MODELING OF THE A320 LANDING GEAR DRAG DURING THEIR EXTENSION AND RETRACTION

Christoph Deiler, Nicolas Fezans

DLR – German Aerospace Center, Institute of Flight Systems, Braunschweig SciTech 2025 – Jan 8th 2025 – Orlando, FL, USA

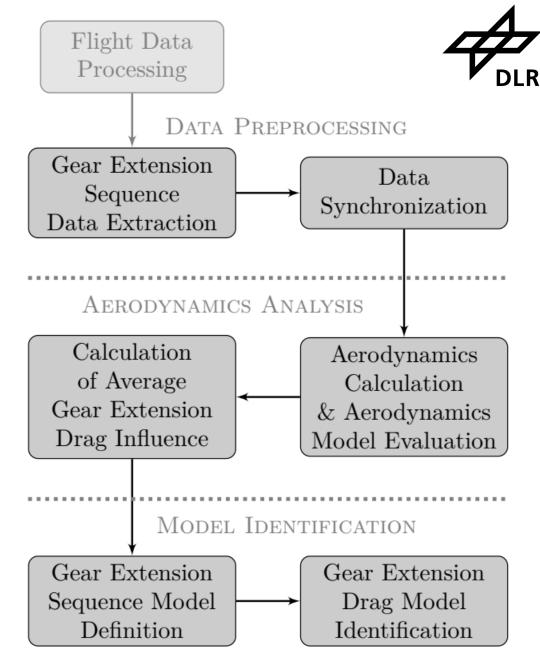
Motivation

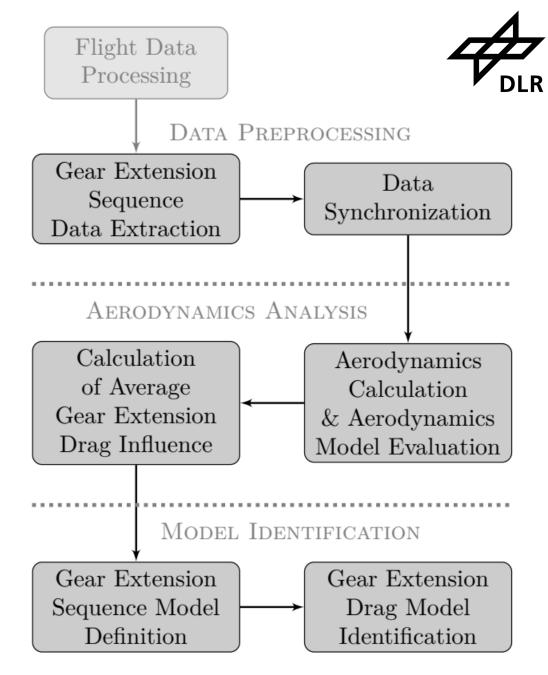
Various activities towards sustainable aviation with ambitious goals: 75% less CO₂ emissions, 90% less NO_x emissions, 65% reduction of perceived noise emissions.

Short-term solutions:

- better aerodynamic performance and propulsion system efficiency
- further optimization of aircraft operations for emission reduction

DLR's "Low Noise Augmentation System" (LNAS) targets this goal:


- low-power descent and approach by optimized energy management
- up to 25% fuel reduction and noise reduction up to 5 dB
- advisory system relies on a high-quality flight performance model


Fethi Abdelmoula and Marco Scholz. *LNAS - a pilot assistance system for low-noise approaches with minimal fuel consumption.* Belo Horizonte, Brazil, September 09th - 14th 2018. 31st Congress of the International Council of the Aeronautical Sciences (ICAS). https://www.icas.org/ICAS ARCHIVE/ICAS2018/data/papers/ICAS2018 0096 paper.pdf

→ Understanding the flight performance variations and the error that is potentially made by neglecting or improperly modelling transitions was desired

- Intro / Background / Motivation
- Getting suitable input data
 - Gear geometry and kinematics
 - Data from extension "maneuvers"
- Data analysis
 - Extraction of drag coefficient from data
 - Removal of non-gear contributions
 - Averaging / "denoising"
- Modelling the gear extension and drag evolution
 - Simplified extension sequence
 - Gear drag model and parameters
- Conclusions / Outlook

- Intro / Background / Motivation
- Getting suitable input data
 - Gear geometry and kinematics
 - Data from extension "maneuvers"
- Data analysis
 - Extraction of drag coefficient from data
 - Removal of non-gear contributions
 - Averaging / "denoising"
- Modelling the gear extension and drag evolution
 - Simplified extension sequence
 - Gear drag model and parameters
- Conclusions / Outlook

Gear Geometry and Kinematics

DIR

- Available data from the A320ceo "ATRA" from DLR
- Gear identical/similar to the available operational data from A320neo

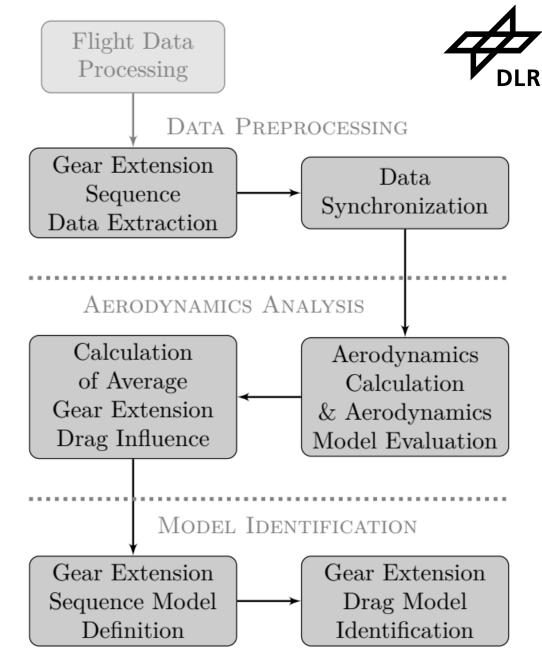
Maintenance video(s)

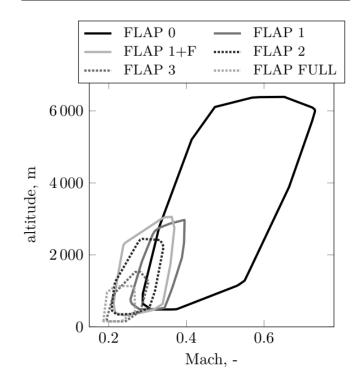
Gear Geometry and Kinematics

- Areas of interest for the main and nose gears marked in red
 - → cf. series of snapshots with timing in the paper
- Gear doors are already partly opened at start of video
 - → time reference t = 0 s set to the moment at which the nose landing gear doors reached their fully opened position

Gear Geometry and Kinematics

time	nose gear event or state	time	main gear event or state
0.0 s	nose gear doors fully open		
		1.32 s	main gear doors fully open
		1.34 s	main gear starts moving
1.37 s	nose gear starts moving		
		1.47 s	main gear covering hole
		1.57 s	wheel exiting hole, legs out
1.61 s	nose gear starts resting	1.61 s	main gear starts resting
1.77 s	nose gear starts moving again		
		1.87 s	main gear starts moving again
		2.51 s	first wheel out
		3.44 s	second wheel covering hole
3.47 s	wheel out, covered with doors on side		
		5.47 s	second wheel out
5.57 s	wheel out in freestream		
4.37 s	nose gear down and locked		
		14.57 s	main gear down and locked
4.87 s	nose gear doors start closing	14.87 s	main gear doors start closing
6.27 s	nose gear doors closed		
		16.47 s	main gear doors closed




- Intro / Background / Motivation
- Getting suitable input data
 - Gear geometry and kinematics
 - Data from extension "maneuvers"
- Data analysis
 - Extraction of drag coefficient from data
 - Removal of non-gear contributions
 - Averaging / "denoising"
- Modelling the gear extension and drag evolution
 - Simplified extension sequence
 - Gear drag model and parameters
- Conclusions / Outlook

Data from Extension Maneuvers

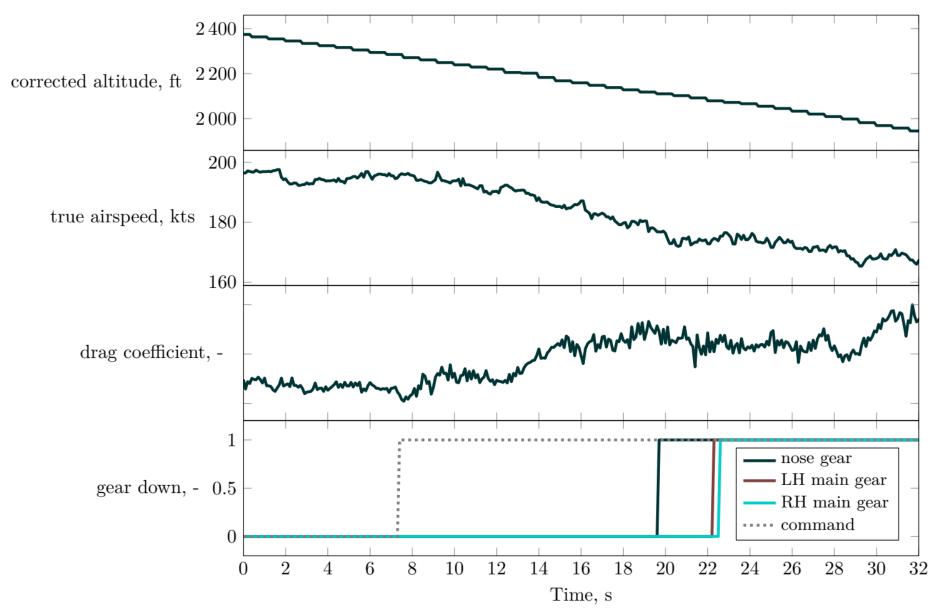
number of aircraft	3
number of flights	844

data envelope	min	max	
barometric altitude	500 ft	20 964 ft	
Mach number	0.1866	0.7311	
total weight	48.57 t	73.44 t	

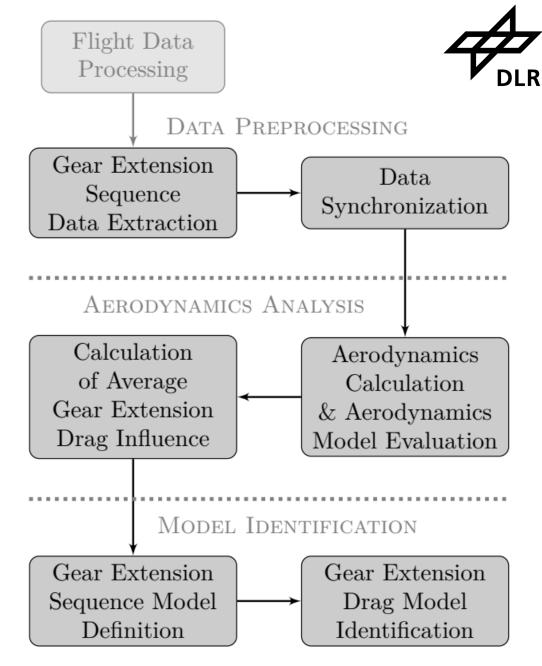
- Data recorded with LNAS EFB App during regular airline operations
- Subset of 844 flights from 3 aircraft considered
- 804 gear extension "maneuver" were deemed
 "clean and stable enough" and further analyzed

As expected, most extensions were performed in

FLAP 2 configuration


 Data from all configurations considered at once

high lift	number of
configuration	time segments
FLAP 1	13
FLAP 2	761
FLAP 3	29
FLAP FULL	1


No high-lift configuration change during gear extension

Data from Extension Maneuvers - Example

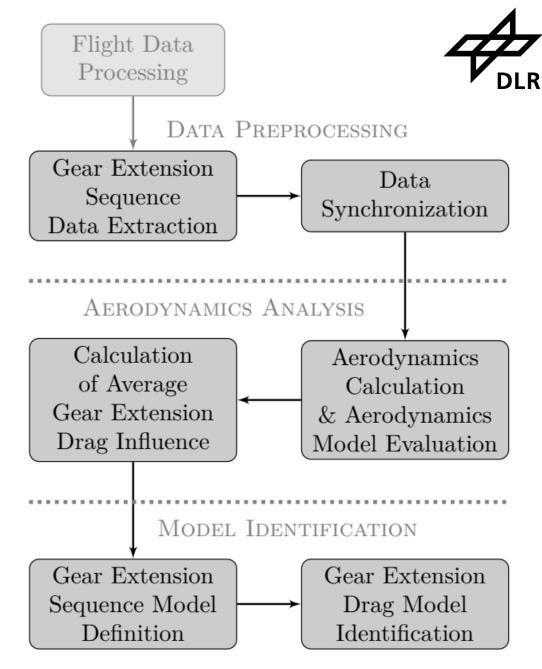
- Intro / Background / Motivation
- Getting suitable input data
 - Gear geometry and kinematics
 - Data from extension "maneuvers"
- Data analysis
 - Extraction of drag coefficient from data
 - Removal of non-gear contributions
 - Averaging / "denoising"
- Modelling the gear extension and drag evolution
 - Simplified extension sequence
 - Gear drag model and parameters
- Conclusions / Outlook

Extraction of Drag Coefficient from Measurement

 No "drag coefficient" sensor, rather estimate based on accelerometer measurement, mass, air data measurements, and estimated thrust

$$C_{X,\text{meas}} = (m_{\text{AC}} \cdot a_{x,\text{CG}} - T_{x}) / (\overline{q} \cdot S_{\text{Wing}})$$

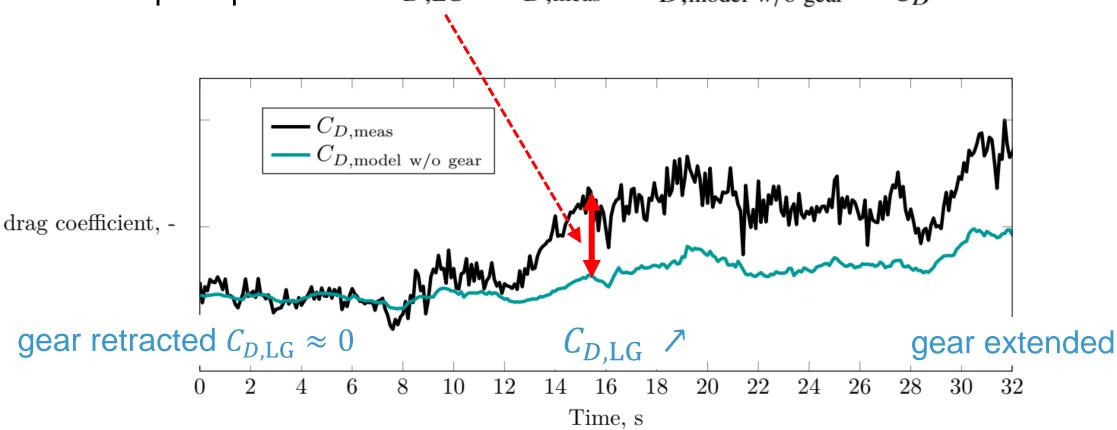
$$C_{Y,\text{meas}} = (m_{\text{AC}} \cdot a_{y,\text{CG}} - T_{y}) / (\overline{q} \cdot S_{\text{Wing}})$$


$$C_{Z,\text{meas}} = (m_{\text{AC}} \cdot a_{z,\text{CG}} - T_{z}) / (\overline{q} \cdot S_{\text{Wing}})$$

$$Very \text{ good thrust model required}$$

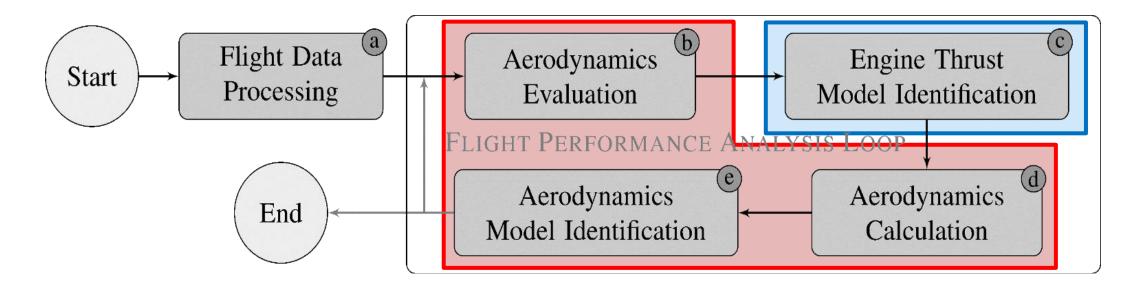
$$C_{D,\text{meas}} = -C_{X,\text{meas}} \cos(\alpha) - C_{Z,\text{meas}} \sin(\alpha)$$

$$C_{L,\text{meas}} = C_{X,\text{meas}} \sin(\alpha) - C_{Z,\text{meas}} \cos(\alpha)$$

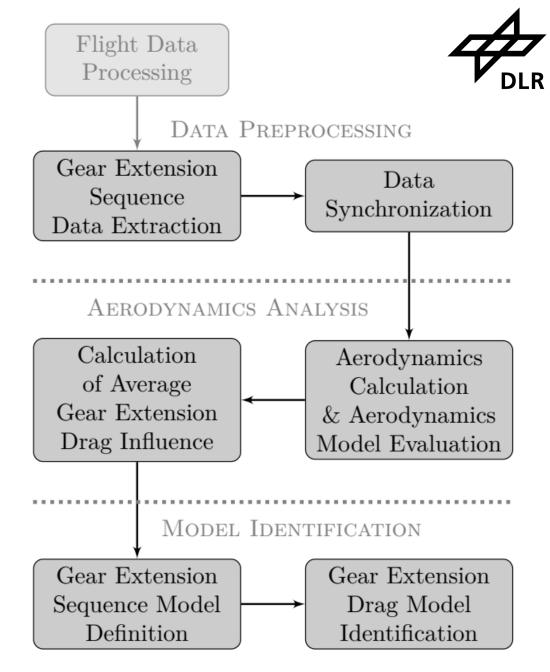

- Intro / Background / Motivation
- Getting suitable input data
 - Gear geometry and kinematics
 - Data from extension "maneuvers"
- Data analysis
 - Extraction of drag coefficient from data
 - Removal of non-gear contributions
 - Averaging / "denoising"
- Modelling the gear extension and drag evolution
 - Simplified extension sequence
 - Gear drag model and parameters
- Conclusions / Outlook

Removal of Non-Gear Contributions

■ Basic principle: $C_{D,\text{LG}} = C_{D,\text{meas}} - C_{D,\text{model w/o gear}} + e_{C_D}$

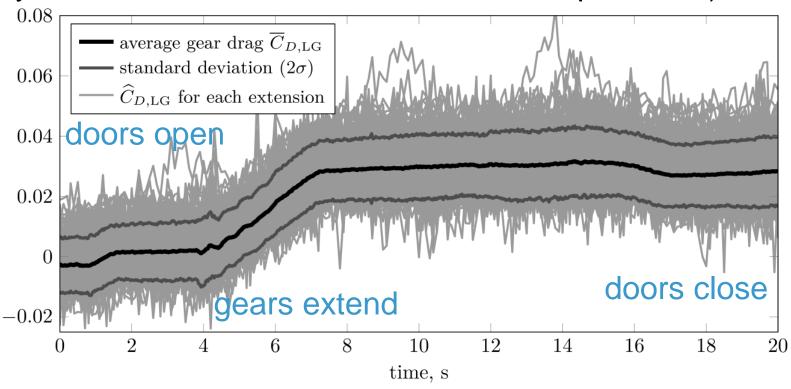


- → A very good drag model for the gear-up configuration required
- → The "measured" drag coefficient is rather "noisy/fluctuating"

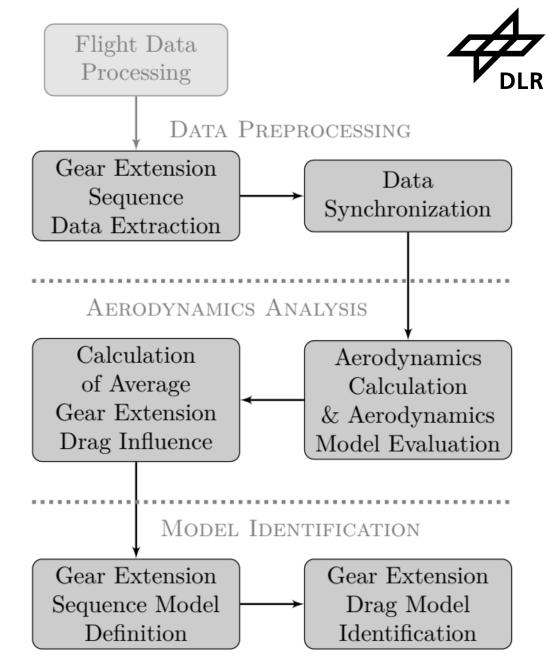

Prior Work Used

- Various activities performed and published recently focusing on improving the quality of the flight performance models, e.g.
- Deiler, C., "Engine thrust model determination and analysis using a large operational flight database," CEAS Aeronautical Journal, Vol. 14, No. 1, 2023, pp. 29–45. doi:10.1007/s13272-022-00625-y.
- Deiler, C., "Aerodynamic model adjustment for an accurate flight performance representation using a large operational flight data base," CEAS Aeronautical Journal, Vol. 14, No. 2, 2023, pp. 527–538. doi:10.1007/s13272-023-00659-w.

- Intro / Background / Motivation
- Getting suitable input data
 - Gear geometry and kinematics
 - Data from extension "maneuvers"
- Data analysis
 - Extraction of drag coefficient from data
 - Removal of non-gear contributions
 - Averaging / "denoising"
- Modelling the gear extension and drag evolution
 - Simplified extension sequence
 - Gear drag model and parameters
- Conclusions / Outlook



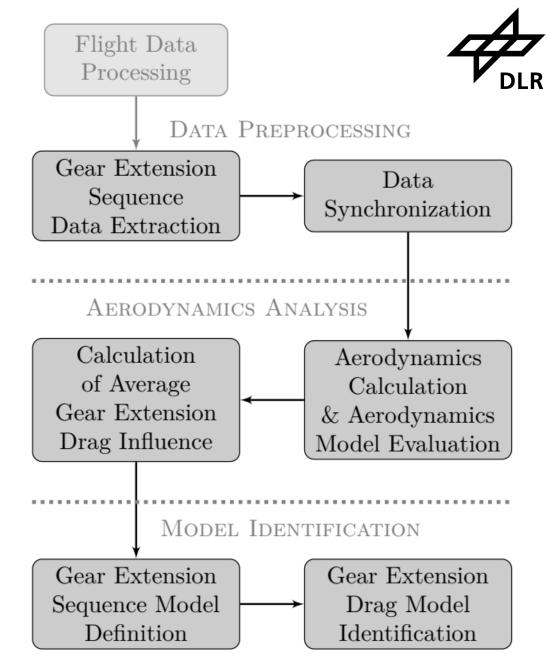
Removal of Non-Gear Contributions


Averaging after time-synchronization of the 804 gear extensions
 (t = 0 at gear lever down flag, but signal only recorded at 1 Hz
 ⇒ one second uncertainty which needs to be estimated and compensated)

(average) gear drag coefficient $C_{D,LG}$, -

→ Fluctuations not directly correlated with the progress of the extension seem to cancel each other nicely by averaging on many independent extensions

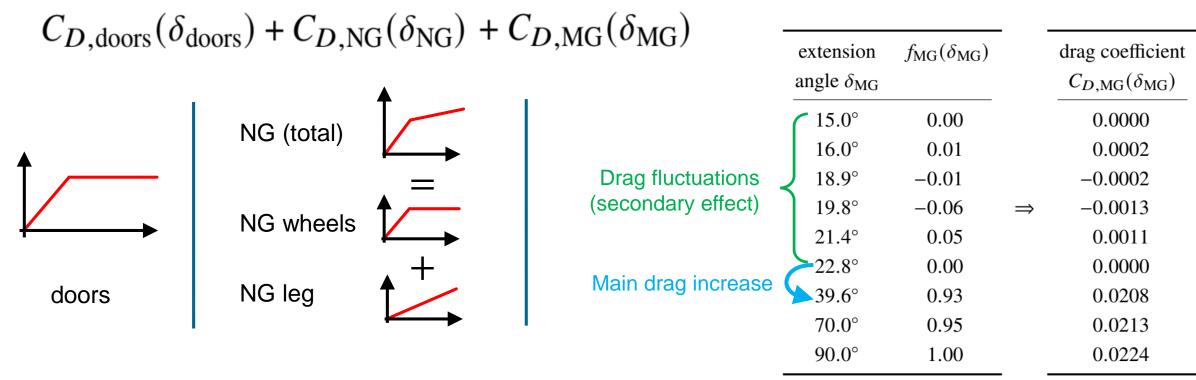
- Intro / Background / Motivation
- Getting suitable input data
 - Gear geometry and kinematics
 - Data from extension "maneuvers"
- Data analysis
 - Extraction of drag coefficient from data
 - Removal of non-gear contributions
 - Averaging / "denoising"
- Modelling the gear extension and drag evolution
 - Simplified extension sequence
 - Gear drag model and parameters
- Conclusions / Outlook


Simplified Extension Sequence

Simplified set of 3 parameters and motion with constant angular rate

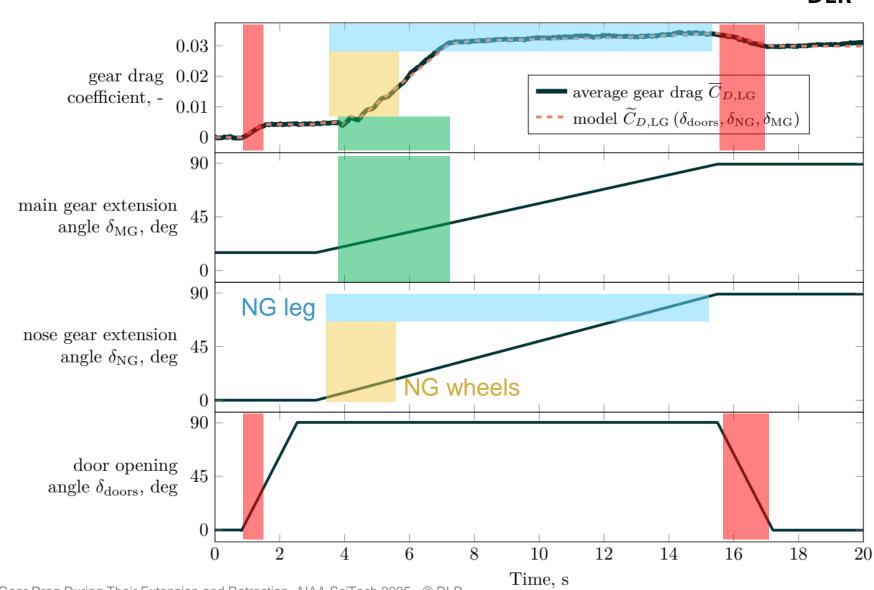
position gear closed/retracted (min) opened/extended (max)		doors ($\delta_{ m doors}$)	nose gear (δ_{NG}) *	main gear (δ_{MG})	* 0 deg reference for nose gear is not horizontal: the nose gear leg points slightly upwards when retracted and slightly forwards when extended.		
			0° 0° 90° 90°				
	nose gear extension	main gear extension		90 – ear extension agle $\delta_{\rm MG}$, deg			
start	3.1 s	3.1 s		ISIC UMG, deg			
end	15.6 s	15.6 s		0 -			
duration	12.5 s	12.5 s		90 -			
rate	7.20°/s	6.00°/s		ear extension angle $\delta_{\rm NG}$, deg 45			
	gear o	doors					
	opening	closing		90 -		 	
start	0.8 s	15.5 s		90			
end	2.5 s	17.2 s		door opening 45	/		
duration	1.7 s	1.7 s	ang	de $\delta_{\rm doors}$, deg	/		
rate	52.94°/s	-52.94°/s		0	/		
				0	2 4	6 8 10 12 14 16 18	

- Intro / Background / Motivation
- Getting suitable input data
 - Gear geometry and kinematics
 - Data from extension "maneuvers"
- Data analysis
 - Extraction of drag coefficient from data
 - Removal of non-gear contributions
 - Averaging / "denoising"
- Modelling the gear extension and drag evolution
 - Simplified extension sequence
 - Gear drag model and parameters
- Conclusions / Outlook



Gear Drag Model and Parameters

• How to define the mapping between a set of kinematic parameters and corresponding drag? $\widetilde{C}_{D,\mathrm{LG}}(\delta_{\mathrm{doors}},\delta_{\mathrm{NG}},\delta_{\mathrm{MG}})$


Superposition of three separate contributions

Gear Drag Model and Parameters

- Equation error assessment
- Overall very good match with the data
- Split between the different parts remain uncertain (no data with only one leg or no wheels, etc. are available)
 - → split model is our own educated guess

Summary and Outlook

- Practical approach to model drag evolution during landing gear extension/retraction leveraging operational data → without needing dedicated flight tests
- New model for the drag increment caused by the landing gears and landing gear doors of the Airbus A320 during transitions (extension / retraction)
- Unusual case with specific challenges (e.g., low SNR, lack of instrumentation of the gear doors and legs, not stabilized flight conditions)
- Key factors for successfully obtain a model:
 - Availability of a very good performance model of the aircraft in each high-lift configuration and with gear-up
 - Averaging on many cases (804) allowed compensating some of these effects
- Future work:
 - Refine the split between gears, possibly leveraging additional data
 - Extend the model to include pitching and yawing moment coefficients

Impressum

Topic: Modeling of the A320 Landing Gear Drag During Their

Extension and Retraction

Date: January 8th, 2024

Series: AIAA SciTech (AFM), Orlando, FL, USA

Authors: Christoph Deiler (christoph.deiler@dlr.de)

Nicolas Fezans (nicolas.fezans@dlr.de)

Institute: Institute of Flight Systems

Copyright: DLR