A METHODOLOGICAL APPROACH TO PROSPECTIVE LIFE CYCLE ASSESSMENT FOR THE HARMONIZATION OF THE FOREGROUND AND BACKGROUND SYSTEMS

Gandhi Pragada

- Institute of Networked Energy Systems
- Phd and Postdoc Workshop
- Karlsruhe 03.06.2025

AGENDA

- Introduction
- Background
- Methodology
- Conclusion

Introduction

- Energy is generated or utilized from the power sector, industry, transport, and households
- Going forward, all these sectors, including their technologies → massive transformations to achieve sustainable pathways
- Prospective life cycle assessment (pLCA) → future environmental impacts of these technologies can be evaluated over their life

Transformation of energy pathways*

Source:*Romain 2021

Background

- pLCA studies in the literature → Focus on the implementation of future scenarios either in the foreground or background systems
- Life cycle inventory (LCI) data in the foreground does not change in line with the background system or vice versa
- Also, PREMISE* does not offer background system data at a country level for pLCA, offering support only at regional level

Research Question

 How to carry out pLCA for a specific technology at country level, considering the approach of harmonizing the foreground with background systems?

Methodology

- Harmonization could be achieved in three steps:
 - Step 1 \rightarrow Identification of key measures in a background scenario
 - Step 2 \rightarrow Design of the foreground system
 - Step 3 \rightarrow Integration of background system data into PREMISE*

Step 1: Identification of key measures in a background scenario (1/4)

Some of the key measures identified in an exemplary scenario of IMAGE RCP 1.9*

Technological review at sectorial level

Direct use of renewables – Heat

Energy conservation and efficiency

Electrification

Material Circularity

Carbon removal measures

Gandhi Pragada, DLR-VE, 03.06.2024 *IIASA (2024) RCP Database. <u>https://tntcat.iiasa.ac.at/RcpDb/dsd?Action=htmlpage&page=about</u>

Step 1: Identification of key measures in a background scenario (2/4)

• Sectors like electricity, transport, steel, cement, others

Technological review at sectoral level

- Identify the technologies at sectoral level responsible for energy transition
- Power sector by 2050 → Renewables (75%), fossil with CCS (25%)

- Heat produced renewable sources like solar, wind,
- biomass, geothermal
- Identify the fuels (possibly greener) that could be used for heating applications
- Natural gas is replaced by green hydrogen after 2030

Step 1: Identification of key measures in a background scenario (3/4)

Energy conservation and efficiency

- Point out the energy efficiency measures at sectoral level to the reduce energy demand
- Most of the technologies across the sectors assumed to reach optimal efficiency by 2050

Electrification

- Identify the sectors that use direct electricity for end-use applications
- Road Transport EV's, Steel EAF

Step 1: Identification of key measures in a background scenario (4/4)

Material circularity

- Focus on the raw materials as a part of circular economy practices
- Production of steel through scrap → dominates by
 2050

Carbon removal measures

- Identify the sectors that deploy CCS systems
- Sectors deployed CCS include power generation, fuel production, steel, cement → 2030

Step 2: Design of the foreground system (LCI)

- Aim is to use the **synergies** from the measures of a background scenario
- Focus on selection of technology, components, and materials/energy carrier
- Two exemplary use-cases to demonstrate the foreground system design considering key measures includes:
- Production of liquid hydrogen
- Production of a fuel cell

Step 2: Design of the foreground system (LCI)

Assessment Level	Status Quo	2030	2040	2050
Technology considered → Align with background scenario				
Components considered → Subsystems of a technology				
Materials/Energy carriers considered -> Substances from which components are made/ to operate				

Gandhi Pragada, DLR-VE, 03.06.2024

Assessment Level	Status Quo	2030	2040	2050	
Technology considered					
*Production of liquid hydrogen	Natural gas (SMR)	Natural gas (SMR)	Green hydrogen (Electrolysis)	Green hydrogen (Electrolysis)	
Components considered					
Materials/Energy carriers considered					

Assessment Level	Status Quo	2030	2040	2050
Technology considered				
*Production of liquid hydrogen	Natural gas (SMR)	Natural gas (SMR)	Green hydrogen (Electrolysis)	Green hydrogen (Electrolysis)
Components considered				
*Carbon capture technology incorporated in power to liquid	_	CCS	CCS	CCS
Materials/Energy carriers considered				

Assessment Level	Status Quo	2030	2040	2050
Technology considered				
*Production of liquid hydrogen	Natural gas (SMR)	Natural gas (SMR)	Green hydrogen (Electrolysis)	Green hydrogen (Electrolysis)
Components considered				
*Carbon capture technology incorporated in power to liquid	_	CCS	CCS	CCS
Materials/Energy carriers considered				
**Fuel cell stack \rightarrow Bipolar plates	Graphite	Stainless Steel	Stainless steel	Stainless steel

Step 2: Design of the foreground system (LCI)

Assessment Level	Status Quo	2030	2040	2050
Technology considered				
*Production of liquid hydrogen	Natural gas (SMR)	Natural gas (SMR)	Green hydrogen (Electrolysis)	Green hydrogen (Electrolysis)
Components considered				
*Carbon capture technology incorporated in power to liquid	_	CCS	CCS	CCS
Materials/Energy carriers considered				
**Fuel cell stack → Bipolar plates	Graphite	Stainless Steel	Stainless steel	Stainless steel
**Carbon fiber production \rightarrow Source of heat	Natural gas	Natural gas	Green hydrogen	Green hydrogen

Step 3: Integration of background system data into Premise

- As PREMISE offers scenario data at only the regional level → need for country-specific scenario
- Scenario data (country-specific) with sectorial level is integrated into PREMISE by using its External Scenario Framework
- These databases are imported into Brightway or Activity Browser to perform pLCA

Conclusion

- Harmonization approach stresses the importance and inclusion of background systems in the design of foreground system
- Decision-makers find it easier to select the prospective technologies, when both systems are consistent
- It also increases the **accuracy** of environmental impacts evaluation
- Future work will focus on testing the methodology on a use case

THANK YOU

Gandhi Pragada, DLR-VE, 03.06.2024

Premise Framework – External Scenario

Premise – DLR Scenarios

- Superstructure databases → Imported to activity browser of users to do prospective LCA
- Users could always update scenario data and create a new ecoinvent databases → One individual could control the versions
- Provides flexibility to all team members to carry-out prospective LCA (using AB) without deep knowledge on

Premise