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Role of non-Markovian dissipation in quantum phase transitions: Tricriticality,
spin squeezing, and directional symmetry breaking
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Understanding how to control phase transitions in quantum systems is at the forefront of research for the
development of new quantum materials and technologies. Here, we study how the coupling of a quantum system
to a non-Markovian environment, i.e., an environment with a frequency-dependent spectral density inducing
memory effects, can be used to generate and reshape phase transitions and squeezing in matter phases. Focusing
on a Lipkin-Meshkov-Glick model, we demonstrate that non-Markovian dissipation can be leveraged to engineer
tricriticality via the fusion of second-order and first-order critical points. We identify phases that arise from
different ways of breaking the single weak symmetry of our model, which led us to examine an alternative
concept of directional spontaneous symmetry breaking (DSSB) as a general framework to understand this
phenomenon. We show that signatures of DSSB can be seen in the emergence of spin squeezing along different
directions, and that the latter is controllable via non-Markovian effects, opening up possibilities for applications
in quantum metrology. Finally, we propose an experimental implementation of our non-Markovian model in
cavity QED. Our work features non-Markovianity as a resource for controlling phase transitions in general

systems, and highlights shortcomings of the Markovian limit in this context.
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I. INTRODUCTION

Dissipative mechanisms have emerged as powerful tools
for shaping the quantum states and phases of many-body
systems. Rather than viewing the inevitable coupling of a
quantum system to its environment purely as a source of
decoherence, one can exploit dissipation to drive a system
towards nontrivial steady states [1,2], engineer phases of mat-
ter without an equilibrium counterpart [3-5], induce quantum
many-body correlations [6,7], or design improved quantum
metrology protocols [8,9].

Most of the theoretical efforts in understanding the dissipa-
tive phases of matter have focused on Markovian dissipation,
where the environment has no memory of its past interactions
with the system. Although this approximation holds well in
platforms when the system-environment coupling is weak and
the bath correlation time is short [10], it can fail in many real-
istic settings, such as optomechanical [11] or light harvesting
systems [12], micropillar cavities [13], or photonic lattices
[14]. In such cases, non-Markovian effects, i.e., the backflow
of information from the environment to the system, become
crucial. Moreover, non-Markovianity naturally emerges when
one builds effective reduced descriptions of larger Markovian
systems to decrease the computational complexity associated
with large system sizes [15-17]. Interestingly, recent work
has shown that non-Markovian effects can lead to steady
states inaccessible with Markovian generators [18], enhance
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entanglement in steady states [19], considerably influence
transport properties [20], stabilize the skin effect from ad-
ditional noise [21], and reveal phases of matter hidden by
the Markovian approximation [22,23]. The latter raises the
question of whether non-Markovianity can be harnessed as a
resource to discover and stabilize new phases of matter with
tailored properties.

In this work, we address that question by studying a non-
Markovian generalization of the anisotropic Lipkin-Meshkov-
Glick (LMG) model with a transverse magnetic field. This
model was investigated in Ref. [23], where it was shown that
the non-Markovian LMG model can exhibit two consecutive
second-order dissipative phase transitions (DPTs) separating
three different phases, in stark contrast to the unique triv-
ial infinite-temperature steady state found in the Markovian
limit. Here, we demonstrate that non-Markovianity can be
used as a tool to merge these two second-order DPTs into a
first-order DPT, thus establishing the existence of a tricritical
point. Furthermore, we interpret tricriticality through the lens
of an alternative symmetry-breaking concept that we call di-
rectional spontaneous symmetry breaking (DSSB) and show
how it provides a unifying picture of the mechanism leading
to different flavors of symmetry breaking, in our model, but
also in other known tricritical models [24]. In addition, we
calculate exactly a spin-squeezing parameter in all regimes.
We show how it highlights the concept of DSSB via the emer-
gence of squeezing along orthogonal directions depending
on the parameter region in the phase diagram and demon-
strate that it cannot serve as a simple phase identifier: within
a given phase, the memory of the environment can be ad-
justed to generate or enhance spin squeezing, which indicates
that non-Markovianity can therefore also serve as a resource

©2025 American Physical Society
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for the generation of steady-state entanglement. Finally, we
propose a scheme relevant for current cavity QED platforms
to experimentally realize the non-Markovian LMG model that
we investigate theoretically, thereby offering a direct path-
way to explore quantum phase transitions in driven-dissipative
systems.

This paper is organized as follows: In Sec. II, we present
our generalized LMG model and its symmetry. In Sec. III,
we discuss the emergence of dissipative phase transitions in
the model and their connection with the spontaneous breaking
of its symmetry. To do this, we first perform a mean-field
analysis valid in the thermodynamic limit, which allows us
to construct a phase diagram; then we present the concept
of directional spontaneous symmetry breaking, providing a
refined understanding of the breaking of the symmetry, and,
finally, we show the finite-size behavior of the system. In
Sec. IV, we analyze the spin-squeezing parameter and show
how it deviates in some regimes from the phase identification.
In Sec. V, we propose an experimental cavity QED setup that
implements our model. In Sec. VI, we conclude and provide
some perspectives on our work.

II. NON-MARKOVIAN LIPKIN-MESHKOV-GLICK MODEL

We consider a system composed of N spin-1/2 particles
that interact through infinite-range interactions and are em-
bedded in a magnetic field. The system’s Hamiltonian Hy is
given by (we set i = 1)

14
Hs = ﬁ(sf —S87) + hS.. (1

where V' controls the spin-spin interaction, 4 characterizes
the intensity of the magnetic field applied in the z direc-
tion, and S; = %Z’;]:l crl.(j) (i=x,y,z) are collective spin
operators expressed through single-spin Pauli operators O’I-('j ),
This Hamiltonian is a specific realization of the paradig-
matic Lipkin-Meshkov-Glick (LMG) model, introduced in
Ref. [25], which has been extensively studied (see, e.g.,
Refs. [25-30]).

In this work, we extend the standard LMG model to an
open-system framework, accounting for the interaction be-
tween the spins and an environment modeled as an infinite
collection of bosonic modes. The total Hamiltonian H,, for
the system-environment couple is

H = Hs + Hg + Hiy,

Hg = Zwkazak, Hiy = Z(gksxak +g:8:a)), (2
3 3

where Hg (Hj,) is the environment (interaction) Hamiltonian,
ay (a}:) is the annihilation (creation) operator of the bosonic
mode k of frequency wy, and |gk| is the interaction strength
between the system and mode k. We focus exclusively on the
spin degrees of freedom at zero temperature whose dynamics
is entirely determined by the vacuum bath correlation function

alt =)= Y lal (a®al()) =Y lglPe ™, (3)
k k

with a;(t) = aye ' being the annihilation operator in the
interaction picture with respect to Hg.

A commonly studied case is the uniform weak-coupling
scenario, where the spectral density J(w) =), | gk|28(w —
wy) is assumed to be a constant

N
J(w) ~ N 4)

in the continuum limit of modes. This requires performing ap-
proximations on the real environment of the system and their
coupling, and it greatly simplifies the correlation function in
the continuum limit, which reads

+o00 )
alt —s) = / do J(w)e @t
0

+
A L/ Ooda)e_i‘”(’_‘g)
0

N
e ()]
_NJT T ) LE. V. PR
m}%a(z—s). (5)

Here, P.V. denotes the Cauchy principal value, which we
have discarded following standard practice because it ulti-
mately leads to a coherent part that amounts to renormalizing
the energy of the system. The delta-distribution correlation
function implies that the environment lacks memory of its
interaction with the system. Physically, this corresponds to
the so-called Markovian limit, where the interaction of the
system with a vast and unstructured environment does not
result in any feedback from the environment to the system,
ensuring a memoryless evolution [31]. In this regime, one
can readily derive a Lindblad master equation for the system
density operator pg only, which takes the form [32,33]

ps = —ilHs. ps] + %(23},055; —{S1S,. ps)). ()

Note that all terms are thermodynamically consistent: no con-
tribution either trivially vanishes or diverges like N* (o > 1)
in the thermodynamic limit in Eq. (6). Similar open LMG
models have previously been investigated in the Markovian
regime [34-38]. In contrast with the ground state of the
Hamiltonian (1), which exhibits quantum criticality and spin-
squeezing,' the steady state of the master equation (6) is not
critical, as pgs o 1 is the unique [39] steady state for all N.
Otherwise stated, the quantum criticality hosted by the LMG
Hamiltonian is suppressed when the dissipation is assumed to
be Markovian.

Here, we go beyond the idealized Markovian scenario and
consider a structured environment with a correlation function
of the form

oo YK iw)t—s|—klt—s|
a(t —s) = 2Ne . @)
This choice is not only experimentally relevant [especially for
cavity or circuit QED setups [40—42] (see also Sec.V)] but

!Given the quadratic form of the Hamiltonian (1), the ground state
in the thermodynamic limit N — oo is Gaussian and therefore a
coherent or squeezed state, since it is pure. It is coherent only when
V/h = 0, as a spin-coherent state can only be an eigenstate of (1)
when Hs = hJ,. For V/h # 0, the state is therefore squeezed.
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also turns out to be especially convenient. First, in the limit
k — 400, Eq. (7) reduces to a(t —s) = (y/N)5( — s), re-
covering the Markovian limit and thus the master equation (6)
for the system density operator. Second, the limit k — 0 sim-
ply yields «(f — s) = 0: the environment decouples from the
system, and we recover the closed version of the LMG model
(1). Finally, for finite k¥ # 0, the dynamics of the system is
non-Markovian. However, for these dynamics with a correla-
tion function of the form (7), the pseudomode picture [43-50]
provides a Markovian embedding described by a Markovian
master equation of the form

ps+a = —ilH, psial +k(2apsiaa’ —{a'a, psia)),  (8)

with
_ vk ¥ T
H = Hs + ﬁSx(aJra )+ wa'a, )

where a is the pseudomode annihilation operator and pg., is
the density operator for the system and pseudomode. The spin
state pg can be obtained exactly by tracing out the pseudo-
mode a. Therefore, to extract finite-size results, one could in
principle solve Eq. (8) for psy, and trace out the a mode in
order to study the non-Markovian system made up of spins
only. However, this approach is usually more costly numeri-
cally [22] and we choose instead to employ the framework that
has been recently developed in the context of non-Markovian
dissipative phase transitions [22,23] and which is based on
hierarchical equations of motion (HEOM) [51,52] described
below in Sec. IIID 1. Note that the master equation (8) will
prove useful to derive exact results in the thermodynamic limit
N — oo.

Before turning to the symmetries of the model, we clarify
the Markovian limit k — 400 within the pseudomode formu-
lation. At first sight, it is surprising that a single pseudomode
could reproduce the dynamics of an ideal Markovian reser-
voir, which is conventionally associated with a continuum of
environmental modes and no memory. The key observation is
that, as k increases, the system—pseudomode coupling rises
as 4/« while the pseudomode lifetime shrinks as 1/«k. In the
asymptotic limit x — 400, the spin subsystem couples in-
finitely strongly to a pseudomode that decays instantaneously,
therefore disappearing from the dynamics. In this limit, the
pseudomode is effectively bypassed: the spin system couples
directly to the standard Markovian bath with the pseudomode
rendered irrelevant.

The master equation (8) can be rewritten as

Ly=H+D,
D[ 1=kQRa-a" —{d'a,}), (10

Os+a = Lyulpstal,
H[]=—ilH, ],

where the superoperator £, is the so-called Liouvillian, Lind-
bladian, or generator of the dynamics, and H (D) is the
superoperator that dictates the coherent (dissipative) dynam-
ics. The Liouvillian is invariant under the transformation

a— —a, S;— -8, § — -, (11

described by the unitary superoperator

U[=U- U, U=+ (12)

satisfying
[Ly, U] =0. (13)

Unitary superoperators verifying (13) are called weak sym-
metries throughout the literature [53]. Since U*=1,Uisa
weak Z, symmetry. Note that the existence of such a sym-
metry does not imply a conservation law [54]. However, it
does imply that, if the steady state is unique (which is the
case in our model for any finite N), then, in the steady state,
(a) = (Sx) = (S,) = 0 and the spin expectation value is in the
z direction. A finer discussion of the model’s symmetries is
presented in Sec. III C.

II1. DISSIPATIVE PHASE TRANSITIONS

We now analyze the existence of dissipative phase transi-
tions in our model. After providing a definition of dissipative
phase transitions, we present a mean-field analysis, allow-
ing the construction of a complete phase diagram (shown in
Fig. 1). Then, as the latter contains two phases consisting of
two different ways of breaking the symmetry of the model, we
examine and discuss the concept of DSSB to achieve a deeper
understanding of the underlying mechanism of tricriticality.
Finally, we present a finite-size scaling analysis of the emer-
gence of criticality and study the finite-size consequences of
the DSSB.

A. Definition

We define a dissipative phase transition (DPT) in our model
by the existence of a system observable O, independent of the
parameter V, whose steady-state expectation value displays a
nonanalytic behavior in the thermodynamic limit N — +-o0.
Formally, this definition can be written as [55]

P14

v v O

lim

Jim, = +o0, (14)

where (O)ss denotes the steady-state expectation value of O
and p is the order of the transition. In what follows, we mainly
deal with expectation values of collective spin operators and
DPTs of orders p =1 and p = 2.

B. Mean-field analysis

In this section, we analyze the steady-state behavior of our
model in the thermodynamic limit N — oo, where a mean-
field approach is exact [56]. The mean-field equations of
motion for {(a), (Sy), (Sy), and (S;) can be obtained from
Egs. (8) and (9) by assuming (AB) = (A)(B) + %([A, B]) for
any operator A and B. They read

(@) = —(k + iw){a) — i,/%m, (15)
. \%

($0) = =25(8,)(S) = (S,). (16)
3 4 _ YK T

(§) = =288 +h (S =\ [ Z(S0((@) + @), (1)
. \%

(5 = 480 (8) + %<Sy>(<a>+<a*>). (18)
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FIG. 1. Mean-field analysis. (a) Phase diagram obtained from the mean-field analysis of our model. The roman numerals (I), (I), and (III)
label the different phases, while the arabic numerals (1, 2, and co) indicate the number of distinct stable fixed points within each phase and
on the critical lines (see colored diamonds) that correspond either to second-order (brown) or first-order (red) dissipative phase transitions,
respectively. The black dot indicates the position of the tricritical point, at V = h = y ¢, /4. The thin horizontal dashed black line indicates the
parameters used in Figs. 2 and 3. (b) Possible steady-state values of (S,) in the different phases, highlighting the broken symmetry in phase (I)
due to the existence of two possible opposite values of (S,) but also the first-order (second-order) nature of the transition (I)<>(III) [(I)<>(II)]
from the jump (smooth behavior) of (S,) across the red (brown) transition line. Note that at the critical line of the first-order transition, an
infinite set of possible values of (S,) is available, as denoted by the light purple area. (c) Same for (S,), highlighting the broken symmetry in
phase (III) and the first- and second-order nature of the transitions (I)<>(III) and (II)<>(II), respectively. Note that at the critical line of the
first-order transition, an infinite set of possible values of (S,) is available, as denoted by the light purple area.

By setting the left-hand side of the equations above to zero,
we obtain (except for V = ywk /[4(k? 4+ w?)], as explained
below) six fixed points from which four phases labeled (I),
(ITa), (Ilb), and (IIT) can be inferred:

D: (a)ss, (Sxdss> (Sy)sss (Sz)ss)

2
N y h
= — —_ 1_ .
2 :FV 2N« (V _ 6/22V> (g2 + iq1).

2
h h
+ 1—<V_%>,o,v_% , (19)
N
(Ia): ((@)ss. (Se)ss (S))ss: (S:)) = 5(0,0,0, 1), (20)

N
(ITb): ({@)sss (Sx)sss (Sy)sss (Sz)ss) = 5(0, 0,0,1), 2D
(ID: ({@)ss, (Sx)ss» (Sydsss (Sz)ss)

N r\>
=—|0,0,+/1-(=),—=]. (22)
2 \% \%
where
K2 Kw
L = 23
N=ere Pt 23)

are adimensional parameters that capture non-Markovian ef-
fects due to the spectral structure of the bath, and where the
notation (O)s = (O(t — 00)) denotes the steady-state expec-
tation value of an operator O. In the following, for simplicity,
we omit the subscript ss because we only consider steady-state
expectation values (unless otherwise stated).

If & > 0 [h < 0], the phase (IIb) [(Ila)] is always unstable.
Focusing on the case h > 0 without loss of generality, we thus
only have the phases (I), (Ila), and (II) to consider. Phase

(ITa), which we refer to as phase (II) from now on, has a single
fixed point, while phases (I) and (III) both exhibit two fixed
points. The pair of fixed points in those phases corresponds
to broken symmetry states that relate to each other via the
transformation (11). Note that, from a direct examination of
Egs. (19) and (22), the fixed points of phase (I) and (III) are
unphysical for |V — g2y /2| < hand |V| < h, respectively.

A standard linear stability analysis around the fixed points
(see, e.g., Refs. [16,23] for a detailed description of the pro-
cedure) allows us to determine which fixed points are stable
in which parameter region and thus build the phase dia-
gram shown in Fig. 1(a), where we assumed %, ¢, y > 0 for
simplicity.

For y < 4h/q,, two critical points (brown lines in Fig. 1)
appear upon varying V':

Vi=—h+=r, (24)

Vo = h. 25)

Phase (I) [blue] is stable for V < V;. Phase (II) [gray] is
stable for Vi <V < V. Finally, Phase (III) [red] is stable for
V, < V. In this regime, the transitions (I)<>(II) and (II)<>(I1I)
are both of second order, as per the definition (14) with
p = 2. Indeed, for the given transitions at V| and V,, examples
of observables O satisfying Eq. (14) are S, and Sy, respec-
tively. They are shown in Fig. 1. For the transition (I)<>(II)
[(AD<ID)], (Sy) [(Sy)] exhibits a (continuous) kink at V; [V2],
highlighting the second-order nature of the transition.

For y > 4h/q,, phase (II) no longer appears. In fact, the
two critical points V; and V; of the two second-order DPTs
coalesce at a tricritical point y = 4h/q, to emerge for y >
4h/q, as a single critical line (red line in Fig. 1)

qQy
V== 26
1 (26)
Along this particular line (and whatever the value of y), the

mean-field equations exhibit an infinite set of fixed points.
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Indeed, setting the left-hand side of equations (15)-(18) to
zero yields for V = ¢,y /4 a standard slaving of the bosonic
mode to the collective spin

_ i fye 1
(a) = —i 2NKJH.w<Sx>, (27)

as it appears when one performs the adiabatic elimination
of the bosonic mode, and the following remaining con-
straints (the equation for the last component simply reduces to
($:) =10

0= (L2(5) +h)1s,). (28)
0= (L2250 + )50, 29)

in addition to the normalization condition (S,)> + (Sy)2 +
(S.)? = (N/2)%. If (S.) # —2hN/yq>, we recover the fixed
point (20). If, however, (S;) = —2hN/y g, then (S,) and (S,)
are only constrained by the normalization condition. They
can be parametrized as (Sy) = Scos8 and (S,) = Ssinf with
S = (N/2){1 — [4h/(yg2)]1*}'/? and 6 € [0, 27]. This yields a
whole family of fixed points of the form

(@), (Sx), (Sy), (S2))

N Y (gat iq1)S cosB, S cos 0, S sinf,— "
= —| -,/ — coso,dcoso,osmo,—— ).
2\ TV owe T Y

(30)

For y < 4h/q,, this infinite set of fixed points is unstable
[only the fixed point (20) is stable in this region of parameter,
i.e., within phase (I), as expected]. They are stable only for
y > 4h/q,, i.e., along the red critical line. Thus, there is a
continuous U(1) symmetry of the spin steady state in the
thermodynamic limit around the z axis on the critical line,
which is spontaneously broken for y > 4h/g, and thus leads
to an infinite set of possible mean-field solutions for (S,) and
(Sy) [see light purple area in Figs. 1(b) and 1(c)]. Furthermore,
as one approaches the critical line, the values of (S,) (or (S,))
from below do not match those from above. According to
Eq. (14), this mismatch in limits signals a first-order phase
transition. In Sec. IV C, we show that the emerging U(1)
symmetry impacts the spin-squeezing parameter in the ther-
modynamic limit.

C. Directional spontaneous symmetry breaking

Dissipative phase transitions and spontaneous symmetry
breaking are intimately connected and have been extensively
studied in the literature (see, e.g., Refs. [23,55,57-59]). In
this section, we first review how conventional Z,-symmetry
breaking arises, and then introduce the notion of directional
spontaneous symmetry breaking (DSSB), which sheds light
on the phase diagram in Fig. 1.

1. Spontaneous symmetry breaking

Consider the Liouvillian £, [Eq. (10)] and its associ-
ated Z,-symmetry superoperator U introduced in Eq. (12).
Due to its simple Z, nature, the superoperator U has only
two eigenvalues: u; = exp(ikw) (k =0, 1), which defines
two symmetry sectors, namely, the symmetry sector k = 0

(associated with up = 1) and kK =1 (associated with u; =
—1). Since [U, Ly] = 0, the Liouvillian block-diagonalizes
as

L=L Ly, (31

where the block £, is associated with the eigenvalue u;. Be-
cause of this block-diagonal structure, the Liouvillian cannot
mix different symmetry sectors. Furthermore, the steady state
Oss (assumed to be unique) always belongs to the symmetry
sector k = 0, i.e., U pss = pss [55].

If, in each symmetry sector labeled by k, we denote the
eigenvalues by A;k) (j=0,1,...)and sort them by increasing

absolute value of their real part |Re[k(()k)]| < |Re[k§k)]| < -,
then a SSB is simply the emergence, in some region of the
parameter space, of a zero eigenvalue in the sector k = 1 in
the thermodynamic limit, i.e., Agl) — 0as N — +00. Conse-
quently, the null space becomes degenerate and steady states
that explicitly break the symmetry emerge.

In the parameter regions where the symmetry is broken,
one can show [55] that the eigenoperator p(()l) associated with

the eigenvalue )Lf)l) is Hermitian. The density matrices
pr = py * pg, (32)

with Tr[p(()o)] = land Tr[p(()l)] = 0, are valid steady states that
break the symmetry since U p+ = p.

2. Antiunitary flips

As shown in Figs. 1(b) and 1(c), and as already revealed
by the fixed points (19) and (22), the system can break its
underlying Z, symmetry in two distinct “directions”:

(1) breaking Sy, — —S, and a — —a simultaneously,
while preserving S, — —S, [leading to phase (I)];

(2) breaking S, — —S, while preserving S, — —S, and
a — —a [leading to phase (IIT)].

We formalize these two routes by introducing the two cor-
responding antiunitary operators 7; and 7y defined by

NSl = =8, Tlal=—a, T[AI=AA=S,,85.),
(33)
and
TmlSy] = =Sy, TmlAl=A (A =S, S;, a). (34

Denoting the complex conjugation in the S, basis by e*, the
two antinunitary operators can be explicitly written as

Tilel =U ¢*U", Tile] = o*. (35)

In the following, we restrict the action of the directional
antiunitary flips to the (real) Hilbert space of Hermitian ma-
trices (as they typically act on density matrices). One can
readily verify that each operator is an involution (7, = 1 for
i = I, IIT). They commute with each other, and anticommute
(commute) with the coherent (dissipative) part of the Liouvil-
lian, i.e.,

(71, Tml =0, {H,73=0, [D,7]1=0(G=I1I).

(36)

We stress that neither 77 nor 7; commutes with the Li-
ouvillian L, in contrast with similar models that exhibit
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antiunitary symmetries [34]. Nevertheless, their product
T =U (37

turns out to be the unitary Z,-symmetry U that does commute
with L. Therefore, we can interpret U as being generated by
two directional flips Tt and 71, each flipping a different subset
of the model’s degrees of freedom.

Crucially, since 97 and 7j;; commute, we can build common
eigenoperators Ag,q,, such that

71'.[Aa|am] = aiAoqama (38)

with «; = +1 (i = I, IIIT). Consequently, the eigenvalues of
the unitary symmetry U can be written as oyoyy.

3. From SSB to DSSB

We now formally discuss the concept of directional spon-
taneous symmetry breaking (DSSB). In the following, we
always assume the thermodynamic limit and we work in re-
gions where U is broken (phases I and III).

The broken-symmetry steady states p. introduced in
Eq. (32) can be written as a real linear combination

pr=apir +bp__E£(cpi—+dp_y), (39)

0 (1
oy oy

where the Hermitian joint eigenoperators pqq, satisfy
ﬁ[palam] = O Poyony and 7I-II [poqam] = O Py + Furthermore,
Py and ,o(()]) must be orthogonal, as they live in different
eigenspaces of the Hermitian operator U . Thus, p, must also
be orthogonal to each other, which gives the orthogonality
condition

(06|06 s =0 & @ +b* =2 +d>  (40)

with (A|B)ys = Tr[ATB] the standard Hilbert-Schmidt inner
product.

Now we consider the different possible routes for sponta-
neous symmetry breaking. The breaking of 71, i.e., fi[p+] =
P+, leads to b = ¢ = 0 and thus

pr=apiy £dp_y, (41)

which, with the unit trace condition (¢ = 1) and the orthogo-
nality condition (d = =£1), simply gives

P+ = P+t oy (42)

We emphasize that, according to this, requiring the breaking
of 91 automatically implies that 7y is preserved: Tm[po+] =
p+. For the breaking of 7y, a similar calculation gives

p+ = Pt £ o1, (43)

which preserves 7;. We refer to these two ways of breaking U
as directional spontaneous symmetry breaking, and one can
already note that it is reminiscent of 7 symmetry for open
quantum systems, as defined in Ref. [58].

As is already apparent from Eq. (38), there are exactly
two directions in which the Z, symmetry can be broken,
preventing the existence of a fourth phase. Indeed, requiring
Tilp+] = p+ and Tmi[p+] = p5 yields

Py = p— = Piy, (44)

so that the orthogonality condition can obviously no longer
be satisfied. In this case, the steady state is unique and no
SSB takes place because there is no mixing between the
different symmetry sectors. Consequently, we have exhausted
all possible directions to break the Z, symmetry: either the
system chooses to break 77 or to break 7y, but never both at
the same time; there is no “fourth” phase that would break
both 7;. Finally, we note that DSSB also explains why we end
up with four different fixed points [see Eqgs. (19) and (22)]
from the breaking of a unique Z, symmetry.

We emphasize that the concept of DSSB is not limited to
our model but is a general concept that can be applied to other
multicritical systems. For instance, in Ref. [24] the authors
discuss a Z, x Z, symmetry that is a symmetry of the Hamil-
tonian [60]. However, once dissipation is incorporated, the
model exhibits only a weak Z, symmetry which is represented
by a superoperator U that satisfies our decomposition (37),
which explains the emergence of directional broken phases in
their phase diagram.

In summary, we have identified a general structure that
ensures DSSB: the factorization of a unitary Z, symmetry
into two commuting antiunitaries 7y, 7y that do not com-
mute with the Liouvillian £),. In this case, the phases that
spontaneously break the weak symmetry can be further dis-
tinguished according to the antiunitary they break and the one
they preserve, which leads to different routes of spontaneous
symmetry breaking.

D. Finite-size results

Now that the phases of our model and their breaking in
the thermodynamic limit N — oo have been established, we
discuss how criticality emerges upon gradually increasing
N. In addition, although (directional) spontaneous symmetry
breaking occurs only in the thermodynamic limit, we show
how to extract its signatures from the low-lying part of the
spectrum of the generator of the dynamics at finite N.

1. HEOM Liouvillian

All the finite-size results that we present in this work come
from the HEOM-based method introduced in Refs. [22,23].
We briefly outline here how the method can be applied to
the Hamiltonian (2) with the correlation function (7). The
main object of interest is the HEOM Liouvillian, denoted
Lugom, which governs the numerically exact non-Markovian
dynamics of the system (i.e., the spin degrees of freedom) for a
factorized initial system-bath state. This dynamics is captured
by an infinite hierarchy of equations that takes the following
form [17,52]:

dp(n,m)

- = —ilHs, 0] = [(1 = myie> + (n + myc]p™"

4 GnSxp(n—l,m) 4 Gmp(n.m—l)Sx
+ [ Su] 4 [Sy, p "], 45)
where G = yk /2N, n,m € N, p®® = p¢ and all the other

™ are auxiliary operators necessary to capture the correct
dynamics of the system. After truncation, Eq. (45) can be
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recast in the form

d
E"O» = Lueom (kmax)[0)) (46)

where |p)) is a stacked vector containing all the vectorized
versions of the operators p"™ under the usual isomor-
phism |a) (b| = |a) |b). The operator Lygpom(kmax) defines
the HEOM Liouvillian at a certain truncation order kpax.
This is because in practice the infinite hierarchy must be
truncated. Here, we adopt a triangular truncation condition,
where p"™ = 0 for n + m > kmax. It has been shown that
Lueom (kmax ) provides a systematic and well-adapted pathway
to study the spectral signatures of DPTs in the non-Markovian
regime [22,23]. In the following section, we follow this ap-
proach.

2. Emergence of criticality

The emergence of two consecutive second-order DPTs
as N increases was previously examined in Ref. [23]. We
therefore focus here on the first-order DPT, which describes
the transition from phase (I) to phase (III). This phase tran-
sition can be seen as the merging of two critical points
associated with the two consecutive second-order DPTs that
separate phases (I) and (II) and phases (II) and (III), see
Fig. 1.

Phase (I) is characterized by (Sg) = 0, while phase (II) is
marked by (Sg) # 0. Consequently, we may define the nor-
malized quantity (Syz) /(N/2)? as a possible order parameter
of the phase transition. In Fig. 2(a), we illustrate the behavior
of this order parameter for various system sizes. The transition
becomes sharper as N grows, and in the thermodynamic limit
N — +o00, the exact mean-field prediction (black curves)
exhibits a discontinuity at the critical point. While finite-N
curves will always be continuous, we can explore the onset of
discontinuity by examining the behavior of the susceptibility
x that we define by

d [ (s2)

dv| (N/2)?

X = :|, v=V/h. @7
Figure 2(b) shows that, as expected, y reaches a maximum
close to the critical point (indicated by the red dashed line),
and that the height of the maximum increases with N while its
location approaches the critical point.

A defining hallmark of a first-order DPT is the
emergence—in the thermodynamic limit and in the symmetry
sector k = 0 containing the steady state—of an eigenvalue
A(lo) whose real part vanishes only at the critical point, while
remaining nonzero in its finite vicinity [22,55]. In other words,
the gap in the sector £ = 0 must vanish exactly at the critical
point. We confirm this behavior via finite-size numerics, as
shown in Fig. 2(c). A local minimum in —Re[k(lo)] deepens
with N and shifts towards the critical point. Figure 2(d) further
indicates that the gap closes with a power-law scaling at the
critical point.

Interestingly, the scaling of the gap has recently been
connected to phase coexistence [30]. In agreement with the
results of Ref. [30], we find that the power-law scaling could
have been guessed from the existence of the infinite number
of attractors emerging at the critical point, as discussed in

1.0 T X
0.04
~ 1 i 1
—
) [ =~ 1
= =2 0034 !
\/05A T
= o=
Yy | 0.02
T T T
0 1 2

—~
2

—
IS
1

=
39
1

[ ]

T T T
1.0 1.2 1.4

V/h log;o(V)

log,omin(~Re[A{"/x])]

N=4 «N=12 ¢N=20 ¢ N=28
N=8 ¢N=16 eN=24 «N=32

FIG. 2. Emergence of the first-order DPT. (a) Mean value of
(S2) /(N/2)* as a function of the control parameter V/h showing
the emergence of a first-order DPT as we approach the thermody-
namic limit N — 4-o0. The straight black line displays the exact
result (mean-field) in the thermodynamic limit. (b) Susceptibility x
[Eq. (47)] signaling the emergence of a discontinuity at the critical
point V/h = gy /(4h), represented by a dashed red line. (c) Gap
in the symmetry sector k = 0 showing the emergence of a local
minimum near the critical point. In the thermodynamic limit, the gap
vanishes at the critical point as suggested by the finite-size scaling
of the local minimum with respect to V/h depicted in panel (d). The
parameters are k = w = 10h, y = 5h/q,, and kn.x = 11 for panels
(a), (b) and kyax = 17 for panels (c), (d).

Sec. III B. Finally, we note that the imaginary part of A(lo)
should also vanish around the critical point [22,55]. Here, we
find that over the range of parameters considered, Im[kgo)] is
identically zero (data not shown).

3. Emergence of directional spontaneous symmetry breaking

Strictly speaking, SSB in open quantum systems only
arises in the thermodynamic limit. This also applies a fortiori
for the DSSB scenario discussed above. To investigate the
emergence of DSSB at finite N, we numerically compute [see
Eq. (32)]

Py < py—p-. (48)

According to the general theory in Sec. III C 3, the states p1
should capture the breaking of 7y and the preservation of 7y
in phase (I), and vice versa in phase (III). This behavior is
evident in Figs. 3(a) and 3(b) where 77 breaking is signaled
by two branches (associated with p1) that emerge in the ex-
pectation value of S, while 7y breaking is indicated by two
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FIG. 3. Emergence of DSSB. (a), (b) Expectation values (S.) and (S,) as a function of the control parameter V/h for the states pi
directly extracted from the HEOM Liouvillian for N = 28 [see Eq. (48)]. The straight black line displays the exact result (mean field) in
the thermodynamic limit and the red dashed line indicates the critical point. We observe a good agreement between the finite-size curves and
the mean-field results, which confirms the DSSB mechanism. (c) Gap in the symmetry sector k = 1 as a function of V/h indicating a gap
closing in phase (I) and (II). (d) Scaling of the gap at the critical point showing a power-law gap closing. The parameters are k = w = 10h,
y = 5h/q,, and kya = 10. (e) Density plots of the Husimi function on the sphere for the three distinct phases. These plots show how the
system transitions between phases: from phase I to II and from phase II to III via continuous (second-order) transitions, where the Husimi
function smoothly deforms through the symmetric phase II. In contrast, the transition from phase I to III is discontinuous (first-order), marked
by squeezing in perpendicular directions. See the Supplemental Material [61] for two videos showing the deformation of the Husimi function
across the first-order and second-order DPTs. The parameters used are N = 45, k = 0.2y, @ = 0.5y, knx = 7, and yg,/(4h) ~ 0.086 and

V/h = 0 for phase (II), and y ¢, /(4h) =~ 1.724 and V/h = £50 for phases (I) and (III).

branches in (Sy).2 In addition, these finite-N curves closely
follow the mean-field predictions shown by the black curves
in the same panels. Apart from minor finite-size deviations
around the critical point (red dashed line), it is clear that the
system can break 71 or 7y but not both simultaneously.

In addition, in Fig. 3(c), we plot the Liouvillian gap
—Re[k(()l)] in the u;—; = —1 sector as a function of the control
parameter V/h for different values of N. Because phases (I)
and (IIT) spontaneously break U, we expect this gap to close
in the thermodynamic limit in those broken-symmetry phases.
At the critical point, phases (I) and (III) meet and mean-field
theory predicts an infinite continuum of steady states—akin to
a U(1)-symmetry breaking—hence the gap must also vanish
there in the thermodynamic limit. Figure 3(d) confirms this by
showing that the gap closes as N3 at the critical point.

Finally, in Fig. 3(e), we show the Husimi functions of the
steady states in each phase. Since, in the broken-symmetry
phases, the steady states pgs can be written in terms of the

2Recall that the finite-size results displayed in Fig. 3 are obtained
via the HEOM Liouvillian (45), rather than from the Markovian
embedding [Eq. (8)] which includes the pseudomode in the system.
As a consequence, the solution includes auxiliary operators not di-
rectly relevant here, and one must select the (0, 0) component of the
appropriate eigenvector, as covered in detail in Ref. [22].

symmetry-broken states p as [22,55]

s P+ + p-
SS 2 £

for N large enough, we expect finite-size consequences of the
DSSB on the steady states. Indeed, in phase (I), we know that
71 is broken, but not 7y, which directly translates in the two
branches in (S,) in Fig. 3(a) while (Sy) = 0 as shown in panel
(b). Consequently, since Eq. (49) is a asymptotic good approx-
imation of pgs, we expect the Husimi function to be composed
of two peaks located at x = +1 and x = —1 ({S;) =0 for
every finite N), while it should be close to zero elsewhere
and, in particular, in the y direction. Of course, in the strict
thermodynamic limit N — 400, the system would break 7;
(and U) by choosing only one of the two peaks. Similar
considerations hold for phase (III), with the appropriate re-
placement 97 — 7qy and x — y. These finite-size implications
are clearly visible in Fig. 3(e) where two peaks appear along
the +=x and %y directions for phases (I) and (III), respectively.
In phase (II), the Husimi function is concentrated around z =
—1, as expected from mean-field theory (20). Furthermore,
the Husimi function exhibits squeezing in the xy plane in the
direction orthogonal to the direction of symmetry breaking:
squeezing along y and symmetry breaking along x in phase
() and squeezing along x and symmetry breaking along y in
phase (III). Hence, spin squeezing, on which we elaborate in

(49)
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the next section, serves in our model as an explicit indicator
(and physical signature) of the emergence of a preferred direc-
tion for breaking the symmetry, i.e., of directional symmetry
breaking.

IV. SPIN SQUEEZING

So far, our analysis has primarily focused on comparing
finite-size results with mean-field predictions. However, as
illustrated in Fig. 3(e) and discussed in the previous section,
the model is richer than the mean-field theory. This motivates
the investigation of fluctuations around the mean-field predic-
tions, which we undertake by examining the behavior of the
spin squeezing.

Spin squeezing is a key indicator of the nonclassical nature
of spin states, and directly quantifies the gain achievable in
quantum metrology to exceed classical limits of precision.
Importantly, spin squeezing can be directly measured in the
laboratory through collective spin measurements, making it a
practical tool. Here, we study the spin-squeezing properties
of the steady state, both for the thermodynamic limit and
for finite N. We show that spin squeezing occurs near the
critical points, in a region whose extent is determined by the
ratios h/w and k/w. In other words, phase transitions may
or may not be accompanied by spin squeezing, depending on
the specific choice of parameters. Furthermore, we show that
squeezing becomes more pronounced with increasing bath
memory (i.e., decreasing «) and with increasing magnetic
field strength 4.

A. Spin-squeezing parameter

To characterize the amount of spin squeezing carried by the
steady state, we use the spin-squeezing parameter introduced
by Kitagawa and Ueda [62]

g 4ming, (ASs,)*

=N
with the minimum of the variance computed with respect to
all unit directions n; orthogonal to the mean spin direction
(S). A state is said to be spin-squeezed if £ < 1 and it can be
shown that the symmetric collective spin-squeezed states are
pairwise entangled [63,64]. For a mean spin direction along
the z axis, one can show [65] that & 2 reduces to

(50)

§ = 1%[(55 +82) = sz =S+ (s S D)

Note that for the LMG model (8) considered here and for any
finite N, the mean spin direction will always be the z direction
as the Z, symmetry directly implies that (S,) = (S,) = 0.
However, in the thermodynamic limit N — +o0, the sym-
metry Z; is explicitly broken in phases (I) and (III), which
prevents such identifications [see Eqs. (19) and (22)].

B. Analytical derivation by third quantization

Computing spin squeezing requires going beyond the
mean-field results presented in Sec. III because we need to
access quantum fluctuations around the mean-field solutions.
Here, we outline how one can exactly solve the LMG model
(8) in the thermodynamic limit in phase (II).

We start by representing the spin degrees of free-
dom by bosons through the Holstein-Primakoff (HP)
transformation

S, =~/Nb'\/1=0b"b/N,
N
S_=+Ny1—-bib/Nb, S.=bb— 3 2

with b (b") the annihilation (creation) operator of an effective
bosonic mode. In phase (II), mean-field calculations gave
(S;)ss = —N/2 [see Eq. (20)] and thus fluctuations satisfy
(b'b) <« N. Expanding the argument of the square roots to
zeroth order ((1 — b'h/N)'/? ~ 1) leads for the Hamiltonian
(9) to the effective Hamiltonian

Vv
HY = E(bﬂ +b*) + hb'b + wa'a

LY by ' 53
t 5y 7 Ctb)atan, (53)

up to 1/+/N corrections. In the thermodynamic limit,
the dynamics of the enlarged Markovian system made of
the spins and the pseudomode becomes exactly described
by the Liouvillian

L] = —i[Hy, o] +kQ2aed" —{ala,e}).  (54)

Being quadratic in the bosonic operators a and b, the super-
operator Lg? can be diagonalized by the third quantization
method [66,67]. In particular, this readily gives the expec-
tation values of all second-order moments, from which the
spin-squeezing parameter can be evaluated through Eq. (51).

Expanding the square root in the transformation (52) is a
priori not justified in phases (I) and (IIT) because the con-
dition (b'h) <« N is not met. This apparent problem can be
circumvented by first doing a rotation of the spin degrees of
freedom [along with a shift of the pseudomode for phase (I)]
to ensure that the mean spin direction is along the z axis,
and then applying the HP transformation (52), as explained in
detail in the Appendix based on the works [40,68—-72]. Using
this, we are therefore able to obtain the exact expressions of
the spin squeezing in the thermodynamic limit in all regimes
of parameters.

C. Dissipative phase transitions and spin squeezing

We now discuss the connections between spin squeezing
and dissipative phase transitions in our model.

1. Second-order dissipative phase transitions and spin squeezing

When yq,/(4h) < 1, the three different phases are sep-
arated by two second-order DPTs, as shown in Fig. 1(a).
To explore the behavior of the spin-squeezing parameter, we
focus on a fixed horizontal line within the phase diagram.
Consequently, in the following analysis, we set y = h/(2q>),
although similar results are obtained for fixed values of y
satisfying y < 4h/q>.

In Fig. 4(a), we present the region in the parameter space
where spin squeezing occurs in the thermodynamic limit
(N — 4+00), i.e., when £2 < 1. The results reveal that spin
squeezing emerges near the critical points, in a region whose
size depends on the structure of the bath captured by «/w.
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FIG. 4. Spin squeezing across second-order DPTs. (a) Exact spin-squeezing parameter &2 in the thermodynamic limit as a function of V/A,
h/w, and k /o for y = h/(2q,), highlighting the squeezed regions (i.e., regions where £2 < 1). The brown dashed line indicates the critical
points. (b)—(e) Density plots of the squeezing parameter as a function of the parameters V/h and « /o for fixed values of &/w, corresponding
to different horizontal slices of the three-dimensional (3D) plot shown in panel (a). Decreasing « /w (i.e., increasing memory effects) allows
for a stronger squeezing, i.e., a decrease of £2. The gray dashed line indicates the special line V = ¢,y /4 where no spin squeezing is possible
(see main text). All panels show that the DPTs may or may not be accompanied by spin squeezing: a path in parameter space that connects the
three different phases without involving spin squeezing is highlighted in panel (b) by a black dashed arrow.

Notably, for a fixed value of //w, increasing the bath memory
(i.e., decreasing k) decreases the spin-squeezing parameter, as
shown in Figs. 4(b)—4(e) where the complementary role of the
magnetic field in determining spin squeezing is also evident.
Increasing i/ makes it possible to obtain squeezing in nar-
rower regions of parameters around the critical points along
the V/h axis, but in wider regions along the kx /w (“memory”)
axis. This shows that memory effects can protect the quantum
fluctuations necessary for spin squeezing.

Remarkably, although spin squeezing is, when present,
roughly more pronounced around the critical points, the pres-
ence of spin squeezing is not inherently tied to the phase
transitions; it may or may not accompany them depending
on the system parameters. This indicates that spin squeezing
is not a defining characteristic of any specific phase. Within
phase (II), we also observe that nearly every point in the
parameter space can exhibit spin squeezing [see Figs. 4(a)
and 4(c)]. The only exception is the plane defined by points
equidistant from both critical points, corresponding to V =
g2y /4. As discussed in Sec. I, at this special value of V, the
steady state becomes U (1) symmetric in the thermodynamic
limit, resulting in a steady state that must be diagonal in
the S, basis and, consequently, incapable of supporting spin
squeezing.

This behavior highlights the observable consequences of
the U (1) symmetry that emerges in the thermodynamic limit
for V = qoy /4. In fact, the spin-squeezing parameter hits a
local maximum larger than 1 for V = ¢,y /4, as shown in
Fig. 5(a). In Fig. 5(b), we compare finite-size results and the
exact results in the thermodynamic limit. As expected, finite-
size curves mainly deviate from the analytical predictions in
the thermodynamic limit around the critical points.

2. First-order dissipative phase transition and spin squeezing

After having analyzed the behavior of the spin-squeezing
parameter across the three different phases separated by
second-order DPTs, a natural question arises: how does the
spin-squeezing parameter behave when phases (I) and (III)
are connected discontinuously in the thermodynamic limit?
To address this, we set y = 5h/q,, which ensures that phases

() and (IIT) are connected by a first-order DPT (see Fig. 1),
and we study the spin-squeezing parameter as a function of
V/h,k/w, and h/w.

In Fig. 6(a), we delineate the parameter regions where
spin squeezing is observed. In particular, as in the case of
second-order DPTs (Fig. 4), spin squeezing occurs when the
bath has sufficient memory, quantified by a sufficiently small
k /w ratio. However, we observe that the first-order DPT is
generally associated with a less significant spin squeezing.
The spin-squeezing regions fragment into three distinct do-
mains, which give rise to different kinds of behavior.

For weak magnetic fields, spin squeezing occurs both be-
fore and after the critical point, provided that x /@ remains
small. In this regime, the spin-squeezing parameter evolves
continuously with the control parameter V/h, reaching a
maximum at the critical point, as shown in Fig. 6(b) for
h/w = 0.25. In contrast, in the strong magnetic-field regime,

ST N=1 ~N=8
- N=12-N=16

V=36 ~N=40

! 1 |
-2.5 0.0 2.5

V/h

FIG. 5. Spin squeezing and finite-size effects. (a) Exact spin-
squeezing parameter £2 in the thermodynamic limit (gray curves) as
a function of V/h and k /w for y = h/(2¢g,) and h = w/2. The blue
part of the curves corresponds to the squeezed region (where £2 < 1).
The two brown dashed lines indicate the two critical points. When
Kk /w decreases, a squeezing region appears within the three phases,
which shows that continuous phase transitions can occur with or
without spin squeezing. (b) For k /w = 1.0 [gray plane in panel (a)],
comparison of the exact result in the thermodynamic limit with the
finite-size results for different values of N (see legend) with kp,x = 8.
The squeezing parameter is maximum for V/h = (V, 4 V;)/2h, indi-
cated by the thin gray dashed line.
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FIG. 6. Spin squeezing across first-order DPT. (a) Exact spin-
squeezing parameter £2 in the thermodynamic limit as a function
of V/h, h/w, and «/w for y = 5h/q,, highlighting the squeezed
regions (i.e., regions where £2 < 1). (b) Squeezing parameter as a
function of V/h and «/w for h/w = 1/4, showing that it can vary
either continuously or discontinuously with the control parameter
V/h. The blue region indicates values where £2 < 1. (c) Same as
panel (b) for h/w = 5/2. The red plane [line for panel (a) to ensure
clarity] is the critical plane separating phase (I) from phase (III).

spin squeezing is restricted to a narrow region preceding the
critical point (again for a sufficiently small region «/w),
while the state immediately beyond the critical point is never
squeezed. This results in a discontinuity of the squeezing
parameter at the critical point, as illustrated in Fig. 6(c).

In summary, the first-order DPT may occur with or with-
out spin squeezing, and the critical point can manifest itself
either as a maximum or as a point of discontinuity for the
spin-squeezing parameter, underscoring the complex interplay
between criticality and quantum correlations in the non-
Markovian regime.

V. PROPOSED EXPERIMENTAL IMPLEMENTATION

Let us finally discuss a possible experimental implemen-
tation of our LMG model in the framework of cavity QED,
following Refs. [38,40,73] (compare also Ref. [34]). We con-
sider N atoms with a ground-state manifold of two states
[0g), |1,) at energies wp ¢ = 0, w , and an excited-state mani-
fold of two states |0,), |1.) at energies wp,, w1, (A =1 for
simplicity). As sketched in Fig. 7, the transitions between
these manifolds are driven off-resonantly by eight lasers of
Rabi frequencies Q2 and driving frequencies !, (€ = 1,2,
Jj»J ' =0,1) and they couple off-resonantly to four cavity

10,) I1,)

FIG. 7. Experimental proposal. Proposed level scheme, together
with driving fields at frequencies a)‘f/., (dotted and dashed lines) and
cavity modes a;, b, (solid lines), where j, j/=0,1, £ =1, 2. For
ease of visualization, only one ¢ is shown. Notations are explained in
the main text.

modes aj, ay, by, by. The polarizations of the driving fields
and of the modes are chosen such that a, (by), with £ =1, 2,
couples only to the |jg) <> | j.) transitions [only to the |j,) <
(1 — j).) transitions] and Qﬁ y only to the transitions where
the index changes by j/ — j from ground state to excited state.
The coupling strengths of the atoms and the cavity modes
ag, by are g‘; 7 for the cavity-mediated transition | j,) <> |J.).
Note that, in fact, only one of the modes a;, b, with its
corresponding driving fields (27,, Q3,), (%, ©27,) is needed
to prepare our model.

We assume that the frequencies fulfill the following reso-
nance conditions (compare Fig. 7):

~ mt ~ 0
Wa, X W)+ W1 N 0y — Dl g, (552)
~ mt ~ L
Wy, X Wy + 01, N Wy — 01, (55b)
and consequently also
¢ I ¢ [P
Wy — Wi X 201, Woy — W) ~ 201 g, (55¢)

while other combinations of frequencies are assumed to be
off-resonant, i.e., their absolute difference (such as |wf, —
wq,|) is sufficiently large and much larger than the absolute
difference of the resonant frequencies (such as |w,, — a)fo —

a)l,gl)-
We first transform into the interaction picture with

N
Hoy = Z |:a),1,g 1), {Lgl; + Z a)(l)j lej); (ejli:|

i=1 Jj=0.1

+ > wk'k, (56)
i

where @; and ], are frequencies close to (or identical

: N PN
to) wy and w, ;. In particular, we define w,, = wj; — @] 4

), = wjy — @), and we demand that wf, — wj, = wjy —
o, = 200 - Assuming that the frequency differences A; =
wj e — a)(l)j (j =0,1) are much larger than any other fre-
quency scale characterizing the system, i.e., |A;] > |wg —
ol lrg — @ . 1851, 12] 1, we can adiabatically eliminate
the excited-state manifold [40,73], yielding (after omis-
sion of global energy shifts) the effective ground-state
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Hamiltonian
Hefr = oS,
Ak .
+ SikTk — 2878 ka——(Xk+X1kT)],
k;} [ k k Mz «/N k k
b1.by
(57)
with collective operators
S. = Z(u 0g); (Ogl,). (58a)
N
Sy = |1, (0], S_=S. (58b)

i=1

with X; = oS+ + BS— (k = ay, az, by, by, dimensionless
parameters o, Bi) and with parameters’

1 [T O
wo =a)1,g—a)’1'g— Z Z Z A'/ - ;]
e=1,2 | j=0,1 ! 0
R (593)
Ay Ay
8k = (o — wp) — N§;, (59b)

2 2 2 2
855 l(|gz11| + |g€0| )3 (SZC _ (’ge]0| + |861’ >’
2 Al AO t A() A]

(59¢)
)‘azaai — (Qfo)*ggo )‘azﬂfl( — (le)*glil (59d)
VN 200 VN 20,
)‘hzahz _ (Qfl)*gf)l )“beﬂhz — (ng)*g€0 (59)

VN 2A T UN 27

Note that the coupling strengths are given as g’ = goc;
with Clebsch-Gordan coefficients cpo = c1.1, co,1 = ¢1,0 [74],
such that §; = 0if Ag = A;.

We now proceed by assuming the cavity modes to be
damped, i.e., the full dynamics is given by

prn = —i[Hem, prnl + Y e kprank’ — k'K, prn}),

k=ay a3,
by.by

(60)

where the dynamics of the modes labeled by ¢ =1 is
assumed to define the fastest timescale of the system, i.e.,
(82 +K )1/2 (82 +K )1/2 > wo, Ak, 8ays Oby s Kays Kby WE
can then adlabatlcally ellmlnate also the modes a;, b [75]

3Note that these parameters differ slightly from those presented
in Ref. [40], since there was a sign error in that publication and
the authors of Ref. [40] omitted a contribution to w, that we are
including.

and obtain

p=—ilH.pl+ ) wkpk' — {K'k, p})

k=ay,by

LYk TS X X — (XX[ o). (6])

2
k= =a, b] + 3
with
H = wS. + Z [(ak 28, SOk"k — —(ka+XTkT)}
k =dy, hz \/_
zos
DD e (5. 4 (62)

k
o N+ k
To obtain Eq. (8), we need to set the parameters such that

(I) Ap = Aj and hence §, = 0;

(2) 84, > Kq,, 85, > ki, such that the effective dissipa-
tion terms for a; and b, can be neglected;

(3) oy = Boy= gy = Bay= ap,= B, = 5, U, = —Pp, =

> such that X; = S, fork = a1, ay, b, and X;,, =3S);
ay 2 &
(4) - 641 K2 +82 = )\'bl K} :651 =V.

The remaining parameters of Eq. (8) are then h = wy,

(yk/2) = —Ap, w = 8, k = k. (k = ay or k = by), where
one of the two modes a,, b, can be removed from the dynam-
ics by setting the corresponding Rabi frequencies to zero.

VI. CONCLUSION AND OUTLOOK

This work demonstrates that non-Markovianity can play a
decisive role in the physics of dissipative phase transitions.
By considering a non-Markovian extension of the maximally
anisotropic Lipkin-Meshkov-Glick model with a transverse
magnetic field, we have revealed the existence of a tricritical
point that remains hidden in a purely Markovian or closed
description of the degrees of freedom of the spin. This finding
underscores the rich interplay between quantum criticality and
non-Markovianity, pointing to new directions for exploring
dissipative phase transitions beyond the Markovian regime
[22,23].

We have used the concept of directional spontaneous
symmetry breaking (DSSB), which sheds light on multicrit-
ical phase diagrams, regardless of whether the dissipation
is Markovian or non-Markovian. In particular, DSSB allows
us to predict the number of phases that can be expected. In
general, we believe that DSSB provides a theoretical frame-
work that deepens our understanding of complex behavior in
multicritical phase diagrams. An interesting future research
direction would be to investigate the existence and properties
of directional symmetry breaking of strong symmetries [76]
and its implications on strong-to-weak symmetry breaking
[77,78].

In particular, we have shown that signatures of DSSB can
be seen in our model from the emergence of steady-state
spin squeezing along orthogonal directions. Elaborating on
spin squeezing, we have then shown that non-Markovian
dissipation can generate and enhance squeezing, thereby
demonstrating that environments with memory can be seen
as an active resource in tailoring quantum correlations and
entanglement in driven-dissipative systems.
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Finally, we have described a cavity-QED-based scheme to
realize the non-Markovian LMG model (8) in the laboratory.
By driving off-resonantly two ground-state and two excited-
state levels of an ensemble of atoms with suitably chosen laser
frequencies and coupling them off-resonantly to four cavity
modes, one can adiabatically eliminate both the excited states
and the faster cavity modes, leaving an effective Hamiltonian
and dissipator that reproduce our LMG model. This setup
should be within reach of current cavity-QED technology,
offering a practical route for experimentally probing quantum
phase transitions in driven-dissipative spin systems.
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APPENDIX: EXACT COMPUTATION OF THE SQUEEZING
PARAMETER IN THE THERMODYNAMIC LIMIT

In this Appendix, we show how to find exactly the spin-
squeezing parameter (50) in each phase in the thermodynamic
limit. Before employing the third quantization to diagonalize
the Liouvillian in the thermodynamic limit, we derive the
effective Hamiltonian and jump operator in each phase, using
a standard procedure in closed systems [68—70] that has been
extended to open systems [40,71,72]. In phase (II), we already
know the form of the effective Liouvillian in the thermody-
namic limit [see Eq. (54)].

1. Effective Hamiltonian in phase (I1I)

In the thermodynamlc limit N — 400, phase (III) is
such that (a) /v/N = (S,) /N = 0, while (S.) /N # 0 and two
branches emerge for ( ,) /N. The general idea is to choose one
of the two branches and to rotate the spin operators around
the x axis such that the z axis is aligned with the mean spin
direction. Therefore, we define implicitly S = (S, S, 5.)”
through

S, 10 0\ (5
Sy1=10 cos® sin6 ||S |, (A1)
S, 0 —sinfd cosf)\§

Z

with cosd =m = h/V and sinf = (1 — m?)'/2, such that
(S.) = —1. Next, we apply the HP transform to the

transformed spin operators, i.e.,

[ bb 5
§, = V/Nb' - «/_1——b

- N

S, =b'b— o (A2)
Writing thg Hamiltonian (9) as a function of the rotated
operators S; (i =x,y,z), and expanding the square root
1 —b'h/N)/2 =1+ O(1/N) gives the effective Hamilto-
nian

HIY = wa’a+ opb™b + G (b + b')a + a¥)
+ Verr (b + %), (A3)

where the bosonic modes’ frequencies, their effective cou-
pling and the squeezing strength of the mode b are respec-
tively given by

W, = ,

1 K \%
Ger = 5,/%, Vi = (1 +m). (Ad)

To obtain the Hamiltonian (A3), we discarded all constant
terms. Note that it does not contain terms proportional to
VN(b+ b"), which is expected as we precisely did a rotation
of the spin operators to align the mean-field magnetization
with the z axis. Note also that when we do not apply any
rotation (60 = 0 or m = 1), we recover the Hamiltonian HI({I;) s
as expected.

wp = %V(l —m?) + hm,

2. Effective Hamiltonian and jump operator in phase (I)

As for phase (III), we define new rotated spin operators S;
(i = x,y, z) through

R

Sy cos 6 0 sind x
S, | = 0 1 0 S, |, (AS5)
S, —sinf 0 cosf/\§,

with cos@ = m = —h/(V — ¢y /2) and sin6 = (1 — m?)"/2.
As the pseudomode a becomes macroscopically populated,
we also define @ via

a=a+ vNa, (A6)
with

1
- L LT v i, (AT)

Now, we write the Liouvillian £y, [given by Eq. (10)] as a
function of the rotated spin operators (AS) and the shifted
pseudomode a. We obtain the effective Liouvillian L(I)
given by

Liplel = —i[Hip, o] +k(2aea’ —{a'a, ),  (A8)

up to O(N ~1/2y corrections. The effective Hamiltonian in
phase (I) reads

HY = w,a'a + wpb'b + Ge(b + b )@ + d")
+ Ve (0" + b), (A9)
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with

W = W,

3
wp = E(m2 — 1DV +hm+ /%\/1 —m?(a + o),

m |yk |4
Getr = 7V 2 Verr = Z(l + m?).

Again, note that there is no term proportional to /N (a + a')
nog \/]V(b + 5" aﬁd setting m = 1 gives a(m = 1) =0 and
H)m=1)=H{.

(A10)

3. Applying the third quantization to compute
squeezing parameters

The third quantization method [66] (here applied to bosons
[67]) is a powerful method, akin to a Bogoliubov transforma-
tion but in the space of superoperators, allowing an efficient
diagonalization of quadratic Liouvillians. Below, we explain
how it can be applied in our case to the computation of the
squeezing parameter.

In terms of the rotated operators S, the spin-squeezing
parameter reads [37,65]

£ = sz[@% +8) = 12 - 8P + (S 502 (AL

with S given by Eq. (A5) [Eq. (A1)] in phase (I) [(II)] and
S = S in phase (IT). Here, we want to evaluate this expression
exactly in the thermodynamic limit.

The effective Hamiltonian and jump operators evaluated in
each phase leads to a quadratic Liouvillian whose Hamilto-

nian and jump operator adopt the form
H=c"-Hc+c-Kc+c' -K*c,

where we switched to standard notations in third quantization,
i.e., matrices are denoted by bold symbols, ¢ = (b, ay, c-

d = c1d; + c»d, defines a dot product between ¢ = (cy, )T
and d = (d;, d,)” and K* is the conjugate matrix of K. Note
that H is Hermitian while K is symmetric.

In this context, the steady state is Gaussian and is fully
characterized by its second-order moments

Zij=Til: did; : ps), d=(c,ch), (A13)

where : d;d; : denotes normal ordering such that, e.g., (bz) =
Z1; and (b'b) = Z3,. The correlation matrix Z is the 4 x 4
matrix solution of the Lyapunov equation

X'z2+2x =V, (Al14)
where
¥ — 1(iH* +M —2iK
~ 9\ 2iK* —iH +M*)°
_1 —2iK* 02><2
Y=§(%ﬂ 2K )’ (ALS)
and
_r (00
M_LL_<0 - (A16)

Evaluating the squeezing parameter (Al1) is now a straight-
forward procedure. In each phase, we identify the matrices H,
K, and K*. Then we obtain the correlation matrix Z by solving
the matrix equation (A14). Finally, we plug the fluctuations of
the Holstein-Primakoff boson in Eq. (A11).

To be abundantly explicit, we close this section by giving
the matrices H and K in phase (II). They read

H— h %«/)/K/Z
- \3Vrk/2 w ’
iJWﬁ)

K= v/2 (A17)
- \3Vre2 0
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