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 A B S T R A C T

The increasing frequency of climate extremes and natural disasters demands rapid and scalable Earth surface 
scans for effective action. Emerging as a novel remote sensing technique, spaceborne global navigation satellite 
system reflectometry (GNSS-R) plays an increasingly vital role in monitoring Earth’s surface parameters. 
Recent studies leverage the growing volume of GNSS-R measurements with data-driven approaches to enhance 
retrieval products over both ocean and land. Yet, these models are typically trained using supervised 
learning, which requires extensive feature engineering and application-specific annotations. To address these 
limitations, we propose the first GNSS-R self-supervised learning framework as a generalist Earth surface 
monitor (GEM). Our model is pretrained on multimodal observables, i.e., delay-Doppler maps (DDMs) and 
auxiliary parametric data, to learn cross-modal representations from GNSS-R data. To validate the effectiveness 
of the proposed approach, we fine-tune the pretrained model on various downstream retrieval tasks, including 
ocean wind speed retrieval, surface soil moisture estimation, and vegetation water content prediction. The 
results demonstrate that our framework generalizes well across these tasks, providing a versatile solution for 
GNSS-R-based Earth surface monitoring and facilitating further exploration of novel use cases.
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1. Introduction

Tropical cyclones, droughts, and wildfires constitute significant 
threats to society through severe damage to infrastructure, ecosystems, 
and human lives. With the increasing frequency and intensity of these 
extreme weather events, e.g., the devastating Hurricane Helene and 
the January 2025 wildfires in the suburbs of Los Angeles, monitoring 
Earth’s surface parameters is critical for climate resilience (Balsamo 
et al., 2018). As these parameters are direct indicators of environmental 
changes and potential disasters, accurate and timely observations are 
essential to improve early warning systems and support mitigation 
strategies.

Spaceborne global navigation satellite system reflectometry (GNSS-
R) has emerged as a promising remote sensing technique that offers 
new opportunities for Earth surface monitoring. Utilizing surface re-
flected signals of existing navigation satellites as signals-of-opportunity, 
GNSS-R receivers essentially function as L-band passive multi-bistatic 
radars (Pierdicca et al., 2022). One of the most important GNSS-R 
observables is the delay-Doppler map (DDM), a two-dimensional (2D) 
representation of the reflected signal power as a function of propa-
gation delay and Doppler shift. The reflection pattern and intensity 
are dependent on the geophysical properties of the reflecting media, 
which can be extracted by analyzing these reflected signals. Compared 
to other remote sensing methods, GNSS-R provides unprecedented spa-
tiotemporal coverage while being cost-effective, energy-efficient, and 
operable in all weather conditions around the clock (Winkelried et al., 
2023). Consequently, spaceborne GNSS-R constellations are expected to 
provide global coverage and full temporal availability for Earth surface 
monitoring while simultaneously capturing observations along multiple 
tracks across wide areas. Several spaceborne missions, e.g., NASA’s 
Cyclone GNSS (CYGNSS) (Ruf et al., 2017) and ESA’s PRETTY mis-
sion (Dielacher et al., 2022), have demonstrated strong capabilities in 
retrieving surface parameters. The commercial sector has also made 
several investments in this technology, such as the Muon Space con-
stellation (Masters et al., 2023) and the Spire constellation (Jales et al., 
2020) with more than 40 operating satellites. The upcoming ESA’s 
HydroGNSS mission (Unwin et al., 2021) with two satellites is expected 
to further enhance these capabilities.

Owing to the improved capabilities of SmallSats platforms, GNSS-
R constellations are generating growing data volumes on the order of 
millions of measurements per day. There is an emerging trend among 
researchers to utilize data-driven approaches in combination with the 
massive amount of GNSS-R measurements to improve existing products, 
develop novel applications, and achieve enhanced performance (Zhu 
et al., 2017; Yuan et al., 2020). Existing studies can be categorized 
into two main groups: (1) oceanic applications, such as wind speed 
retrieval; and (2) terrestrial applications, including soil moisture esti-
mation and vegetation monitoring. The first group is established on the 
fact that GNSS-R observations are sensitive to surface roughness, which 
is directly influenced by wind-driven waves. Pioneering works use data-
driven methods such as multilayer perceptrons (MLPs) (Liu et al., 2019; 
Asgarimehr et al., 2020; Reynolds et al., 2020; Li et al., 2021), convo-
lutional neural networks (CNNs) (Asgarimehr et al., 2022; Guo et al., 
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2022; Liu et al., 2023; Xiao et al., 2024a), and Transformers (Zhao 
et al., 2023) to retrieve ocean wind speed. The second group is gaining 
increasing attention in the GNSS-R community with a broader range 
of applications, as soil and vegetation states contain key parameters 
for disaster monitoring, such as wildfires and drought events. Since 
soil water content affects the soil’s dielectric constant and, in turn, 
the Fresnel reflection coefficients, GNSS-R observations can be used for 
surface soil moisture estimation (Nguyen et al., 2025). Several studies 
have demonstrated the effectiveness of applying random forests (Jia 
et al., 2020; Lei et al., 2022), MLPs (Eroglu et al., 2019; Senyurek et al., 
2020b), and CNNs (Roberts et al., 2022; Nabi et al., 2023) for improv-
ing retrieval accuracy. Moreover, as GNSS signals traverse vegetation 
layers, their energy is attenuated during transmission to and reflection 
from the ground (Yueh et al., 2022). A few pioneering investigations 
have explored the synergy between abundant GNSS-R measurements 
and deep learning to prove the feasibility of vegetation water content 
(VWC) estimation (Zhao et al., 2024; Chen et al., 2024; Zhang et al., 
2024a). Further, data-driven methods have been utilized for GNSS-R-
based above-ground biomass retrieval (Santi et al., 2020; Chen et al., 
2021; Pilikos et al., 2024), inland water body detection (Kossieris et al., 
2023), and wildfire studies (Santi et al., 2022).

Despite the promising results demonstrated by previous supervised 
learning approaches in GNSS-R applications, these methods rely heavily 
on large quantities of annotated data. This dependency limits model 
scalability to novel applications and receiver configurations, partic-
ularly when labeled data is scarce. Moreover, supervised methods 
often involve task-specific feature engineering and model design, which 
constrain their transferability and extensibility. Recent remote sensing 
studies suggest that these limitations can be addressed by leveraging 
self-supervised learning (Wang et al., 2022; Jakubik et al., 2023; Zhu 
et al., 2024). Compared to supervised learning methods, self-supervised 
learning enables representation learning from abundant unlabeled data 
generated by existing and upcoming GNSS-R constellations. By captur-
ing underlying patterns in GNSS-R observables that are relevant across 
different tasks, this approach reduces the costs of manual annotation 
and computational resources while improving the adaptability and 
generalizability of retrieval models. For instance, masked autoencoder 
(MAE) (He et al., 2022) has become one of the most widely adopted 
frameworks for self-supervised learning and foundation model devel-
opment in remote sensing. It involves masking a portion of the input 
signals and training a network to reconstruct the original data from 
partial observations. This approach not only improves computational 
efficiency but also enhances the model’s ability to learn robust feature 
representations without requiring data annotations. Cong et al. (2022) 
propose an MAE-based self-supervised learning framework to leverage 
temporal or multispectral information in satellite imagery. Experiment 
results yield strong improvements on downstream tasks, such as land 
cover classification and semantic segmentation. Another MAE-based 
framework, termed Scale-MAE, integrates scale information from im-
agery inputs through frequency-aware bandpass filters and achieves 
an average of 4% improvement across eight remote sensing datasets 
compared to competitor methods (Reed et al., 2023). Wang et al. 
(2025) introduce feature-guided MAE by setting up varied reconstruc-
tion targets for multispectral and SAR imagery, demonstrating both the 
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Fig. 1. Comparison of optical satellite imagery (Sentinel-2) and GNSS reflectometry 
satellite (CYGNSS) delay-Doppler maps (DDMs) from the same geolocation. A satellite 
imagery pixel measures surface reflectance for a specific wavelength band, while a 
DDM pixel represents reflected signal power with respect to propagation delay and 
Doppler shift.

effectiveness and scalability of MAE-based self-supervised pretraining. 
In addition, MAE-based frameworks that consider varying input size 
and resolution, sensor parameters, and spatiotemporal features are in-
vestigated by Hong et al. (2024), Prexl and Schmitt (2024), and Zhang 
et al. (2024b), respectively.

A key obstacle to applying pretrained remote sensing models to 
GNSS-R applications is the unique structural difference between GNSS-
R observables and remote sensing imagery. As shown in Fig.  1, a 
multispectral image pixel measures the surface reflectance of a geolo-
cation for a given band of wavelengths emitted by the sun. On the 
contrary, a pixel of the GNSS-R observable (i.e., DDMs) represents 
the reflected GNSS signal’s power as a function of propagation delay 
and Doppler shift. In addition, GNSS-R measurements are typically 
accompanied by metadata related to measurement geometry, instru-
ment calibration, and atmospheric effects, all of which are crucial for 
accurately deriving surface parameters. While recent works such as 
DDM-Former (Zhao et al., 2023) apply Transformer architectures to 
process DDMs, these approaches are limited to single modalities. The 
integration of auxiliary parameters into pretrained models remains an 
emerging field that has yet to be fully explored. To address these gaps, 
we propose a GNSS-R generalist Earth surface monitor (GEM) frame-
work, the first multimodal GNSS-R self-supervised learning scheme for 
representation learning from DDMs and auxiliary parametric data. We 
demonstrate that an asymmetric encoder–decoder architecture with a 
feature fusion module can effectively capture cross-modal representa-
tions in multimodal GNSS-R data. Fine-tuning on various downstream 
tasks validates the effectiveness of our approach and highlights its 
potential for developing a scalable Earth surface monitoring system 
using GNSS-R observations.

The remainder of the paper is organized as follows: Section 2 
describes datasets, quality control, and collocation strategy used in 
this study. Section 3 details the proposed GEM pretraining, including 
components, downstream fine-tuning, and experimental setups. Sec-
tion 4 presents numerical and geographical results, along with training 
efficiency, reconstruction visualizations, and current challenges. Fi-
nally, Section 5 provides the overall summary of this work and future 
perspectives.

2. Materials

2.1. Satellite data

2.1.1. CYGNSS
The CYGNSS is a NASA mission consisting of a constellation of eight 

small satellites that are first dedicated to GNSS-R applications (Ruf 
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et al., 2018). Although the primary focus was on studying air-sea 
interactions across regions between 38◦ 𝑁 and 38◦ S, recent research 
has demonstrated its capabilities for terrestrial applications. With a 
mean and a median revisit time of 7.2 h and 2.8 h, CYGNSS allows 
timely observations over the tropics and subtropics.

Our GEM framework is pretrained on CYGNSS L1 science data 
record version 3.1 (CYGNSS, 2021). We use four types of DDMs that 
include DDM bistatic radar cross section (BRCS), the corresponding 
effective scattering area, analog power, and raw counts. In terms of per-
DDM auxiliary parameters, we specifically select fifteen variables based 
on their theoretical relevance to bistatic radar signal formation and 
empirical contributions validated through explainable AI techniques, 
specifically SHAP (SHapley Additive exPlanations) value analysis (Xiao 
et al., 2024b). SHAP values quantify the impact of each feature on 
model predictions, allowing for the identification of variables with 
consistent influence across diverse training tasks. All selected vari-
ables are divided into five categories: DDMs, map-related features, 
geometry-related parameters, receiver-related variables, and spacecraft 
identifiers. Table  1 lists each variable and describes its physical mean-
ing. For example, we include variables crucial for deriving the total 
power of GNSS signal scattered near the specular direction with a 
coherent reflecting surface (Chew and Small, 2020): 

𝑃𝑟 =
𝑃𝑡𝐺𝑡

4𝜋(𝑅𝑡𝑠 + 𝑅𝑠𝑟)2
𝐺𝑟𝜆2

4𝜋
𝛤surface , (1)

in which 𝑃𝑡𝐺𝑡 is GPS effective isotropic radiated power (EIRP), 𝐺𝑟 is the 
gain of transmitting antenna, 𝜆 is the wavelength of the GPS L1 signal, 
𝛤surface is CYGNSS derived surface reflectivity. 𝑅𝑡𝑠 and 𝑅𝑠𝑟 correspond 
to the distances between the transmitter and the specular point, and 
between the specular point and the receiver, respectively. Additionally, 
CYGNSS spacecraft numbers and GPS pseudorandom noise code are 
included to account for inter-satellite variances and GPS block type 
differences.

To consider seasonal variations while ensuring computational ef-
ficiency, we use four months of CYGNSS measurements with over 
three million samples, specifically from August and October 2019, and 
January and April 2020, for pretraining and downstream fine-tuning. 
To evaluate model performance, we select a test dataset with the same 
temporal distribution as the pretraining stage but without overlap, 
namely August and October 2020, and January and April 2021. For 
ocean wind speed retrieval, ground truth labels are obtained from the 
European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 
reanalysis data (Hersbach et al., 2020), with further details available 
in Asgarimehr et al. (2022).

2.1.2. SMAP
Soil moisture active passive (SMAP) mission aims to measure and 

map Earth’s surface soil moisture with global coverage every 2–3 days. 
In addition, VWC is an essential auxiliary variable from the data 
product. It is calculated with moderate resolution imaging spectro-
radiometer (MODIS)-derived normalized difference vegetation index 
(NDVI) values and stem factors (𝛾𝑠) associated with different land cover 
types (Chan et al., 2013), given by: 

VWC = (1.9134×NDVI2−0.3215×NDVI)+𝛾𝑠×
NDVImax − NDVImin

1 − NDVImin
. (2)

The NDVI derives from the red and near-infrared (NIR) spectral bands 
of the multispectral satellite mission as NDVI = NIR−Red

NIR+Red . For fine-tuning 
the proposed framework for terrestrial applications, we extract the 
ground truth variables, i.e., surface soil moisture and VWC, from SMAP 
enhanced L3 9 km equal-area scalable earth grid (EASE-Grid) version 5 
product (O’Neill et al., 2021). The temporal distribution of pretraining 
and test datasets remains consistent with that of the CYGNSS data. 
For grid cells with multiple measurements due to SMAP ascending 
and descending overpasses, daily averaged values are assigned to the 
corresponding locations.
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Table 1
DDMs and auxiliary parameters selected for model training, grouped by category and described by their 
physical meanings. For detailed definitions and data specifications, refer to the CYGNSS Handbook (Ruf 
et al., 2022).
 Category Variable Description  
 Delay-
Doppler
Maps

raw_counts DDM bin raw counts (uncalibrated power values) 
 brcs Bistatic radar cross-section of the DDM  
 power_analog Analog power corrected for quantization effects  
 eff_scatter DDM bin effective scattering area in m2  
 Map-related ddm_nbrcs Normalized bistatic radar cross-section  
 ddm_snr Signal-to-noise ratio of the DDM  
 

Geometry-related

sp_inc_angle Incidence angle at the specular point  
 sp_theta_body Specular point body frame theta angle  
 tx_pos_(x, y, z) GPS spacecraft position X, Y, Z components  
 tx_to_sp_range Distance from transmitter to specular point  
 rx_to_sp_range Distance from receiver to specular point  
 
Receiver-related

sp_rx_gain Receiver antenna gain in specular direction  
 gps_eirp Effective isotropic radiated power of GPS signal  
 gps_tx_power_db_w Raw GPS transmit power in dBW  
 gps_ant_gain_db_i Gain of GPS antenna toward specular point  
 Spacecraft identifiers prn_code GPS spacecraft pseudorandom code index  
 spacecraft_num CYGNSS spacecraft number  
 

2.2. Quality control

As self-supervised learning frameworks are data-driven, quality con-
trol is essential to minimize the propagation of erroneous signals and 
to ensure that the learned representations reflect geophysical variabil-
ity rather than sensor artifacts or signal contamination. For CYGNSS 
data, observations are first filtered using empirical thresholds. We 
remove samples with an incidence angle larger than 70 degrees, re-
ceive antenna gain in the direction of the specular point and a direct 
signal-to-noise ratio (SNR) that are smaller than 0 dB. As the inci-
dence angle increases, Fresnel reflectivity decreases, especially for land 
surfaces, thereby reducing the SNR and leading to higher retrieval 
uncertainty (Rodriguez-Alvarez et al., 2019). In addition, we discard 
measurements with DDM peak values falling outside a range of de-
lay bins between 5 and 11, as such peaks typically correspond to 
high-altitude specular points where GNSS-R performance is known to 
degrade. Further quality control is applied using L1 product quality 
flags to exclude low-quality data, including ‘‘black-body DDM’’, ‘‘DDM 
in test pattern’’, ‘‘radio frequency interference (RFI) detected’’, ‘‘low 
confidence in GPS EIRP estimation’’, ‘‘S-band transmitter powered up’’, 
and ‘‘incorrect ddmi antenna selection’’. These conditions are known 
to introduce ambiguous signal characteristics and lead to unreliable 
training samples. For SMAP data, we remove samples flagged as ‘‘soil 
moisture retrieval was not successful’’ and ‘‘freeze/thaw state retrieval 
was not successful’’, as these indicate retrieval failures due to RFI, 
anomalous surface conditions, or unfavorable observation geometry 
to ensure high-quality inputs for representation learning (Senyurek 
et al., 2020a). Corroborated by previous studies (Zhao et al., 2023), 
quality control measures improve the reliability of input data for both 
pretraining and fine-tuning. By filtering low-quality or outlier data, we 
reduce noise in a reconstruction loss during pretraining and avoid label 
uncertainty in downstream retrieval tasks.

2.3. Collocation

After data cleaning, we prepare the datasets for pretraining and 
downstream fine-tuning with spatiotemporal alignment. Concretely, for 
each CYGNSS sample, daily averaged SMAP soil moisture and VWC 
values are collocated within a search window of 0.1 degrees in both 
longitude and latitude. This balances spatial proximity with the need 
for a sufficient amount of daily matched samples, given the variations 
in the CYGNSS glistening zone over land and ocean surfaces, where the 
spatial resolution is estimated to range from 3.5 km to 40 km. If multiple 
potential matches exist, the CYGNSS sample is assigned with the nearest 
neighboring SMAP measurement. Finally, we normalize the DDMs and 
4 
auxiliary parameters to have zero mean and unit variance to stabilize 
gradients and facilitate model convergence during both pretraining and 
fine-tuning phases.

3. Methodology

3.1. Overall workflow

Existing GNSS-R deep learning models, e.g., CyGNSSnet (Asgarimehr
et al., 2022) and DDM-Former, are mainly based on supervised learn-
ing with task-specific objectives. These methods require large labeled 
datasets for supervised training or are limited to single-modality inputs. 
In contrast, the proposed GEM framework aims to overcome these 
limitations by employing a self-supervised learning scheme to map mul-
timodal GNSS-R data to a diverse set of Earth surface parameters. By 
leveraging the synergy between advanced representation learning and 
multimodal GNSS-R measurements, we aim to mitigate key bottlenecks, 
such as high annotation cost across various use cases, while enhancing 
existing products and catalyzing the development of further GNSS-R 
applications. Fig.  2 depicts the overall workflow of our approach, which 
consists of two stages: GEM pretraining and GEM fine-tuning.

During the pretraining stage, multimodal GNSS-R observables, i.e.,
DDMs as images and auxiliary data in tabular form, are simultaneously 
processed for representation learning on GNSS-R data. Specifically, four 
types of DDMs and essential auxiliary parameters are masked ran-
domly and embedded through a set of encoders. Given that the feature 
representations of multimodal observables should be complementary 
to each other, the feature fusion module concerns the integration 
of different modalities into a joint feature space. The model is then 
trained to reconstruct the missing components through lightweight de-
coders. This allows the model to develop a meaningful understanding of 
the underlying distribution and correlations between different GNSS-R 
modalities.

During the fine-tuning stage, the pretrained model is fine-tuned on a 
limited amount of labeled GNSS-R data to adapt learned representations 
for various downstream tasks. Inputs and label pairs are carefully 
curated through quality control and collocation to ensure accurate 
and representative correlations between GNSS-R observables and the 
target retrieval parameters. While keeping the pretrained dual-branch 
encoder and feature fusion module frozen, the model’s decoders are 
replaced with different sets of regression heads. At this stage, unmasked 
input DDMs and auxiliary parameters are fed into the model, enabling 
it to effectively map inputs to target parameters by leveraging prior 
knowledge from the learned representations.
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Fig. 2. Schematic view of the proposed GNSS-R generalist Earth surface monitor (GEM) framework. The framework consists of two stages: (1) self-supervised pretraining on 
multimodal GNSS-R data using a dual-branch encoder–decoder and feature fusion module, and (2) fine-tuning for downstream tasks such as ocean wind speed, soil moisture, and 
vegetation parameter retrieval.
Fig. 3. Schematic of the proposed GEM pretraining for multimodal GNSS-R representation learning. Input GNSS-R observables are randomly masked and processed by dual-branch 
modality-specific encoders. The resulting latent representations are adaptively fused and used to reconstruct the masked inputs through lightweight Transformer-based decoders. 
The pretraining loss is computed as a branch-weighted sum of reconstruction errors.
3.2. GEM pretraining

In self-supervised learning for remote sensing, contrastive learning 
is a widely used approach that learns meaningful representations by 
maximizing the similarity between similar samples while pushing apart 
representations of different ones. However, its effectiveness is limited 
for multimodal GNSS-R data due to the highly ill-posed nature of 
GNSS-R measurements over ocean and land, where complex signal scat-
tering and interactions among multiple factors introduce challenges. 
Moreover, contrastive learning methods are highly dependent on aug-
mentations, but applying them to DDMs is challenging since traditional 
transformations do not align with the physical properties of GNSS-R 
signals. To overcome these issues, we propose GEM pretraining, a novel 
architecture for multimodal GNSS-R self-supervised learning that learns 
meaningful representations in a generative manner. Fig.  3 provides a 
schematic of the proposed pretraining process, which will be detailed 
in the following sections.

3.2.1. Patchify and masking
Let 𝑑 and 𝑎 be two archives associated with two different GNSS-

R modalities, namely, DDMs and auxiliary data. Each archive  𝑗 =
{𝐱𝑗𝑖 }

𝑁𝑗
𝑖=1 ∀𝑗 ∈ {𝑑, 𝑎} include 𝑁𝑗 samples, in which 𝒙𝑗𝑖  is the 𝑖th model 

input in the 𝑗th archive, and (𝒙𝑑𝑖 ,𝒙𝑎𝑖 ) is the 𝑖th input pair that includes 
multimodal data from the same specular point. Given an input DDM 
𝒙𝑑 ∈ R𝐻×𝑊 ×𝐶 , where 𝐻 , 𝑊 , and 𝐶 represent height, width, and 
number of DDM types, respectively, we reshape and partition it into 
non-overlapping 3D tensor patches along delay and Doppler dimen-
sions. Auxiliary data vector 𝒙𝑎 ∈ R𝐴 with 𝐴 as the count of auxiliary 
parameters is transformed to a diagonal matrix and aligned with the 
5 
input DDMs to maintain balanced weights between two branches. Next, 
a fraction of patches are removed from both modalities by a random 
masking operation, e.g., for 𝒙𝑑vis and 𝒙𝑑mask: 

[𝒙𝑑vis,𝒙
𝑑
mask] = M⊙ 𝒙𝑑 , (3)

in which M ∈ {0, 1}
𝐻
𝑝 ×𝑊

𝑝 ×𝐶 with 𝑝 as patch size is a set of indices 
denoting the masked patches. Given an unlabeled pretraining set  =
{

(𝒙𝑑𝑖 ,𝒙
𝑎
𝑖 )
}𝑁
𝑖=1, which include 𝑁 input pairs, only the visible patches from 

both modalities are sent into the encoders for further processing.

3.2.2. Dual-branch encoder
In order to derive representative features from both modalities that 

contain complex correlations, representations from masked DDMs 𝒙𝑑vis
and auxiliary data 𝒙𝑎vis are processed by modality-specific encoders 
𝑬𝑑 (⋅) and 𝑬𝑎(⋅). The produced latent representations are given by: 
𝒛𝑑𝑖 = 𝑬𝑑 (𝒙𝑑vis) , 𝒛𝑎𝑖 = 𝑬𝑎(𝒙𝑎vis) . (4)

Following the setup of MAE, for 𝒙𝑗𝑖 , the encoders embed only on the 
unmasked patches with positional embeddings, then processed via 𝐿
layers of Transformer blocks. Given the relatively small size of DDMs 
(17 × 11 pixels) compared to natural images, we use 𝐿 = 4 Transformer 
encoder layers. Each layer has a hidden embedding dimension of 
128, with 4 attention heads and a feed-forward expansion ratio of 2
(i.e., intermediate feed-forward layers have a hidden size of 256). Layer 
normalization is applied before each multi-head self-attention and MLP 
sub-block. Since the encoders process only unmasked input patches, 
this enables training with large batch sizes and leads to faster con-
vergence across multimodal GNSS-R inputs. These configurations allow 
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for effective modality-specific feature extraction while maintaining a 
balance between model complexity and training efficiency.

3.2.3. DA-fuse module
Our DA-Fuse module is designed to integrate multimodal latent 

representations from DDMs and auxiliary data through an adaptive 
weighted fusion mechanism. Instead of using fixed weights or sim-
ple concatenation, it learns to assign modality-specific importance to 
each branch based on its latent representations. The assumption is to 
enhance cross-modal interactions by ensuring that features from one 
modality complement those from the other while preserving modality-
specific characteristics. Given the encoded latent representations from 
both modalities, 𝒛𝑑𝑖  and 𝒛𝑎𝑖 , these are first concatenated and passed 
through a dense layer with sigmoid activation to generate a gating 
vector 𝐠 ∈ [0, 1]: 
𝐠 = 𝜎

(

𝐖[𝒛𝑑𝑖 ; 𝒛
𝑎
𝑖 ] + 𝐛

)

, (5)

where 𝜎(⋅) is the element-wise sigmoid function, and 𝐖, 𝐛 are learnable 
parameters. The fused representation 𝒇 𝑖 is computed as a convex 
combination of the two latent representations: 

𝒇 𝑖 = 𝐠⊙ 𝒛𝑑𝑖 + (1 − 𝐠)⊙ 𝒛𝑎𝑖 . (6)

This adaptive weighting allows the model to dynamically adjust the 
contribution of each modality, allowing their features to interact while 
keeping the dimensionality unchanged for decoders. As a result, the 
model can learn to prioritize modality-specific information and enhance 
cross-modal representation learning.

3.2.4. Multimodal decoders
The multimodal decoders are lightweight Transformer-based mod-

ules that operate only during the pretraining stage to reconstruct the 
masked patches. Each module consists of 2 Transformer decoder layers 
with 64 embedding dimension and 4 attention heads. These decoders 
process a complete set of patches that includes the fused latent rep-
resentations and mask patches from each branch. Input DDMs and 
auxiliary data are reconstructed separately, given by: 
�̂�𝑑𝑖 = 𝑫𝑑 (𝒇 𝑖) , �̂�𝑎𝑖 = 𝑫𝑎(𝒇 𝑖) ,

̂ =
{

(�̂�𝑑𝑖 , �̂�
𝑎
𝑖 )
}𝑁
𝑖=1 .

(7)

where �̂�𝑑𝑖  and �̂�𝑎𝑖  are reconstructions of both modality, and ̂  represents 
the reconstructed pretraining set.

3.2.5. Network learning
The pretraining stage aims to learn the representation of 𝑥𝑗𝑖  by re-

constructing its masked patches by minimizing the objective loss. Given 
the pretraining set   and its reconstruction ̂ , the loss function of GEM 
pretraining is calculated with a branch-weighted sum of reconstruction 
errors, given by: 

pretraining =
1
𝑁

𝑁
∑

𝑖=1

[

𝜆(𝒙𝑑𝑖 , �̂�
𝑑
𝑖 ) + (1 − 𝜆)(𝒙𝑎𝑖 , �̂�

𝑎
𝑖 )
]

, (8)

where  is the branch-wise mean squared error (MSE), computed only 
over masked regions. Furthermore, 𝜆 ∈ [0, 1] regulates the significance 
of weights attributed to two branches, balancing the reconstruction 
contributions from the DDMs and auxiliary data. This learning strat-
egy allows modality-specific processing while enabling interactions 
between modalities at the representation level. In addition, performing 
reconstructions only on masked patches forces the model to infer miss-
ing signals from the entire DDMs, in contrast to theoretical approaches 
that typically focus on peak values within the ‘‘3 × 5’’ grid set around 
the specular point DDM bin. Consequently, the model is capable of 
learning task-agnostic latent features that support flexible adaptation 
to downstream tasks without overfitting to a specific retrieval target.
6 
3.3. Downstream fine-tuning

During fine-tuning on downstream tasks, the pretrained encoders 
and DA-Fuse module are frozen to preserve the learned cross-modal 
representations. For initial evaluation, we replace the decoders with 
a single fully connected layer and perform linear probing (LP) on 
different tasks. In addition, we employ partial fine-tuning (FT) by 
replacing the decoders with MLP sublayers as regression heads. Con-
cretely, multimodal GNSS-R inputs are processed through the dual-
branch encoder, integrated into joint latent representations, and then 
passed through regression heads to generate predictions for different 
tasks. These fine-tuning strategies assess the model’s generalizability 
across various GNSS-R applications.

3.4. Implementation details and evaluation

For both pretraining and fine-tuning stages, each mini-batch con-
tains 1024 training samples. During pretraining, random masks are 
generated on the fly of each batch with a mask ratio of 0.3. The weight-
ing parameter 𝜆 is set at 0.5 by default to balance contributions from 
both modalities. AdamW optimizer is used with early-stop patience as 
3 epochs. The learning rate is established with warmup cosine with a 
warmup epoch percentage of 15% at 2×10−3 and 6×10−4 for pretraining 
and fine-tuning, respectively. We use the Tensorflow platform (Abadi 
et al., 2015) to implement the proposed framework and train it on an 
NVIDIA RTX 3090 GPU. Evaluation is conducted on the curated test 
sets for three downstream tasks using root mean square error (RMSE), 
bias, mean absolute percentage error (MAPE), and the coefficient of 
determination (𝑅2 score) as evaluation metrics.

4. Results and discussion

The primary goal of this work is to provide pretrained models that 
efficiently enhance existing GNSS-R products and reduce the explo-
ration cost for novel applications. In order to confirm the hypothesis 
that our framework is well-suited for GNSS-R Earth surface monitoring, 
we evaluate both the GEM (LP) and GEM (FT) against competitor 
models on several retrieval tasks. We present quantitative and quali-
tative analyses for global estimations, DDM reconstructions, as well as 
comparisons of training efficiency, label efficiency, and fusion strate-
gies. Finally, we briefly discuss the remaining challenges of the current 
approach.

4.1. Performance comparison

To evaluate the effectiveness of the proposed GEM framework, 
we compare its performance against several widely adopted baseline 
models that have demonstrated strong performance across a diverse 
set of GNSS-R retrieval tasks. These baselines are selected to represent 
the most widely applied and recent deep learning-based approaches in 
GNSS-R remote sensing for both oceanic and terrestrial applications, in-
cluding MLP, ResNet, ConvLSTM, CyGNSSnet, and Transformer models. 
MLPs provide lightweight yet competitive baselines for GNSS-R-based 
Earth surface parameter retrieval, as shown in prior studies (Chen 
et al., 2024; Pilikos et al., 2024; Li et al., 2024). ResNet and CyGNSS-
net are well-established CNN-based backbones capable of capturing 
fine-grained delay-Doppler correlations by treating DDMs as 2D im-
age inputs and have been successfully applied to various retrieval 
tasks (Xiao et al., 2024a; Du et al., 2024; Song et al., 2025). Moreover, 
Transformer-based model and hybrid deep learning methods such as 
ConvLSTM are included to extend the comparison (Zhao et al., 2023; 
Wang et al., 2024). While all models use DDMs as the primary in-
put, the inclusion of auxiliary parameters differs significantly across 
studies. To ensure a fair comparison, we adopt standardized backbone 
configurations for each method and evaluate their performance using 
multimodal GNSS-R inputs across three representative downstream 
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Table 2
Root mean square error (RMSE) and bias comparison of different methods for ocean wind speed retrieval, 
surface soil moisture estimation, and vegetation water content prediction.
 Method Ocean wind speed Surface soil moisture Vegetation water content
 RMSE (m/s) Bias (m/s) RMSE (m3/m3) Bias (m3/m3) RMSE (kg/m2) Bias (kg/m2) 
 MLP 1.62 −0.38 0.090 0.005 2.95 0.08  
 ResNet 1.65 −0.27 0.105 0.002 3.06 0.14  
 ConvLSTM 1.74 −0.38 0.135 0.009 3.10 0.17  
 CyGNSSnet 1.53 −0.15 0.101 0.003 2.98 0.12  
 Transformer 1.83 −0.55 0.141 0.007 3.14 0.14  
 GEM (LP) 1.81 −0.23 0.147 0.010 3.18 0.16  
 GEM (FT) 1.55 −0.10 0.088 0.003 2.91 0.06  
Table 3
Mean absolute percentage error (MAPE) and 𝑅2 score comparison of different methods for ocean wind speed 
retrieval, surface soil moisture estimation, and vegetation water content prediction.
 Method Ocean wind speed Surface soil moisture Vegetation water content
 MAPE (%) 𝑅2 score MAPE (%) 𝑅2 score MAPE (%) 𝑅2 score  
 MLP 18.0 0.57 21.2 0.52 26.3 0.65  
 ResNet 19.5 0.52 24.3 0.51 26.1 0.64  
 ConvLSTM 23.5 0.45 24.7 0.48 26.5 0.61  
 CyGNSSnet 17.2 0.62 23.6 0.52 26.2 0.66  
 Transformer 19.5 0.52 25.2 0.49 27.5 0.58  
 GEM (LP) 20.4 0.49 25.0 0.48 27.2 0.57  
 GEM (FT) 16.8 0.60 19.3 0.52 25.5 0.67  
tasks: ocean wind speed retrieval, surface soil moisture estimation, and 
VWC prediction.

Retrieved results from the test data using different models are 
compared against their corresponding label sources. The RMSE and bias 
for all samples across four seasons are reported in Table  2. Utilizing 
DDMs and auxiliary parameters as model inputs, deep learning-based 
models achieve satisfactory performance for all three tasks, in par-
ticular for ocean wind speed retrieval. With minimal effort in partial 
fine-tuning, our GEM (FT) method demonstrates robust performance 
across both oceanic and terrestrial retrieval tasks and validates its 
cross-task transferability. For ocean wind speed retrieval, despite the 
strong performance of the task-specific model CyGNSSnet, the proposed 
method attains comparable RMSE with a lower bias. Given the long-
tailed distribution of global wind speeds, where most winds fall within 
4–10m∕s, models inevitably tend to fit moderate wind regimes and 
underestimate higher wind speeds. A lower bias in GEM (FT) suggests 
a better understanding of the underlying mapping from measurements 
to ground truth labels, attributed to effective representation learning 
during the pretraining stage.

For terrestrial applications, the proposed method also exhibits im-
proved performance compared to other models. With the lowest RMSE 
of 0.088m3∕m3 for surface soil moisture estimation, and an RMSE of 
2.91 kg∕m2 with minimal bias of 0.06 kg∕m2 for VWC prediction, our 
results confirm that a pretrained model incorporating prior knowl-
edge of data distribution and cross-modal relationships can better 
capture correlations across diverse tasks. While recent deep learning-
based terrestrial applications often require additional input sources to 
account for the complex signal attenuation, our framework achieves 
considerable improvements using only GNSS-R inputs. It is noteworthy 
that fine-tuning with MLP sublayers as regression heads is essential 
for learning the complex nonlinearities within the data and allowing 
accurate prediction of continuous values. Although GEM (LP) does 
not lead to strong performance, it still benefits from representation 
learning in the pretraining stage and achieves reasonably satisfactory 
results. Furthermore, given the Transformer-based method processes 
only DDMs in its original setup, its performance degradation suggests 
that the naive inclusion of auxiliary parameters is less effective for 
representation learning. The performance advantages of the GEM (FT) 
further demonstrate that careful design of dual-branch encoder and the 
feature fusion module can improve model’s retrieval accuracy.

The statistical results for each model, including MAPE and 𝑅2

score, are reported in Table  3. Consistent with the findings in Table 
7 
2, all evaluated metrics indicate a steady improvement in perfor-
mance across different tasks for the proposed method. Essentially, GEM 
(FT) achieves an improved MAPE with a large margin, in particular 
for ocean wind speed retrieval and surface soil moisture estimation. 
These results highlight the flexibility of the GEM framework, which 
uses a unified architecture pretrained in a self-supervised manner to 
capture geophysically relevant patterns across oceanic and terrestrial 
surfaces. By jointly learning from DDMs and auxiliary GNSS-R pa-
rameters, the model enables robust cross-task generalization without 
retraining, which is well-suited for data-scarce conditions or rapidly 
changing environmental events.

One bottleneck of exploiting novel GNSS-R applications with deep 
learning is the dependence on large amounts of labeled data required by 
task-specific supervised learning approaches. Collecting and curating 
such data can be costly and time-consuming, particularly when scaling 
to global applications. To specifically assess the label efficiency of our 
proposed framework, we compare it against supervised learning models 
trained on limited labeled data across different proportions of annota-
tions. Fig.  4 illustrates RMSE as a function of labeled sample count for 
different downstream tasks. The number of labeled samples, shown on 
a logarithmic scale, depicts model performance from low-resource sce-
narios (∼ 103 samples) to large-scale datasets (∼ 106 samples). Across 
all three tasks, our GEM framework consistently achieves lower RMSE 
regardless of labeled data sizes. In low-data regimes, supervised models 
struggle with high estimation errors, whereas the proposed method 
significantly outperforms them even when only limited labels are avail-
able. As the number of labeled samples increases, RMSE decreases for 
all models, but GEM (FT) maintains a clear performance advantage. 
These results emphasize the importance of GNSS-R pretraining for 
efficiently reducing label dependency, which is of great interest for 
exploring novel applications in domains where labeled data is limited.

To complement the assessment of label efficiency, Fig.  5 examines 
training efficiency by illustrating the relationship between the number 
of training steps and RMSE values across different tasks. Given a fixed 
number of training samples, GEM (FT) demonstrates rapid convergence 
to lower RMSE values, especially observed in the early training stages. 
While all models improve as training proceeds, the proposed frame-
work requires significantly fewer steps to reach optimal performance. 
These results support the hypothesis that a model pretrained on a 
large volume of unlabeled GNSS-R observations retains useful prior 
knowledge, which reduces the optimization burden during downstream 
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Fig. 4. Label efficiency comparison across three GNSS-R downstream tasks. The proposed GEM (FT) framework outperforms competing models and achieves better label efficiency 
across different proportions of annotations, especially in low-data regimes.
Fig. 5. Training efficiency comparison across three GNSS-R downstream tasks. With a one-time initial pretraining, GEM (FT) converges faster to lower RMSE values compared to 
other models which allows faster adaptation while reducing computational costs.
fine-tuning. Although pretraining introduces an initial computational 
cost, the resulting model is task-agnostic and can be reused across var-
ious retrieval tasks. This trade-off leads to a computationally efficient 
solution when deployed across multiple applications and emphasizes 
the value of representation learning on multimodal GNSS-R data for 
achieving cross-task transferability and rapid adaptation.

4.2. Geographical analysis

To enhance the understanding of the global distribution of estima-
tions obtained from our GEM framework, Fig.  6 illustrates the average 
ground truth labels and predicted values for ocean wind speed, surface 
soil moisture, and VWC throughout the entire test period. With an av-
erage grid resolution of 1-degree, the qualitative comparison of global 
distributions indicates that the estimations align reasonably well with 
reference values. This demonstrates the strong generalization capability 
of the proposed pretraining framework for Earth surface monitoring at 
scale. For ocean wind speed retrieval, our method accurately captures 
both moderate and high wind regions (e.g., wind speed higher than 
12m∕s). The middle and bottom figures also depict strong agreement 
between estimated and ground truth maps for terrestrial applications. 
In particular, in regions such as the Amazon Basin, Central Africa, and 
Southeast Asia, the model effectively captures distinct variations in soil 
moisture and VWC values.

The global RMSE and bias distributions for downstream tasks are 
shown in Fig.  7. The triptych of visualizations is calculated with a grid 
resolution of 1◦ ×1◦. Most regions in Fig.  7(a) are covered with orange 
to green fields, indicating relatively low RMSE values (0.5–1.5m∕s) 
compared to the CYGNSS mission requirements of 2m∕s. While minor 
8 
underestimations of strong winds appear in the middle Pacific and 
southern Indian Ocean, the overall agreement with ERA5 labels still 
holds. In terms of surface soil moisture estimation, the lowest RMSE 
and bias values can be found in arid and semi-arid regions, whereas 
the highest errors occur in mountainous regions and archipelagos areas 
with complex topographies. Likewise, higher estimation errors in Fig. 
7(c) appear in regions with strong surface roughness variations, includ-
ing the Himalayas, the east coast of Australia, and the Andes Mountains 
in South America. The increased estimation errors observed in these 
terrestrial regions are closely linked to spatial heterogeneity, which 
introduces variability in signal scattering. Mountainous areas exhibit 
large variations in elevation and slope within the GNSS-R footprint, 
resulting in non-uniform incidence angles and increased multipath 
effects. Similarly, transitions between dense vegetation and bare land 
(e.g., Central Africa or parts of Southeast Asia) result in spatially 
heterogeneous dielectric properties and surface roughness, which cause 
inconsistent signal attenuation and reflection patterns within the glis-
tening zone. These factors disrupt the model’s performance in regions 
with complex surface conditions and contribute to localized increases 
in retrieval uncertainty. Nonetheless, given the generalizability of the 
pretrained model, such issues could be mitigated by incorporating 
more training samples from these regions or integrating additional 
geophysical parameters during the pretraining stage. The geographi-
cal distributions further emphasize the feasibility of using pretrained 
GNSS-R models for large-scale Earth surface monitoring with improved 
spatiotemporal coverage.



D. Zhao et al.

Fig. 6. Average ground truth and predicted spatial distributions of (a) ocean wind speed, (b) surface soil moisture, and (c) vegetation water content in 1◦ ×1◦ grid resolution over 
the test dataset.

Fig. 7. Average RMSE and bias spatial distributions of (a) ocean wind speed, (b) surface soil moisture, and (c) vegetation water content in 1◦ × 1◦ grid resolution over the test 
dataset.
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Fig. 8. Reconstruction of DDMs at different pretraining steps for the proposed GEM framework. From left to right at each step: original DDMs, masked DDMs with randomly 
occluded patches, and reconstructions based only on the visible portions.
Table 4
Comparison of RMSE and bias for different fusion strategies using multimodal GNSS-R data across downstream tasks.
 Fusion method Ocean wind speed Surface soil moisture Vegetation water content
 RMSE (m/s) Bias (m/s) RMSE (m3/m3) Bias (m3/m3) RMSE (kg/m2) Bias (kg/m2) 
 1 × 1 convolution 1.57 −0.08 0.087 0.003 2.92 0.05  
 Cross-attention 1.57 −0.07 0.090 0.002 2.93 0.06  
 DA-Fuse 1.55 −0.10 0.088 0.003 2.91 0.06  
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.3. DDM reconstruction

A non-trivial aspect of self-supervised learning approaches is the 
ifficulty of interpreting a model’s representation learning process. 
iven the complexity of multimodal GNSS-R data, effectively learning 
seful representations for downstream applications is crucial. However, 
ince the underlying mapping and decision-making processes are not 
asily explainable, it is challenging to determine whether the learned 
epresentations capture meaningful correlation patterns.
To gain insights into the representation learning process of our GEM 

ramework, we visualize the reconstruction of DDMs during pretrain-
ng, as shown in Fig.  8. The BRCS of original input DDMs, randomly 
asked DDMs, and their reconstructions based only on the visible 
ortions are presented at different training steps. It is obvious that 
t the early training stage, the reconstructed BRCS DDMs are highly 
ncomplete. While the model initially learns to identify peak values in 
 DDM, which are essential for calculating normalized BRCS values, 
t struggles to capture meaningful patterns for reconstructing fine-
rained cross-correlations. After 5,000 steps, some missing signals are 
till noticeable, but the overall alignment between the reconstruc-
ions and original inputs shows clear improvement. At the final stage 
f pretraining, the model effectively reconstructs fine-grained delay-
oppler correlations and signal intensity, which reflects an improved 
epresentation of learning outcomes.
These findings indicate that the proposed GEM framework allows 

he model to learn rich DDM representations in a self-supervised man-
er. During fine-tuning on downstream applications, the learned repre-
entations help to reduce the dependency on labeled data and improve 
erformance. The progressively enhancement in reconstruction quality 
lso suggests that the model captures the essential delay-Doppler corre-
ation of GNSS-R observables, which contains valuable information for 
urface parameter retrieval over both ocean and land.

.4. Ablation study on fusion strategies

To assess the impact of different fusion strategies on downstream 
erformance, we conduct an ablation study comparing the DA-Fuse 
e
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odule with two alternative approaches: 1 × 1 convolution and cross-
ttention. The cross-attention method allows the model to selectively 
ocus on relevant information from both modalities, while 1 × 1 con-
olution integrates both modalities through a learnable channel-wise 
rojection in a simple yet effective manner. Table  4 summarizes the 
MSE and bias obtained using these fusion methods on multimodal 
NSS-R data across three downstream tasks. Although both alternative 
ethods perform competitively, the proposed method shows modest 
mprovements in RMSE for ocean wind speed retrieval and VWC pre-
iction. Similar to the design of our pretraining loss, the DA-Fuse 
odule assigns weights to each modality but does so more dynamically 
hrough adaptive fusion during pretraining. This alignment between 
odel architecture and learning objective contributes to effective repre-
entation learning. The consistent performance of the DA-Fuse module 
cross tasks suggests that adaptively balancing modalities during fusion 
rovides an applicable benefit.

.5. Limitations

While our work demonstrates the feasibility of using a pretrained 
NSS-R model as a versatile Earth surface monitor, there are still 
hallenges and limitations that need to be addressed. One notable 
ssue is the degraded performance in terrestrial applications compared 
o oceanic tasks such as wind speed estimation. This is primarily 
ue to the complex and spatially heterogeneous scattering behavior 
ver land, where a mixture of coherent and incoherent scattering 
rises from vegetation, topography, and land cover variability. Unlike 
cean surfaces, which provide relatively homogeneous reflections, land 
urfaces introduce signal decorrelation due to surface roughness and 
iverse dielectric properties, making it relatively challenging to extract 
onsistent features from GNSS-R-only measurements. Additionally, the 
mpact of vegetation canopy and soil characteristics often results in 
onlinear and location-dependent correlations between GNSS-R observ-
bles and retrieval targets. While our GEM framework incorporates 
uxiliary parameters from GNSS-R missions to help mitigate these 
ffects, the current auxiliary feature set may be insufficient to fully 
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compensate for complex land interactions. Corroborated by previous 
task-specific studies, incorporating additional parameters such as soil 
state, topography, and land use from other resources could further 
improve estimation precision (Nabi et al., 2023; Santi et al., 2024). 
Understanding how to effectively combine GNSS-R observables with 
other geophysical indicator sources in a unified self-supervised learning 
framework is critical for further improving terrestrial performance.

Another issue is related to the effective spatial resolution of GNSS-
R observations, which is coarser than that of optical remote sensing 
sensors due to the large and diffuse nature of the scattering area. As a 
signals-of-opportunity bistatic radar, the spatial resolution of GNSS-R 
measurements is governed by the size of the first Fresnel zone, which 
varies with incidence angle and orbital geometry. Over land, scat-
tered signals are more complex due to mixed coherent and incoherent 
scattering, further altering the footprint and increasing measurement 
uncertainty. Future studies could explore interpolation strategies us-
ing multi-source GNSS-R data or integrate observations from other 
satellite missions to enable data fusion, fill measurement gaps, and 
enhance the spatiotemporal coverage of global monitoring. Despite 
these limitations, our results demonstrate that the GEM framework 
serves as an initial cornerstone for developing cross-task transferable 
models in GNSS-R applications. These findings highlight the importance 
of developing flexible, multimodal pretraining approaches that fit the 
unique signal characteristics of GNSS-R data across land and ocean 
surfaces.

5. Conclusion

Monitoring Earth’s surface with increased spatiotemporal coverage 
is critical for climate action. GNSS-R offers new potential to provide 
rapid global measurements with unprecedented spatiotemporal cov-
erage. An increasing amount of GNSS-R satellite constellations may 
help to efficiently build deep learning models for surface property 
monitoring. However, existing data-driven methods are typically de-
signed for task-specific applications using supervised learning, which 
requires large annotated datasets and limits the exploration of GNSS-R 
applications.

In this work, we introduced the first multimodal GNSS-R self-
supervised learning framework fusing DDMs with auxiliary paramet-
ric data. Across three downstream tasks, namely, ocean wind speed 
retrieval, surface soil moisture estimation, and VWC prediction, the 
proposed model demonstrates decent performance in retrieving surface 
parameters. While acknowledging the computational demands of pre-
training, our findings highlight the potential of pretrained models to 
advance GNSS-R applications by reducing the need for extensive feature 
engineering, fine-tuning, and downstream task annotations.

We hope this work will encourage further research in GNSS-R 
self-supervised learning and foundation models for Earth surface pa-
rameter monitoring, as these approaches could lead to cost-efficient and 
scalable GNSS-R applications. Future studies could incorporate more 
diverse data sources to enhance estimation accuracy, address spatial 
resolution gaps, and explore more advanced designs for GNSS-R foun-
dation models to further improve efficiency and expand applications to 
novel GNSS-R use cases.
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