 
Acquired remote sensing data.

Sensors Quantity of 
imageries

Acquisition date 
(yyyy/mm/dd)

Processing 
level

Spatial 
resolution 
(m)

ALOS-2 
PALSAR- 
2

02 2023/06/04 2.1 6.25

S1 01 2023/08/15 1 10
S2 09 2023/05/07 - 

2023/08/15
1C 10 - 20
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(FAPAR), and fractional vegetation cover (Fcover), were also derived 
from S2 using SNAP’s biophysical processor. These VIs and BVs have 
proven to correlate with forest AGBD in previous studies (Baloloy et al., 
2018; Chen et al., 2019b, 2018; Jha et al., 2021). Besides, the gray-level 
co-occurrence matrix (GLCM) -derived texture features were utilized as 
predictors to enhance the accuracy of AGBD estimation because they can 
broaden the saturation (Berninger et al., 2018; H. Li et al., 2022; F. 
Zhang et al., 2023). In addition, testing various window sizes and 
evaluating their effect on model performance is necessary to optimize 
capturing relevant information and avoid noise or computational 
burden (Kelsey and Neff, 2014; Li et al., 2021; Sarker and Nichol, 2011). 
Thus, we calculated textures for ALOS-2 PALSAR-2 (HV, HH), S1 (VH, 
VV), and S2 (10m resolution bands: B2, B3, B4, and B8) utilizing GLCM 
analysis with three different window sizes of 5 × 5, 7 × 7, and 9 × 9 
pixels. For each spectral band and SAR backscatter coefficient, ten 
GLCM texture metrics, including contrast (CONT), dissimilarity (DIS), 
homogeneity (HO), angular second moment (ASM), entropy (ENT), 
mean (ME), variance (VA), correlation (COR), energy (ENER) and 
maximum probability (MAX), were computed, following the definitions 
established by Haralick et al. (1973).

2.2.3. Topographic data
A 30-meter resolution digital elevation model (DEM) encompassing 

the entire study area was acquired from the shuttle radar topography 

mission (SRTM) dataset via the Google Earth Engine (GEE, https://code. 
earthengine.google.co.in/) platform. The elevation variable extracted 
from the DEM data was also resampled to a 10-meter spatial resolution 
and co-registered with the reference layer to ensure alignment with the 
other input datasets.

2.2.4. Land use/land cover data
A 10-m resolution LULC map for Danang city in 2023 was produced 

by integrating simple non-iterative clustering (SNIC) segmentation, 
time-series analysis of S1 and S2 imagery, and kernel principal compo-
nent analysis (k-PCA) to enhance classification performance using the 
RF algorithm. The resulting LULC map classified the study area into six 
IPCC (2006) categories: forest land, cropland, grassland, wetlands, set-
tlements, and other land. Classification accuracy was assessed using 427 
ground truth points collected between July and September 2023, with 
80 % of the samples used for model calibration and 20 % for validation. 
The RF classifier achieved an overall accuracy (OA) of 91.86 % and a 
Kappa coefficient (K) of 0.88, both of which exceed commonly accepted 
thresholds for reliable LULC classification (OA > 85 %, K > 0.80) 
(Nyamekye et al., 2021). These performance metrics indicate that the 
LULC map (Fig. 1) was sufficiently accurate for subsequent analysis in 
this study.

Fig. 3. The methodology workflow of the research.
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2.3. Modelling techniques and assessment

2.3.1. Random forest regression model
RF is a tree-based ML technique categorized under ensemble 

methods (Rincy and Gupta, 2020). The approach involves creating de-
cision trees by randomly pulling several bootstrap samples with re-
placements from the initial training dataset. The unused portion of the 

training data can be used to compute the out-of-bag error. While 
implementing RF, each node in a tree randomly selects a subset of input 
predictors from the overall set to perform binary partitioning. This 
procedure is iterated across multiple trees, resulting in the creation of a 
substantial ensemble, and the predicted observation value is ascertained 
by calculating the average of the predictions from all trees within the 
ensemble (Mitchell, 2011; Wang et al., 2016).

Many predictor variables contribute little to model performance, 
leading to redundancy and increased model complexity, thereby 
selecting the most informative variables is essential to enhance model 
efficiency and interpretability (H. Li et al., 2022; Lu et al., 2016). RF can 
also be used to determine the significance of predictors through Gini 
importance values, which are the overall reduction in the impurity of all 
nodes averaged across all ensemble trees (Fan et al., 2022). A higher 
Gini importance suggests that the variable is more crucial in influencing 
the model’s predicted accuracy. In our study, RF and attribute impor-
tance analysis were implemented using the Scikit-learn package. 
Moreover, an absolute Pearson correlation coefficient (r) greater than 
0.8 was employed to detect multicollinearity among RS variables, as 
high multicollinearity can adversely impact prediction accuracy in 
regression analysis (Chen et al., 2019a; Luo et al., 2022).

2.3.2. Random forest regression kriging models
Since RF disregards spatial autocorrelation of the field-based AGBD, 

RFOK and RFCK were proposed to enhance the RF estimation. Specif-
ically, kriging techniques, including OK and CK, were used to interpolate 
the RF-derived AGBD residuals, which were then added to the predicted 
values of AGBD from RF to obtain the new predictions (Jiang et al., 
2022).

The OK approach is appropriate for interpolating the RF residuals of 
AGBD in regions influenced by the spatial variability of topography and 
climate (Su et al., 2020). For OK implementation, the assumption of data 
normality and stationarity needs to be satisfied (Meul and Van Meirv-
enne, 2003). In this study, we validated normality by skewness and 
kurtosis values, as well as the bell-shaped curves of the probability 
density function (PDF), and assessed stationarity by employing the 
intrinsic hypothesis (Oliver and Webster, 2014). The formula for OK 
interpolation is detailed below: 

Zu,OK(x0) =
∑n

i=1
λuiZu(xi) (6) 

Where Zu,OK(x0) is the interpolated residual value of AGBD at loca-
tion x0, λui is the weighting coefficient at location xi, Zu(xi) is the AGBD 
residual at location xi, and n denotes the quantity of sample points 
utilized for interpolation.

CK is a spatial estimation technique that aims to provide the best 
possible estimate of a target variable at a given location by incorporating 
information from neighboring values of one or more additional vari-
ables, referred to as co-variables (Yalçin, 2005). CK is an extension of OK 
(Su et al., 2020) and adheres to the data normality and stationarity as-
sumptions. Nevertheless, CK appears to enforce stricter criteria than OK 
when the co-variable must exhibit feature-space correlation with the 
target variable (Golden et al., 2020). The interpolation equation for the 
CK method is outlined below: 

Zuv,CK(x0) =
∑n

i=1
λuiZu(xi) +

∑m

j=1
λvjZv

(
xj
)

(7) 

Where Zuv,CK(x0) represents the residual value of the AGBD to be 
interpolated at location x0, λvj is the weight assigned to co-variable at 
location xj, Zv

(
xj
)

refers to the value of co-variable at location xj, and m 
is the number of co-variable samples. As the study area has considerable 
spatial terrain variation, the elevation data extracted from the DEM data 
was utilized as a co-variable.

Weighting coefficients in kriging are determined by fitting a semi-
variogram model for OK, and two semivariogram models along with a 

Table 2 
List of Sentinel-2 vegetation indices.

Index Description Formula Reference

NDVI Normalized 
difference 
vegetation index

(B8 − B4)/(B8 + B4) Tucker (
Tucker, 
1979)

RVI Ratio vegetation 
index

B8/B4
Broge and 
Leblanc 
(2001)

PVI Perpendicular 
vegetation index

(
1 /

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
0.1492 + 1

√ )
× (B8 −

0.374 − 0.735)
Richardsons 
and Wiegand 
(1977)

IPVI Infrared 
percentage 
vegetation index

B8/B8+ B4
Crippen 
(1990)

WDVI Weighted 
difference 
vegetation index

B8 − (0.752 × B4)
Clevers 
(1989)

TNDVI Transformed 
normalized 
difference 
vegetation index

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
B8 − B4/B8 + B4

√
+ 0.5 Zhang et al. 

(2023)

GNDVI Green normalized 
difference 
vegetation index

B7 − B3/B7+ B3
Moradi et al. 
(2022)

GEMI Global 
environmental 
monitoring index

w× (1 − (0.25 × w)) − B4 −

0.125/1 − B4 
w =

( (
2 × B8A2 − B42))+

(1.5 × B8A)+ (0.5 ×

B4))/(B8A + B4 + 0.5)

Pinty and 
Verstraete 
(1992)

ARVI Atmospherically 
resistant 
vegetation index

B8 − B4 − 0.069(B4 − B2)/B8+

B4 − 0.069(B4 − B2) Kaufman and 
Tanre (1992)

NDI45 Normalized 
difference index

B5 − B4/B5 + B4
Kumar et al. 
(2021)

MTCI Meris terrestrial 
chlorophyll index

B6 − B5/B5 − B4
Chen et al. 
(2019b)

MCARI Modified 
chlorophyll 
absorption ratio 
index

((B5 − B4) − 0.2(B5 −

B3))(B5 /B4) Chen et al. 
(2019b)

S2REP Sentinel-2 red- 
edge position 
index

705+ 35(B4 + B7 /2 −

B5 /B6 − B5) Chen et al. 
(2019b)

IRECI Inverted red-edge 
chlorophyll index

(B7 − B4)/(B5/B6)
Moradi et al. 
(2022)

PSSRa Pigment specific 
simple ratio index

B7/B4
Blackburn 
(1998)

DVI Difference 
vegetation index

B8 − B4
Moradi et al. 
(2022)

SAVI Soil adjusted 
vegetation index

(1 + 0.725) × B8 − B4/B8+

B4+ 0.725
Huete (
Huete, 1988)

TSAVI Transformed soil 
adjusted 
vegetation index

(0.421 × (B8 − (0.421 ×

B4) − 0.824))/
(
B4 +

0.421(B8 − 0.824) +
0.114

(
10.4212))

Baret et al. 
(1989)

MSAVI Modified soil 
adjusted 
vegetation index

(1 + L)(B8 − B4)/B8+ B4+ L 
Where: L = 1 - 2 × s × NDVI ×
WDVI and s is the soil line slope

Qi et al. 
(1994)

MSAVI2 Modified soil 
adjusted 
vegetation index 2

2B8+ 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2B8 + 1)2 − 8(B8 − B4)
√

/2
Qi et al. 
(1994)
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cross-semivariogram model for CK (Webster and Oliver, 2007). This 
study employed spherical, exponential, and gaussian functions to 
determine nugget, sill, and range via the gstat package. The 
nugget-to-sill (N/S) ratio was utilized to assess the degree of spatial 
autocorrelation, where values below 0.25 indicate strong spatial 
dependence, values between 0.25 and 0.75 represent moderate spatial 
dependence, and values exceeding 0.75 suggest low spatial dependence 
(Li et al., 2020b).

2.3.3. Model assessment
A leave-one-out cross-validation (LOOCV) approach was used to 

calculate metrics for assessing the performance of predictive models. In 
LOOCV, during each iteration, one data point is excluded as the vali-
dation set, while the rest are utilized as the training set (Yue et al., 
2018). Three evaluation metrics were chosen for model assessment: the 
mean absolute error (MAE), the root mean square error (RMSE), and the 
coefficient of determination (R2). A model is considered superior per-
formance if the RMSE and MAE values are lower while the R2 value is 
greater (Zhang et al., 2020). 

MAE =
1
n
∑n

i=1
|yi − ŷi| (8) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2

√

(9) 

R2 = 1 −

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (10) 

Where n is the number of observed values, yi is the observed AGBD at 
the ith location, ŷi is the predicted AGBD at the ith location, and y is the 
mean of the observed AGBD values.

Additionally, the relative improvement (RI) indices were used to 
quantify the extent to which the performance of a given model was 
enhanced compared to a baseline model (Zhang et al., 2022). 

RIMAE/RMSE =
MAE/RMSEb − MAE/RMSEm

MAE/RMSEb
× 100 (11) 

RIR2 =
R2

m − R2
b

R2
b

× 100 (12) 

Where RIMAE, RIRMSE, and RIR2 are the relative improvement indices 
of MAE, RMSE, and R2, respectively; b and m represent the baseline 
model and model m, respectively. A positive RI suggests that the model 
m has improved compared to the baseline model, while a negative RI 
implies the opposite. Besides, greater values of the RI indicate more 
significant improvements.

3. Results and discussion

3.1. Descriptive statistics of forest AGBD

Table 3 provides the summary of descriptive statistics for forest 
AGBD in the research site. Among 104 observation data, the AGBD 
values ranged from 54.00 to 325.68 t.ha-1, with a mean of 173.63 t.ha-1 

and a standard deviation (SD) of 78.93 t.ha-1. The coefficient of varia-
tion (CV) was 45.46 %, indicating a moderate level of relative dispersion 

around the mean. The distribution of AGBD data was slightly positively 
skewed (skewness = 0.24), suggesting a longer right tail, while the 
kurtosis value of -1.28 implies a relatively flatter distribution compared 
to the normal distribution. These descriptive statistics highlight the 
heterogeneity of AGBD in tropical forest ecosystems with complex stand 
structures.

3.2. Feature selection

In the importance analysis, the variables from various RS sources 
were ranked separately by the Gini importance. Fig. 4 shows the top 20 
variables of each RS source identified by the Gini importance. In this 
study, to reduce input dimensionality, we chose the variables with a Gini 
importance exceeding 0.02. As a result, 12 out of 153 variables from S2, 
12 out of 62 variables from S1, and 10 out of 62 variables from ALOS-2 
PALSAR-2 were selected. Overall, GLCM texture variables accounted for 
the largest proportion of the better-performing predictors in all RS 
sources. Besides, MCARI from S2 and backscatters from S1 and ALOS-2 
PALSAR-2 were also essential for AGBD estimation. Additionally, to 
mitigate the effect of multicollinearity on the performance of the ML 
technique, predictor variable pairs with absolute r values greater than 
0.8 were identified, and the variable in each pair with the lower Gini 
importance value, as illustrated in Fig. 4, was removed. After multicol-
linear variable removal processing, five variables (B4_ENER_w9 × 9, 
B4_CONT_w9 × 9, B4_VA_w9 × 9, MCARI, and B4_COR_w9 × 9) from S2, 
three variables (VH_MAX_w7 × 7, VH_COR_w9 × 9, and VV_HO_w5 × 5) 
from S1 and two variables (HV_VA_w9 × 9 and HV_MAX_w5 × 5) from 
ALOS-2 PALSAR-2 were retained for RF implementation.

Many previous studies have shown that an improvement in forest 
AGBD estimation can be achieved by using GLCM-based texture mea-
sures (Berninger et al., 2018; Chen et al., 2019b; Eckert, 2012; H. Li 
et al., 2022; Salazar Villegas et al., 2023; F. Zhang et al., 2023). Our 
research results confirmed the undeniable role of texture indices in 
predicting AGBD. Three potential reasons can explain the importance of 
texture features in this study. Firstly, texture measurements can enhance 
the differentiation of spatial information regardless of tone and expand 
the saturation level for AGBD estimation in complex forest stand struc-
tures (Gao et al., 2018; Lu et al., 2016). Secondly, texture measures are 
able to effectively capture the heterogeneity of forest canopy structure 
(Eckert, 2012), as in our study area. The third reason may be attributed 
to the diverse species of hardwood trees present in the study site. 
Texture metrics are particularly demonstrated to be informative for 
characterizing a mixed forest where there is significant variation (Ghosh 
and Behera, 2018). Moreover, the study results show that GLCM-based 
textures derived from B2 and B4 of S2 data are vital to estimating 
AGBD, emphasizing the importance of textures generated from tradi-
tional bands, as the findings of Pandit et al. (2020). We also found that, 
among the selected important variables from SAR data, GLCM texture 
features derived from cross-polarization channels (VH from S1 and HV 
from ALOS-2 PALSAR-2) accounted for a larger proportion than those 
derived from co-polarization channels (VV from S1 and HH from ALOS-2 
PALSAR-2). It is compatible with the results of previous studies (H. Li 
et al., 2022; Salazar Villegas et al., 2023). This is because cross-polarized 
waves are supposed to be more responsive to biomass than co-polarized 
ones (Salazar Villegas et al., 2023; Sinha et al., 2015). According to Lu 
et al. (2016), in light of the complexity of stand structure in forest 
landscapes, the relationships between VIs and AGBD can differ. 

Table 3 
Descriptive analysis of forest AGBD in the research site.

Parameter N Min 
(t.ha-1)

Max 
(t.ha-1)

Mean 
(t.ha-1)

SD 
(t.ha-1)

CV 
( %)

Skewness Kurtosis

AGBD 104 54.00 325.68 173.63 78.93 45.46 0.24 -1.28

Where N is the number of AGBD observations; Min and Max refer to the minimum and maximum values, respectively; SD is the standard deviation; and CV is the 
coefficient of variation.
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Although many S2 VIs have been proposed for AGBD estimation in 
previous research (Chen et al., 2019b; Mngadi et al., 2021; F. Zhang 
et al., 2023), MCARI was the only vegetation index selected after the 
importance ranking in our study. The weak performance of VIs could 
have originated from the average tree height of 17.5m at the study site 
(Huy et al., 2016), which may have increased the shadow content due to 
the heterogeneous canopy, causing S2 spectral measurements to become 
saturated and less effective in discriminating different biomass values 
(Pandit et al., 2020). The importance of MCARI in our study is harmo-
nious with the result of Chen et al. (2019b), who claimed that in RF 
using S2 data, MCARI was the most essential predictor variable. This is 
attributed to the high correlation between MCARI and chlorophyll 
concentration, which can be explained by the non-deciduous phenom-
ena of the evergreen forests, facilitating maximum chlorophyll absorp-
tion (Maleki et al., 2020). Furthermore, unlike traditional broadband 
VIs, MCARI, based on red-edge bands, exhibited greater sensitivity to 
dense vegetation structures while being less influenced by spectral 
saturation (Mngadi et al., 2021; Wai et al., 2022). HH and HV polari-
zations from L-band ALOS-2 PALSAR-2 also displayed a significant 
contribution to AGBD estimation in the study. The results of our study 
align with existing literature. Mitchard et al. (2012) found a strong 
correlation between AGBD and L-band polarizations, with saturation 
thresholds of approximately 100 t.ha-1 for HH polarizations and around 
150 t.ha-1 for HV polarizations in tropical rainforests. However, other 
authors have proposed higher saturation values for the L-band. Specif-
ically, in the research about L-band saturation level for AGBD in 
Malaysian tropical forests, Hamdan et al. (2015) found that HV showed 
a good relationship with AGBD below 200 t.ha-1 and appeared to reach 
saturation at 200 t.ha-1. The saturation level for the L-band backscatter 
even showed a higher figure in the results of Lucas et al. (2010), in which 
HH and HV saturated at approximately 170 t.ha-1 and 272 t.ha-1 in 
Australian tropical rainforests. When it comes to S1 backscatter data, 

although being a significant variable of S1 for AGBD estimation in our 
study, VH had a negative impact on predictive models after saturating at 
50 t.ha-1 (Englhart et al., 2011; Huang et al., 2018).

3.3. Random forest regression modelling

After running RF for seven models of RS source combination, MAE, 
RMSE, and R2 calculated from LOOCV are shown in Table 4. Among 
single-source models, model 1 containing S2 variables outperformed the 
others for AGBD prediction when it achieved the highest R2 of 0.62 and 
the lowest RMSE and MAE, at 48.73 and 39.50 t.ha-1, respectively. Thus, 
Model 1 was chosen as the benchmark for evaluating the relative 
improvement of other models.

Regarding relative improvement, the values of RIR2, RIRMSE, and 
RIMAE were all negative in model 2 (S1), model 3 (ALOS-2 PALSAR-2), 
model 4 (ALOS-2 PALSAR-2 + S1), and model 5 (S1 + S2), indicating 
a decline in model performance relative to the baseline model (S2). 
Meanwhile, model 6 (ALOS-2 PALSAR-2 + S2) and model 7 (ALOS-2 
PALSAR-2 + S1 + S2) exhibit positive patterns, reflecting improved 
predictive accuracy. Notably, the maximum RI values of 22.17 %, 19.65 
%, and 18.49 % for R2, RMSE, and MAE, respectively, achieved in model 
6, point out that the merging of ALOS-2 PALSAR-2 and S2 was optimal 
for RF. Therefore, residuals from model 6 (ALOS-2 PALSAR-2 + S2) were 
utilized in the subsequent kriging-based spatial prediction.

In dual-source combinations, model 4 (ALOS-2 PALSAR-2 + S1) 
achieved an R2 of 0.46, RMSE of 57.76 t.ha-1, and MAE of 46.21 t.ha-1, 
while model 6 (ALOS-2 PALSAR-2 + S2) obtained superior performance 
with an R2 of 0.75, RMSE of 39.15 t.ha-1, and MAE of 32.20 t.ha-1. Both 
models outperformed their respective single-source counterparts, 
underscoring the effectiveness of RS data fusion in improving AGBD 
estimation accuracy. Consistent with findings by Vafaei et al. (2018), Li 
et al. (2022), and Salazar Villegas et al. (2023), the integration of S2 and 

Fig. 4. Gini importance of the predictors derived from ALOS-2 PALSAR-2 (a), S1 (b), and S2 (c) for AGBD estimation. w is the window size of GLCM texture analysis, 
and red objects illustrate the variables retained after importance ranking.

Table 4 
Evaluation metrics of RF based on different RS data fusions.

Models Variables MAE 
(t.ha-1)

RMSE 
(t.ha-1)

R2 RIMAE 

(%)
RIRMSE 

(%)
RIR2 

(%)

Model 1 S2 39.50 48.73 0.62 - - -
Model 2 S1 61.14 72.93 0.14 − 54.77 − 49.67 − 77.59
Model 3 ALOS-2 PALSAR-2 47.91 59.30 0.43 − 21.29 − 21.70 − 30.10
Model 4 ALOS-2 PALSAR-2 + S1 46.21 57.76 0.46 − 16.97 − 18.54 − 25.35
Model 5 S1 + S2 38.99 48.97 0.61 1.31 − 0.49 − 0.61
Model 6 ALOS-2 PALSAR-2 + S2 32.20 39.15 0.75 18.49 19.65 22.17
Model 7 ALOS-2 PALSAR-2 + S1 + S2 33.09 41.55 0.72 16.23 14.73 17.07

V.H. Ho et al.                                                                                                                                                                                                                                    Ecological Modelling 508 (2025) 111242 

8 



ALOS-2 PALSAR-2 proved to be particularly effective. The enhancement 
in RF can be ascribed to the advantages of SAR-MSI fusion in alleviating 
the issue of mixed pixels and the problem of data saturation (Ghasemi 
et al., 2011; Lu, 2006). Likewise, the fusion of S1 and ALOS-2 PALSAR-2 
obtained a more acceptable performance of RF than a single one. The 
application of a multi-frequency SAR dataset to improve forest AGBD 
predictions is extensively reported in the literature. Sivasankar et al. 
(2018) pointed out that the combined use of L- and C-band 
cross-polarization backscatter can correct mistakes in lower biomass 
areas for the L-band and errors in larger biomass areas for the C-band. In 
addition, the research by Berninger et al. (2018) stated that the C-band is 
more sensitive to surface roughness variations, leading to better 
modelling in burned and grass areas, thereby incorporating the C-band 
alongside the L-band marginally enhances the correlation between 
estimated and predicted AGBD relative to utilizing the L-band in sepa-
ration. In contrast, the combination of S1 and S2 data in model 5 yielded 
an R2 of 0.61, RMSE of 48.97 t.ha-1, and MAE of 38.99 t.ha-1, which was 
less accurate than using S2 data alone, indicating that the inclusion of S1 
did not enhance predictive performance in our study. On the one hand, 
this finding conflicts with Forkuor et al. (2020), David et al. (2022), 
Zhang et al. (2023), Zhang et al. (2023), and Salazar Villegas et al. 
(2023). On the other hand, the result is consistent with Stratoulias et al. 
(2022), who posited that the decreased accuracies could be due to either 
the used indices or the predictive model’s performance that might not 
fully utilize the information acquired from S1 and S2 data.

When combining all three data sources (model 7), RF acquired a 
notably accurate result with R2 of 0.72, RMSE of 41.55 t.ha-1, and MAE 
of 33.09 t.ha-1. As expected, triple-source data outweighed both single- 
source and dual-source data, except for model 6 (ALOS-2 PALSAR-2 +
S2). This finding indicates that fusing all satellite data (optical MSI and 
multi-frequency SAR) within a single model did not constantly improve 
AGBD estimation. The findings align with previous research. The best 
example can be observed in the study of Kanmegne Tamga et al. (2022), 
who used VIs and texture variables extracted from MSI (S2) and SAR 
data (S1 and ALOS-2 PALSAR-2) as predictors to predict AGBD in 
vegetated areas. After implementing the predictive models, they sug-
gested that the fusion of S1 and S2 data returned a better RF perfor-
mance than all three satellite datasets. Another example could be the 
research of Laurin et al. (2018), who also estimated AGBD by S1, ALOS-2 
PALSAR-2, and S2 data. However, when adding S2 predictors to 
multi-frequency SAR data, the ALOS-2 PALSAR-2 predictors were 
eliminated from the predictive model.

Besides, the study results indicate that the addition of S1 data into 
the RF models, based on either single S2 data or the combination of S2 
and ALOS-2 PALSAR-2 data, was inclined to worse performances due to 
the short wavelength (5.3 cm) C-band limitation in forest AGBD esti-
mation (Huang et al., 2018). As mentioned, C-band S1 demonstrates 
saturation at roughly 50 t.ha-1 (Huang et al., 2018), occurring at a 
markedly lower AGBD than ALOS-2 PALSAR-2, which attains saturation 
above 250 t.ha-1 (Lucas et al., 2010) because C-band has less penetration 
and six times higher attenuation coefficient than L-band (Huang et al., 
2018). Furthermore, sensitivity to large AGBD values is much higher for 
S2 compared to S1 since S2 saturation points can reach 204 t.ha-1 with 
the inclusion of the red-edge region (Jha et al., 2021). Even using the 
texture features, the gap between S1 and S2 or ALOS-2 PALSAR-2 in 
saturation levels was still huge. In other words, C-band S1 is solely 
appropriate for subtropical forests with low biomass, whereas S2 and 
ALOS-2 PALSAR-2 are prone to be better suited in tropical forests 
(Laurin et al., 2018). Therefore, in our study site with a complex forest 
stand structure, the S1 variables soon exhibited a negative correlation 
with AGBD, decreasing the performance of the predictive models.

3.4. Random forest regression kriging modelling

3.4.1. Residuals of random forest-derived AGBD and semivariogram 
analysis

The spatial distribution of the RF-derived residuals from model 6 
(ALOS-2 PALSAR-2 + S2) is shown in Fig. 5a, and their descriptive 
statistics are summarized in Fig. 5c. The residuals ranged from − 88.90 
to 116.23 t.ha-1, and the mean value was − 1.03 t.ha-1. In addition, the 
skewness value was close to 0, and the PDF had a bell-shaped curve, 
suggesting that the residuals followed an approximately normal distri-
bution. However, 0.20 of the absolute kurtosis value showed that the 
curve had a lighter tail and a flatter peak. Therefore, we subsequently 
transformed residual data by Box-Cox transformation with a lambda of 
0.85 to obtain a closer normal distribution of data (skewness = − 0.11, 
kurtosis = − 0.12) (Fig. 5e), as well as provide the same scale with the 
transformed elevation variable in later CK analysis. Furthermore, the 
semivariogram cloud of Box-Cox transformed RF residuals (Fig. 6a) 
exhibited no trend or systematic variation in the semivariogram, indi-
cating that the data satisfied the intrinsic stationarity assumption. After 
confirming the approximate normality and stationarity, the Box-Cox 
transformed RF residuals were used to fit the experimental semivario-
gram for OK interpolation. Table 5 illustrates fitted theoretical semi-
variogram models and their evaluation metrics. Among the used 
theoretical semivariogram models, spherical achieved the highest value 
of R2 (0.20) and the lowest values of RMSE (18.13) and MAE (14.13), 
suggesting the most suitable for kriging. Thus, we used the spherical 
function for the semivariogram analysis. The high nugget value of 
220.04 in the spherical model of the transformed residuals, visible in 
Fig. 6b, which should ideally be zero, indicated a considerable error in 
the data attributable to the short-scale variability. In addition, the N/S 
value of 0.52 indicated the presence of a moderate spatial autocorrela-
tion structure existing in the transformed residuals.

The elevation of sampling plots extracted from SRTM DEM was used 
as a co-variable in CK. Nonetheless, elevation data did not follow the 
normal distribution pattern and skewed to the right (skewness = 0.70, 
kurtosis = 0.14) (Fig. 5d). Hence, we also used Box-Cox transformation 
to turn elevation into approximately normally distributed data (skew-
ness = − 0.09, kurtosis = − 0.98) (Fig. 5f). The transformed elevation 
had a constant semivariance (Fig. 6d), as well as there was a feature- 
space linear correlation between the target variable (Box-Cox trans-
formed RF residuals) and co-variable (Box-Cox transformed elevation) 
with r = 0.21 (p-value < 0.05) (Fig. 6c), implying the Box-Cox trans-
formed elevation could be used for CK. We fitted the direct semivario-
grams and the cross-semivariogram (Fig. 6b, e, f) simultaneously by a 
linear model of co-regionalization, which used the spherical model and 
the same range of 5056.71 m, but different partial sills and nuggets to 
achieve positive definiteness in the CK system. Based on Table 5 and 
Fig. 6, the distribution of the transformed RF residuals of forest AGBD, 
interpolated using OK and CK, was obtained and then converted back to 
the initial scale. The interpolated maps of residuals from OK and CK are 
shown in Fig. 9b, d.

3.4.2. Forest AGBD estimation via random forest regression kriging
The spatial distribution, data distribution, and description of the 

residuals from RFOK and RFCK are shown in Fig. 7. The residuals from 
both models exhibited an approximately normal distribution, revealing 
that the models still fit the input data well. Table 6 shows the evaluation 
metrics of RF, RFOK, and RFCK. Comparing RF and the hybrid models 
revealed that the addition of residuals interpolated by OK or CK yielded 
more accurate estimations of forest AGBD than solely considering the 
effects of predictor covariates from RS data. The R2 values for RFOK and 
RFCK reached 0.80 and 0.79, respectively, both higher than that of RF, 
while their RMSE values (34.88 and 35.73 t.ha-1, respectively) and MAE 
values (27.28 and 27.81 t.ha-1, respectively) were lower than those for 
RF, indicating their superior predictive performance.

Moreover, as illustrated in Fig. 7d, the scatter points of RFOK 
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(brown) are generally closer to the 1:1 line than those of RF (gray), 
suggesting an enhanced prediction accuracy for RFOK. However, the 
magnitude of this improvement was limited, as evidenced by the rela-
tively low values of RIR2 (7.04 %), RIRMSE (10.91 %), and RIMAE (15.27 
%). This finding aligns with previous studies, which similarly reported 
slight improvements when integrating RF with OK for estimating forest 
AGBD. For instance, Chen et al. (2019a) conducted a study in temperate 
continental forests in northeastern China and reported relatively low 
improvement in RIRMSE values ranging from 6.90 % to 12.00 %, 
depending on the specific fusion of RS data sources. Similarly, Su et al. 
(2020), investigating subtropical forests in northern Guangdong Prov-
ince, China, found RIRMSE values of 17.60 % in 1992, 5.00 % in 2002, 
and 3.10 % in 2010. In tropical forest environments of Myanmar, Wai 
et al. (2022) reported RIRMSE values of 2.10 % for evergreen forests and 
13.40 % for deciduous forests. In contrast, Jiang et al. (2022), con-
ducting research in subtropical forests in Chifeng City, China, observed 
significant improvements when applying RFOK, with RIRMSE values of 
55.95 % using Landsat 8-derived variables and 51.08 % using Landsat 
9-derived variables. The limited improvement observed in our study is 
likely attributable to the moderate spatial dependence of the residuals 
derived from RF (Su et al., 2020), as indicated by the N/S value of 0.52, 
which falls within the range of 0.25 to 0.75 (Li et al., 2020b), as reported 
in Table 5. Two possible factors could account for the observed spatial 
dependence structure. Firstly, the wide spacing between sampling plots 
hindered the ability of kriging to effectively capture and model spatial 
autocorrelation (Wai et al., 2022). Theoretically, implementing denser 

sampling schemes could potentially enhance the spatial structure of 
residuals (Viana et al., 2012), thereby improving the accuracy of spatial 
predictions, but such efforts remain challenging in tropical forest land-
scapes as our study site, due to accessibility constraints attributed to 
terrain complexity and dense vegetation (Saatchi et al., 2011; Sinha 
et al., 2015). Secondly, forest parameters, including AGBD, are more 
strongly influenced by regionalized variables like soil characteristics and 
nutrient availability than by the AGBD values of neighboring sites, 
leading to a limited level of inherent spatial autocorrelation (Chen et al., 
2019a; Viana et al., 2012).

In particular, RFOK recorded higher values of RIR2, RIRMSE, and 
RIMAE than its bivariate counterpart. Specifically, the former had values 
of 7.04 %, 10.91 %, and 15.27 % for RIR2, RIRMSE, and RIMAE, respec-
tively, while the latter had values of 5.74 %, 8.73 %, and 13.62 %, 
respectively, suggesting that RFOK had marginally better improvement 
than RFCK in AGBD prediction. It was also confirmed through Fig. 7g, in 
which the scatter points of RFOK (brown) slightly tended to cluster 
nearer to the 1:1 line compared to those of RFCK (blue). The possible 
explanation may stem from the weak feature-space linear correlation 
between the target variable and the co-variable (Fig. 6c). This finding is 
consistent with Wai et al. (2022), who similarly estimated the AGBD of 
tropical evergreen forests and reported that while RFCK offered higher 
accuracy than initial RF, it was still lower than RFOK. However, the 
results contradict Su et al. (2020), who pointed out that RFCK provided a 
more accurate method than RFOK for AGBD mapping with complex 
topography. The discrepancy is ascribed to the difference in study sites 

Fig. 5. Spatial distributions and histograms/PDF of residuals and elevation. (a, b) are spatial distributions of residuals and elevation, respectively; (c, d) are his-
tograms/PDF of residuals and elevation, respectively; (e, f) are histograms/PDF of transformed residuals and elevation, respectively. λ denotes the Box-Cox trans-
formation parameter.
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and the RS data employed. Specifically, the study site of Su et al. (2020)
was situated within subtropical forests, which typically exhibit simpler 
forest structures with lower biomass levels compared to tropical forests 
in our study site, and Landsat data was used instead of S2 data.

The results in Fig. 8 illustrate that, in RF, RFOK, and RFCK, negative 
residuals were inclined to cluster at low observed AGBD values, while 
positive residuals were more common at high observed AGBD values. 
This pattern reveals a tendency for overestimation at low AGBD levels 
and underestimation at large AGBD levels across all three models. The 
underestimation of high AGBD values was attributed to signal saturation 
in both optical MSI and SAR sensors under dense biomass conditions, 
whereas overestimation in low AGBD areas likely resulted from mixed 
pixels comprising shrubs, grasses, and bare soil, which influence the 
spectral reflectance characteristics of RS data (Li et al., 2020b). How-
ever, the hybrid approaches appeared to alleviate these issues more 
effectively than RF, as indicated by the lower slopes of their fitted lines 
(0.22 and 0.19 for RFOK and RFCK, respectively, compared to 0.29 for 
RF). Likewise, based on the slope values, RFCK exhibited a slightly 
improved ability to mitigate overestimation in low biomass regions and 
underestimation in high biomass areas compared to its univariate 
counterpart, despite yielding lower overall prediction accuracy. This 
improvement may be attributed to the use of elevation as a covariate in 
the CK interpolation process. In our study area, elevation was positively 
correlated with AGBD, suggesting that underestimation and over-
estimation were more pronounced at higher and lower elevations, 
respectively. Unlike RFOK, which only accounts for spatial autocorre-
lation, RFCK additionally captures terrain-related variability, which 

likely contributed to its more effective handling of estimation biases in 
ecologically complex areas, particularly in transitional zones between 
mountainous and lowland regions (Su et al., 2020).

3.5. Spatial distribution of forest AGBD

The distribution of forest AGBD using RFOK was acquired by 
combining Fig. 9a and 9b, whereas the distribution based on RFCK was 
obtained by integrating Fig. 9a and 9d. Two maps demonstrated a 
comparable distribution of AGBD with RF, while values varied signifi-
cantly (Fig. 9a, c, e). The maps generated by RFOK and RFCK displayed a 
more realistic spatial distribution of forest AGBD than RF. In other 
words, the addition of the kriged residuals from OK and CK interpolation 
provided smoother spatial surfaces of forest AGBD, mitigating erratic 
patterns in the deterministic trend produced by RF. Aside from assessing 
the prediction accuracy, the model’s generalization capability was also 
taken into account by analyzing the range of AGBD values in the pre-
dicted maps. The ranges of predicted AGBD using RF, RFOK, and RFCK 
were 73.15-299.19 t.ha-1, 39.82-331.29 t.ha-1, and 41.11-330.23 t.ha-1, 
respectively. The broader range of values showed that RFOK and RFCK 
had enhanced generalization capabilities and greater robustness than 
RF. The spatial distribution of AGBD exhibited a decrease from west to 
east. The highest AGBD values were found in the western part of the city, 
predominantly covered by natural evergreen broadleaf forests in the 
high-altitude mountain regions protected by the Danang Department of 
Forest Protection. Meanwhile, the lowest AGBD values were located in 
the eastern region, where lower vegetation coverage and intensive 

Fig. 6. Semivariogram clouds (a, d), feature-space linear correlation (c, ‘*’ means that p-value was below 0.05, and colors transition from dark to bright as elevation 
increases), and semivariogram modelling of co-regionalization (b, e, f) for CK.

Table 5 
Parameter estimations for semivariogram analysis.

Theoretical models Nugget Sill N/S Range 
(m)

MAE RMSE R2

Exponential 152.08 416.25 0.37 1476.89 14.24 18.21 0.20
Gaussian 249.95 421.22 0.59 2434.92 14.17 18.13 0.20
Spherical 220.04 421.31 0.52 5056.71 14.13 18.13 0.20
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human activities prevail.

4. Conclusion

This study investigates the potential of RS derivatives from ALOS-2 
PALSAR-2, S1, and S2 data, in combination with field measurements, 
for modelling AGBD using RF in tropical evergreen broadleaf forests of 
Central Vietnam. In addition, RFOK and RFCK were employed to 
improve prediction accuracy by addressing the lack of spatial autocor-
relation in RF. Through the study results, it is concluded that: (1) the 

predictor variables, including texture features, MCARI, and radar 
backscatters, were significantly influential in predicting forest AGBD; 
(2) RF integrating ALOS-2 PALSAR-2 and S2 data achieved the highest 
predictive performance (R2 = 0.75, RMSE = 39.15 t.ha-1, and MAE =
32.20 t.ha-1), outperforming not only models using single-source data-
sets but also those employing combinations of ALOS-2 PALSAR-2 with 
S1 data, S1 with S2 data, and even ALOS-2 PALSAR-2 with S1 and S2 
data; (3) Although RFOK and RFCK provided relative improvements 
over RF, these gains were still limited, as indicated by the relatively low 
RI values (5.74–7.04 % in RIR2, 8.73–10.91 % in RIRMSE, and 
13.62–15.27 % in RIMAE); (4) the hybrid approaches yielded more 
spatially realistic AGBD maps compared to RF; and (5) while RFOK 
produced marginally higher accuracy in AGBD estimation within trop-
ical evergreen broadleaf forests (R2 = 0.80, RMSE = 34.88 t.ha-1, MAE =
27.28 t.ha-1) compared to RFCK (R2 = 0.79, RMSE = 35.73 t.ha-1, MAE 
= 27.81 t.ha-1), RFCK demonstrated better capacity to reduce over-
estimation in low biomass areas and underestimation in high biomass 
regions. We highlight that the hybrid approaches integrating ALOS-2 
PALSAR-2 and S2 data in our study provide a reliable framework for 

Fig. 7. Spatial distributions and histograms of residuals from RFOK (b, c) and RFCK (e, f); Scatterplots of observed and predicted AGBD for RF (a), RFOK/RF (d), and 
RFOK/RFCK (g).

Table 6 
Evaluation metrics of RFOK and RFCK.

Models MAE 
(t.ha-1)

RMSE 
(t.ha-1)

R2 RIMAE 

(%)
RIRMSE 

(%)
RIR2 

(%)

RF 32.20 39.15 0.75 - - -
RFOK 27.28 34.88 0.80 15.27 10.91 7.04
RFCK 27.81 35.73 0.79 13.62 8.73 5.74

Fig. 8. Scatter plots of residuals and observed AGBD values for RF (a), RFOK (b), and RFCK (c).
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spatial mapping of AGBD, which can support more frequent monitoring 
and accurate carbon accounting within tropical forests.

Future research should aim to enhance the capacity to detect spatial 
autocorrelation of model residuals, a critical factor in maximizing the 
effectiveness of kriging-based hybrid approaches in forest AGBD esti-
mation. This may be achieved through the implementation of denser 
sampling schemes, which can better capture local variability and spatial 
structure. Additionally, to strengthen the spatial structure of residuals 
and improve interpolation performance in CK, it is recommended to 
explore alternative environmental variables, such as soil characteristics 
or climatic data, as covariates. The potential of upcoming SAR missions, 
including the BIOMASS mission (Europe, P-band, scheduled for launch 
in 2025), the NISAR mission (USA, L-band, scheduled for 2025), and the 
TanDEM-L mission (Germany, L-band, expected in 2028), should also be 
investigated for their capability to reduce signal saturation in dense 
tropical forests. Lastly, the practical validity of the hybrid modelling 
frameworks needs to be further verified, especially their applicability 
under different geological and environmental conditions.
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Appendix A. List of variable notations

Variable notation Description Unit

Field-based AGBD measurement
AGBtree Aboveground biomass of a single tree kg
DBH Diameter at breast height of a tree cm
AGBDtree Tree aboveground biomass density t.ha-1

Aplot Area of the sample plot (30 × 30 m) m2

HBD Herb biomass density t.ha-1

SBD Shrub biomass density t.ha-1

Wherb field Total fresh weight of herb sample measured in the field kg
Wshrub field Total fresh weight of shrub sample measured in the field kg
Asubplots Total area of subplots (3 × 1 × 1m) used for herb/shrub sampling m2

Wherb− subsample(dry) Oven-dried weight of herb subsample g
Wshrub− subsample(dry) Oven-dried weight of shrub subsample g
Wherb− subsample(fresh) Fresh weight of herb subsample g
Wshrub− subsample(fresh) Fresh weight of shrub subsample g
AGBD Aboveground biomass density t.ha-1

SAR data transformation

(continued on next page)

Fig. 9. Estimated AGBD maps at 10m spatial resolution using RF (a), RFOK (c), and RFCK (e); the interpolated residuals from OK (b) and CK (d).
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(continued )

Variable notation Description Unit

σ0 Radar backscattering coefficient dB
γ0 Normalized radar backscattering coefficient dB
DN Digital number (pixel value of amplitude image) -
CF Calibration factor for SAR images dB
φ Incidence angle Degrees (0)
VIs calculation
B2 Band 2 (Blue, 490 nm) reflectance -
B3 Band 3 (Green, 560 nm) reflectance -
B4 Band 4 (Red, 665 nm) reflectance -
B5 Band 5 (Red edge, 705 nm) reflectance -
B6 Band 6 (Red edge, 749 nm) reflectance -
B7 Band 7 (Red edge, 783 nm) reflectance -
B8 Band 8 (Near infrared, 842 nm) reflectance -
B8A Band 8A (Near infrared, 865 nm) reflectance -
B11 Band 11 (Short wave infrared, 1610 nm) reflectance -
B12 Band 12 (Short wave infrared, 2190 nm) reflectance -
NDVI Normalized difference vegetation index -
RVI Ratio vegetation index -
PVI Perpendicular vegetation index -
IPVI Infrared percentage vegetation index -
WDVI Weighted difference vegetation index -
TNDVI Transformed normalized difference vegetation index -
GNDVI Green normalized difference vegetation index -
GEMI Global environmental monitoring index -
ARVI Atmospherically resistant vegetation index -
NDI45 Normalized difference index -
MTCI Meris terrestrial chlorophyll index -
MCARI Modified chlorophyll absorption ratio index -
S2REP Sentinel-2 red-edge position index -
IRECI Inverted red-edge chlorophyll index -
PSSRa Pigment specific simple ratio index -
DVI Difference vegetation index -
SAVI Soil adjusted vegetation index -
TSAVI Transformed soil adjusted vegetation index -
MSAVI Modified soil adjusted vegetation index -
MSAVI2 Modified soil adjusted vegetation index 2 -
L Canopy background adjustment constant (in MSAVI formula) -
s Soil line slope (used in MSAVI formula) -
w Constant used in GEMI index formula -
Kriging analysis
n Number of sample points used for kriging interpolation -
m Number of co-variable sample points used for CK -
x0 Target location for interpolation m
xi Locations of sample points for residuals m
xj Locations of sample points for co-variable data (elevation) m
Zu,OK(x0) Interpolated residual value of AGBD at location x0 using OK t.ha-1

Zuv,CK(x0) Interpolated residual value of AGBD at location x0 using CK t.ha-1

Zu(xi) Residual of AGBD at location xi t.ha-1

Zv
(
xj
)

Value of co-variable (elevation) at location xj m
λui Weighting coefficient for AGBD residual at location xi in OK -
λvj Weighting coefficient for co-variable at location xj in CK -
Model evaluation metrics calculation
yi Observed AGBD value at the ith location t.ha-1

ŷi Predicted AGBD value at the ith location t.ha-1

y Mean of observed AGBD values t.ha-1

MAE Mean absolute error: average of absolute differences between predicted and observed values t.ha-1

RMSE Root mean square error: square root of the average of squared differences t.ha-1

R2 Coefficient of determination: proportion of variance explained by the model -
RIMAE Relative improvement in MAE between the baseline and the improved model %
RIRMSE Relative improvement in RMSE between the baseline and the improved model %
RIR2 Relative improvement in R2 between the baseline and the improved model %
MAEb MAE of the baseline model t.ha-1

MAEm MAE of the improved model t.ha-1

RMSEb RMSE of the baseline model t.ha-1

RMSEm RMSE of the improved model t.ha-1

R2
b R2 of the baseline model -

R2
m R2 of the improved model -

Data availability

Data will be made available on request.
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