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Abstract—By 2050, over 68% of the global population is ex-
pected to live in cities, increasing demands on energy grids, trans-
portation networks, and public services. This urban growth will
intensify the complexity of infrastructure systems and heighten
vulnerability to natural disasters, cyber-physical failures, and
crises. In urban emergency management, unexpected events
frequently occur that traditional radar and weather systems fail
to detect. Additionally, existing warning mechanisms are often
disconnected from predictive models, causing delays in issuing
context-aware alerts. Current systems also struggle to deliver
tailored warnings that account for the dynamic circumstances
of individual citizens. In this large panorama, AI-powered tech-
nologies, particularly those using machine learning and natural
language processing, offer promising solutions to overcome these
limitations and improve urban crisis management. Based on
that, this paper proposes an integrated crisis warning system
to address these challenges. It presents an AI-centered pipeline
that connects an imputation model, a forecasting model, and a
crisis advisor, creating a robust and adaptive warning system.
The proposal is evaluated through a scenario-based case study
conducted in Darmstadt (Germany). Storm scenarios are used to
test its forecasting and alert-generation capabilities, highlighting
its potential to enhance urban resilience and citizen safety.

Index Terms—Crisis Forecasting, Early Warning, Safety, Ur-
ban Critical Infrastructures, Machine Learning, Artificial Intel-
ligence, Large Language Model.

I. INTRODUCTION

Modern urban environments face challenges due to rapid
population growth, more frequent natural disasters [1], and the
increasing complexity of infrastructure systems. Traditional
crisis management frameworks, reliant on manual decision-
making, and delayed information, are increasingly inadequate
in this dynamic scenario. For instance, during the 2021 floods
in Germany, delayed warnings resulted in catastrophic human

The research activities related to this work are being conducted in the
context of ”urbanModel” and ”MoDa (Models and Data for Future Mobility
Supporting Services)” projects that are funded by the German Aerospace
Center (DLR) e.V. This activity has been carried out in cooperation with
the LOEWE Zentrum emergenCITY.

and economic losses [2]. Such and other incidents underscore
the need for crisis warning systems capable of preemptive
forecasting, and context-aware communication.

Indeed, in managing emergencies in cities, unexpected
events can happen that are not detected by traditional
equipment, on the other hand they can still be detected by
other sources such as local sensors and even through reports
from people. However, such sources do not cover all areas
of a city, by creating gaps and uncertainty. Since crises
can escalate across both space and time, this incomplete
information makes it difficult to generate accurate short-
term predictions and timely warnings for affected citizens.
In fact, warning mechanisms are often separated from
predictive models, leading to delays in generating context-
aware alerts due to dependency on external forecasting
services. They also do not provide personalized information
that reflect the changing situations of individual citizens.
Artifical Intelligece (AI)-driven technologies can help bridge
existing gaps by enabling continuous urban monitoring,
spatio-temporal crisis modeling, and automated behavioral
guidance [3]. However, current implementations often favor
isolated technical solutions over integrated approaches,
missing opportunities for comprehensive crisis management.
For instance, machine learning (ML) models can leverage
diverse data sources—from sensor readings to real-time
citizen reports—to predict crisis trajectories with spatio-
temporal precision. Combined with natural language
processing systems, these predictions can be transformed
into personalized warnings, actionable recommendations,
and interactive support tailored to individual needs. This
integrated approach aligns with directives, like those from the
United Nations Office for Disaster Risk Reduction [4].

In this context, the paper deals with the delivering of
short-term, timely crisis warnings by integrating live sensor
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data and citizen reports into a ML-based crisis warning
system. In particular, the paper presents a set of AI-based
concepts as a comprehensive pipeline that links an imputation
model, a forecasting model, and a crisis advisor to form a
robust crisis warning system, thus exemplifing distributed
collective intelligence. The proposal is evaluated through a
scenario-based case study in the urban area of Darmstadt,
(Germany), with storm scenarios serving both for forecasting
and warning generation in compliance to the German
guidelines.

The rest of the paper is organized as follows: Section II
provides an overview of the related work; whereas the pro-
posed concepts and related architectural model are elaborated
in Section III. Implementation details and the obtained results
are discussed in Section IV. Section V concludes the paper
and highlights the further works.

II. BACKGROUND ON WARNING MESSAGE SYSTEMS

This section surveys various approaches for stakeholder
warning and communication mechanisms, starting with an
examination of traditional warning systems, followed by
infrastructure-based solutions, emerging social media and
AI-driven approaches. For each approach a discussion of the
current limitations is contextually provided.

a) Traditional Warning Systems: Traditional warning
systems rely on push notifications, Short Message Service
(SMS), or app-based alerts to inform the public about potential
crises. These systems aggregate data from authoritative
sources such as weather services, disaster control agencies,
and municipal authorities to disseminate relevant warnings.
Typically, they allow users to customize alerts based on
location or crisis type, making them adaptable to individual
needs. The goal is to provide real-time, actionable information
to enhance public safety during emergencies. Applications
like NINA [5], KATWARN [6], and BIWAPP [7] exemplify
national and regional warning systems that integrate data
from local and federal authorities. These systems distribute
alerts via multiple channels, such as smartphone apps, SMS,
and emails. Similarly, apps like “Mein DRK” and “Sicher
Reisen” focus on specific contexts, such as first aid and
international travel safety [8]. On a global scale, platforms
like Disaster Alert monitor multiple hazards and provide
location-specific warnings. Traditional warning systems
provide alerts and basic instructions to large populations,
leveraging established communication channels. Limitations
— They are scalable and accessible, requiring minimal user
interaction or technical expertise. However, these systems
exhibit weaknesses of limited personalization, dependence on
timely authoritative sources, and lack of open source software.

b) Infrastructure-Based Systems: Infrastructure-based
systems rely on existing telecommunication networks or
specialized organizational infrastructures to deliver crisis
alerts on a broad scale. They typically operate independently

of user-installed apps, focusing instead on sending messages
directly through channels like mobile network cells or
organizational IT platforms. This enables rapid, large-
scale dissemination of warnings—even when conventional
communication lines are overloaded—by leveraging built-in
functionalities of mobile networks or enterprise systems.
Limitations — Infrastructure-based systems can rapidly reach
wide audiences, but the approach has some limitations. Cell
Broadcast excels at delivering large-scale alerts instantly yet
cannot tailor messages to individual users, since all compatible
devices in a targeted zone receive the same notification [9].
Meanwhile, sistems like safeREACH focuses on internal
organizational contexts, which limits its applicability beyond
those structured environments, reducing reach and flexibility
for the public [10].

c) Social Media- and AI-Driven Approaches: Social
media-driven approaches leverage user-generated data and
real-time communication on social platforms to detect, clas-
sify, and respond to emerging threats. Such systems draw
on the large user base and instant feedback loop offered by
social media, enabling rapid identification of crisis hotspots
and direct interaction with stakeholders. Social media-based
warning systems benefit from the broad coverage and scale
of their user communities, which can span entire countries
or even transcend national borders. Additionally, these plat-
forms enable two-way communication, allowing both crisis
response entities and the public to share critical information
in real time. This approach often involves proprietary or
closed-source implementations (e.g., Facebook Safety Check
[11]) but can also include open-source AI frameworks (e.g.,
LLAMA2 [12]) that allow for ongoing community-driven
improvements. Limitations — Although social media-driven
methods exploit massive user networks and continuous content
streams for rapid crisis identification, they often depend on
proprietary platforms that require active user accounts, and
the reliability of crowdsourced reports can suffer when misin-
formation circulates. Additionally, LLM-based solutions face
the “hallucination” problem, where the model may generate
inaccurate or misleading data. Such false information is a
serious vulnerability in crisis management.

A. BBK Recommendations for Warning Messages

As discussed above, it emerges that warning messages play
a central role in crisis management, and their effectiveness
is essential to enabling timely and provide appropriate re-
sponses from affected populations. The clarity, structure, and
credibility of these messages significantly influence public
perception and compliance. Miscommunication or ambiguity
in warnings can lead to confusion or delays in response.
To ensure consistency and efficacy, the German Federal
Office of Civil Protection and Disaster Assistence (Bunde-
samt für Bevölkerungsschutz und Katastrophenhilfe–BBK)
has provided structured guidelines for formulating warnings.
These guidelines aim to minimize misinterpretation, and align
warning dissemination with established crisis communication
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TABLE I
DESCRIPTION OF THE BBK WARNING MESSAGE RECOMMENDATIONS

# Recommendation
Issuers/Senders: Clearly identify the issuer to enhance credibility
Target Groups: Tailor warnings to specific target audiences
Crisis Identification: Clearly and comprehensibly describe the crisis
Action Recommendations: Provide clear instructions tailored to the crisis
Consistency: Formulate warnings consistently and without contradictions
References to Additional Information: Provide links or references to additional resources
Updates: Regularly update warnings to maintain relevance
All-Clear Messages: Clearly indicate when a crisis has subsided
Text Structure: Structure warning texts logically to improve readability
Readability: Ensure the text is understandable for a broad audience
Relevance of the Warning: Highlight the severity and urgency of the crisis
Text Length: Keep the message short and concise without omitting essential details
Precision: Formulate warnings precisely and unambiguously
Objectivity: Write neutrally without exaggeration
Sentence Construction: Use simple and active sentences
Word Choice: Use commonly understood terms and avoid or explain technical jargon
Spelling and Grammar: Avoid errors to ensure credibility and comprehension
Transparency: Provide transparent information and clearly state any uncertainties
Highlighting: Emphasize the most important information
Warning Words: Use specific warning words within the text

principles. The German BBK guidelines [13], which have been
shortly reported in Table I, outline key considerations for
constructing effective warning messages, and will be taken
into account within our proposed solution.

III. ARCHITECTURAL MODEL AND AI-BASED CONCEPTS

This section introduces the proposed architectural model,
that is depicted in Fig. 1. It represents the fundamentals of
the envisioned AI-based system, that has been structured into
the four main building blocks discussed hereinafter: (a) Input
source (b) Data Preparation Layer, (c) Crisis Forecasting
Layer and (d) Stakeholder Alert and Communication Layer.

Fig. 1. Warning pipeline and building blocks of the proposed architecture

a) Input Sources: The system under consideration is de-
signed for urban areas, which are geographically defined using
boundaries specified by latitude and longitude coordinates.
This urban area serves as the spatial domain within which
all crisis modeling and management activities are performed.
The urban area is discretized into a grid of n × n cells, where
each cell corresponds to a unique spatial region (see Fig. 2).

The choice of n allows for flexible spatial resolutions.
This discretization ensures a clear spatial assignment, as
each spatial event or entity can be mapped to a specific
cell. Each grid cell gij is defined as a polygonal region

Fig. 2. Grid-based approach: affected entities along the linear disaster path

with direct adjacency relationships to its neighboring cells.
This relationship allows the modeling of spatial propagation
dynamics between adjacent cells. A grid cell at a specific
time may contain various sensors and citizens, thus providing
two different input sources: (i) Urban Sensors from Critical
Infrastructures (CIs): each grid cell may host one or more
sensors, monitoring infrastructure elements such as water
pumps or electrical transformers. Please note that different
sensor types can have different attributes, e.g., a water pump
sensor has two attributes ”water level” and ”flow rate”,
defining its state; (ii) Citizens Reports: for each citizen
contained in a certain time in a given cell, it is possible to
define its multi-attribute status in analogy with the urban
sensors. For example, consider a citizen with two attributes
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indicating whether they are outside and whether their home
location is affected by a crisis.

Additionally, a citizen’s status may include an attribute for
reporting crises in real time. This attribute is called ”Crisis
Report”, and allows citizens to transmit information about
the crisis. This report is modeled as an additional attribute
specifying ”Crisis Type” (e.g. Flood, Fire, Earthquake, Storm,
Other), ”Location”, ”TimeOfIncident”, optional ”Description”,
”Severity” into a 1-5 range, optional ”ImmediateNeeds”
specifications (e.g. Evacuation, Medical Help, Shelter, Other).

b) Data Preparation Layer: It is the first operative stage
of the crisis warning system. Its primary role is to collect
and to aggregate input source data about Urban Sensors and
Citizen Reports at each discrete time t to form the source grid.
For each cell, a preliminary binary state is determined using
a predefined function based on available sensor and citizen
reports. Uncertainty arises for cells where no sensor or citizen
data is available. To handle this uncertainty, an imputation
model is applied that leverages spatial relationships within the
gride cells to compute a probability indicating the likelihood
that cell is affected. These probabilities are then converted
into binary states by applying a certain threshold. Importantly,
if a cell was already affected in the original grid, this status
is retained in the imputed grid.

Hence, the resulting imputed grid comprises all cells that
were already affected in the original grid as well as those
cells indicated by the imputation model. This process ensures
that the imputed grid reflects the crisis state seamlessly, by
incorporating both observed data and spatially inferred effects.

c) Crisis Forecasting Layer: It follows the Data
Preparation Layer and represents the second stage of the
warning pipeline. Its input is the imputed grid for each istant,
which represents the crisis propagation up to that point.
Over time, a sequence of imputed grids is accumulated,
forming a historical context. This sequence encapsulates
the temporal evolution of the crisis and serves as input to
the spatiotemporal forecasting model, which then predicts
future crisis propagation. Therefore, the model forecasts grids
indicating, for each grid cell, whether the cell will be affected
in the next istant. These probability values are subsequently
thresholded to obtain binary outputs, thereby mimicking the
forecasted crisis propagation.

The model is applied in an autoregressive manner to
predict multiple future timesteps. After producing a forecast,
the newly predicted grid is appended to the context sequence.
Therefore the context is expanded with forecasted data which
is then used as input for predicting the subsequent. This
iterative approach is repeated until the desired number of
future timesteps has been generated (see Fig. 3).

Fig. 3. Forecasted Crisis - Yellow color highlights urban areas which could
be affected and impacted from the crisis propagation. Red color highlights
urban areas which could be affected and strongly impacted from the crisis
propagation.

d) Stakeholder Alert and Communication Layer: it
is the final stage of the proposed pipeline. It receives the
predicted grids for each future timestep, generated by the
previous layer. In addition to these forecasted grids, this layer
integrates the current ”CitizenStatus”. Using this contextual
information, the system formulates an input for a crisis
advisor that can assist citizens by providing situation-specific
guidance based on: (1) the most recent citizen status; (2) the
forecasted crisis propagation, i.e., which cells are likely to
be affected soon; and (3) the verified government knowledge
sources, specifically government documents.

Relying on official government documents ensure that all
guidance adhere to established protocols. The crisis advisor
acts as an interactive assistant for citizens with two tasks:

1) Citizen-Specific Warnings: generate situation-aware
warnings in natural language. These warnings include
clear instructions on how to respond to the unfolding
crisis, given the citizen’s current ”CitizenStatus” and
the predicted crisis progression.

2) Interactive Chat Interface: provide a conversational
platform for citizens seeking additional information,
clarifications, or assistance during a crisis. This chat
interface may be accessed after receiving a warning for
follow-up questions or proactively at any stage of the
crisis, for example during the crisis preparation phase.

The process of creating a citizen-specific warning begins by
setting up a dedicated directory that stores official documents
from the BBK, which serve as the foundational knowledge
base for the crisis advisor. Each document in this directory is
assigned metadata. This metadata includes information about
the crisis stage addressed by the document (e.g., preparation
or response phases) and a list of keywords summarizing
its content. For instance, documents might be tagged with
keywords such as “flood”, “evacuation”, or “shelter” to group
relevant materials.
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When a citizen’s status is received along with a forecast
of the crisis, additional details are added to describe their
situation in relation to the predicted event. For instance, if
the system expects the citizen to be in an area that will
be affected, their status is updated to indicate that they are
at risk. Additionally, information about the direction of the
crisis in relation to their location is also recorded.

The final step is the generation of warnings based on
three key inputs: the ”extended citizen status”, the ”predicted
crisis grid”, and the ”verified knowledge base” derived from
government documents. Using this data, a language model
(LM) should produce specific warnings in natural language.
These warnings include actionable instructions customized
to the situation, such as evacuation orders, recommended
shelter locations, or other crisis-specific guidance. The
generated warnings should adhere to the official government
requirements for generating textual warnings of Table I:
therefore, the crisis advisor’s output should follow the format
below to meet the guidelines for warning creation.

As depicted in Fig. 4, this warning design meets the “Crisis
Identification” guideline (Guideline 3) by explicitly describing
the threat. This warning aligns with official requirements,
which recommend a concise description of the crisis to help
recipients comprehend the situation quickly. The text also
fulfills the “Action Recommendations” guideline (Guideline
4) by offering instructions on seeking shelter and adopting
protective measures. Moreover, the structured format uses
distinct sections for Notification Type, Date, Time, Warning,
and Behavioral Advice, meeting the “Text Structure” guideline
(Guideline 9) through clear text organization. In summary, this
layer completes the end-to-end pipeline by providing crisis
information to citizens, ensuring they can take appropriate
actions before a crisis fully impacts their location. Moreover,
this layer offers a textual crisis advisor, which is available
before, during, and after a crisis to meet citizens’ specific
needs and situational context.

IV. IMPLEMENTATION AND QUALITATIVE RESULTS

The final layer in the presented warning pipeline
orchestrates the transformation of forecasted crisis grids into
targeted citizen alerts that integrate crisis forecasts, citizen
statuses, and verified government information. Additionally,
this layer provides a chat interface for citizens to ask questions
proactively, for example, during the crisis preparation phase.
A RAG approach is implemented to achieve this functionality,
as it bridges the gap between static knowledge bases and
dynamic generation by retrieving and grounding outputs in
verified and contextually appropriate information, reducing
the risk of hallucination in LLMs [14]. It constructs a
knowledge base from official government documents stored
locally, retrieves context-relevant passages using a vector
index, and then fuses these references with citizen-specific
details to generate crisis notifications or guidance. In the
context of crisis communication, where the dissemination

of misinformation can have severe consequences, RAG
proves particularly advantageous by incorporating official
documents and directives into its retrieval process. This
process ensures that all generated alerts and advisories are
rooted in authoritative sources, aligning with the need for
adherence to official guidelines.

a) Document/Input Preprocessing RAG: Before using
the RAG approach, documents are selected to establish a
knowledge base with crisis relevant documents. The BBK
provides freely accessible information on how to behave
before, during, and after a crisis. This information is used and
collectively saved as documents within a directory, enabling
the index creation for the RAG. In this paper, 36 crisis
documents were manually selected containing general crisis
advisories, emergency tips and crisis-specific information,
e.g., on how to behave within a storm. All the documents are
official government information from the BBK [13]. A vector-
based indexing technique is utilized, transforming documents
into embeddings. As the documents can become large, they
are chunked in smaller pieces of a maximum of 1024 tokens.
This token size results from the usage of the default tokenizer
”cl100k” from tiktoken [15] and the default chunk size within
”llama index” [16]. This chunk size and tokenizer is used
as a starting point and can be adapted through the llama
index library if it is required. Too large chunks result in
too much information in the embedding, while too small
chunks loose the surrounding context. This vector-based
index captures semantic relationships between documents,
enabling retrieval. Upon initialization, there is a check for a
previously persisted index of government documents. If none
is found, a new index is created by reading all documents
within the specified directory, assigning metadata such as
crisis stage (preparedness, response, or recovery) to each
document. This metadata is useful for filtering content to only
the most important segments. The metadata is assigned to
each document through an automated classification process.
For this purpose, a LLM gets document titles and the content
as input, to categorize each document in the corresponding
crisis stage (preparedness, response, recovery). This automatic
metadata assignment using LLMs was implemented to ensure
seamless integration of new documents in the system, which
normally would require manual metadata assignment for each
document. Moreover, the metadata includes keywords of the
document which are extracted using keyword extractor in
llama index. Once the index is loaded, the RAG approach
can be used to retrieve relevant and official crisis information
using a LLM.

In Summary, this RAG approach combines forecasted
grids, citizen statuses, and official government directives into
natural-language warnings. Moreover, citizens can establish a
chat, to inform themselves about crisis relevant information.

b) Evaluation of the RAG-Based Approach: The
evaluation of the RAG-based approach is conducted based
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Fig. 4. Design and Storm Warning generated by the RAG-based approach

on three distinct scenarios: A citywide blackout, a storm in
the city, and a citizen preparing for a potential upcoming
crisis. Within each of these scenarios, three different citizen
situations are defined, representing different contexts of
the citizen. For each citizen situation in every scenario,
the RAG-based approach is queried five times to generate
relevant information relating to the citizen’s current situation.
This evaluation approach ensures diversity across scenarios
and user situations while accounting for the inherent non-
deterministic nature of LLMs.

For the implementation, the GPT-4o model was accessed
via the OpenAI API [17]. The retrieval step was executed with
a ”temperature” setting of 0 to ensure deterministic behavior
in crisis document retrieval. In contrast, the grounding step
utilized a ”temperature” of 0.2 to enable a more flexible yet
strictly compliant formulation of warnings while adhering to
the constraints specified in the system prompt. Additionally,
the embeddings required for the RAG process were generated
using OpenAI embedding models.

A qualitative evaluation of the warnings generated for
citizens was conducted. Since the RAG output undergoes
a grounding step to enforce compliance with the required
format for warnings, individual warnings are qualitatively
assessed against the requirements outlined by the BBK of
Table I. This step ensures that the generated warnings meet
official standards and are suitable for practical application.
More specifically, three warning messages are qualitatively
evaluated based on official guidelines for warning message
formulation provided by the BBK [13]. Table II presents
an overview of the guideline criteria met or unmet for
Warnings 1–3. Then, each warning is analyzed individually

to highlight specific strengths and areas for improvement.
The storm warning generated by the RAG system aligns
with multiple criteria outlined in the BBK guidelines for
effective crisis communication (see Fig. 4). The warning
explicitly identifies the type of crisis (i.e. ”Storm Warning”)
and specifies the date/time (i.e. January 25, 2025, 11:48 PM),
fulfilling requirements under Crisis Identification (Guideline
3) and Precision (Guideline 13).

By stating that the user is directly affected, the message
adheres to Target Groups (Guideline 2), as it personalizes
the warning for citizens in the storm’s path. The behavioral
advice is a key strength, addressing Action Recommendations
(Guideline 4) with specific, actionable steps. These
instructions are tailored to mitigate risks from flying
debris, structural damage, and glass shattering, reflecting
Relevance of the Warning (Guideline 11). The inclusion of an
emergency contact (”call 112”) and advice to monitor media
further supports Consistency (Guideline 5). The Text Structure
(Guideline 9) is logical, progressing from threat description
to protective measures. Readability (Guideline 10) is ensured
through simple, direct language (e.g. ”Expect strong winds”),
avoiding technical jargon (Guideline 16). The warning’s
short length satisfies Text Length (Guideline 12), while its
neutral tone aligns with Objectivity (Guideline 14). Moreover,
references to Additional Information (Guideline 6) are also
provided with the suggestion to turn on the radio or television.

Two limitations are notable. Firstly, the warning does not
explicitly identify the issuer (Guideline 1), reducing trans-
parency. While the note mentions automated generation via
LLMs, it omits reference to an authoritative entity (e.g., mete-
orological service), which could affect credibility. Moreover,
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TABLE II
EVALUATION OF THE THREE WARNINGS AGAINST 20 GUIDELINES

# Guideline At-Home Danger Unprotected Outside Driving Into Storm
1 Issuers/Senders ✗ ✗ ✗
2 Target Groups ✓ ✓ ✓
3 Crisis Identification ✓ ✓ ✓
4 Action Recommendations ✓ ✓ ✓
5 Consistency ✓ ✓ ✓
6 Additional Information ✓ ✗ ✗
7 Updates ✓ ✓ ✓
8 All-Clear Messages ✗ (✓) (✓)
9 Text Structure ✓ ✓ ✓
10 Readability ✓ ✓ ✓
11 Relevance of the Warning ✓ ✓ ✓
12 Text Length ✓ ✓ ✓
13 Precision ✓ ✓ ✓
14 Objectivity ✓ ✓ ✓
15 Sentence Construction ✓ ✓ ✓
16 Word Choice ✓ ✓ ✓
17 Spelling and Grammar ✓ ✓ ✓
18 Transparency ✓ ✓ ✓
19 Highlighting ✓ ✓ ✓
20 Warning Words ✓ ✓ ✓

the warning is no All-Clear message as the citizen is directly
affected within the current situation.

V. CONCLUSIONS AND FUTURE WORKS

The paper has dealt with early warning of crisis events in
urban areas. In particular, a distributed collective intelligence
system integrating heterogeneous data sources within an
AI-based architectural model has been proposed, so as to
enable a more effective and dynamic communication with
the users, centered on they specific needs and provided
information. A grid approach was employed to model the
environment as well as evaluate the evolution of the reference
crisis event, while a LLM was trained, using government
documents and official guidelines, to support the natural
language processing tasks and thus automate and dynamize
the communication process with users. The model has been
tested by simulating a crisis situation in the urban area of the
city of Darmstadt. The results of the qualitative assessment
have shown its capability to generate tailored information to
help the citizens during the emergency based on their current
state, while also respecting the guidelines and remaining
compliant with government directives.

Future work includes (i) refining the concepts through for-
mal notation, (ii) deepening the experimentation and address
privacy of citizen-generated reports, as well as (iii) providing
a quantitative evaluation of the system, also assessing the
viability of lightweight AI alternatives (e.g., distilled LLMs).
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