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Abstract—Foundation models have triggered a paradigm shift
in computer vision and are increasingly being adopted in remote
sensing, particularly for multispectral imagery. Yet, their potential
in hyperspectral imaging (HSI) remains untapped due to the ab-
sence of comprehensive and globally representative hyperspectral
datasets. To close this gap, we introduce SpectralEarth, a large-scale
multitemporal dataset designed to pretrain hyperspectral foun-
dation models leveraging data from the environmental mapping
and analysis program (EnMAP). SpectralEarth comprises 538 974
image patches covering 415 153 unique locations from 11 636
globally distributed EnMAP scenes spanning two years of archive.
In addition, 17.5% of these locations include multiple timestamps,
enabling multitemporal HSI analysis. Utilizing state-of-the-art self-
supervised learning algorithms, we pretrain a series of founda-
tion models on SpectralEarth, integrating a spectral adapter into
classical vision backbones to accommodate the unique character-
istics of HSI. In tandem, we construct nine downstream datasets
for land-cover, crop-type mapping, and tree-species classification,
providing benchmarks for model evaluation. Experimental results
support the versatility of our models and their generalizability
across different tasks and sensors. We also highlight computational
efficiency during model fine-tuning.

Index Terms—Hyperspectral imaging, Self-supervised learning,
Foundation models.

I. INTRODUCTION

HYPERSPECTRAL imaging (HSI) from space provides
valuable information about the material composition of
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the Earth’s surface and atmosphere. With hundreds of narrow
bands, each a few nanometers in width, hyperspectral images
record detailed electromagnetic information across a wide range
of wavelengths, from long-wave ultraviolet to short-wave in-
frared [1]. This rich spectral information provides opportunities
for numerous environmental applications such as soil and min-
eral mapping, pollution tracking, agricultural assessment, and
forest monitoring [2], [3], [4], [5], [6].

In recent years, the availability of hyperspectral data has been
significantly expanded by the launch of new satellite missions.
Notable examples include Germany’s Environmental Mapping
and Analysis Program (EnMAP) [7] with precursor DLR Earth
Sensing Imaging Spectrometer mission (DESIS) [8] mounted
to the International Space Station (ISS), Italy’s Hyperspectral
Precursor and Application Mission (PRISMA) [9], and the
European Space Agency’s upcoming Copernicus Hyperspectral
Imaging Mission for the Environment (CHIME) [10]. These
developments open new avenues to employ deep learning and
self-supervised learning (SSL) for large-scale HSI analysis.

Foundation models pretrained with SSL demonstrated re-
markable generalization capabilities with minimal fine-tuning
in computer vision [11]. Subsequently, there has been a surge
in developing geospatial foundation models, particularly for
multispectral and high-resolution RGB imagery [12]. This line
of research benefits from the abundance of publicly available
satellite data from missions like Copernicus Sentinel-2, which
provides petabytes of archive data for model training. In contrast,
progress in foundation models for the hyperspectral domain
has been hindered by the lack of large-scale HSI datasets for
pretraining. Historically, access to hyperspectral imagery has
been costly, with most benchmarks restricted to small-scale
aerial imagery datasets [13]. Although recent efforts [14], [15],
[16] have begun to address this limitation, they still fall short
in terms of data volume and geographic diversity to effectively
pretrain general-purpose hyperspectral models.

To bridge this gap, we introduce SpectralEarth, a large-scale
dataset derived from the EnMAP satellite mission, featuring
over 538 974 hyperspectral image patches from 415 153 unique
locations with global spatial distribution and cloud coverage
below 10%. SpectralEarth, as illustrated in Fig. 1, represents an
important leap in scale, being significantly larger than existing
HSI datasets, and spans a wide variety of landscapes to reflect
the full diversity of spectral signatures. Compiled from 11 636
EnMAP scenes, the dataset volume exceeds 3 TB in hyperspec-
tral images. Notably, about 17.5% of its geospatial locations
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Fig. 1. Visualization of scale for various hyperspectral datasets published
within the past three decades illustrating the volume of the SpectralEarth dataset
(area of circles).

include time series data to enable multitemporal HSI analysis.
To harness the rich information in hyperspectral data, we modify
conventional vision backbones such as ResNet [17] and ViT [18]
with a spectral adapter module. This enables such backbones to
capture the unique spectral characteristics of HSI. Using three
popular SSL algorithms, MoCo-V2 [19], [20], DINO [21], and
masked autoencoder (MAE) [22], we train these backbones
on SpectralEarth, to provide a plurality of pretrained models
for hyperspectral image analysis. To benchmark the efficacy of
our models, we introduce nine downstream datasets constructed
by pairing EnMAP, DESIS, and Hyperion EO-1 imagery with
land cover, crop type, and tree species labels. Our experiments
demonstrate the potential of large-scale pretraining to efficiently
generalize across various hyperspectral imaging contexts, in-
cluding adapting to data from alternative sensors with different
spectral characteristics. Our contributions are summarized as
follows:

1) Assembly of SpectralEarth, a large-scale dataset compris-
ing around 3.3 TB of nearly cloud-free EnMAP hyper-
spectral images. SpectralEarth features a global geospatial
distribution encompassing over 538 974 image patches
from 415 153 unique geo-locations, 73 307 including
multiple timestamps.

2) Construction of nine downstream datasets designed to
benchmark classification and semantic segmentation tasks
for HSI.

3) An empirical evaluation of SSL in hyperspectral imaging,
by pretraining various models on SpectralEarth and eval-
uating their generalizability across downstream tasks and
sensors. In addition, we demonstrate the models’ compu-
tational benefit through faster convergence in fine-tuning.

II. RELATED WORK

A. Hyperspectral Datasets

Traditionally, hyperspectral benchmark datasets have been
limited in geographical coverage, often confined to a single or a

limited number of scenes [13], [29], [32], [33]. This limitation
is primarily rooted in the expenses associated with airborne hy-
perspectral sensor surveys on the one hand and the collection of
ground truth annotations and in situ measurements on the other
hand. While collecting quality labels remains a challenge today,
the increased accessibility to more cost-effective sensors and
the launch of hyperspectral satellite missions enabled coverage
of larger regions with HSI. Developments in SSL and foun-
dation models have also driven interest in creating large-scale
unlabeled HSI datasets. For instance, the HySpecNet-11k [14]
collected about 11 500 unlabeled hyperspectral patches from
the EnMAP satellite. HySpecNet-11 k is designed to bench-
mark (unsupervised) image compression techniques. Similarly,
MSST [15] compiled a dataset of 19 792 EnMAP patches
for SSL pretraining. While HySpecNet-11 k and MSST have
contributed to increasing the scale of existing HSI datasets, they
remain limited in size to train foundation models. The recently
introduced HyperGlobal-450 K dataset [16] encompasses more
than 450 000 HSI patches derived from 486 Hyperion EO-1
and 215 Gaofen-5B scenes. While this dataset significantly
increases the scale of publicly available HSI data, it presents
certain limitations. First, its geographical distribution is less
diverse, with a substantial part of the data concentrated in a
few provinces of China. Moreover, it relies on imagery from
the decommissioned EO-1 satellite. In contrast, SpectralEarth
offers more extensive global coverage using data from the
currently operational EnMAP satellite, which is continuously
collecting data. In addition, SpectralEarth is approximately five
times larger in pixel count and includes a temporal dimension,
increasing its value for pretraining of hyperspectral foundation
models. A comparison of existing labeled and unlabeled HSI
datasets is provided in Table I.

B. SSL for Remote Sensing

SSL emerged as a powerful paradigm for learning repre-
sentations from unlabeled data [34]. Early SSL methods were
based on engineered pretext tasks to encourage the model to
learn distinct features by solving auxiliary problems, such as
image colorization [35], jigsaw puzzles [36], and rotation angle
prediction [37]. Recently, progress in SSL has been primarily
focused on two families of methods.

1) Joint-embedding architectures: These methods train mod-
els to generate consistent representations for augmented
views of the same input, enforcing invariance to these aug-
mentations. To avoid convergence to trivial solutions, i.e.,
model collapse to a constant representation, several strate-
gies have been developed: Contrastive approaches like
MoCo [19] and SimCLR [38] use negative pairs to encour-
age learning discriminative representations. Clustering-
based methods, such as SwAV [39], enforce balanced
cluster assignment. Distillation-based frameworks like
BYOL [40] and DINO [21] use an asymmetric teacher–
student architecture. Methods like Barlow-Twins [41] and
VICReg [42] explicitly use a loss regularization term to
control the variance and feature correlation in the embed-
ding space.
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TABLE I
SUMMARY OF HYPERSPECTRAL REMOTE SENSING DATASETS: SPECTRALEARTH CONTAINS NEARLY NINE GIGAPIXELS OF 202 ENMAP BANDS EACH AT 30 M

SPATIAL RESOLUTION

2) Masked image modeling (MIM): Inspired by masked lan-
guage modeling, MIM methods predict missing parts of
an image from a masked input. Existing methods differ
in their reconstruction targets, loss functions, or network
architectures. For example, MAE [22] and SimMIM [43]
reconstruct raw pixels, BEiT [44] predicts discrete visual
tokens, while Data2Vec [45] and MSN [46] employ a
teacher–student architecture to regress targets generated
from the teacher branch.

In remote sensing, SSL techniques have been applied and
adapted to multispectral and high-resolution RGB imagery.
SeCo [47] compiled a 200K-location dataset comprising Sen-
tinel 2 images with multiple temporal views (one per season)
and introduced seasonal contrast augmentation. The results
supported the benefit of incorporating seasonal invariance in
the training objective of contrastive methods. Building on this
approach, SSL4EO-S12 [48] provided colocated Sentinel 2
and Sentinel 1 images and pretrained models for both sensors.
Subsequently, SSL4EO-L [49] extended this approach to Land-
sat imagery, further expanding the available pretraining data,
downstream datasets, and pretrained models. Several studies
have adapted MAE for remote sensing imagery. SatMAE [50]
tokenized inputs across spectral and temporal dimensions, while
Scale-MAE [51] introduced ground-sampled distance positional
encoding for multiscale imagery. GFM [52] assembled GeoPile,
a pretraining dataset comprising high-resolution RGB images,
by merging various existing datasets. GeoPile was used to train
an MAE model with an additional distillation loss guided by
an ImageNet-22 K pretrained teacher. SpectralGPT [53] and
S2MAE [54] proposed a hierarchical MAE pretraining approach
based on a spatial–spectral vision transformer for Sentinel 2
imagery. Prithvi [55] and Prithvi-EO-2.0 [56] built large-scale
pretraining datasets from Harmonized Landsat-Sentinel-2 time-
series and spatial/spectral/temporal ViT backbones using MAE.
OmniSat [57] proposed a multisensor framework that com-
bines masked autoencoding with contrastive learning, using

high-resolution aerial imagery and multimodal time series from
Sentinel-1 and Sentinel-2. CROMA [58] combined contrastive
learning and MIM for SAR-Optical SSL. msGFM [59] proposed
a multisensor MAE model with a cross-sensor reconstruction
loss for paired images on RGB, Sentinel 1, Sentinel 2, and
DSM data. SenPa-MAE [60] introduced a sensor-aware MAE
pretraining strategy by incorporating metadata such as ground
sampling distance and spectral response functions to allow
sensor generalization. The model was trained with MAE on
Sentinel-2, Planet-SuperDove, and Landsat-8/9. AnySat [61]
leveraged I-JEPA [62] to learn joint representations across sev-
eral sensors. The model was trained on a combination of multiple
datasets, including high-resolution imagery, Sentinel 1 and 2,
MODIS, Landsat-6/7/8, and ALOS-2 time series.

In the hyperspectral domain, most SSL works focus on pixel-
level classification (with or without spatial context) where the
pretraining scene is the same as the test image [63], [64],
[65], [66], [67], [68], [69]. While this approach is effective
for classical HSI datasets, the learned representations cannot
generalize across scenes. To address this issue, HSIMAE [31]
proposed HSIHybrid, a compilation of existing HSI datasets,
and pretrained an MAE-like model. This approach effectively
increases data diversity but poses challenges when combining
sensors with different characteristics, requiring preprocessing
steps such as PCA to unify the number of spectral bands. In
addition, the scale of HSIHybrid remains limited when training
HSI foundation models. Recent studies have explored collecting
unlabeled HSI data for pretraining. For example, MSST [15]
used MAE on EnMAP imagery, introducing decoupled spectral
and spatial attention blocks to reduce the computational cost
associated with spatial–spectral tokenization. DOFA [70] pro-
posed a general-purpose architecture that dynamically generates
patch embedding weights from sensor wavelength metadata. The
model was trained using MAE combined with a distillation loss
on RGB, multispectral, SAR, and EnMAP hyperspectral im-
agery. HyperSIGMA [16] proposed an MAE-inspired approach
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with independent spectral and spatial transformers and evaluated
their model on several hyperspectral downstream tasks. How-
ever, the data used for pretraining these models is less diverse
than SpectralEarth. In addition, these studies focus exclusively
on ViTs and MAE, excluding ConvNets and other pretraining
methodologies. In contrast, our work explores a more diverse set
of architectures and pretraining strategies and provides a library
of pretrained models for HSI applications.

III. SPECTRALEARTH AND BENCHMARKS

This section introduces the SpectralEarth dataset and related
downstream datasets for benchmarking.

A. SpectralEarth

1) Data Acquisition: The EnMAP data were sourced from
the DLR GeoPortal. A total of 11 636 tiles were retrieved via
the portal’s graphical interface through a significant manual
effort. All tiles were carefully selected based on human visual
inspection. Cloud coverage was kept below∼10%. The selection
process encompassed the entire EnMAP archive from 27 April
2022 to 24 April 2024. All acquired tiles underwent radiometric,
geometric, and atmospheric corrections using the L2A processor
from the EnMAP mission [71].

2) Data Preprocessing: The EnMAP tiles have been split
into geospatial patches—each of size 128 × 128 pixels where
an individual pixel includes 224 bands. Bands dominated by
water absorption, specifically [127–141] and [161–167], were
excluded due to the frequent presence of missing values (no-
data). Removing those bands is a common practice in hyper-
spectral dataset creation [14], [32]. As a result, the total number
of bands per image was reduced to 202.

3) Temporal Views Extraction: To exploit all available tiles,
we utilized overlaps between EnMAP data acquisitions to gen-
erate time-series of EnMAP patches.1 At the same time, Spec-
tralEarth patches for fixed geo-locations never overlap. This pro-
cess required (a) the identification of tiles that overlap spatially
and (b) extracting patches from the intersection of those tiles.
Time series include valuable information on landscape evolution
and provide characteristic signals for seasonal variation—an
asset for contrastive learning [47], [48]. Algorithm 1 outlines
the steps taken to generate temporal positives by high-level
pseudocode. An overlap graph is first constructed to identify
spatial intersections between tiles. For each tile, the algorithm
forms candidate subsets of overlapping tiles, computes their
joint intersection, and extracts patches of fixed size from these
regions. We use an R-tree to efficiently track and store patch
locations and avoid overlaps.

As a result of Algorithm 1, we identified a few long time
series in the EnMAP archive. For those involving more than
25 intersecting tiles, calculating intersections of all subsets was
computationally intractable due to combinatorial explosion. To
address this, we implemented several heuristics to optimize the
computation.

1EnMAP records hyperspectral imagery based on a schedule generated from
user requests [7], i.e., the identification of spatially aligned patches for multiple
timestamps is a valuable asset our data curation provides.

Algorithm 1: Temporal Views Extraction.
1: procedure Main Procedure
2: tiles← EnMAPData
3: overlap_graph← GETOVERLAPS(tiles)
4: R_tree←K0 � empty tree, for SpectralEarth

patches
5: for tile in tiles do
6: combs← BUILDCOMBINATIONS(tile,

overlap_graph)
7: for tile_subset in combs do
8: intersection← INTERSECTION(tile_subset)
9: patches← PATCHIFY(intersection)

10: INSERT(R_tree, patches)
11: end for
12: end for
13: end procedure

14: function BuildCombinations(tile, overlap_graph)
15: combinations← GETEDGES(tile, overlap_graph)2

16: for subset size n in [3, 4, . . . ] do
17: get n-tuples from (n-1)-tuples in combinations
18: compute intersections of all n-tuples
19: keep largest n-tuples by area
20: if no valid n-tuple found then
21: break
22: end if
23: add n-tuples to combinations
24: end for
25: return combinations
26: end Function

1) Consider only a subset of possible intersections using a
breadth-first search approach.

2) Avoid redundant computations across tiles.
3) Parallelization of the code across all connected compo-

nents of the overlap graph.
Following this approach, we extracted 73 307 nonoverlapping

locations with multiple timestamps. For areas with a single
timestamp, we patchified avoiding any spatial overlap. Corre-
spondingly, in SpectralEarth, we extracted 415 153 locations
with a spatial extent of 128 × 128 pixels, totaling 538 974
patches. The spatial coverage of SpectralEarth showcases the
dataset’s global diversity, in land-cover types Fig. 2 and geo-
graphical distribution Fig. 3. Notably, the data distribution varies
across geo-locations, reflecting the flight request-based archive
composition of EnMAP.

We analyze the temporal coverage of our dataset in Fig. 5.
Fig. 5(a) illustrates the distribution of timestamp counts in Spec-
tralEarth. Over the two-year period, 17.5% of locations were
covered by more than one timestamp in the EnMAP archive—
with the majority having only two timestamps. This highlights
the challenge of collecting extensive hyperspectral time series
data with broad geographical coverage today. Missions such
as ESA’s CHIME satellite constellation [10] will eventually
resolve the issue. Fig. 5(b) shows the histogram of time gaps

DLR ignorespaces GeoPortal
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Fig. 2. Mosaic of pseudo-RGB representatives from the SpectralEarth dataset to showcase various landscapes, including urban areas, agricultural land, deserts,
forests, and water bodies. Each image is presented with a false-color composite using the first three principal components.

Fig. 3. Geographical distribution of SpectralEarth. The map depicts the global
coverage of hyperspectral images within our dataset, demonstrating its extensive
geographical scope.

between consecutive acquisitions, restricted to samples with at
least two timestamps. We observe that the distribution is skewed
toward smaller values. Notably, the highest peak is 4 days,
matching EnMAP’s revisit period. The median gap between two
consecutive acquisitions across all samples is 27 days.

We also analyze the seasonal distribution of EnMAP acquisi-
tions, as shown in Fig. 5(c). SpectralEarth includes data from all
months, with a relatively balanced distribution. However, certain
disparities can be observed, e.g., January is underrepresented
while July, August, and March are over represented. This can be
attributed to several factors, as follows:

1) Increased cloud cover during winter months, which inher-
ently limits the availability of clear imagery.

2) A satellite outage in December-January 2023 and
December-January 2024, which resulted in a temporary
interruption of data acquisition.

3) The task scheduling nature of the EnMAP mission. As
EnMAP is operationally tasked based on specific use
cases, the data distribution inherently reflects real-world
demands of satellite imagery, leading to a natural variation
in seasonal coverage.

B. Downstream Tasks

To evaluate the models pretrained on SpectralEarth, we as-
sembled nine downstream datasets for benchmarking. Each

benchmark involves a subset of EnMAP/DESIS/EO-1 images
aligned with specific geospatial products focusing on different
aspects of land cover, agricultural, and forest analysis. While
the labels in these datasets carry some inherent uncertainty, they
are sufficiently accurate for model evaluation. Similar strategies
have previously been employed to create remote sensing datasets
and geospatial foundation model benchmarking [72], [72], [73].
An overview of the SpectralEarth downstream tasks is illustrated
in Fig. 4

1) EnMAP-CORINE—Land Cover Classification: This
dataset pairs EnMAP imagery with the CORINE land cover
database for Europe. The CORINE land cover map has a 100 m
spatial resolution, which is coarse-grained relative to EnMAP’s
30 m resolution. The CORINE product reports an overall
thematic accuracy exceeding 85%. Our SpectralEarth image
patches correspond to approximately 38 × 38 CORINE land
cover pixels. Consequently, we create a multilabel classification
benchmark where each SpectralEarth patch is annotated with
the set of CORINE classes covered. The resulting subset,
called EnMAP-CORINE, includes 11 000 patches, each multi-
labeled with 19 distinct classes. These classes have been
aggregated from the 44 categories defined in CORINE
following the taxonomy proposed by BigEarthNet-MM [74].
The EnMAP-CORINE dataset exhibits a diverse range of land
cover types. As Fig. 6(a) demonstrates, some classes such as
“Arable Land” and “Complex cultivation patterns” are more
frequent, while others like “Coastal/Inland wetlands” and
“Beaches, dunes, sand” are comparatively rare. This class
imbalance reflects the distribution of natural land cover in
Europe.

2) EnMAP-CDL—Crop Type Segmentation: This dataset
aligns EnMAP images with the cropland data layer (CDL) [75]
product for the United States. The CDL map is published
annually by the USDA’s National Agricultural Statistics Ser-
vice since 2008. It targets agricultural crop classification. In
addition to cultivated crops such as Corn and Soybeans, CDL
encompasses noncultivated areas like Grassland and Shrubland.
According to the USDA metadata, classification accuracy is
generally between 85% and 95% for major crop-specific classes.

December-January ignorespaces 2023
December-January ignorespaces 2024
CORINE
USDA's
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Fig. 4. Sample pseudo-RGB images from the proposed EnMAP benchmarks. (a) CORINE. (b) CDL. (c) NLCD. (d) TreeMap. (e) BD-Foret. (f) EuroCrops. (g)
BNETD.

Fig. 5. Temporal distribution of SpectralEarth. (a) Number of timestamps per location. (b) Time gaps between acquisitions. (c) Monthly acquisition frequency.
(a) Number of timestamps per geo-location (log scale). (b) Gap between consecutive timestamps. (c) Monthly distribution aggregated over 2 years.

To minimize the impact of seasonal variations on crop classifica-
tion, the dataset utilizes SpectralEarth patches from the summers
of 2022 and 2023. We mask out all nonagricultural classes, as
well as winter crops (e.g., winter wheat), and crops that are
likely to be harvested before the end of summer (e.g., Oats).
Given the strong imbalance among CDL classes, we resampled
the class distribution for a more balanced representation. The
resulting dataset comprises 1600 patches with a total of 14
classes. The class distribution of the EnMAP-CDL dataset is
shown in Fig. 6(d). Overall, the dataset exhibits a reasonable
level of class balance among the different crop types, albeit some
over represented classes such as Corn.

3) EnMAP-NLCD—Land Cover Segmentation: This down-
stream dataset leverages the National Land Cover Database
(NLCD) [76] from the U.S. Geological Survey (USGS) to
provide pixel-level land cover annotations. The NLCD map, a
comprehensive land cover product, has been published every
2–3 years since 2001, with data available back to 2019. The
NLCD 2019 product reports an overall accuracy of approxi-
mately 91%. We pair EnMAP patches over the US to the NLCD
map, and manually filter out cloudy and snowy images. The
resulting dataset contains 13 500 patches, each annotated with
pixel-wise land cover class labels from one out of the 15 land

cover classes. As depicted in Fig. 6(b), the class distribution is
well-balanced.

4) EnMAP-TreeMap—Tree Species Segmentation: The
EnMAP-TreeMap dataset maps EnMAP imagery from 2022
and 2023 to TreeMap [77] product, a 30 m resolution map of
forest attributes across the continental United States. We use the
forest-type layer, which encodes the dominant species group
based on live tree stocking. To mitigate the temporal mismatch
between TreeMap (2016) and EnMAP acquisitions, we mask
regions affected by deforestation using the Hansen Global
Forest Change dataset [78]. The resulting dataset includes
10 000 patches covering 24 tree species, enabling fine-grained
classification of forest types. The class distribution is depicted
in Fig. 6(c).

5) EnMAP-BDForet—Tree Species Segmentation: The
EnMAP-BDForet dataset combines EnMAP hyperspectral
imagery acquired between 2022 and 2024 with the BDForet V2
dataset from the Institut Géographique National (IGN) France.2

We project the dominant tree species attribute onto the EnMAP
grid to generate the labels. To mitigate land cover changes, we
filter out areas affected by deforestation using the latest IGN

2[Online]. Available: https://inventaire-forestier.ign.fr/spip.php?article646

https://inventaire-forestier.ign.fr/spip.php{?}article646
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Fig. 6. Class distributions for the downstream datasets introduced in SpectralEarth. (a) EnMAP-CORINE. (b) EnMAP-NLCD. (c) EnMAP-Treemap. (d)
EnMAP-CDL. (e) EnMAP-EuroCrops. (f) EnMAP-BDForet. (g) EnMAP-BNETD. (h) DESIS-CDL. (i) EO1-CDL.

forest mask from 2023. The resulting dataset comprises 2550
patches with 12 tree species. The class distribution is shown in
Fig. 6(f).

6) EnMAP-EuroCrops—Crop Type Segmentation: The
EnMAP-EuroCrops dataset aligns EnMAP imagery with crop
type labels derived from the EuroCrops dataset [79], which is
sourced from national agricultural inventories across European
countries. This dataset focuses on crop-type classification for
four countries—France, Germany (Brandenburg), Czechia, and
Spain—for the year 2023, with additional coverage for France

in 2022. Similar to CDL, we exclude crops which are likely
to be harvested before our EnMAP acquisition. The resulting
dataset consists of 1800 patches with 15 crop-type classes.
Approximately 68% of the patches are located in France, 27%
in Spain, and the remaining 5% in Germany and Czechia. The
class distribution is illustrated in Fig. 6(e).

7) EnMAP-BNETD—Land Cover Segmentation: To explore
the geographical generalizability of our models beyond pre-
training regions, we introduce the EnMAP-BNETD dataset,
covering land cover classification in Ivory Coast. This dataset
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uses the BNETD 2020 Land Cover Map,3 produced by the
BNETD-CIGN with support from the European Union, and val-
idated through extensive field campaigns in 2022 and 2023. The
reported overall accuracy is 91%. We pair EnMAP hyperspectral
imagery with land cover labels from this product, resulting in a
dataset of 2100 patches with 10 classes. The class distribution
is shown in Fig. 6(g).

8) DESIS-CDL—Crop Type Segmentation: The DESIS-
CDL dataset contains images captured for the summers of
2018–2023 from the DLR Earth Sensing Imaging Spectrometer
Mission (DESIS) instrument, matched with the corresponding
CDL mask for crop segmentation. DESIS images are generated
at 30 m spatial resolution with 235 bands covering wavelengths
from 400 nanometers through a micron. The resulting dataset
comprises 1000 images with 14 classes. Due to the limited
availability of DESIS tiles, it was not possible to pair this
dataset with EnMAP-CDL. Therefore, the class distribution [see
Fig. 6(h)] and geographical coverage differ.

9) EO1-CDL—Crop Type Segmentation: The EO1-CDL
dataset includes EO-1 Hyperion hyperspectral data paired with
crop-type labels from the CDL. EO-1 Hyperion provides 220
spectral bands covering 0.357 to 2.576 µm, out of which we use
198. The dataset includes Hyperion scenes from 2002 to 2016,
focusing on agricultural regions over the U.S. Due to the limited
availability of Hyperion imagery in Google Earth Engine, the
dataset consists of 550 patches distributed across 14 crop classes.

IV. MODELS

This section presents the design choices behind our models,
including the choice of SSL algorithms and network architec-
ture.

A. Pretraining Algorithms

Hyperspectral data has very different characteristics com-
pared to natural images. Therefore, traditional SSL leaderboards
in computer vision may not directly translate to the hyper-
spectral domain. Therefore, we explore a broad range of SSL
methods to establish a set of baseline pretrained models for
hyperspectral imagery. We use MoCo-V2 [19] and DINO [21]
for their effectiveness in frozen encoder performance [11] and
their compatibility with both CNNs and ViTs. Furthermore,
we include MAE [22] for its strong performance in fine-tuning
scenarios. Together, these methods form a representative set of
algorithms to investigate SSL in the hyperspectral domain.

B. Network Architectures

Since we aim for large-scale coverage and pretraining with
spaceborne imagery, our models must operate on large patches
instead of pixels or small patches, as traditionally done in the hy-
perspectral literature. Most models developed at the pixel level in
the HSI literature do not scale well with large patches [80], [81],
[82]. On the other hand, models like ResNet [17] and ViT [18]
are designed to handle larger spatial contexts. Therefore, we

3[Online]. Available: https://africageoportal.maps.arcgis.com/apps/
webappviewer/index.html?id=88c2493e722546c09c2a0a8b394c4454

Fig. 7. Schematic representation of the proposed backbones tailored for HSI.
We augment classical ResNet and ViT with a spectral adapter to process spectral
information effectively.

seek to adapt these architectures for hyperspectral imaging. A
key challenge is that classical ResNet and ViTs treat spectral
bands independently, failing to capture the correlations between
adjacent bands and the overall characteristics of the spectrum.
Our models should address the following requirements for hy-
perspectral imaging.

1) Spectral feature extraction: We aim to extract features
from both the spatial and the spectral domain.

2) Adaptability to diverse sensors: The architecture should
accommodate variability in the number of spectral bands.
This property is important when transferring pretrained
models to different sensors.

3) Preserving fine-grained details: Natural images often deal
with large objects compared to medium-resolution remote
sensing data. Therefore, the spatial downscaling in classi-
cal vision models can lead to a significant loss of details.
Our architecture needs to preserve this fine-grained infor-
mation.

4) Computational efficiency: 3-D convolution or spectral–
spatial tokenization becomes computationally expensive
for large patches, with many spectral bands, and deep
architectures. In particular, self-attention scales quadrati-
cally with the number of tokens [83], and 3-D convolutions
scale linearly with the number of spectral bands [84].
We, therefore, seek lightweight adaptation of classical
architectures with minimal overhead.

To meet these requirements, we follow a pragmatic approach
and implement a simple modular design, integrating 1-D convo-
lutional layers as a spectral adapter at the onset of the standard
vision backbones, as depicted in Fig. 7. These layers perform
convolutions across the spectral dimension, generating feature
maps for the core backbone. The spectral adapter consists of
three (1-D Conv + BN + ReLu) layers. The kernel sizes for the
1-D convolutions are 7, 7, and 5, with strides of 5, 5, and 3,
respectively. The resulting feature maps have 128 channels. To
accommodate different sensors and feed the input into standard
2-D backbones, we use a global pooling layer to aggregate
the remaining spectral dimensions (if any). Specifically, the
modifications are as follows:

1) Spectral ResNet: We replace the stem layers with the
spectral adapter. By removing the original stem layers

https://africageoportal.maps.arcgis.com/apps/webappviewer/index.html{?}id$=$88c2493e722546c09c2a0a8b394c4454
https://africageoportal.maps.arcgis.com/apps/webappviewer/index.html{?}id$=$88c2493e722546c09c2a0a8b394c4454
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Fig. 8. Schematic overview of the pretraining/fine-tuning pipeline. An encoder
is pretrained on SpectralEarth, and adapted to the several downstream tasks with
task-specific heads.

in the ResNet architecture, we avoid the 4×downscaling
factor of the image to better capture fine-grained details.
In addition, the first bottleneck block is adjusted to take an
input feature map of 128 channels instead of the ResNet’s
64-channel input at this stage.

2) Spectral ViT: The spectral adapter is placed before the
patch embedding layer, ensuring the transformer receives
fixed-size spectral features as input. We use 4×4 patches
instead of the typical 16×16 patches, which helps maintain
fine spatial details and better preserves spectral infor-
mation at the patch projection layer. Like the spectral
ResNet model, we set the number of input channels in
the projection layer to 128.

Although these simplifications may not capture all spectral
and spatial interactions as explicitly as 3-D convolutions or
spectral–spatial tokenization, they offer a practical tradeoff that
scales better to large datasets and diverse sensors. Similar de-
signs have been used effectively in HSI classification tasks [13],
[85]. Our approach adapts this idea to large-scale SSL, provid-
ing a simple scalable solution for hyperspectral representation
learning across sensors.

V. EXPERIMENTAL SETUP

This section introduces the details of pretraining and evalua-
tion protocols. A schematic overview of the pipeline is provided
in Fig. 8.

A. Self-Supervised Pretraining

We pretrain a spectral ResNet-50 (Spec. RN50) and a spectral
ViT-S (Spec. ViT-S) with MoCo-V2, DINO, and MAE. For
larger models, Spec. ViT-Base(B)/Large(L)/Huge(H)/Giant(g),
we restrict the experiments to MAE, given the high computa-
tional cost. For ViT-g, we follow the implementation from [11].
We use the augmentations from SimCLR [38] without color-
jittering and gray-scale for DINO and MoCo-V2 to avoid distort-
ing spectral information. When available, we use the temporal
views as positive pairs for MoCo-V2 and DINO. For MAE,
we mask 90% of the tokens. We pretrain over 100 epochs for
MoCo-V2 and DINO, and 200 epochs for MAE with a batch

size of 256 images. We use a StepLR scheduler for MoCo-V2
and CosineAnnealingLR for DINO and MAE.

B. Downstream Tasks

1) Multilabel Classification: We append a linear layer to the
pretrained encoders and train the models with binary cross-
entropy loss for 100 epochs with a batch size of 128. AdamW
optimizer was employed with a cosine annealing scheduler. Data
augmentation included random resized crop, horizontal, and
vertical flipping.

2) Semantic Segmentation: We use a lightweight trans-
fer protocol for the segmentation tasks, following previous
works [19], [40]. The pretrained encoders are converted into
segmentation models as follows.

1) ResNet: We remove all strides from convolutions, replace
them with atrous convolutions, and append two final con-
volutional layers.

2) ViT: We reshape the tokens from the last layer and add two
additional convolutional layers with upscaling to recover
the full spatial resolution.

We train for 100 epochs with a cross-entropy loss. AdamW
optimizer was used with a batch size of 64 for EnMAP-
NLCD/TreeMap and 32 for EnMAP-CDL/BDForet/EuroCrops
and DESIS-CDL. Data augmentation included random resized
crop, horizontal, and vertical flipping.

3) Parameter Regression—Hyperview: We use the dataset
from the hyperview challenge [29] to evaluate cross-sensor
transferability. Hyperview is a soil parameter estimation dataset
comprising 1732 hyperspectral patches for training and 1154 for
testing, each with 150 spectral bands. Each patch is annotated
with four soil parameters, including potassium (K), phospho-
rus pentoxide (P2O5), magnesium (Mg), and acidity pH . We
resized all images in the Hyperview dataset to 128× 128pix-
els. For this downstream task, we append two fully connected
layers to the backbones. The models are optimized based on
the normalized MSE criterion defined in Section V-D with the
AdamW optimizer for 400 epochs and a batch size of 32. As for
the other tasks, we used random resized crop, horizontal, and
vertical flipping during training.

4) Pixel-Wise Regression—HyBiomass: We evaluate our
models on the above ground forest biomass dataset Hy-
Biomass [86], which is a pixel regression task. The dataset
consists of more than 34 000 patches distributed globally over
forest areas. The above-ground biomass estimates are derived
from the Global Ecosystem Dynamics Investigation lidar mis-
sion. We set the batch size to 128 and use the AdamW optimizer
for 50 epochs. We use the same data augmentations as for the
segmentation downstream tasks.

C. Evaluation Protocols

We consider multiple evaluation protocols with various levels
of fine-tuning of the pretrained models.

1) Frozen Encoder: Evaluates the quality of learned repre-
sentations without fine-tuning the backbone. It is the most
common evaluation protocol in the SSL literature [11],
[87].
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2) Fine-tuning: Fine-tuning of all model parameters on
downstream datasets to evaluate the transferability of the
pretrained weights.

3) Fine-tuning Adapter: While frozen encoder evaluation is a
common measure of the quality of learned representations,
it does not yield optimal results. In remote sensing, it is
often beneficial to adapt the model to the specific distribu-
tion of the downstream dataset, which can be influenced
by several factors: geo-location, atmospheric conditions,
seasonal changes, etc. In addition, the relevance of individ-
ual spectral bands may vary depending on the downstream
task. Therefore, we consider an intermediate setting where
only the initial spectral adapter block is fine-tuned.

D. Evaluation Metrics

Depending on the nature of the downstream task, we report
the following metrics.

1) Classification: The multilabel F1-score is reported for the
EnMAP-CORINE dataset.

2) Semantic segmentation: The mean intersection over union
(mIoU) is reported for all semantic segmentation datasets.

3) Regression: For the Hyperview dataset, we follow the
metric defined in the challenge [29]: let MSEi, i ∈ [1, 4] be
the mean squared error of the predictor for soil parameter i.
Let MSEbase

i be the corresponding MSE of a base predictor
returning the mean value of the soil parameter, calculated
over the training set. The reported normalized MSE is
defined as: MSEnorm =

∑4
i=1 MSEi/MSEbase

i .
4) Pixel-wise Regression: we report the R2 value for the

HyBiomass dataset.

E. Comparison Methods

We compare our pretrained models against several baselines
and recent foundation models for hyperspectral imagery.

1) Random Frozen Encoder: We use this baseline as a sanity
check to assess whether the learned representations pro-
vide useful features for downstream tasks.

2) Training from Scratch: A strong baseline that has shown
competitive performance when trained with sufficient data
and epochs [88].

3) DOFA-(B/L) [70]: A foundation model capable of adapt-
ing to various sensors given the input wavelengths. The
model includes EnMAP data in its pretraining corpus. We
evaluate both the base (DOFA-B) and large (DOFA-L)
variants.

4) SpatSigma-(B/L) [16]: HyperSigma is a recent foundation
model for hyperspectral imagery pretrained on Gaofen
and Hyperion EO-1 data. We use only the spatial encoder
for simplicity, as this article reports limited benefits when
combining the spatial and spectral branches. We report
results for the base and large variants and refer to them as
SpatSigma-B and SpatSigma-L respectively. To mitigate
the mismatch in the number of spectral bands, we resample
the patch embedding layers with linear interpolation for
our experiments.

VI. BENCHMARK RESULTS

Our main results are summarized in Tables II and III. We
include random initialization baselines for each downstream
task, along with our pretrained models. Due to hundreds of
spectral channels of the SpectralEarth patches, a comparison
with RGB-ImageNet weights or multispectral pretrained models
is of little use.

A. Comparing SSL Algorithms

Table II summarizes our results for three SSL algorithms with
the Spec. RN50 and Spec. ViT-S backbones.

1) Multilabel Classification: Pretrained models outperform
random weights in linear evaluation for MoCo-V2 and DINO
on EnMAP-CORINE, with DINO yielding the best results,
demonstrating the ability of joint-embedding methods to learn
robust representations, even in the absence of fine-tuning.

In addition, we observe that MAE underperforms in linear
probing, which is consistent with the existing literature [89].
This can be attributed to the reconstruction pretraining objective,
which focuses on low-level features, whereas joint-embedding
methods learn more global and semantic representations. For
full fine-tuning, CNN pretrained models with MoCo and DINO
are on par with/slightly worse than training from scratch. In
contrast, the Spec. ViT-S model benefits from pretraining in all
settings compared to random initialization, with MAE yielding
the best results.

Fine-tuning the spectral adapter yields a notable performance
boost compared to linear evaluation. This observation aligns
with reports in the literature [90]: fine-tuning early network
layers is an efficient compromise between frozen weights versus
complete fine-tuning. In terms of F1 score, only fine-tuning the
adapter (0.3% of network parameters) is, in most settings, less
than one point below training from scratch, highlighting the
efficient adaptability of our pretrained models.

2) Semantic Segmentation: Pretrained models with a frozen
encoder consistently outperform random weights across all seg-
mentation tasks. This shows that, without any fine-tuning, the
models have learned useful features for segmentation. MoCo-V2
and DINO pretrained models yield comparable results for both
the CNN and the ViT backbones. However, MAE, as a feature
extractor, consistently outperforms MoCo-V2 and DINO for
Spec. ViT-S. This can be attributed to the pixel-level pretraining
objective, which is more suitable for segmentation tasks (as
opposed to image-level problems).

For complete fine-tuning, MoCo-V2 pretrained CNNs con-
sistently outperform training from scratch on all segmentation
tasks, while DINO is on par with the random initialization
baseline. Notably, the gaps are more pronounced for BDForet
and EuroCrops, where MoCo-V2 yields an improvement of 3
and 2 points of mIoU, respectively. For the ViT model, MAE
+ fine-tuning performs best in all settings, yielding consistent
improvements of 2 to 3 points of mIoU. Depending on the
dataset, the second-best models are either MoCo-V2 or DINO,
with smaller improvements compared to training from scratch.
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TABLE II
BENCHMARK RESULTS OF THE SPECTRALEARTH DOWNSTREAM TASKS FOR SPEC

TABLE III
BENCHMARK RESULTS FOR LARGE VISION TRANSFORMERS PRETRAINED ON SPECTRALEARTH WITH MAE



BRAHAM et al.: SPECTRALEARTH: TRAINING HYPERSPECTRAL FOUNDATION MODELS AT SCALE 16791

Fine-tuning the spectral adapter significantly outperforms
frozen encoder performance in all settings, showing the impor-
tance of tailoring the spectral feature extraction to the character-
istics of the downstream task. Notably, fine-tuning the spectral
adapter outperforms training from scratch on CDL, EuroCrops,
and BD-Foret.

Compared to CNNs, ViTs perform slightly worse on segmen-
tation problems. This can be attributed to multiple factors.

1) Training ViTs from scratch results in substantially lower
performance than CNNs due to the lack of strong inductive
biases. While pretraining significantly mitigates this gap,
CNNs still retain a slight edge after fine-tuning.

2) The spatial patterns of the masks, which present high-
frequency features partly due to label noise, are harder to
learn with a ViT due to the fixed patch size compared to
CNNs, which can preserve full-resolution feature maps.
This effect can be better observed in the patch size exper-
iment (see Fig. 13).

3) Pixel-Wise Regression: The results on HyBiomass are in
line with the segmentation downstream tasks. Our pretrained
frozen encoders significantly outperform the random encoder
baseline for all SSL methods and backbones. Fine-tuning the
spectral adapter yields a significant performance boost com-
pared to the frozen encoder setting, and full fine-tuning works
best. MoCo and DINO provide consistent improvements with
fine-tuning over training from scratch for both the CNN and
ViT backbones. The largest gain from pretraining is observed
for Spec. ViT-S with MAE, which achieves an R2 improvement
of 0.11 compared to training from scratch. This configuration
also yields the overall best result. Moreover, both the frozen
encoder and the adapter-only fine-tuning outperform training
from scratch for Spec. ViT-S with MAE. This is consistent with
our segmentation results: without pretrained weights, CNNs
significantly outperform ViTs, which can be attributed to the
lack of strong inductive biases in ViTs, requiring larger datasets
to perform well.

B. Scaling-Up Pretrained Models

Recent studies have shown significant performance gains
through model scaling in SSL [11], [22]. Consequently, recent
geospatial foundation models are exploring ViT architectures
with hundreds of millions of parameters [16], [53], [73]. We
investigated model scaling on SpectralEarth by pretraining Spec.
ViT architectures of varying sizes: Base (B), Large (L), Huge
(H), and Giant (g). Our findings are presented in Table III.

We observe that MAE consistently outperforms training from
scratch across all model sizes and datasets. Notably, scaling
from Spec. ViT-B to ViT-L improves frozen encoder perfor-
mance on multiple downstream tasks, including NLCD, Eu-
roCrops, TreeMap, BDForet, and HyBiomass. Fine-tuning the
adapter—only 56 K additional parameters—surpasses training
from scratch on CORINE, CDL, EuroCrops, BDForet, and
HyBiomass. While scaling provides limited performance gains
for some downstream tasks up to Spec. ViT-H, we find that
Spec. ViT-B offers the best tradeoff between performance and
computational cost. Further increases in model size, as seen for

Fig. 9. Comparison of convergence speed for fine-tuning and training from
scratch on EnMAP-CORINE and EnMAP-CDL for a Spec. RN50 backbone.
(a) EnMAP-CORINE. (b) EnMAP-CDL.

Spec. ViT-g, degrades performance, possibly due to the size
of the pretraining dataset. Although SpectralEarth is signifi-
cantly larger than previous HSI datasets, it remains smaller than
the datasets typically used to train billion-parameter models
in computer vision [11]. This trend can also be observed for
models such as DOFA and HyperSigma, where the large variants
provide limited benefits over the base backbones. Our models
outperform both DOFA and HyperSigma across all tasks and
protocols, which we attribute to the architectural design of our
backbones that better preserves fine-grained spatial information
and the large EnMAP corpus in SpectralEarth. In particular,
HyperSigma was trained on Hyperion EO-1 and Gaofen-5B,
making it less competitive in EnMAP downstream tasks.

C. Efficient Fine-Tuning

1) Model Convergence: Using a pretrained model can speed
up convergence during fine-tuning, hence reducing the compu-
tational cost of training deep neural networks. To assess this for
our models, we compare the training efficiency of Spec. RN50
models pretrained with DINO relative to training from scratch on
the CORINE and CDL benchmarks. Fig. 9 displays the evolution
of the validation metrics across training epochs. We observe that
pretrained models converge more rapidly, particularly in the
early stages of training. Notably, fine-tuning matches the 100
epochs performance of training from scratch in∼ 10 epochs for
EnMAP-CORINE and EnMAP-CDL. These results highlight
the computational advantage of using our pretrained models
compared to training from scratch.

2) Parameter-Efficient Fine-Tuning: Foundation models are
typically evaluated in linear probing to assess the quality of the
learnt representations [19]. While a frozen encoder can achieve
competitive performance, fine-tuning often surpasses it—at a
higher computational cost. We experiment with the progressive
unfreezing of network layers as a compromise between both
scenarios. As depicted in Fig. 10, fine-tuning the first two
blocks of a pretrained Spec. RN50 produces results that closely
resemble full fine-tuning. This demonstrates the cost- and energy
efficiency of our pretrained models for downstream tasks.

3) Training With Limited Labels: Pretrained models are very
useful when labeled data is scarce [91]. To assess this, we
evaluate the performance of the Spec. ViT-L model, pretrained
with MAE, on varying subset sizes of EnMAP-CORINE and
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Fig. 10. Impact of incremental parameter unfreezing on EnMAP-CORINE
and EnMAP-CDL with a pretrained Spec. RN50 model. (a) EnMAP-CORINE.
(b) EnMAP-CDL.

Fig. 11. Impact of the size of the downstream dataset evaluated on EnMAP-
CORINE and EnMAP-NLCD for the Spec. ViT-L model. (a) EnMAP-CORINE.
(b) EnMAP-NLCD.

EnMAP-NLCD datasets. The results, reported in Fig. 11,
demonstrate the benefits of pretraining across all data regimes.
In particular, we observe large gaps of 9 points in F1 score for
EnMAP-CORINE, and 5 points in mIoU for EnMAP-NLCD,
when using 5% of the labels compared to training from scratch.
Interestingly, in lower data regime scenarios, fine-tuning the
adapter only suffices to outperform training from scratch. This
demonstrates the generalizability of the features learned from
pretraining.

D. Cross-Sensor Transferability

To evaluate the generalizability of SpectralEarth-pretrained
models across sensors, we assess their performance on three
datasets acquired from sensors not seen during pretraining: EO-1
Hyperion (EO1-CDL), DESIS (DESIS-CDL), and Intuition-1
(Hyperview).4 These datasets present different spectral charac-
teristics from EnMAP.

We evaluate Spec. ViT-B and ViT-L models pretrained with
MAE and compare them against training from scratch, as well
as DOFA and HyperSigma. Our results are summarized in
Table IV.

On the CDL-based tasks (EO-1 and DESIS), our models
consistently outperform both DOFA and HyperSigma across
all protocols. Notably, our frozen encoders outperform Hyper-
Sigma EO-1, despite not being pretrained on EO-1 imagery.

4The data for the hyperview challenge were collected using an airborne sensor
that mimics the spectral characteristics of the Intuition-1 mission.

Fig. 12. Frozen encoder evaluation of Spec. RN50 on EnMAP-CORINE
and EnMAP-CDL tasks with varying pretraining dataset sizes. (a) EnMAP-
CORINE. (b) EnMAP-CDL.

This highlights the transferability of features learned from Spec-
tralEarth. Given the relatively small size of the CDL datasets,
fine-tuning the adapter performs on par with full fine-tuning and
significantly outperforms training from scratch.

On the hyperview dataset, the best performance is obtained
using the frozen Spec. ViT-L encoder. We attribute this to severe
overfitting when fine-tuning due to the limited training data and
the difficulty of the task. This result demonstrates the practicality
of using our pretrained models as frozen feature extractors.

E. Ablation Studies

1) Impact of Temporal Positives: Temporal positives provide
a natural data augmentation for joint-embedding methods and
have demonstrated their benefits for multispectral imagery [47],
[48], [49]. Given that only a subset of SpectralEarth includes
temporal positives, it is unclear whether using temporal pairs
significantly contributes to the overall performance of the pre-
trained models. To analyze their effect, we pretrain a Spec.
RN50 using DINO with and without temporal pairs. Results
in Table V confirm that excluding temporal positives degrades
performance, with the effect most pronounced in frozen encoder
evaluation.

2) How Much Data Are Needed for Pretraining?: To answer
this question, we explore the impact of dataset size by pretraining
a Spec. RN50 with DINO on randomly sampled subsets of
SpectralEarth with sizes 10 K, 25 K, 50 K, 100 K, and 200 K
locations. We conduct frozen-encoder evaluation on EnMAP-
CORINE and EnMAP-CDL. Fig. 12 summarizes our findings.
We observe a consistent improvement in performance metrics as
the scale of the pretraining dataset increases from 10 k samples
to the full size of SpectralEarth. This highlights the importance
of large-scale datasets for hyperspectral SSL—even with small
models such as Spec. RN50.

We also compare SpectralEarth with HySpecNet-11k [14]
using the Spec. ViT-B backbone pretrained with MAE. Ta-
ble VI reports performance under both frozen encoder and full
fine-tuning settings. Pretraining on SpectralEarth consistently
outperforms pretraining on HySpecNet-11 k, with the largest
gains observed in the frozen encoder evaluation. Under complete
fine-tuning, the performance gap narrows, as the downstream
training offset differences in pretraining.



BRAHAM et al.: SPECTRALEARTH: TRAINING HYPERSPECTRAL FOUNDATION MODELS AT SCALE 16793

TABLE IV
CROSS-SENSOR TRANSFERABILITY EXPERIMENTS

TABLE V
IMPACT OF TEMPORAL POSITIVES

TABLE VI
COMPARISON OF SPECTRALEARTH AND HYSPECNET-11 K

3) Importance of the Patch Size: Medium-resolution remote
sensing imagery requires more fine-grained detail preservation
than natural imagery, especially for segmentation tasks. This
aspect is sometimes overlooked in the literature, where vision
transformers with a patch size of 16×16 or 8×8 are commonly
used as backbones to pretrain foundation models to reduce the
computational cost [16], [50], [70], [73]. We argue that a smaller
image size with a smaller patch size can lead better tradeoffs,
particularly for HSI imagery where pixel information is rich
and should not be heavily compressed in the embedding space.
To analyze the impact of the patch size, we pretrained Spec.
ViT-S using MAE with patch sizes of 4×4, 8×8, and 16×16.
Results in Fig. 13 show that smaller patches consistently improve
performance for segmentation tasks. This is further supported
by qualitative results in Fig. 14, where models with smaller

Fig. 13. Impact of the patch size for a pretrained Spec. ViT-S evaluated on
the EnMAP-CDL and EnMAP-NLCD datasets. (a) EnMAP-CDL. (b) EnMAP-
NLCD.

patches produce more refined segmentation maps. These results
are consistent with the performance gap between ViT-based
foundation models and ConvNet baselines observed in previous
studies [92]. In practice, using additional trainable parameters to
extract high-resolution features in combination with a pretrained
ViT can mitigate this issue.

4) Masking Ratio in MAE: Given our small 4×4 patch size
for Spec. ViT models, we expect a higher masking ratio is
needed for MAE compared to the usual 75% used in computer
vision [22]. To confirm this hypothesis, we pretrain Spec. ViT-S
using MAE with different masking ratios, from 75% to 95%.
Given MAE’s poor linear probing results for the classification
task, we focus on the segmentation downstream tasks. Results
in Fig. 15 show that we obtain good representations even with
an aggressive 95% masking, which enables faster pretraining as
fewer tokens need to go through the encoder.

5) Impact of the Spectral Adapter: To assess the impact
of the spectral adapter, we compare the classical ResNet-50
with our modified architecture, Spec. RN50. We adjust the first
convolutional layer of the ResNet-50 model to accommodate
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Fig. 14. Impact of the patch size in the Spec. ViT-S model on EnMAP-NLCD.
From left to right, respectively: RGB visualization of the input image, ground
truth (GT) mask, and predictions with 4×4, 8×8, and 16×16 patch sizes.

Fig. 15. Impact of the masking ratio in MAE evaluated on EnMAP-CDL
and EnMAP-NLCD for the Spec. ViT-S model. (a) EnMAP-CDL. (b) EnMAP-
NLCD.

TABLE VII
IMPACT OF THE SPECTRAL ADAPTER IN THE SPEC

the 202 input bands. Both models are pretrained with MoCo-V2
and evaluated on the EnMAP-CORINE and EnMAP-CDL
datasets. The results are summarized in Table VII. Spec. RN50
consistently outperforms the standard ResNet-50 in both frozen
encoder evaluation and full fine-tuning. This result confirms the
importance of a dedicated spectral feature extractor when deal-
ing with hyperspectral images, particularly for tasks requiring
fine-grained spectral discrimination.

VII. CONCLUSION

In this article, we introduce SpectralEarth, a large-scale
dataset derived from EnMAP imagery as a basis for SSL method-
ologies in the hyperspectral domain. We leveraged SpectralEarth
to pretrain foundation models based on popular SSL algorithms.
Extensive evaluation on several downstream tasks benchmarked

the pretrained models. Our results demonstrate the effectiveness
of models pretrained on SpectralEarth to improve performance
and reduce computational costs for downstream applications.
We believe that the insights derived from this study serve as a
basis for future development in SSL for hyperspectral imagery.

As it stands, we encourage further effort to construct addi-
tional hyperspectral benchmark datasets. Covering tasks such
as unmixing enables a more comprehensive evaluation of hyper-
spectral foundation models. In particular, transferability across
different hyperspectral sensors remains a challenging problem.
Moreover, exploration of a wider range of architectures and SSL
algorithms, beyond the Spectral ResNet-50 and ViT models
employed in this work, may provide a more comprehensive
toolbox for practical deep learning on HSI. Last but not least,
exploration and benchmarking of multisensor SSL methods is
a promising avenue of research toward more general geospatial
foundation models.
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