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Abstract—The increasing complexity and interconnectivity
of critical infrastructures such as power systems - driven
for example by the integration of Internet of Things (IoT)
technologies - require understanding and evaluation of their
resilience to cyber-physical threats. Digital Twins are a promising
tool for analyzing system behavior under stress, e.g. failures and
overloads, in a controlled environment. This paper presents a
probabilistic simulation-based resilience assessment framework
as a Digital Twin approach. Focusing on power systems, we
consider cyber-physical threat scenarios, including IoT-based load
altering attacks, where compromised smart devices manipulate
demand patterns to destabilize the grid. By considering the
inherent uncertainty of crises in impact modeling, a distributed
computing approach enables simulating a diverse, randomized set
of scenarios with high sampling size, allowing for a comprehensive
estimation of resilience properties. Results demonstrate how
different impact intensities and system configurations affect system
performance, characterized by different resilience metrics. Our
holistic approach improves risk and resilience analysis of critical
infrastructures by incorporating uncertainty into quantitative
assessments, supporting crisis management and decision-making.

Index Terms—Critical Infrastructures, Resilience Assessment,
Digital Twin, Load Altering Attack, Monte-Carlo-Simulation

I. INTRODUCTION

Critical infrastructures (CIs) are increasingly becoming
interconnected, for example due to the integration of Internet
of Things (IoT) technologies into power systems. While
this digitalization enables real-time data exchange, improved
operational efficiency, and leverages transformative tools like
Digital Twins (DTs), it also introduces new cyber-physical
threats [1]. The interdependencies between systems—such
as energy, water, and transportation—can lead to cascading
failures [2] and, in worst-case scenarios, large-scale blackouts,
highlighted for example by the massive power outage in
Ukraine in 2015 [3]. The exposure of CIs to such high-impact,
low-probability (HILP) events, whether caused by man-made

The research activities related to this work have been conducted in the
context of the ”urbanModel” project funded from the German Aerospace
Center (DLR). This work has been performed in the context of the LOEWE
center emergenCITY [LOEWE/1/12/519/03/05.001(0016)/72].

threats (e.g., cyber attacks, terrorist attacks) or natural hazards
(e.g., floods, tornadoes, earthquakes) underline the need for
comprehensive resilience assessments [4].

The increasing connectivity of smart devices also introduces
new risks specific to power grids. IoT-based hacking attacks,
such as load altering attacks, can force compromised devices
to simultaneously surge power demand, endangering grid
stability [5]. Moreover, social engineering attacks on demand
response systems further exacerbate this problem by triggering
unwanted load synchronization [6], [7]. Due to the inherently
low load factor of power demand, such synchronized spikes
can impose significantly higher stress than average operational
levels, potentially leading to blackouts or grid instability [8].
Consequently, analyzing and understanding the vulnerability
and resilience of power systems to HILP events is essential
for minimizing disruptions and protecting public safety [9].

Simulation-based models provide a powerful means to
analyze cyber-physical systems (CPS), as they allow testing
of severe disruption scenarios under various conditions that
would be impractical or too dangerous to conduct on real-
world infrastructure [10]. Digital Twins, real-time virtual
representations of physical systems, offer a promising tool for
this task by providing simulation capabilities with sufficient
computing resources, enabling comprehensive assessments of
system resilience [11]. Resilience, defined as the ability of
a system to withstand and recover from disruptive events
while maintaining a certain level of functional operation, is
a key concept in disaster risk management [12]. Quantitative
resilience assessment is crucial for comparing cost-intensive CI
hardening alternatives and guiding policy makers for strategic
investments in resilience on a grounded basis [4].

However, the inherent uncertainty in natural disasters and
cyber-physical threats makes disaster planning and resilience as-
sessment challenging. Hazard scenarios may differ in frequency,
intensity, geographic scale, and environmental conditions, e.g.
extreme weather [4], [13]. Moreover, differences in human
behavior may result in significantly varying outcomes [14].
For these reasons, a holistic resilience analysis requires a
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probabilistic approach to address this uncertainty, using several
scenario simulations to capture a wide range of possible
outcomes.

In this paper, we introduce a probabilistic simulation-
based resilience assessment framework for CIs. We propose
a quantitative, performance-based approach, incorporating
Monte-Carlo-Simulation (MCS) for random sampling, to
systematically capture uncertainty and evaluate the impact
of varying impact intensities and system conditions. Resilience
metrics are computed for each simulation run and collected
for statistical analysis. Due to the possibility of parallelizing
individual simulations, the approach can be applied with
distributed computation, e.g. using cloud computing, enabling
high sampling sizes and scalability.

In a case study, we focus on the power system as the most
fundamental CI and apply our methodology using cyber attack
scenarios on IoT devices and grid components, leading to
overloads or component failures. We analyze the resilience of
an urban medium-voltage power grid and compare resilience
metrics for two system configurations, providing insights in
the implications of different control strategies. A graph-based,
quasi-dynamic power grid model is used, including cascad-
ing outage simulations. Moreover, a probabilistic sensitivity
analysis is performed to characterize system robustness under
varying attack intensity.

Our findings highlight the importance of incorporating
uncertainty into resilience and risk management practices.
By quantifying resilience under diverse threat scenarios, our
approach supports CI vulnerability analysis and quantitative
resilience assessment against HILP events. This proactive
approach can inform targeted investments in grid hardening to
mitigate the impact of disruptive events and cascading failures,
ultimately contributing to maintaining uninterrupted service of
CIs.

The remainder of this paper is structured as follows: Section
II provides an overview of Digital Twins for CIs and discusses
their role in resilience assessment. Section III details our
stochastic resilience assessment methodology. Section IV
presents the case study and results, while Section V concludes
and provides implications for future research and practical
applications.

II. BACKGROUND ON DIGITAL TWINS FOR CRITICAL
INFRASTRUCTURES

Digital Twins (DTs) are virtual representations of physical
systems that integrate real-time data, simulation models, and
analytics to enable comprehensive what-if analysis, optimiza-
tion, and decision-making [15], [16]. They have emerged as a
transformative technology, particularly in the IoT Edge-Cloud
Continuum, allowing for advanced monitoring and prediction
[17]. Over recent years, research on DTs has expanded across
various disciplines, e.g. manufacturing, building information
modeling (BIM), transportation, and energy. DT is considered a
promising key technology for several power system applications
[18].

Traditionally, DTs have been widely implemented in indus-
trial settings, leveraging big data and artificial intelligence (AI)
for optimization and automation [15]. However, their applica-
tion in disaster risk management has recently gained traction
[19]–[21]. Unlike industrial environments where massive data
facilitate AI-driven approaches [22], CI systems often face data
scarcity, particularly regarding HILP events [11]. Therefore,
physical modeling and simulation-based bottom-up approaches
are essential to analyze emergent and cascading effects in CIs
[11]. DTs can provide a controlled sandbox environment for the
creation of virtual clones and analysis of what-if scenarios [20].
Through such simulations, cascading effects across multiple
CI sectors, including power, water, and transportation, can be
analyzed to gain a more holistic perspective [11].

Given their simulation capabilities, DTs provide a powerful
framework for resilience assessment by simulating and evalu-
ating the impacts of various potential disruptive events on CI
systems [11]. They can enable the study of system behavior
under different stress scenarios, allowing for the comparative
assessment of, e.g., different system configurations, control
strategies, or alternative infrastructure hardening optimizations.
By integrating social modeling, urban DTs can also be used
to predict demand and mobility patterns, demonstrating their
potential to improve the resilience of cities [11], [14], [23].

In addition to offline scenario analysis, DTs can also offer
real-time resilience monitoring [11]. By integrating real-time
data streams from sensor networks and simulation outputs,
DTs can provide early warning mechanisms and proactive
risk management capabilities. This dynamic monitoring can
support decision-makers in responding swiftly to emerging
threats, ultimately contributing to more resilient and adaptive
infrastructure systems.

III. STOCHASTIC RESILIENCE ASSESSMENT
METHODOLOGY

This section presents our proposed methodology for stochas-
tic resilience assessment. An overview of the approach is
depicted in Figure 1.

A. Resilience Assessment for Critical Infrastructures

Assessing resilience is essential for grounded evaluation of
CI performance under different conditions, allowing effective
comparability. While the assessment can be qualitative and/or
empirical, we focus on performance-based resilience assessment
through sandbox simulations. Considering a wide spectrum of
possible scenarios without being restricted to historic events is
crucial for a holistic view to capture the full range of possible
outcomes [11]. While specified resilience can be assessed for
a specific hazard type, general resilience requires a broader
consideration of diverse threat scenarios [11]. These threats
may include floods, hurricanes, pandemics, or earthquakes, all
of which can impact the resilience of CIs [24].

B. Resilience Metrics

Quantitative resilience assessment involves the definition of
resilience metrics, which can be categorized into performance
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Fig. 1. Flow Diagram for the proposed distributed stochastic resilience assessment. Predefined scenarios with uncertain parameters are randomly generated
using Monte-Carlo-Simulation (MCS). After performing a simulation for each scenario, a scalar resilience metric is calculated on the simulation data. The
distribution of resulting values can be analyzed and formed into a single value, characterizing the resilience of the system.

metrics and summary metrics [25], [26]. Performance metrics
measure system performance over time, while summary metrics
provide a single value representation of resilience for a certain
scenario [25].

In the context of power systems, the demand satisfaction
(DS) is commonly used as a measure for system performance
[10], [26] and defined as the normalized ratio of supply and
demand:

DS(t) =
Supplied Load(t)

Demand(t)
∈ [0, 1] (1)

A similar metric is the Load Not Supplied (LNS):

LNS(t) = Demand(t)− Supplied Load(t) (2)

A widely used summary metric is the Energy Not Supplied
(ENS), calculated as the integral of LNS(t) over the event, and
commonly used for risk management and reliability assessment
[27]. In this study, we focus on the minimal DS or maximal
LNS during the absorption phase as a robustness metric,
representing absorptive capacity [10], [12].

C. Scenario Generation and Simulation using Distributed
Computing

Since hazards cannot be seen as fixed scenarios, we consider
a stochastic approach for resilience assessment. Any crisis
scenario involves uncertainty, which can be represented as
probability distributions. Also, internal or environmental con-
ditions, such as power demand need to be seen as random
variable [8].

To address this uncertainty, we consider Monte-Carlo-
Simulation (MCS) for randomly sampling parameterized scenar-
ios. This involves repeatedly simulating the base system under
varying conditions, such as geographic impact area and event
intensity, drawn from a given probability distribution. The CI
model then simulates component outages and cascading effects
depending on failures and overloads. Affected CI components
(e.g. power buses or lines) are identified based on impact
intensity parameters, their individual susceptibility to the type of
event, and other factors, for example the geographic proximity
to the impact location.

We propose the use of distributed computing to achieve a
high number of samples efficiently. By leveraging cloud-based
parallel computing, computation time can be significantly re-
duced, while maintaining high sampling numbers. Nevertheless,

to handle the substantial computational resources for MCS,
model complexity is an important consideration [11]. The
principle of parsimony suggests that models should be as
simple as possible while still capturing all relevant real-world
features.

D. Resilience Distribution

Each simulation run produces a resilience metric, resulting in
a distribution of values with a cumulative distribution function
(CDF) FR that can be analyzed statistically. A histogram of
the resilience metric can provide insight into the statistical
distribution of system behavior. The expected value E(R)
of a resilience metric R (”expected resilience”) represents
the average system performance [28]. However, resilience
optimization based solely on the mean value can be misleading,
as it does not consider HILP events accordingly [13], [27].

To better account for HILP events, tail-oriented metrics such
as Value at Risk (VaR) and Conditional Value at Risk (CVaR)
can be used. CVaR quantifies the expected resilience loss in
the worst-case scenarios, above the VaR F−1

R (1−α), capturing
the impact of HILP events as:

CVaR1−α(R) = E
(
R|R > F−1

R (1− α)
)

(3)

By analyzing the tail of the resilience metric distribution,
risk-averse strategies for infrastructure protection and crisis
management can be developed.

IV. CASE STUDY: SIMULATION-BASED RESILIENCE
ASSESSMENT OF URBAN POWER GRID

In order to demonstrate the applicability of our proposed
framework, we conduct a case study on an urban medium-
voltage (MV) grid representing a medium-sized German city.
The synthetic grid is reconstructed using the methodology
described in [29], which yields realistic spatial and electrical
characteristics. We consider disturbances induced by cyber
attacks on IoT devices and grid components. We analyze the
impact of overloads and random point failures and compare
system performance among the scenarios and two system
configurations using different resilience statistics.

A. Simulation Setup

The MV grid model comprises interconnected buses, sub-
stations, and loads, and is simulated using the AC power flow
model. The model is implemented using the open-source Python
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tool pandapower [30]. By repeatedly solving the power flow,
we perform quasi-dynamic simulations to model cascading
outages due failures or overloads. This model may not be
able to capture detailed behavior like electromagnetic transient
effects, but is usually suited to represent the general system
characteristics.

Two grid configurations are considered for comparison:
• Interconnected: Tie switches between MV substations

are closed, allowing for meshed operation.
• Separated: Tie switches remain open, enforcing a radial

operation.
Although the network topology remains identical in both

cases, the operational mode influences the grid’s capability to
absorb disturbances.

B. Threat Scenario Generation

To analyze potential impacts of the cyber-attacks, we
consider two types of specific impact:

• Scenario A: Overload — In this scenario, nodes are
forced to operate at a higher load level due to the
manipulation of IoT-connected devices. The increase in
load is represented by an overload factor, and a hack
success probability is applied, as not all nodes might be
affected.

• Scenario B: Random k-Component Failure — Here, the
attack or an accidental failure results in the shutdown of
a set of nodes. We simulate this by randomly deactivating
k buses, following the N-k contingency framework.

For both scenarios, the loads are modeled as (independent)
normally distributed variables with standard deviation being
0.2 of the mean to represent uncertain variations in power
demand.

C. Failure Modeling

Overload-induced failures are modeled using protective trip-
ping logic: whenever a line or transformer exceeds the threshold
of 100% loading, a nearby switch is triggered, deactivating
the affected line branch. This mechanism initiates cascading
outages, which are captured by iteratively recalculating the
power flow after deactivating failed components until a new
static state is reached. Voltage stability or dynamic protection
schemes are not explicitly modeled.

D. Results A: Overload Sensitivity Analysis

We perform a sensitivity analysis by increasing the overload
factor and hack success probability continuously. The summary
metric used for this resilience assessment is the minimum
demand satisfaction (DS) (1) during the absorption phase as a
measure for robustness.

In Figure 2, the minimum DS is plotted against varying
overload factors, assuming all nodes in the system are affected,
for both grid configurations. The results show a sharp transition,
indicating a percolation effect, where the system suddenly
shifts from a stable state to widespread failures. Notably,
the separated configuration appears more robust, whereas the
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Fig. 2. Demand satisfaction (DS) for varying overload factors for both grid
configurations.

interconnected configuration exhibits more cascading failures
due to the meshed grid topology.

In a complementary analysis (see Figure 3), DS is shown
for a fixed overload factor of 7 and as a function of the attack
probability that a node is affected. This result demonstrates a
smoother transition but still confirms the relative advantage of
the separated grid under coordinated load stress.
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Fig. 3. Mean and standard deviation of DS for an overload factor of 7 as a
function of the attack probability of a node being affected.

E. Results B: Random Point Failures

Now, we analyze the impact of k random bus failures. Here,
the LNS metric (2), resulting from the outages, is used. The
stochastic methodology is applied to generate a statistical
distribution of the metric.

Figure 4 presents the histogram of LNS for k = 5 random
bus failures. The histogram exhibits a fat-tailed distribution,
with a mean of 1.68 MW and a maximum impact of 7.87 MW.

Additionally, Figures 5 and 6 display boxplots for different
values of k, ranging from 0 to 20, for both configurations,
respectively. Here, the interconnected grid achieves better
robustness in average, especially for small k, as remaining
buses can be supplied from the other side of an MV line,
ensuring N − 1 security.

The results also reveal that while most random failures lead
to limited impacts, rare extreme cases occur that represent the
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Fig. 4. Histogram of unsupplied load (LNS) for k = 5 bus outages in the
interconnected configuration, showing a fat-tailed distribution.
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Fig. 5. Boxplot of unsupplied load for different k (interconnected). Boxes
indicate the interquartile range (Q1–Q3).
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Fig. 6. Boxplot of unsupplied load for different k (separated). Boxes indicate
the interquartile range (Q1–Q3).

tail of the distribution, which requires special attention. This
also represents a vulnerability if the failures are no longer
independent, as attackers could focus on these worst-case
combinations.

F. Resilience Comparison

To directly compare the resilience of the two grid configu-
rations, the metric distributions are condensed into summary
statistics. Table I summarizes the mean, standard deviation,
VaR (at α = 99%), CVaR, and the maximum value of the LNS

TABLE I
RESILIENCE METRIC DISTRIBUTION STATISTICS (LNS)

Statistic Overload Random Point
Interconnected Separated Interconnected Separated

Mean 35.831 7.479 0.895 2.924
Std 29.420 8.965 0.489 0.932
VaR (99%) 121.250 33.000 3.228 5.162
CVaR (99%) 133.010 37.738 3.610 5.447
Max 159.250 53.500 4.246 6.196

metric for both random point failures (k = 3) and overload
scenarios (factor 7, p = 0.35).

The results reveal that for random point failures, the
interconnected configuration exhibits less average interruption
compared to the separated configuration, although the VaR and
CVaR indicate that worst-case combinations can lead to losses
of comparable impact. In contrast, for the overload scenario,
the separated configuration demonstrates superior performance,
with lower mean impact and reduced tail risk. This trade-
off suggests that while the interconnected grid benefits from
redundancy and rerouting capabilities under random failures,
it is more susceptible to overloads and cascading effects.

V. CONCLUSION AND FUTURE WORK

In this work, we presented a simulation-based resilience
assessment framework for power systems within Digital Twins,
incorporating uncertainty through MCS. We demonstrated
how the proposed approach can be applied to gain insights
into system resilience, considering IoT-based load altering
attacks and random failures, and analyzed the influence of
grid configurations. A sensitivity analysis on impact intensity
and hacking success rate revealed emergent behavior, with
percolation-like transitions and fat-tailed distributions in the
resulting resilience metric. This suggests that even small
changes in scenario parameters or system configurations can
lead to dramatically different outcomes—information that is
crucial for robust infrastructure planning.

Our findings highlight the importance of explicitly con-
sidering uncertainty in resilience assessments. The stochastic
nature of critical impacts like HILP events on CIs underlines
the necessity of a probabilistic approach rather than relying
on deterministic, single-scenario evaluations. Our approach
can serve as a basis for future resilience studies to provide
grounded assessments, e.g. for comparing alternatives for CI
optimization.

Looking forward, Digital Twins hold promise for real-
time resilience monitoring and decision support during crises.
Future work should explore the integration of more advanced
software platforms for distributed computing utilizing cloud
and edge computing resources to enable faster and scalable
simulation-based assessments. Considering the possibility of
using artificial neural networks (ANNs) for solving power
flow [31] in combination with the continuous advances in
hardware for generative AI, employing GPU architectures
could be a viable approach for further parallelizing simulations,
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enhancing computational efficiency and enabling quick large-
scale assessments.

Furthermore, expanding the scope beyond power systems to
include cascading effects in interdependent infrastructures (e.g.,
water, transport), incorporating geospatial hazard modeling,
and simulating compound crises will offer a more holistic
understanding of CI resilience.
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[23] J. Gunkel, M. Mühlhäuser, and A. Tundis, “Machine learning for human
mobility during disasters: A systematic literature review,” Progress in
Disaster Science, vol. 25, p. 100405, Jan. 2025.

[24] E. M. Wells, M. Boden, I. Tseytlin, and I. Linkov, “Modeling critical
infrastructure resilience under compounding threats: A systematic
literature review,” Progress in Disaster Science, vol. 15, p. 100244,
Oct. 2022.

[25] C. Poulin and M. B. Kane, “Infrastructure resilience curves: Performance
measures and summary metrics,” Reliability Engineering & System Safety,
vol. 216, p. 107926, Dec. 2021.

[26] H. Raoufi, V. Vahidinasab, and K. Mehran, “Power systems resilience
metrics: A comprehensive review of challenges and outlook,” Sustain-
ability, vol. 12, no. 22, p. 9698, Nov. 2020.

[27] R. Moreno, M. Panteli, P. Mancarella, H. Rudnick, T. Lagos, A. Navarro,
F. Ordonez, and J. C. Araneda, “From reliability to resilience: Planning
the grid against the extremes,” IEEE Power and Energy Magazine, vol. 18,
no. 4, pp. 41–53, Jul. 2020.
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