
On the Prediction of Aerosol‐Cloud Interactions Within a
Data‐Driven Framework
Xiang‐Yu Li1 , Hailong Wang1 , TC Chakraborty1, Armin Sorooshian2, Luke D. Ziemba3 ,
Christiane Voigt4 , Kenneth Lee Thornhill3 , and Emma Yuan1,5

1Pacific Northwest National Laboratory, Richland, WA, USA, 2Department of Chemical and Environmental Engineering
and Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA, 3NASA Langley
Research Center, Hampton, VA, USA, 4Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft‐ und Raumfahrt
(DLR), Oberpfaffenhofen, Germany, and Institute for Physics of the Atmosphere, Johannes Gutenberg‐University Mainz,
Wessling, Germany, 5Hanford High School, Richland, WA, USA

Abstract Aerosol‐cloud interactions (ACI) pose the largest uncertainty for climate projection. Among
many challenges of understanding ACI, the question of whether ACI can be deterministically predicted has not
been explicitly answered. Here we attempt to answer this question by predicting cloud droplet number
concentration Nc from aerosol number concentration Na and ambient conditions using a data‐driven framework.
We use aerosol properties, vertical velocity fluctuations, and meteorological states from the ACTIVATE field
observations (2020–2022) as predictors to estimate Nc. We show that the campaign‐wide Nc can be successfully
predicted using machine learning models despite the strongly nonlinear and multi‐scale nature of ACI.
However, the observation‐trained machine learning model fails to predict Nc in individual cases while it
successfully predicts Nc of randomly selected data points that cover a broad spatiotemporal scale. This suggests
that, within a data‐driven framework, the Nc prediction is uncertain at fine spatiotemporal scales.

Plain Language Summary Ambient aerosol particles act as seeds for ice crystals and cloud droplets
that form clouds. Both aerosols and clouds regulate the energy and water budgets of the Earth via radiative and
cloud micro/macro‐processes. This is the so‐called aerosol‐cloud interactions (ACI). ACI remains the source of
the largest uncertainty for accurate climate projections, due to incomplete understanding of nonlinear multi‐
scale processes, limited observations across various cloud regimes, and insufficient computational power to
resolve them in models. Quantifying the relation between the cloud droplet (Nc) and aerosol (Na) number
concentration has been a central challenge of understanding and representing ACI. In this work, we tackle this
challenge by predicting Nc from observations made during the Aerosol Cloud meTeorology Interactions oVer
the western ATlantic Experiment (ACTIVATE) using machine learning models. We show that the
climatological Nc can be successfully predicted despite the strongly nonlinear and multi‐scale nature of ACI.
However, the observation‐trained machine learning model fails to predict Nc at fine spatiotemporal scales.

1. Introduction
Atmospheric aerosols regulate Earth's energy budget directly via scattering or absorbing solar radiation (Bellouin
et al., 2020; Seinfeld et al., 2016) and indirectly via acting as the seeds of cloud droplets, through which aerosols
can alter cloud microphysical and macrophysical properties (Albrecht, 1989; Twomey, 1974). Clouds modulate
Earth's energy budget and water cycle (including precipitation), which, in turn, affect the sink, source, and
transport processes of aerosols. This interplay between aerosols and clouds is the so‐called aerosol‐cloud in-
teractions (ACI). ACIs remain the largest source of uncertainties in numerical models for accurate climate
projections (Bellouin et al., 2020; Bock et al., 2020; Ghan et al., 2016; Seinfeld et al., 2016) due to poor un-
derstanding of the governing processes, scarce observations, and limited computational power to resolve ACIs at
native scales in numerical models. ACIs are strongly nonlinear and involve multi‐scale processes with nm‐sized
aerosols, km‐sized clouds, and hundreds of km‐sized weather systems and large‐scale circulations. Simulating
ACIs over such a wide scale range at the native scales of all the physical processes is intractable. In addition, our
current physical understanding of these physical processes is incomplete. For example, the physical mechanism of
the collision‐coalescence of particles that is critical for precipitation and aerosol budget is still not fully under-
stood (Grabowski & Wang, 2013; Li et al., 2020).
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Among many challenges of understanding and quantifying ACI, the question of whether ACI can be deter-
ministically predicted has not been explicitly formulated or asked. It is possible that, in the context of our state‐of‐
the‐art measurement techniques and modeling tools, the intrinsically chaotic and stochastic characteristics of the
atmospheric systems dominate the quantification of ACI. Here, stochasticity is a relative concept that largely
depends on the entropy of a system, that is, howmuch we know about a system (Boltzmann, 2022). Ideally, ACI is
deterministic in nature, that is, for a given ambient condition, if we can predict the spatiotemporal evolution of
aerosol and droplet size distributions, including cloud‐nucleating attributes of aerosols, we would be able to
determine the macroscopic response of clouds (e.g., liquid water path and cloud fraction adjustment) to micro-
scopic perturbations (e.g., aerosol number concentration). Unfortunately, predicting the spatiotemporal evolution
of aerosol and droplet size distributions at the native process‐level scales from first principles is beyond the
horizon. An intermediate approach is to determine if ACI is deterministic or stochastic at certain spatiotemporal
scales within our current understanding of ACI and available physics‐based or data‐driven models. Both the
condensation and the collision‐coalescence processes of cloud droplets are shown to be stochastic (Li, 2018; Li,
Mehlig, et al., 2022) at their native spatiotemporal scales. However, these studies only focus on part of ACI
pathways and their stochasticity cannot be generalized to ACI for the following reasons: 1. Interactions among
these cloud processes and aerosol processes are missing; 2. The mean state of ACI is not represented because of
limited spatiotemporal scales.

The physics behind ACI is far from being fully explored and understood, so existing physics‐based models
established upon governing equations for known physics are unexpected to capture all observational character-
istics of ACI, not even mentioning the unresolved part of known physics due to computational constraints. We
now face the longstanding dilemma that considering all the known physical interactions across scales from nm‐
sized aerosols to hundreds of km‐sized circulations is not feasible and focusing on part of the ACI pathways is
incomplete. To tackle this dilemma and examine the seemingly stochastic prediction (or indeterminable part in
physics‐based models) of ACI, instead of pursuing the causality behind ACI at limited scales, here we focus on a
phenomenological description of ACI based on observations and data‐driven models. Specifically, we use the
models to predict the droplet number concentration Nc from observed aerosol number concentration Na, chemical
components of aerosol particles, ambient thermodynamics, and turbulence, as these factors contribute the most to
ACI metrics according to our current scientific understanding of ACI. This is done by predicting the Nc from the
opportune data set afforded by Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment
(ACTIVATE) field measurements (Sorooshian et al., 2019) using a data‐driven random forest regression model
(RFM) (Breiman, 2001).

For context, we first provide a brief summary of relevant ACI results in terms of Na–Nc relation for the
ACTIVATE region. Dadashazar et al. (2021) showed that Nc peaks in winter in contrast to Na that peaks in
summer, due to stronger ACI in winter such that for a given number of aerosol particles more can activate into
cloud droplets. Subsequent studies showed that seasonally, updraft velocities and turbulence (i.e., dynamics
driving Na activation) are generally stronger in winter (Brunke et al., 2022), but that microphysical/chemical
attributes may be more important within a season. Also, the susceptibility of Nc to Na is suspected to be stronger
farther offshore of the U.S. East Coast over more remote oceans (Sorooshian et al., 2019). Processes‐level
modeling studies of ACI for individual cases using large‐eddy simulations have shown case‐dependent chal-
lenges and uncertainties in predicting Nc (Li et al., 2023, 2024) from available Na measurements along with
information of aerosol chemical attributes and meteorological conditions, which motivates us to study ACI over a
wider spatiotemporal range than individual cases.

2. Methods
2.1. Observation as Training and Validation Data for the RFM

To study ACIs in marine boundary‐layer clouds, 179 research flights were carried out between 2020 and 2022
using a dual‐aircraft approach during the ACTIVATE campaign over theWestern North Atlantic Ocean (WNAO)
region (25° − 50°N, 60° − 85°W). TheWNAO region is characterized by large natural and anthropogenic aerosol
variability, diverse meteorological conditions, and different low‐cloud regimes, which is ideal for studying ACI
and for collecting unprecedented observations of aerosols, clouds, and meteorological states (Corral et al., 2021;
Painemal et al., 2021). ACTIVATE's low‐flying Falcon HU25 sampled vertical profiles by performing below
cloud‐base (BCB), above cloud‐base (ACB), below cloud‐top (BCT), and above cloud‐top (ACT) flight legs, that
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is, using either a stairstepping flight strategy or “wall” strategy involving stacked level legs (Sorooshian
et al., 2023). In situ aerosol properties and cloud microphysical properties were measured during the BCB and
ACB/BCT flight legs, respectively. In this study, we use all the in situ measurements of aerosol and cloud
properties, turbulence, and thermodynamics during the ACTIVATE campaign.

Aerosol particles with diameter between 3 − 100 nm and larger than 100 nm BCB were measured by a Scanning
Mobility Particle Sizer (SMPS) and a Laser Aerosol Spectrometer (LAS), respectively (Moore et al., 2021). Mass
concentrations of major aerosol chemical components (e.g., sulfate, nitrate, organics, ammonium, chloride) are
measured by an Aerodyne High Resolution Time‐of‐Flight Aerosol Mass Spectrometer (HR‐ToF‐AMS)
(DeCarlo et al., 2008). The cloud microphysical properties (e.g., Nc) were measured by the fast cloud droplet
probe (FCDP) for cloud droplets with diameter ranging from 3 − 50 μm (Kirschler et al., 2022, 2023). A list of
data and the corresponding instruments are shown in Table S1 in Supporting Information S1. Clouds are defined
using the threshold of Nc ≥ 20 cm− 3, LWC≥ 0.02 gm− 3, and effective diameter deff ≥ 3.5 μm. A more compre-
hensive description and discussion on ACTIVATE measurements and instrument details are provided by Sor-
ooshian et al. (2023).

As we aim to predict Nc, all measurements are synced to FCDP‐Nc measurements. The wind speed measurements
are synced to FCDP‐Nc measurements spatiotemporally by averaging them around each FCDP‐Nc data point at a
given time over a window size of 20 (data points) as the sampling rate of the wind speed measurements and
reported FCDP data is 20 and 1 Hz, respectively. Syncing Na and non‐refractory mass concentration (mX) of
aerosol chemical components to FCDP‐Nc measurements are more challenging because they were not strictly
collocated at the native sampling frequency (i.e., aerosols sampled during BCB flight legs and cloud microphysics
measured during ACB or BCT flight legs). We overcome this challenge by averaging Na and mX over all BCB
legs of each flight, assuming that aerosols BCB are representative of sampling region. Other than the collocation
reasoning, this syncing strategy is justified by the fact that aerosol measurements (AMS, SMPS, and LAS) at each
BCB flight leg only lasted for ∼3 minutes for a flight (∼30 minutes for a entire flight with ∼10 BCB sampling
legs; see Figure S1 in Supporting Information S1). Even though this syncing strategy ignores aerosol transport
during BCB‐leg sampling, the statistical properties of aerosols over the measurement domain are well repre-
sented. The vertical velocity fluctuation w′ = w − 〈w〉 (the same for u′ and v′) is calculated from the native 20 Hz
data for each flight leg, where 〈w〉 is obtained. Overall, the training and validation data for the machine learning
(ML) model are based on subsets of a sample size of 69,159 with a sampling rate of 1 Hz.

Another challenge of using the in situ aircraft measurements as the training and validation data for the ML model
is to find a physical spatial scale that can represent the characteristic scales of aerosols and cloud droplets of the
targeted cloud systems. This is because the aircraft performs measurements of aerosol and cloud droplet prop-
erties with a speed of about 100m s− 1. The 1‐Hz data corresponds to a length scale of 100 m, which is too small to
represent typical length scales of boundary‐layer cloud systems. To work around this issue, we perform a running‐
average of the input data and examine the r2 validation score as a function of the running‐average window size.
The r2 saturates (hits 0.99) at a window size of 20 data points (from 1‐Hz data) as listed in Table S2 in Supporting
Information S1 (the corresponding comparison of Npredicted

c and Nobs
c is shown in Figure S4 in Supporting In-

formation S1). Therefore, we apply a running‐average window of 20 (data points) to all the 1‐Hz observational
data to obtain smoothed data sets for training and validating the RFMmodel. More importantly, this window size
corresponds to a length scale of 2 km that is more representative of the length scale of cloud systems being studied
here. The 20‐s running average could lead to data leakage and the resulting overfitting of RFM.

2.2. Random Forest Model

One of the objectives of this study is to predict Nc from in situ measurements of aerosol (Na and mX), turbulence
(u′, v′, and w′), and thermodynamics (T and qv), that is, to construct a function representing

Nc = G(mX ,Na,w′,u′,v′,T,qv,x,θz). (1)

here x and θz denote the location (latitude, longitude, and altitude) and zenith angle, respectively. The random
forest model (RFM) is chosen to achieve this because it is effective in prediction (Breiman, 2001). In addition, the
RFM has the advantage of accurate prediction of nonlinear complex systems and easy implementation and
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physical interpretation of the prediction compared to other machine learning methods (e.g., neural network or
deep leaning techniques) (Breiman, 2001). It is also fast due to the parallelizability in building decision trees.

To determine the feature importance of predictors for Nc, we adopt the permutation feature importance (PFI)
technique. PFI measures the contribution of each feature to a fitted model's statistical performance on a given
tabular data set. This technique is particularly useful for nonlinear estimators, and involves randomly shuffling the
values of a single feature and observing the resulting degradation of the model's score. We note PFI does not
reflect the physical importance of a feature to a complex system but reflects how important this feature is for a
particular data‐driven model (Breiman, 2001; Pedregosa et al., 2011). It is, however, important to place the PFI
based on physical understanding of a complex system, to better understand what the model is really capturing, as
we will discuss for the ACI studied here. We cross validate the permutation importance using the K‐fold (10 fold)
and Monte‐Carlo (50 random sampling) validation method. The relative root mean square error (RRMSE) and
mean normalized error (MNE) are adopted to evaluate the predictions.

RFM has been widely used in Earth Systems and shown to be a robust tool for prediction and inference (Arjunan
Nair & Yu, 2020; Chakraborty & Lee, 2021; Chen et al., 2022; Dadashazar et al., 2021; Michel et al., 2022). Here
we limit our discussion on the application of RFM to ACI. Arjunan Nair and Yu (2020) showed that RFM is
highly robust in predicting number concentration of cloud condensation nuclei (CCN) with the atmospheric state
and composition variables as predictors from a global chemical transport model and can learn the underlying
dependence of CCN on these predictors. Subsequent works further show that RFM can learn aerosol size in-
formation (Nair et al., 2021) and can reduce uncertainties of climate models in predicting particle number
concentration and radiative forcing associated with ACI (Yu et al., 2022). We use the RFM implemented in open‐
source scikit‐learn (Pedregosa et al., 2011).

The coefficient of determination, r2 score, converges at hyperparameters maximum tree depth = 30, number of
trees = 98, and test size = 0.1 (i.e., 10% data for the validation and 90% data for the training), which are used for
all the training in this study.

3. Results
3.1. A Successful Data‐Driven Prediction of Nc

To quantify the ACI over the WNAO region climatologically, we start with predicting Nc using all physically
related measurements from the ACTIVATE campaign. The RFM can successfully predict Nc from the predictors
mX ,Na,w′,u′,v′,T,qv,x,θz with r2 = 0.99 using a 20‐point running‐average window (see detailed discussion in
Section 2.1) as shown in Figure 1a. This is remarkable considering that the Nc depends on highly nonlinear and
multiscale processes. A natural question arises as to what is the relative importance of each predictor for esti-
mating Nc. As shown in Figures 1d and 1g, the dominant predictors are number concentration of large‐size (≥100
nm) mode aerosol particles Na,LAS, mass fraction of nitratemNO3

, and water vapor mixing ratio qv. The importance
of all three quantities to the Nc prediction is consistent with our physical understanding. Less straightforward is
the importance of mNO3

, as the dominant anthropogenic chemical component contributing to aerosol activation is
SO4 conventionally. In the ACTIVATE study region, sulfate and organics are the most dominant submicron
species, with the latter having more of an offshore gradient as compared to sulfate which has strong influence
from ocean biogenic emissions such as dimethylsulfide even over the remote ocean. However, we note that the
seasonal variation of the mNO3

follows that of Nc over the WNAO region (Dadashazar et al., 2022). Even though
nitrate may not be as abundant by mass as sulfate and organics in any given season over the WNAO (Dadashazar
et al., 2022), it thermodynamically favors colder conditions, which is why it is the only species (vs. sulfate and
organics) exhibiting higher absolute concentrations in winter as compared to other seasons (Corral et al., 2022),
which may explain its strong association with Nc. We note that Nc is successfully predicted from observations at
different locations of clouds where highly different physical processes affecting Nc budget are at play, in part
because the vertical structure of Nc does not vary strongly within clouds. On the other hand, this also speaks to the
point that the well‐trained RFM has the ability to predict Nc based on spatially separated but physically related
variables.

So far, we have showed that the RFM model is able to successfully predict Nc from all the available measured
predictors and is able to identify top contributors to the Nc prediction, which motivates us to explore whether this
holds with fewer physically motivated predictors in the spirit of dimension reduction. We first predict Nc by
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removing the physically less important or covariant quantities, the horizontal wind speed u&v, geo‐coordinate x,
and the zenith angle θz, from the predictors pool. This again yields a successful prediction of Nc with r2 = 0.95
(Figure 1b) and retains Na,LAS, mNO3

, and qv as the main contributors (Figures 1e and 1h). Note that even though
the latitude is an important predictor (Figure 1d) and related to the cloud development, we drop it here to focus on
the well‐established Köhler theory (Köhler, 1936). Ideally, the Nc would be determined by chemical components
of aerosols mX , aerosol number concentration Na, the vertical component of turbulence w′, and the thermody-
namics (T and qv) according to the Köhler theory (Köhler, 1936). However, knowing the mass fraction of X is
challenging for numerical models and observations. We therefore drop mX from the predictor pool and predict Nc
only from Na, T, qv, and w′. The prediction of Nc and variable importance is again remarkably successful
(Figures 1c, 1f, and 1i). We further examine whether the successful prediction of Nc and the feature importance
are ML model dependent by applying XGBoost to the data set. The Nc prediction and the corresponding feature
importance from the XGBoost are nearly identical (Figures S10c, S10f, and S10i in Supporting Information S1) to
the RFM, suggesting that our results are independent of state‐of‐the‐art tree‐based ML models. In addition, we
cross validate the feature importance by adopting the Shapley additive explanations (SHAP) analysis that offers
local explainability and Shapley additive global explanation (SAGE) that offers global explainability. Both SHAP
and SAGE provide consistent feature importance from both RFM (Figure S14 in Supporting Information S1) and

Figure 1. Binned scatter‐plot of Nobs
c and Npredicted

c from different predictors (a): Nc = G(mX ,Na,w′,u′,v′,T ,qv,x,θz) , that is, all available measurements;
(b) Nc = G(mX ,Na,w′,T ,qv) , and (c) Nc = G(Na,w′,T,qv) . Color bar shows the counts of data points in each hexagonal bin. The red dashed line represents the one‐to‐
one line. The solid black line represents the linear regression relation y = ax + b with a and b being the regression coefficients. The test size of the validation data is
represented by n in the legend of the scatter‐plots. Error bars in the average permutation feature importance (PFI) plots represent σ deviation of PFI from the 10‐fold and
Monte‐Carlo cross validations.
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XGBoost (Figure S15 in Supporting Information S1) as compared to the PFI, suggesting that Na and qv indeed
determine the Nc prediction within our data‐driven framework.

Even though the top predictors are consistent for different predictor pools and ML models, we cannot conclude
the causal relation between Nc and the top predictors Na and qv because the feature importance may reflect the
behavior of ML models instead of the behavior of the training data set (Silva & Keller, 2023).

3.2. Dependence of Nc Predictability on Sampling Strategy of Predictors

With the successful prediction of Nc from the observational data in hand, we can now examine how the Nc
prediction is scale‐dependent within the data‐driven framework and its implications on our understanding of
multiscale ACI processes. Recall that the observation‐RFM is trained and validated using 3‐year in situ mea-
surements, which represents a statistical Nc prediction for the WNAO domain over multiple years. The scale‐
dependency of ACI metrics can be pursued by examining the predictive ability of the observation‐RFM for in-
dividual flights. This is achieved by predicting Nc for single‐day events using observation‐RFM trained and
validated from the 3‐year in situ measurements excluding the targeted flights. Such observation‐RFM fails to
predict Nc for all four specific events we choose to examine, including two wintertime cold‐air outbreak cases
observed on 01 Mar and 28 Feb 2020, respectively, and two summertime cumulus cases on 02 and 07 June 2021,
respectively, as shown in Figures 2a–2d. We further predict Nc for the combined 4 cases using the observation‐
RFM trained and validated excluding these 4 cases to consider the seasonal variations in aerosol and clouds to
some extent. The observation‐RFM again fails to reproduce the observed Nc from the observational inputs
(Figure 2e), as the same by using XGBoost (Figure S11 in Supporting Information S1). The same for all each
individual cases with sufficient data points (Figure 2f). To study whether this failure is case‐dependent or generic,
we predict Nc for the continuous data set with different sample sizes using observation‐RFM trained without the
corresponding subsample. Excluding the target subsample in the training data can mitigate the potential over-
fitting. Data sets with different sample size n represent either a single event or a few randomly selected events.
The samples are sequential series of n data points. The Nc predictability is quite low for the n = 30 data sets as the

Figure 2. Nc predicted from the individual observed cases (01 Mar and 28 Feb 2020 and 02/07 June 2021) using the observation‐RFM (no corresponding observed case
in the training data set) is compared to the FCDP‐Nc. The same averaging strategy is applied to the validation data for each case.
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r2 values vary randomly from ∼0.0 to ∼1.0 with a mean value of 〈r2〉 = 0.31 (Figure 3 and Figure S12 in
Supporting Information S1), which echoes the low‐performance Nc prediction for the specific cases in Figure 2.
The 〈r2〉 does not improve for n≥ 200, that is, continuous multiple events (i.e., consecutive data points), and
surprisingly stays almost the same for different durations (n). Physically, the failure of predicting the local Nc
could be due to the underrepresentation of cloud regimes in the RFM as the corresponding data (i.e., continuous
subsamples) are exluded from the training data. In other words, the individual cases, consisting of localized or
concentrated data points, have different determining factors for the Nc prediction from the one derived from the
entire data set. This motivates us to explore the predictability of RFM for global (i.e., the entire data range) Nc of
our data set. In contrary to the continuous sampling for a sub‐dataset with a fixed sample size, we randomly
sample a sub‐dataset from the 3‐year observational data set. The predicted Nc from these randomly sampled sub‐
datasets reproduce the observed Nc remarkably well with r2 > 0.9 (Figure 4 and Figure S13 in Supporting In-
formation S1). r2 = 0.99 even for the sub‐dataset with a sample size of n = 0.0005N ≈ 35 with N being the total
number of 3‐year data points. The score for sub‐dataset with this sample size is statistically significant as can be
seen from r2 for 1,000 realizations (Figure S5 in Supporting Information S1). The successful prediction of Nc
globally compared to the locally failed prediction regardless of the sample size shows that the Nc prediction is
uncertain for short timescales and is only physically and statistically meaningful for long timescales. Namely, the
cloud droplet response to aerosols, as one of the ACI metrics, appears to be more uncertain at the shorter
timescales (or within a limited sampling area). We note that it is the spatiotemporal range of predictors that
determines the Nc prediction instead of the number of events.

3.3. Observation‐RFM as an Emulator for the LES Microphysics

Cloud microphysical processes for ACI are challenging to represent even in Large‐eddy simulations (LES; see
section SII for details of LES configuration) (Li et al., 2023; Li, Wang, et al., 2022). In this section, we tackle this
challenge by using the observation‐RFM as an emulator for the LES microphysics. Important turbulence scales
for cloud formation can be resolved in the LES. In addition, we have shown that the observation‐RFM can
successfully predict observed Nc in Section 3.1. It is natural to ask whether the observation‐RFM as an emulator

Figure 3. r2 of Nc = G(Na,w′,T ,qv) predictions from continuous sampling with different sampling size n using the
observation‐RFM trained without the subsample. The solid and dashed lines represent mean (denoted as 〈r2〉 in the title of the
subplots) and median values of r2, respectively. Note that the samples are drawn from running‐averaged data set with a window
size of 20 data points.
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can mitigate the uncertainties of cloud‐microphysics representation in LES. We use LES from two cold‐air
outbreak cases (Li et al., 2023; Li, Wang, et al., 2022) and two summertime marine cumuli cases (Li
et al., 2024) to represent different aerosol conditions, meteorological states, and cloud regimes over the WNAO
region. w′, T, qv, and Na from LES are taken as predictors to predict Nc using the observation‐RFM. The
observation‐RFM fails to predict Nc for the four LES cases (Figure S8a in Supporting Information S1), which is
consistent with the scale‐dependent prediction of ACI within this data‐driven framework, as discussed in Sec-
tion 3.2. We further evaluate the LES‐Nc against Nobs

c for completeness. The LES fails to reproduce the observed
Nc at the same flight‐leg levels, as indicated in the four LES cases with r2 ≈ 0 (Figure S8b in Supporting In-
formation S1). This can be attributed to the following three main reasons: 1. LES with the periodic boundary
conditions in horizontal directions cannot simulate the observed lateral variation of Nc, which makes the com-
parison of Nc (spatiotemporally point‐to‐point comparison) between LES and observations challenging; 2. Pre-
scribed aerosols in the LES cannot represent the fine‐scale spatiotemporal variability of aerosol size distribution;
and 3. The single‐value bulk hygroscopicity for all size modes is not representative of reality. The resulting Nc is
expected to deviate from observations. Despite the poor performance of LES microphysics and the observation‐
RFM in reproducing the observed Nc for individual cases, it is still informative to compare NLES

c and Npredicted
c

directly. We find that they are nearly uncorrelated to each other (Figure S8c in Supporting Information S1).

4. Discussion and Conclusion
Quantifying aerosol‐cloud interactions (ACI) is very challenging due to the nonlinear multiscale nature and the
incomplete understanding of related physical processes. Coarse‐resolution Earth System Models only model a
mean state of ACI at the model grid‐scale that lacks accurate representation of physical processes (Morrison
et al., 2020), while the small‐scale LES simulates incomplete physical processes of ACI and only offers partial
representation of ACI (Li et al., 2023, 2024). An imminent question would be whether the ACI is stochastic or
deterministic within our current modeling and observation capability. Many studies (Bellouin et al., 2020;

Figure 4. Test of the input sample size for the observation‐RFM trained without the corresponding subsamples. The same features Na,w′,T ,and qv are used as in
Figures 2 and 3. The data points for each subsample are randomly selected from the averaged full data set and are excluded from the training data set. N = 69,159 is the
size of the full data set.
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Seinfeld et al., 2016) have alluded to this question but fallen short in explicitly formulating and answering it. In
this study, we explore the stochastic characteristics of ACI by applying a widely used machine leaning (ML)
technique, Random Forest Model (RFM), to unprecedented 3‐year in situ aircraft measurements to predictNc over
the western North Atlantic. Here, we focus on the response of Nc to aerosols properties, thermodynamics, and
turbulence. The RFM can successfully predict the climatological Nc using the measured aerosol number con-
centration Na, w′, temperature T, and water vapor mixing ratio qv despite the strongly nonlinear aerosol and cloud
microphysical processes, for example, aerosol activation and condensation and collision‐coalescence of cloud
droplets. However, the observation‐trained RFM (observation‐RFM) fails to predict Nc at shorter timescales that
only cover a limited number of flights. This suggests that within this data‐driven framework, the ACI is more
challenging to predict at the shorter timescales. In addition, case studies of ACI (Li et al., 2023, 2024) may only
represent a single realization of ACI for specific cloud regimes. Nevertheless, case studies are still useful for
testing new physical processes that are important to case‐dependent ACI metrics. We remark that the stochasticity
of ACI discussed here is based on inferred distribution of reality based on a set of observations by the data‐driven
RFM instead of on first principles. The successful global prediction versus the failed local prediction regardless of
the sample size likely relates to the fundamental nature of machine learning models. This includes how machine
learning models learn from the data distribution of the training sample and what that might mean for cases that are
usually not random sampling from those distributions.

Moving forward, one may study the stochasticity of ACI by applying data‐driven algorithms to multi‐field
campaigns covering a wider range of different aerosol conditions and cloud regimes. Other than the stochas-
ticity ofNc prediction, one may explore the stochasticity of cloud macrophysical responses to aerosols (e.g., liquid
water and cloud fraction adjustments to aerosol perturbations) within similar data‐driven modeling frameworks.

Data Availability Statement
The source code used for the simulations of this study, the Weather Research and Forecasting (WRF) model, is
freely available at Li (2023). The source code for the random forest model is publicly available at https://scikit‐
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html. ACTIVATE observational
data (Team, 2020) are publicly available at https://asdc.larc.nasa.gov/project/ACTIVATE.
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