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ABSTRACT

Descriptive logging of robotic actions requires a structured knowledge base that is capable
of describing a variety of information, ranging from task descriptions over object properties
to decision-making processes. Researchers have developed ontologies to structure robotic
knowledge and also providing a rich taxonomy of concepts. Integrating such an ontology
into an existing robotic framework remains a challenge, unique for different robotic contexts.
This thesis describes the work of integrating the SOMA ontology into the assistive robot
EDAN and building an algorithm for semantic logging of episodic memories.

This structured knowledge base not only allows ex-post evaluation of robotic experiments,
but also enables online algorithms to make sense of the robotic actions. Leveraging the
highly structured logging of task chains of the assistive robot EDAN, this thesis proposes a
light-weight algorithm to predict the next action a user might want the robot to take based on
the previously executed tasks, the available tasks, and the time of day. With privacy issues in
mind, the algorithm renounces any large-scale training. With the N-Gram algorithm, which
has been well established for next-word prediction, as a role model, this thesis proposes a
next-task prediction based solely on a chain of previously executed tasks.
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C h a p t e r 1

INTRODUCTION

Assistive robots have received significant attention thanks to their prospective ability to help
elderly people, as well as people with motor impairments, live their lives as self-determined
as possible. Assistive robots can help perform the necessary tasks, from taking a cup of
water over setting a table to cooking a meal. However, a big obstacle to overcome is an
often perceived mismatch between what the robot has to offer and what people expect and
require in usability. Although parts of this can be overcome by adding more functionality
to the robot, the perceived mismatch is partly due to imperfect communication of existing
functionality and a lack of considerations of user experience in robotic development (see
[10]).

With the very wide area of application for assistive robots on the one hand and the different
technical challenges provided by a variety of tasks in a human household, research is required
to balance both application-specific considerations and scalability for robotic frameworks.
This project focuses on two distinct, yet complementary, projects in this regard to bring both
of them together: The robot EDAN by the DLR and the SOMA ontology by the University
Bremen.

The German Aerospace Center (DLR) has developed the assistive robot EDAN, that is built
on top of a wheelchair for the very specific case of helping motor impaired people depending
on a wheelchair to autonomously execute tasks in a normal human household (see [53]).
The robotic arm is physically attached to the wheelchair and has been shown to be capable
of opening doors for the wheelchair to roll through, picking objects out of drawers or a
fridge, or placing drinks right next to a users mouth, allowing the user to drink from a straw
without the need to move their head. The internal knowledge representation of the robotic
framework has been adapted to support the different areas of research done with the robot
and has expanded over the years of research.

The SOMA ontology, developed by University Bremen, has followed the different approach
of modeling knowledge of robots and even non-robotic environments and activities done by
anyone. The ontology aims to provide a very general taxonomy of activities, their social and
physical relationships, and the objects involved (see [12]).

This work is building on both projects and proposes an interface between them, acknowl-
edging on the one hand the application-specific requirements of the EDAN framework and
the necessity to keep internal structures of objects and tasks to support all ongoing research
projects within the EDAN framework. While keeping the internal logic of the EDAN frame-
work, this project aims at leveraging the more general concepts of the SOMA ontology and
incorporating the EDAN concepts into the SOMA taxonomy.
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First, this allows the EDAN framework to take advantage of the SOMA concept of narrative-
enabled episodic memories (see [15]) and record robotic experiences in a form defined by
the SOMA ontology. Such a memory allows not only postprocessing of robotic experiments,
but also comparability of experiences by the EDAN robot with experiences by other robotic
frameworks that have been built ontop of the SOMA ontology.

Such a semantic log of robotic actions lies the foundation for this thesis to also propose a
task prediction algorithm that anticipates tasks that a user sitting in EDAN might want to
execute next. The semantic log of past actions allows the algorithm to predict next actions
without requiring any pre-training or leak of robot usage data to a third party. The algorithm
is able to run completely locally. By predicting the next actions, the proposed algorithm
can help users navigate through a larger list of available actions by ranking actions that have
been executed more often by the user in a similar situation higher than others.

In a different project, the work presented here has also been used to enable EDAN to
communicate its current and past states in natural language. The RACOON framework uses
modern large language models and a RAG system to read information, among others, from
the semantic log presented in this thesis and tell the user what happened at a specific point
in time (see [18]).

1.1 Contributions
This thesis aims at improving robotic help for people with motor impairment to allow them
to live in a self-determined way. This is done by two main contributions:

1. This thesis integrates the robotic framework EDAN with the ontology SOMA and
further develops them into a new knowledge representation for the EDAN robot,
which allows for a structured semantic logging of EDAN’s past actions in the form of
narrative-enabled episodic memories (NEEMs).

2. This log builds the foundation for a novel next task prediction algorithm, proposed in
this thesis, that is solely based on the chain of previously executed tasks, their context,
and their taxonomic relationships.

Some frameworks have already been developed using the framework presented in this thesis
and published independently, as shown in the conclusion chapter, Section 6.2 on page 66.

1.2 Thesis Outline
This thesis first introduces the reader to the preexisting frameworks of a) the robot EDAN
and b) the SOMA ontology. In Chapter 2, both frameworks will be presented in relation to
their respective fields of research. The following Chapter 3 introduces the field of ontology
matching and describes the process and challenges of integrating the SOMA ontology
into the EDAN framework. The thereby presented NEEM Logger algorithm automatically
integrates both knowledge representations and logs the environment as well as actions and
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decisions made by either the robot EDAN or the person sitting in EDAN. Chapter 4 builds
on the NEEM logger by suggesting an algorithm that predicts the next task a user sitting
in EDAN might want to execute. The algorithm has been evaluated using synthetic data
generated by large language models, with the results presented in Chapter 5. Finally, Chapter
6 gives a brief summary of the thesis and concludes with a reference to another paper that
has already made use of the NEEM Logger presented herein, as well as a future outlook.

1.3 About the use of AI in writing this thesis
The contents of this thesis have been developed by the author and the thesis has been written
by the author. To enhance readability, local Large Language Models have been used to
detect errors in grammar and sentence structure. No changes in this thesis were the result
of an AI alone. Every mistake regarding grammar or sentence structure detected by an AI
has been manually examined by the author and carefully checked and corrected. The author
claims full responsibility for all content of this thesis.
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C h a p t e r 2

BACKGROUND

2.1 The Assistive Robot EDAN
There are several reasons people develop or are born with various types of disability that
severely limit their ability to perform tasks that others might take for granted in their daily
life. Assistive robotics is part of robotic research that aims to help people with disabilities
achieve those tasks with the help of a robot and thereby try to help regain autonomy. This can
range from moving robots that can be externally controlled by disabled people to help them
perform some tasks to robotic prostheses or additional exoskeletons that are increasingly part
of the user itself. The latter requires a lot more automatic detection of the users intention, as
it is designed to seamlessly support the users movements, whereas external robots can lean
more in the direction of executing specific commands given by the user.

A DLR research group has developed an "EMG-controlled Daily Assistant" (EDAN) that
positions itself somewhere in between both categories [53]. It is designed for users who
do not have all their limbs or cannot use them, which limits their ability to perform basic
tasks of picking and moving in a normal household. EDAN is an electronic wheelchair
with an attached robotic arm (a Light-Weight Robot III) that can be controlled by different
input devices, such as joysticks or different Brain-Computer-Interfaces. The robotic arm
can perform tasks that non-impaired people could perform with their hands, like reaching
objects in front of the user or bringing objects to the user’s mouth stopping just at the right
distance without physically hurting them. The robotic arm is attached to the wheelchair in
which the user is sitting. An intuitive way of using the arm is to control it manually and
work towards the goal of enabling users to use the arm as if it were their own. Studies
have found that with training sessions of 1-2 hours per day, people can learn to effectively
control a robotic arm manually during a learning period of just three weeks. Afterwards, the
task execution time for manual control is very close to automatic task execution (see [29]).
However, manually controlling a robotic arm can be very difficult when it comes to finer
movements like closing the fingers or pouring some liquid from one container to another,
and is therefore tiresome to do all day. Even with enough training in manual mode, it takes
much more effort to manually execute a task with a robotic arm than to automate it. The
solution for the EDAN robot is to allow users to switch between different control modes.
If the user feels up for the task, they can activate manual control and move the robotic arm
with a joystick or EMG controller. This can be enhanced by a "shared control" mode (using
shared control templates, i.e. sct-files), which detects the action that the user is attempting
to execute and helps them execute that action by guiding the users manual controls: Similar
to a lane assistant, the shared control mode limits the degrees of freedom that a user has to
help them keep the robotic arm in the desired trajectory. An especially interesting example



6

Figure 2.1: Illustration of EDAN’s software components
©2020 IEEE. Reprinted, with permission, from Jörn Vogel et. al., EDAN: An EMG-
controlled Daily Assistant to Help People With Physical Disabilities, IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), Oct. 2020 [53]

for this is the task of pouring a liquid from one container (typically a bottle of some kind)
to another (typically a mug): The shared control mode allows the user to move forward
with the pouring task and internally calculates the correct position of the bottle to be above
the mug without spilling any liquid (see [47]). The robot internally calculates the desired
position for the thermos bottle in order to avoid spillage. In case the user is getting tired
of executing tasks manually, there is also an autonomy mode, where the robot takes full
control and executes tasks without the user’s help. The wheelchair is equipped with a tablet
computer that constantly updates the user with a set of technical information as well as
available actions. The user could, for example, use the tablet to click on the task to fetch a
glass of water. By that the user allows the robot to autonomously move the wheelchair to
the sink, grab a glass, fill it with water, and bring it up to the user’s mouth.

To accomplish such tasks, EDAN is equipped with a set of high-level software components
that allow the robot to perceive and store information about its surroundings and calculate
high-level information like a description of the task the user is currently performing, the
properties of the objects the user is interacting with, the availability of following tasks, and
so on. While a broader illustration of the different software components controlling EDAN
can be found in Figure 2.1, we will dive into three components that are most relevant for this
thesis:

2.2 EDAN’s Object Database (odb)
The robot EDAN is equipped with an object database (odb) (see [32]) that stores information
about known objects with which the robot is able to interact. The information can vary from
physical properties like bounding box information or the weight of the object over technical
information like recommended poses the robot should take when grabbing the object to
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1 <?xml version="1.0" encoding="UTF-8"?>
2 <object>
3 <name>thermos</name>
4 <author>...</author>
5 <derive>_bottle</derive>
6 <mass>0.1</mass>
7 <updir>0 0 1</updir>
8 <dimension>0.03 0.03 0.236</dimension>
9

10 <logic>
11 <code_snippet>pick_from_side_sct.yml</code_snippet>
12 <code_snippet>pour_sct.yml</code_snippet>
13 </logic>
14

15 ...
16

17 <geometry>
18 <display>thermosflasche.obj</display>
19 <collision>thermosflasche.obj</collision>
20 </geometry>
21

22 <grasping>
23 <graspset>edan_right_arm_power_clash.grasps</graspset>
24 <graspset>edan_right_arm_power_hit.grasps</graspset>
25 </grasping>
26 </object>

Figure 2.2: Example of a manifest.xml file for the object thermos , describing and linking all
information about an object in the odb.

high-level planning information such as information about the tasks EDAN can perform
with the object. From a technical point of view, the odb is a directory within the file
system, containing subdirectories for every object, where all object-related information can
be stored. The semi-structured character of the odb allows it to easily add new kinds of
information to the odb and even store image data inside the odb. The odb also introduces
an object hierarchy by requiring every object to at least have a manifest.xml file, that
may point to one or more parent objects. A manifest file looks something like the example
in Figure 2.2: It is an XML file that contains the name of an object, its potential parents,
physical attributes like its mass and dimensions, a list of tasks that can be performed using
the object, machine-readable instructions on how to grasp the object, and much more. All
technical information regarding an object is currently collected and stored by hand. Different
research projects currently explore ways to auto-generate the required data for interacting
with objects, like for example a project to derive suitable grasping positions from visual
data, therefore enabling the robot to grasp unknown objects (see [36]).

During EDAN’s runtime, a perception module films the environment and detects objects
that are visible to the cameras attached to the wheelchair of EDAN. Those objects instantiate
the classes defined by the odb in a belief state, called the world representation or the world
model. The world representation represents everything the robot assumes about its current
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environment and exposes the information to other software components (see [31]). Any
object that moves out of EDAN’s sight is immediately removed from the world representation,
resulting in an image of the surrounding that is limited to the directly accessible area. In the
current implementation, the belief state is not stored for later references at any point.

A task inference module accesses the belief state in the world representation to calculate the
available tasks based on a given world state. Using a PDDL reasoner, the EDAN framework
defines requirements for different tasks that need to be fulfilled before the tasks can be
executed. For example, a container can only be closed if it is currently open, and an object
can only be placed somewhere if the robot is first holding that object in its hand. Such
requirements, which are defined as part of the task definitions stored in the odb, are applied
to all objects available in the world representation, resulting in a list of available tasks. Based
on the distance between the robot and the different objects, as well as parameters such as
occlusion, the task inference module calculates a hierarchy for the available tasks from the
closest to the farthest (see [53], [31], [9]). This is the basis for a list of actions, shown to the
user on their tablet, that they can choose from in autonomy mode.

2.3 Modern Ontologies

"The term ontology has roots in philosophy and describes the study of being.
In the computer science domain, an ontology is a ’formal, explicit specification
of a shared conceptualization’, i.e. an abstract model of real-world concepts
that is represented in a computer-readable way and is shared by a group of
stakeholders. The definition is technology-independent; conceptually, even an
XML Schema could be interpreted as an ontology. While multiple ontology
languages are available, most ontologies are typically defined in the W3C Web
Ontology Language (OWL)." [46, p. 2643]1

The ontologies in the OWL standard by the World Wide Web Consortium (W3C) form a
graph in which nodes describe entities and edges describe the relationship between them.
The most relevant for the scope of this thesis are classes, which describe the general concept
of an object, individuals, which describe instances of classes, and object properties, which
describe the relation between both. In the same way that a graph is a set of edges and
vertices, an ontology is a set of entities and a list of labeled edges, i.e. relations, in the
form of triples. Such triples are related to natural language, as they correspond to the
form of (subject, predicate, object) (see [13], [42]). An example of a valid OWL
triple could be (Mug, isA, Thing) or (me, hasType, Person) , where Mug , Thing and
Person are classes, me is an individual and hasType and isA are object properties. Both
exemplary object properties also define very fundamental relations for ontologies, with isA
declaring one class to be the subclass of another class, and hasType declaring an individual
to be an instance of a class. However, those triples can also transport more domain-specific

1Building on [14], [23], and [19].
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information, such as (kitchenCleaning, involvesAgent, Edan) . In contrast to other
forms of hierarchical knowledge representation, ontologies allow entities to have multiple
super-classes. Quite in line with the philosophical background of ontologies, the topmost
class from which all other classes derive in OWL ontologies is the class Thing .

Entities in OWL possess an Internationalized Resource Identifier (IRI), which uniquely
identifies every entity. Those IRIs are built from the local name of an entity, such as
Mug or Person , and a prefix that identifies the domain defining the said entity. The
prefix and suffix are separated by a # symbol, resulting in an entity like Thing look-
ing like this: http://www.w3.org/2002/07/owl#Thing . Since these domains are usu-
ally a long string, an ontology can also define abbreviations for domains, such as the
domain of OWL specifications with the term owl: , resulting in the unique identifier
owl:Thing . This allows any ontology to define universally unique entities as well as
to define relationships between the local entities and some entities defined by other on-
tologies. An ontology can, for example, import another ontology and define its entities
solely as children, refining some distinctions that another ontology has already defined
(see [13]). So, to be precise, the triples mentioned previously usually look more like this:
(odb:kitchenCleaning, dul:involvesAgent, odb:Edan) .

The knowledge base of autonomous robots is often organized as an ontology. Not just in
the conceptual sense in which any kind of organized knowledge is, but in the well-defined
sense of an ontology following the OWL standard. While EDAN’s object database can (and
will for the rest of this thesis) be understood as a form of an ontology, it does not satisfy the
OWL standard but is a hierarchical organization system for defining objects, their parental
relationships, and other properties. This thesis seeks to find a way to enrich EDAN’s current
knowledge representation by making it satisfy the OWL ontology standard.

With formalized OWL ontologies building a common backbone for robotic knowledge bases,
the question about which ontology to use arises. In its fundamental idea, the semantic web,
for which W3C ontologies have been designed, aims at creating a common machine-readable
interface for knowledge throughout the world and introducing ontologies that use common
concepts, which should make collected data comparable. However, the idea of comparable
knowledge relies on researchers using the same ontology or, when using different ontologies,
on a formal definition of equivalencies of concepts in the different ontologies. Both directions
have been studied.

Unifying different ontologies to a single ontology used by different research teams has
been, among others, the project of the DOLCE ontology developers, who are also providing
the community with the better known ultra-light version DUL (see [21]), and an IEEE
consortium suggesting the upper ontology SUMO (see [44]). A study in 2011 has found the
ontologies DUL and IEEE’s suggestion SUMO to be the most widely used ontologies (see
[34]). Those ontologies aim at declaring many general relationships between entities. In
practice, they mostly function as so-called upper ontologies: Research laboratories define
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Term KnowRob 1/2 ROSETTA ORO CARESSES OROSU PMK
Objects Yes / Yes Yes Yes No Yes Yes
Environment map Yes / Yes No No No Yes Yes
Affordance No / Yes No Yes No Yes No
Action Yes / Yes No Yes Yes Yes Yes
Task No / Yes Yes Yes No No Yes
Activity No / No No No Yes No No
Behavior No / No No No No No No
Function No / No No No No No Yes
Plan No / Yes No Yes No No No
Method No / Yes No No No No No
Capability Yes / Yes Yes No No No Yes
Skill No / No Yes No No No No
Hardware Yes / Yes Yes Yes No Yes Yes
Software Yes / Yes Yes No No Yes Yes
Interaction No / No No No No No No
Communication Yes / No No No No No No

Table 2.1: By [41, p. 24]: List of relevant terms for the autonomous robotics domain, and their
coverage in the different chosen works.

their own application ontology containing the formal definitions of concepts and use or
focus on them in their laboratories, but define those concepts as subcategorizations of
concepts introduced in one of these upper ontologies. Although research laboratories use
different formal concepts, they all share a common definition of parent concepts. This
shared foundation allows for some level of comparability between their findings. The
comparability increases further with the introduction of a general mapping between the two
upper ontologies (see [38]), a concept that will be further investigated in the next chapter.

For the more specific application of ontologies in robotics, the IEEE has been working on
setting some standards. In 2015, a standard for the context of Robotics and Automation
was published, which is based on the upper ontology SUMO (see [1]). In 2021, the very
general scope of robotics and automation was further specified in another IEEE standard for
Autonomous Robotics (see [2]). This second standard again builds on the upper ontology
SUMO, but also provides an interface for the upper ontology DUL.

When it comes to practical applications in autonomous robots, two recent studies have
compared various ontologies and ontology frameworks designed to organize the knowledge
base for such robots based on their scope (see [41] and [35]). These studies highlight
diverse use cases where publicly available ontologies excel and define a set of classes
necessary for a semantic description of everything around autonomous robots, thereby
facilitating ontology comparison based on these classes. In terms of usage, [41] identifies
the KnowRob framework as the most widely used in autonomous robotics. Furthermore,
KnowRob demonstrates the broadest coverage of concepts relevant to autonomous robotics,
as evidenced in Table 2.1 by [41, p. 24]. The KnowRob framework (see [8]) has developed
its own program and ontology, which has been further refined to form the Socio-physical
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Model of Activities (SOMA) (see [12]).

This thesis proposes SOMA as the underlying ontology for a new knowledge representation
in EDAN. Built upon the upper ontology DUL, SOMA provides comprehensive definitions
for tasks, actions, objects, their attributes, including affordances, actors with goals, and
much more.

The SOMA ontology also serves as the foundation for narrative-enabled episodic memories
(NEEMs), a concept intended to create a detailed robotic memory of past situations that can
be replayed with the precision of a cinematic experience. Achieving this requires integrating
two distinct components of robotic memory. On the one hand, it includes a detailed protocol
of hardware information. To simulate a situation, the memory should include the image data
of the robotic vision as well as the movements of its internal hardware components, usually
stored as a tf-tree. KnowRob is capable of storing such information within the framework as
part of the semantic memory. On the other hand, NEEMs include a detailed description of
what the situation semantically represents. That is where the SOMA ontology comes in and
provides a set of concepts and their relationships to semantically describe everything that
happens in a situation. In this context, the SOMA ontology has been designed to annotate
low-level technical information with their semantic meaning, enabling learning algorithms
of different types to understand what happened in a situation, analyze situations that involved
mistakes, or simulate a situation for a user.

A broader ontology like SOMA also enables a new kind of collaboration between research
labs. A wide variety of robots with different capabilities can be modeled in the same
ontology, making their differences as well as similarities more apparent. More importantly,
this allows for a shared ontology between experiments coducted by different robots with
different capabilities. While a robot with arms might be able to pick up and move a cup to
a different location, another robot without arms might only be able to transport the same
cup but would require someone else to place it on the robot. A shared ontology between
both robots enables comparability of their actions, even when the experimental setups differ
significantly. The project openEASE [50] aims to collect a variety of recorded robotic
experiments, modeled in the SOMA ontology, in the form of NEEMs. Such a large open-
source collection of robotic actions can serve as a basis for learning desired behavior and
transferring robotic knowledge from one robot to another. This even includes the possibility
of recording and learning from NEEMs that are recorded in a virtual reality setup and are
executed manually (see [24]).

The KnowRob framework allows for the recording, storage, and access of such NEEMs.
Users can interact with previous memories using first-order logic, as well as information
about the current world state or logical implications of the world state [8]. This can be
done by prompting in Prolog, in which many predicates already define common queries that
internally query the underlying MongoDB database. In recent iterations, KnowRob had also
been enabled to recognize queries in a Mongolog language, which combines the first-order
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Figure 2.3: High level overview of some of the concepts in SOMA, building on the four basic concepts
Event , Quality , Object , and Abstract .

predicate logic of Prolog with some aggregate commands for MongoDB (see [11]).

2.4 Underlying Concepts of the DUL and SOMA Ontology
The SOMA ontology, as it builds on the upper ontology DUL, fundamentally distinguishes
between four top level concept, as depicted in Figure 2.3. There is the top-level concept
of an dul:Event , which covers everything that is physically happening. While the most
commonly used concept in this category is dul:Action , which describes the intentional
modification of the environment by an agent, the SOMA Ontology also takes notion of other
types of events, like the dul:Process , which describes a change that is "not strictly depen-
dent on agents, tasks, and plans" ([21]). Disjoint from an Event is any type of dul:Quality .
This top level concept describes various kinds of qualities that (mostly) objects might have.
In addition to a set of intrinsic qualities, such as soma:Size or soma:Color , this concept
also describes a set of extrinsic qualities such as soma:Disposition , which is used to anno-
tate objects with a description of which tasks they can be used for. A third top-level concept
in the SOMA ontology is an dul:Abstract , which is used to define abstract properties,
other entities might have. In particular, this concept also defines possible values for different
qualities, called dul:Region . For example, to describe a red mug, the color red is modeled
as children of the soma:ColorRegion , as is already the case in the SOMA ontology. The
mug then gets associated with the quality of having a soma:Color , which in turn points
to the soma:RedColor . The fourth and last top level concept is a dul:Object , which can
either be some dul:PhysicalObject , like a soma:Cup , or some dul:SocialObject , like
a dul:Task . The distinction between physical and social entities is to be further discussed
next.

SOMA aims at modeling various everyday activities, the objects involved, the purpose of
tasks, the specific parameters of an action, and much more. For this purpose, the SOMA
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Figure 2.4: Excerpt of the way, an action executing the task of picking up a mug can be
modeled in SOMA, highlighting the concepts of Physical Object (in blue) vs.
Social Object (in orange).

ontology is built on top of a fundamental distinction between the general concept of different
objects and their role in a specific situation. On the one hand, SOMA models the Concept
of an object like a mug as a DesignedContainer , that is designed to contain liquids to
drink from. This includes multiple features that tend not to change, like a color or a weight.
However, in the context of different situations, the same mug can be used in different ways.
The robot EDAN, for example, was trained not just to grab and help a user drink from a
bug, but also to use a mug to roll some dice. In SOMA, this does not classify the mug
as a "dice rolling object", but rather gives the mug a specific role in a specific situation:
during that experiment, the mug played the Role of a container for dice. The Role of
anything is dependent on the situation, perhaps even dependent on the viewer’s perspective,
and therefore changes over time. The same mug can, for example, later play the role of a
destroyed object if the robot is not trained well and accidentally smashes the mug. In this
way, the SOMA ontology contains on the one hand a physical model of the world and on the
other hand a social model of roles and tasks.

To get a better grasp on this broader distinction between the physical model and the social
model, we can think about the very simple action of picking up a mug. In the physical
model, there is an Action happening that involves a robot, let us call it Edan , and an
object, the Mug . We already know about the mug that it has the Disposition of being
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able to be grasped. This is what is happening physically. But what do we know socially
about the situation? We can assume that the robot not only picked up the mug, but someone
implemented the intention to pick up that mug. Therefore, the Mug does not only physically
allow to be grasped, but this Disposition is describing the Task that the robot intends to
perform (as depicted in Figure 2.4 on the previous page). All technical commands to the
robot had a meaning that we understand as humans: It is supposed to all culminate in the
task of picking up the cup. Although both the robot EDAN and the mug are involved in the
task, they both play a different role in it, depending on the intention of the task. When we
think about the task of picking up a mug, we think about some agent who is supposed to
do the picking and some mug that is supposed to be moved in the process. Those are the
roles that both objects are supposed to play in the Task and they are playing those roles
in an Action , where the task is executed. Depending on the social situation, the same
Action, physically executing the same movements, resulting in the same physical changes
to the world, could, however, also mean something completely different. In a setup where
a researcher wanted to push the mug off the table, the robot picking up the mug is actually
making a mistake and failing at a completely different task. It can also be stated that a single
physical Action might be serving multiple intentions and completing multiple Tasks. On the
other hand, a single Task might also require multiple physical Actions to be executed. To
put it in the words of [41]:

"[T]asks denote pending work, independently from how an agent exactly ac-
complishes this work. In this view, an action would be a way to execute a task.
Technically, one can approach this by defining tasks as types (of event) used to
classify actions, which then allows to explicate that a task can be accomplished
in different ways, and to talk about individual tasks independently from their
possible executions." [41, p. 8]



15

C h a p t e r 3

WHAT JUST HAPPENED?

A MEMORY FOR THE EDAN ROBOT

3.1 Introduction
The robotic framework EDAN has been designed to seamlessly interact with a user sitting in
a wheelchair and perform several different tasks. While the multimodular system is capable
of logging application-specific data within different modules, the framework has no central
logging mechanism to record and store data on what the robot EDAN has done at what
point in time. This chapter presents a mechanism for accumulating a high-level log that
contains the perceived world state, assumptions about the environment at the time, inferred
task options that are assumed to be available due to the given world state, and executed tasks.

To allow for efficient post-computing as well as an easy understanding of the log, a structured
knowledge representation in the form of an ontology has been chosen. Ontologies provide
a taxonomy that is both human- and machine-readable and for this reason well-established
for representing data. This chapter presents the work of integrating the preexisting ontology
SOMA, which provides a rich taxonomy for the context of autonomous robotics as well as
the query framework KnowRob, into the robotic framework EDAN by matching the SOMA
ontology with EDAN’s pre-existing knowledge representation.

3.2 Related Work
For this chapter, the already mentioned object database (odb), in which objects and their
properties and relationships are stored in the EDAN framework, will be considered an
ontology, even though it lacks the formal representation, an OWL ontology requires. The
task of interfacing such an ontology with the very much formalized SOMA ontology with
a rich taxonomy that goes far beyond an object hierarchy, can therefore be understood
as a merging of two ontologies into one. This is a task that has been researched quite
extensively with the Ontology Alignment Evaluation Initiative (OAEI) regularly dedicating
workshops to compare different approaches to matching ontologies (see [37]). This research
has resulted in a set of approaches to finding similarities between different ontologies, mostly
concerning larger ontologies that are too big to compare manually (see [39]). The assumption
of ontology matching problems is usually, that the two ontologies to be compared model
overlapping concepts, such that an alignment between two representation of either the same
or very similar concepts is needed. This alignment is in many cases an equivalence relation
between the concepts of different ontologies, but is not required to. Some ontology matching
algorithms have also developed algorithms to find more complex relationships between two
ontologies (see [51]).
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Finding similarities between different ontologies requires some notion of what constitutes
a similarity. To determine this similarity, every matching algorithm needs some sources
of background information regarding the meaning of different entities. Those sources may
range from lexical similarities over factual databases to the association of a machine learning
algorithm such as a large language model (see [45]). However, these approaches still require
the ontologies to be somewhat well described for a matching algorithm to find similarities.
If, for example, a research team always uses the same cup for its robotic experiments, they
may represent that cup as cup in the ontology, but implicitly expect a cup to have the exact
properties that the cup in their experiment has. While such a modeling is an obvious bad
practice for the example case, this does get more blurry when talking about concepts like
a robotic arm or a kitchen: No ontology is able to fully describe every aspect of the world
and, therefore, always operates with some implicit assumptions.

3.3 Mapping Existing Concepts
EDAN’s odb is an ontology that gets updated regularly to accommodate the requirements
of different research topics and competitions. Although some objects are well-described
objects from the scope of a human kitchen, such as a banana , other objects are more
abstract, such as a 10cm × 10cm cube that EDAN has shown to be able to pick up in
a competition. With the limited scope of the odb, all of those very different objects are
modeled to be very closely related, which does not always fit the intuitive perception of
those objects. On the other hand, the robotic framework EDAN relies on a certain object
hierarchy that should not just be overturned. This has led to the decision to limit the number
of changes to be made within the object database drastically and find ways to attach most
of the pre-existing hierarchy to the SOMA ontology. On the other hand, the alignment of
both ontologies should also serve the purpose of making knowledge, represented in the new
EDAN framework, understandable for other projects, implementing SOMA.

The odb with around 100 objects and around 10 tasks in total is very limited in size, allowing
for a detailed manual comparison of those concepts with their counterpart in the SOMA
Ontology. For such an application, a heavy-weight ontology comparison does not seem
necessary, especially considering the goal to change as little as possible in the relative object
hierarchy in the odb. Since the odb does mostly describe the very application-specific
environment at the DLR research lab as well as some competition setups, it has also been
decided that concepts in the odb should not get the equivalence relation to any of the SOMA
concepts. Even when not formally described, a mug in the odb is generally a mug with
parameters similar to the ones that EDAN was trained to interact with. To be able to keep this
implicit knowledge, odb concepts should rather be modeled as children to the corresponding
SOMA concept, thus allowing for comparability on the one hand and distinction between a
general term and an object in EDAN’s world on the other hand. The ontology prefixes are
helpful in this manner, as they allow to distinguish between a soma:mug and an odb:mug .

The result is a novel odb ontology, that is a specification of the more general SOMA
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Figure 3.1: Excerpt of the object hierarchy in EDAN’s odb.
While objects like ikea_bowl have no further children, objects like _bottle are
themselves parent concepts for several children objects not depicted in this figure.

ontology in that it incorporates most of the information, the odb currently provides, as part
of an ontology.

Mapping odb Objects with SOMA
As the odb models both objects to interact with as well as the robot itself and humans as
objects, SOMA’s distinction between a dul:DesignedArtifact , a dul:PhysicalAgent ,
and a dul:PhysicalBody poses the most changes to odb’s internal hierarchy. SOMA
therefore distinguishes between manmade designed objects ( dul:DesignedArtifact ) and
objects that are the result of some kind of process, be it chemical, biological, geographical,
etc.. In the odb ontology, this distinction concerns for once the objects _robot and human ,
which describe the physical form of an agent rather than an object for the robot to interact
with. And, on the other hand, this concerns the object type _fruit , which is an object that
is not designed, therefore varies greatly in size, shape, firmness, etc. across instances of the
same object, and should be categorized as a dul:PhysicalBody :

(odb:_robot, rdfs:subClassOf, soma:ArtificialAgent)

(odb:human, rdfs:subClassOf, dul:NaturalPerson)

(odb:fruit, rdfs:subClassOf, soma:BiologicalObject)

To keep the underlying object hierarchy of the odb intact, only the top-most concepts of the
odb are being linked with the SOMA ontology. Odb objects that derive from those topmost
concepts are automatically being sorted into the ontology as their children.
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1 _robot: soma: A r t i f i c i a l A g e n t
2 _ t o o l : soma:Des ignedToo l
3 human: du l :Na tu ra lPe r son
4 _gr ipper : soma:Gripper
5 _con ta iner : soma:Des ignedCon ta i n e r
6 _cof fee_machine: soma:App l i ance
7 _conten t : soma:Des ignedSubs t ance
8 _ f r u i t : soma: B i o l o g i c a l O b j e c t
9 _microwave: soma:App l i ance

10 _phone: soma:Des ignedToo l
11 _tray: soma: S u r f a c e
12 _cube: soma:DesignedComponent
13 edans_ ikea_k i t chen_door: soma:DesignedComponent

Listing 3.1: List of manually defined subclass relations between odb objects and SOMA objects

The topmost concept in the odb is called _object , even though, not every object derives
from that topmost concept. One of the most important concepts that derive from _object

is the _draggable , contains all kinds of drawers, with which EDAN is trained to interact.
On the other hand, _container describes objects such as bottles and mugs, which contain
something. The door, with which EDAN has conducted many experiments, is also modeled
as direct children of _object together with the abstract concept _tool , containing all
tools ranging from a door handle to a bottle opener. EDAN has also been trained to operate
two machines, a _coffee_machine and a _microwave , which are also modeled as direct
children of _object . For a better overview, Figure 3.1 on the preceding page shows an
excerpt of the object hierarchy in the odb.

All of these concepts in the odb can be considered subclasses of the SOMA concept
dul:DesignedArtifact . Without going into too much depth of the SOMA objects, the
notion of a dul:DesignedArtifact offers a small set of high-level distinctions between dif-
ferent kinds of object that might be beneficial for the new odb ontology: soma:Appliance
describes objects that have been built to perform a task and be operated by some agent.
A soma:DesignedContainer covers other objects in itself and is able to limit the ob-
ject’s ability to move. soma:DesignedSubstance is describing substances, such as fluids.
And soma:DesignedTool describes any deliberately made tool that an agent might use to
accomplish tasks.

Reading this description already gives some hints on reasonable similarities between some
top-level odb and SOMA classes. For every object currently used in the odb that is directly
derived from the top-level object _object to get matched with a parent concept in the
SOMA ontology, there are just 13 assignments to be made in total, which can be found in
Listing 3.1.

Figure 3.2 on the following page helps visualize the finished alignment, depicting the SOMA
ontology in blue and the newly attached concepts for the odb ontology in green. All objects
that are modeled later and derive from _object in the odb, are automatically merged as
children of the most abstract concept in the object ontology, the dul:PhysicalObject .
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Figure 3.2: Excerpt of the alignment of SOMA objects with odb objects with the newly attached odb
concepts in green

Note that some of the object definitions in the odb have a training underscore in their
name. In the odb, all abstract object concepts have an underscore as a prefix, whereas every
specific object definition derives from such an abstract object and has a name without training
underscore. Those specific object definitions differ from an instantiation of an object in that
they can be instantiated an arbitrary amount of time by the world representation, depending
on whether they are recognized by the perception module (see 2.1 on page 6). For mapping
the odb with the SOMA ontology, the odb naming conventions are kept intact as class names
in the ontology, while both objects with and without a trailing underscore are considered
classes (and not individuals) in the merged ontology.

Mapping odb Tasks with SOMA
Tasks in the odb do not have a hierarchy. Every task is assigned to an object that passes the
ability to execute that task on to its children. But tasks in the odb do not have any inherent
relationship other than through the objects that provide the task. When executing a task,
objects can have one of two roles in the EDAN framework: One object is the target object
and if the task involves more than one object, the other object is the reference object.

That is different for the SOMA ontology, which provides a separate taxonomy just for
tasks and also distinguishes between the definition of a dul:Task , which describes a users
intention to do something, a soma:Disposition , which is a property of an object, indicating
that the object has features that allow it to be used for a specific task, and a dul:Role ,
that different objects can play in a certain situation. While the roles objects can play in
the EDAN framework do resemble the same concept, the SOMA ontology describes with a
dul:Role , the latter is again thoroughly described by a taxonomy of 94 different Roles that
Entities can play in a Task.
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To merge the unstructured tasks in the EDAN framework with these different notions in
SOMA, for every one of EDAN’s tasks there are four mappings to be made: 1) EDAN’s task
has to be mapped with a child of SOMA’s dul:Task , 2) Any object in the odb that is able to
execute that task has to be mapped with a subcategory of SOMA’s soma:Disposition , 3)
the role that an object plays in a certain task when being the target object in EDAN’s terms
has to be mapped with a subcategory of SOMA’s dul:Role , and 4) the same mapping is
required for any object being the reference object in the EDAN framework.

EDAN’s task drink, for example, is an action that describes EDAN moving a cup with
something to drink and a straw close enough to the mouth of the person sitting in EDAN
for them to drink from the cup. While the exact task is not modeled in the SOMA ontology,
the task soma:Serving comes very close in its meaning, as it describes an agent delivering
an object to another agent. The person who drinks from the cup will always have the
soma:RecipientRole , meaning they receive something, in this case a drink, in the task.
The mug containing the drink, on the other hand, plays the role of a soma:MovedObject ,
since the mug is getting moved in order for the person to drink from it.

In such a way, all 25 tasks, defined in the odb, have been mapped with those four concepts
in the SOMA ontology, and therefore given a taxonomic hierarchy. Since EDAN’s tasks
have no taxonomic hierarchy on their own, the mapping also included the modeling of some
internal references. For example, defining the tasks pick_from_side and pick_from_top to
be two tasks, deriving from the common parent task pick. All of these relationships are,
together with the object mapping definitions, defined in a separate yaml file, enabling future
developers on the odb to easily define a mapping for new odb concepts. An excerpt of this
definition can be found in Listing 3.2 on the following page, whereas the complete definition
has been moved to the appendix in Listing A.1 on page 80

3.4 Introducing new Entities in the odb Ontology
While most of the information that is to be modeled in the new odb ontology comes from
EDAN’s odb and the SOMA ontology, the EDAN framework provides some additional
knowledge outside of the odb, that is beneficiary to gather and store as part of the recorded
NEEMs. Since this data is present neither in the odb nor in the SOMA ontology, the newly
built odb ontology has been developed to expand on two SOMA concepts.

Idle Task
Even though the odb has no notion of an idle task, the EDAN framework regularly shows a
task called shared grasping being executed, which indicates the robot being in a state where
a user could manually control its arm, and the robot executing no task on its own. This is the
state in which the robot is in when idling. For a logging mechanism that ranges over more
than a few tasks but over multiple days, including a lot of idle time, it has been decided to
be valuable to explicitly model this robotic state of doing nothing. The new odb ontology
therefore includes an odb:IdleTask as child of soma:PhysicalTask to state that the robot
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1 drink:
2 ta sk : soma: S e r v i n g
3 r e f _ r o l e : soma:MovedObject
4 t a r g e t _ r o l e : soma: R e c i p i e n t R o l e
5 d i s p o s i t i o n : soma:S t o rage
6
7 open:
8 ta sk : soma:Opening
9 t a r g e t _ r o l e : soma:ShapedObjec t

10 r e f _ r o l e : False
11 d i s p o s i t i o n : soma:Enc l o s i n g
12 open_door:
13 parent: open
14 open_fr idge :
15 parent: open_door
16
17 pick:
18 ta sk : soma:Pick ingUp
19 t a r g e t _ r o l e : soma:MovedObject
20 r e f _ r o l e : False
21 d i s p o s i t i o n : soma: G r a s p a b i l i t y
22 pick_from_s ide :
23 parent: p i c k
24 pick_from_top:
25 parent: p i c k

Listing 3.2: Excerpt of the definition for a mapping from tasks in the odb to SOMA tasks, roles and
dispositions.

is idle.

Since EDAN is always in this shared grasping mode in the time between the completion of
one task and the beginning of another, the concept of an odb:IdleTask has to distinguish
between a short transition period and a state where the robot is not being used. For the
NEEM logger, this distinction has been set at a threshold of 20 seconds. As soon as EDAN
is in shared grasping for 20 seconds or longer, the NEEM logger records this as executing
an odb:IdleTask .

Imagining Available and Preferred Tasks
The EDAN framework calculates a list of available tasks at any moment, using a set of PDDL
status descriptions and a PDDL reasoner, incorporated into the task descriptions. This allows
the user to always have an overview of what the robot is capable of doing. When building a
logging framework that remembers what EDAN knew and did in past situations, this list of
available tasks is a crucial piece of information to be stored. Especially unexpected actions
can often be necessary because the robot could not recognize an object or something else
failed, resulting in the originally intended task not being available. Thus, the newly built
odb ontology also introduces the notion of imagining a situation, i.e. noting the possibility
to execute a number of tasks.

The SOMA ontology already models the notion of a soma:MentalAction , that is capable
of executing a soma:MentalTask with one of its subcategories being soma:Imagining .
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The SOMA ontology also already distinguishes, as discussed earlier, between tasks that are
being executed in an dul:Action and pure task definitions, which describe the idea of a
task without necessarily executing it. Therefore, the SOMA ontology allows modeling a
hypothetical situation by describing an soma:ActionExecutionPlan , which models a plan
to execute a dul:Task .

The odb ontology introduces a new relation that enables a soma:Imagining task to imagine
such a hypothetical situation as an available task at a specific point in time. The robot
then executes a soma:MentalAction that executes the task of soma:Imagining , which
odb:imagines_situation an soma:ActionExecutionPlan , which soma:isPlanFor a
soma:PhysicalTask .

A similar approach has been taken for modeling preferred tasks. An algorithm to find
user preferences will be presented in the following chapter. To describe a predicted user
preference in the ontology, the robot is modeled to execute a task called soma:Reasoning ,
which imagines a preference of the user. In latest updates, the notion of preferences,
consisting of a set of elements that are ordered by a preference, has been implemented in the
SOMA ontology (see [3]). To describe those preferences not as a general fact but rather as
an imagined preference that is the result of a reasoning process at a specific time, the odb
ontology introduces the relation odb:imagines_preference . This also allows for different
preference calculations to take place and be stored separately in the ontology.

The NEEM logger therefore allows for three different types of actions, the same task defini-
tion can be a part of: At first, a dul:Task will be imagined as part of an soma:ActionExecutionPlan ,
describing the task to be available at that point in time. When equipped with the yet-to-be
discussed preference prediction, the NEEM logger orders these task definitions as part of a
predicted user preference. If the user decides to execute a task, the same task will also be
modeled as being executed in a soma:PhysicalAction . In later evaluations, researchers
can directly find all task options at a given point in time, their order given the predicted
preference, and an annotation whether they have been executed or discarded in the end.

Semantic Distinction Between Times of Day
The later to be discussed PreferenceOracle distinguishes tasks not only by their type and
the types of objects that are involved, but also by the time of day they are being executed.
The SOMA ontology does already allow to annotate actions with a dul:TimeInterval ,
during which e.g. an action is being executed. However, the values for such a time
interval are usually encodings of hours and minutes. To semantically describe the time of
day, the odb ontology therefore introduces a child to the dul:TimeInterval , called the
odb:TimeOfDay , allowing a range over

• odb:Morning

• odb:Midday
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• odb:Evening

• odb:Night

as value. With the NEEM logger in place, both the exact times are stored as a dul:TimeInterval
of any action, as well as a odb:TimeOfDay .

3.5 Interfacing with the EDAN Framework
With the available set of classes in the ontology (also known as terminology component, or
TBox) being defined the NEEM Logger is nowadays equipped to the robot EDAN, recording
information about every object the robot perceives and every action the robot could and
does execute by instantiating the presented classes or TBox with a set of instances (also
known as the assertion component, or ABox). The NEEM Logger observes all the internal
communication between modules in the EDAN framework and stores the ABox statements
in a Mongo database, managed by the KnowRob framework.

Based on the presented mapping between high-level odb concepts and the SOMA ontology,
the hereby presented NEEM Logger automatically generates the odb ontology based on the
established odb in its classical form. This system allows developers to add new objects and
tasks to the odb object hierarchy by simply adding them to the odb file system. The NEEM
Logger then generates a merge odb ontology based on the object and task hierarchy that
the new entities have been sorted into. This process does come with the drawback, that
major changes to the odb do require some manual engineering, i.e. a developer thinking
of a mapping between the newly introduces odb concepts and the SOMA ontology. If this
process is skipped, the NEEM Logger still keeps the odb hierarchy intact and builds an
ontology based on that hierarchy. But any newly introduced odb concepts that have neither
been declared to derive from an existing concept nor been matched with a SOMA concept,
will not benefit from SOMA’s object taxonomy and therefore reach less comparability of
concepts across research laboratories.

A properly set up odb ontology, even though it introduces a set of new entities, provides an
ontology that is compatible with the SOMA ontology and therefore allows for comparisons
between logged robotic experiments with the robot EDAN and experiments with other robots
in other research labs. The SOMA ontology has been designed to support such larger-scale
comparisons and learning algorithms. Their developers have even built a platform to collect
and learn from robotic logging data in the form of SOMA-compatible NEEMs (see [50] and
[16]).

While such a large-scale analysis of robotic experiments can be a valuable part of research,
end users tend to be very cautious in allowing recordings of robotic interactions with them to
be evaluated (see [7]). The NEEM Logger therefore stores any logging data only locally and
temporarily and overrides the whole database with every new start. It requires an additional
action by the user to permanently store the recorded logs in a non-temporal local space.
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3.6 Summary
In this chapter, the NEEM Logger has been presented as a program that merges the pre-
existing object and task representation of the robotic framework EDAN with the SOMA
ontology by generating a novel odb ontology and records all robotic actions and perceptions
in the form of an ontology. It has been shown that a mapping of the two knowledge
representations is a task that can be achieved by only a handful of assertions, enabling
the semi-structured object hierarchy of the EDAN framework to benefit from the richer
taxonomy of the SOMA ontology without losing its internal object hierarchy.

The NEEM Logger allows the robot EDAN to record and later analyze any set of robotic
actions and even compare them to the recordings of different robots using the SOMA
ontology for knowledge representation. While such comparisons are valuable for the research
process, this can also easily be turned off when interacting with an end user, potentially
revealing personal information during the interaction with the robot.
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C h a p t e r 4

WHAT WOULD YOU WANT?

CALCULATING PREFERENCES

4.1 Introduction
The robot EDAN is already capable of executing a variety of actions automatically and semi-
automatically (see [47], [17]) to help users with their daily workflow, as further discussed
in Chapter 2. While both manual mode and shared control mode allow users to maintain
as much control over the robot as possible and experience the robotic actions as their own,
both modes require more concentration and personal energy compared to using full-on
automation. Studies have repeatedly underscored the importance of users staying active,
especially when they depend on a robot (see [7] and [29]), but daily tasks should also not
require the user to be permanently focused. In the current user interface for the robot EDAN,
a user can roll up to an object the robot is able to interact with. The computer tablet attached
to the wheel chair will prompt the user to choose from different possible actions that allow
the robot to automatically interact with the object (see [53]). This task suggestion scheme
is calculating and keeping track of a symbolic state of the world (like a thermos bottle being
attached to the robot’s hand) and derives from that a list of feasible actions that a user could
execute, given this world state (see [9]). This list is ranked solely by the spacial distance
between the robotic hand and the objects to interact with, only modified by the notion of
occlusion.

This is a suitable user interface for an environment with a limited number of objects the robot
is able to interact with, as well as for users who prefer to control the robotic arm manually.
For a world setup with more objects, for example, a situation where the user opens a drawer
with several different cups, glasses, plates, etc., the prompt-and-response technique might
test its limits, as the sheer number of available tasks does not fit comfortably on a tablet
screen so the user would potentially need to search for the desired action before activating
automation mode. On another note, this workflow is strictly limited to executing single tasks
(like picking something up, pouring some liquid from one container to another, etc.) with an
event horizon of one and therefore does not include more complex workflows that consist of
a chain of single tasks, which users might have in mind when switching to automatic mode.

This thesis introduces an algorithm, called PreferenceOracle, that suggests a ranking of
available robotic actions that is no longer limited to calculating the spacial distance from
the robotic arm to an object. The algorithm aims to calculate a ranking of actions based
on the probability of the user’s desires. In cases where the number of available actions is
too large, the PreferenceOracle helps the user by simplifying the selection of the desired
task, therefore omitting the need to search within the list of all available actions. As studies
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have shown, a user-specific approach to assistive robots is desirable and preferred over a
one-size-fits-all solution (see [7] and [26]). Accordingly, the PreferenceOracle suggests a
method to calculate and store user preferences in daily routines, enabling the ranking of a list
of available actions specific to each user. In a set of tests with auto-generated datasets and a
list of around 25 available tasks, the algorithm succeeded in placing the desired task within
its top five suggestions in close to 90% of the cases. In addition to ranking the available
actions, the PreferenceOracle also suggests a follow-up workflow with a variable event
horizon that enables users to execute tasks that are commonly performed by them.

4.2 Related Work
When working with assistive robots, adjusting the robot to the needs of different users is
a multifaceted subject with several different problem definitions and many approaches to
make the robot more appealing to an individual human. Different user studies have shown
that the acceptance of a robot helping with caregiving tasks is highly dependent on the way
the robot is able to deal with different users differently and adapt to their individual needs
(see [7]).

On the one hand, this includes different user-specific ways to execute the same task. This
is especially important when working with users with motor impairments. Since people
have different body parts that behave differently, any robotic help must consider the specific
abilities of different users. One study, for example, has found a way to personalize the robotic
task of helping people put on their shoes, considering a user who cannot move their sitting
position by themselves (see [28], and similar: [56]). A similar but higher-level goal has been
studied by a team that tried to leverage standardized occupational therapy assessments with
respect to the range of motion of a patient. Those standardized tests, used for therapy, are
employed to train a model to learn the area in space that a specific user can interact with or
not. The robot is then instructed to enter that user-specific space when handing an object to
the user (see [33]). Like the question of how to execute a given task, the question of what task
to execute is another vast field. This area of research spans beyond the context of care-giving
robots. The well-known RoboCup competition has, as early as 2016, introduced a section
for competitions regarding robots helping in the home environment, regularly challenging
competitors to let their robot organize shelves by the meaning of objects or clean up a room
based on some inherent organization system of the room (see [22]). Such challenges, where
a robot is tasked with understanding the organization system of a room and autonomously
deriving task definitions (which object should be placed where?) from that, have been the
subject of several studies (see [57], [4], and [55]).

Another direction for such applications is robots that don’t just execute some actions that the
user desires, but anticipate the requirements of the user’s own future actions. Researchers
have, for example, worked on a scenario in which a robot helps a human execute some
actions by handing tools and objects to the user without an explicit order. For this scenario,
the robot observes human actions, categorizes them, and predicts an action order based on
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previous experiences (see [43]) in order to make the environment ready for future tasks (see
[40]). Such proactive assistance applications can make the use of robots especially seamless
by reducing not only the commands required to execute specific tasks but also the visible
presence of a robot and active waiting time, which a user typically spends with modern
robots.

The predictions have been calculated differently throughout the literature, but most ap-
proaches consider previous tasks to be an unordered set of actions that are added up to a
frequency of tasks and their contexts without any order of execution, for example, when
trying to predict tasks based on an organization scheme for a shelf or based on visual or
semantic information on the current task (see [30], [27], [4], [40]). Task chains in their
order of execution are, on the other hand, being considered as important context with the
latest developments in large language models, which have become increasingly powerful,
tempting researchers to find zero-shot solutions for more and more complex problems. All
prediction problems seem to be a question of the right prompt, which was supported early
on by the developers of the pioneer GPT models (see [52]). This can again take the form of
a task planning algorithm that uses the current visual or textual representation of the world
as an input parameter, like a project that introduced prompts that directly output the code
necessary for a robot to execute a complete plan to achieve a human’s intended goal (see
[48]). Or, it can leverage a broader notion of a situation, collecting information about the
user’s actions as a string of actions, and reasoning about task plans based on a specific user’s
action chains (see [54], [25]). However, adding a lot of contextual information to the prompt
of a large language model significantly diminishes its performance (see [18]), leaving the
algorithm with a very limited set of information to provide to such a model.

4.3 Overview on Calculating Predictions, Introducing the PreferenceOracle
While the next section will go into more detail on how each aspect of the similarity between
two situations is calculated, this section presents a general overview of the ideas on how to
calculate preference predictions and their integration in the EDAN framework.

The goal of the PreferenceOracle is to calculate the task preferences of different users,
sitting in the wheelchair robot EDAN and using EDAN for their personal daily routines.
These preferences can range from a favorite cup that a user might have over preferences
regarding different kinds of beverage to routines involving a set of multiple tasks that a user
executes regularly. The PreferenceOracle aims on the one hand at an algorithm that is
capable of predicting some preferences within the first few tasks that a user is performing.
On the other hand, it aims at being quickly adaptable without resorting to larger deep learning
algorithms that take time and a lot of (in this case quite personal) data to be trained and
fine-tuned. With the PreferenceOracle, data regarding a user workflow is not leaving the
machine the robot is operating on for any kind of external training process, the algorithm is
designed to be executed completely locally.

The idea of the preference calculation is based on the old and common concept of an
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Retrieve world
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action(s) (Chapter 3)
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Pour liquid
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• Candidate actions at the time
(see Equation 4.3)

Next Task Prediction

Predecessors of "Release" Predecessors of "Pour"

Figure 4.1: Overview of the PreferenceOracle.
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N-gram, where the statistical frequency of words used directly after a queried word or
sentence indicates the probability of those words completing the sentence. Mathematically,
the probability of a specific word token sequence following a query text can be thought of
as the probability 𝑃 of that sequence of word tokens 𝑤𝑘

1 with length 𝑘 , given the sequence
of word tokens with length 𝑁 appearing right before the word token in question:

𝑃(𝑤𝑘
1 ) =

𝑘∏
𝑞=1

𝑃(𝑤𝑞 | 𝑤𝑞−1
𝑞−𝑁+1) (4.1)

When calculating the probability of a specific sequence of word tokens in a sentence,
a straightforward approach would be to count the number of occurrences of that exact
sequence of tokens. In the context of task prediction, the tokens are not natural language
words, but tasks. However, since in the context of the robot EDAN the task history per user
is often limited, this definition of probability may result in a zero probability for many tasks.
Therefore, the PreferenceOracle considers not only identical tasks but also similar tasks
to compute the probability 𝑃.

To determine a degree of similarity between two tasks, the algorithm presented here considers
the type of the action, the type of objects that have been interacted with, the time of day the
tasks were executed, and the context of the tasks, described by the set of tasks that could
have been executed alternatively. With these comparisons as foundation for a model similar
to an N-Gram, the PreferenceOracle leverages the previously introduced NEEM Logger
to read in the task history and calculate a prediction for the next task executed by the user,
as shown in Figure 4.1 on the preceding page:

In any given situation 𝑠𝑐, the robot is in a state where it either holds an object or it does not
and observes a number of objects, some of which it has been trained to interact with. The
yellow field in Figure 4.1 depicts an example situation that shows EDAN holding a thermos
bottle above a counter top with a mug standing on the counter top, ready to be used. As
described in [9], the EDAN framework derives a set of candidate tasks for a possible next
action 𝑂 (𝑠𝑐) from the description of any current situation 𝑠𝑐. In the given example, this
includes the two candidate tasks to either release the thermos bottle on the counter top or
to pour some liquid from the thermos bottle into the cup (i.e. 𝑂 (𝑠𝑐) = {𝑟𝑒𝑙𝑒𝑎𝑠𝑒, 𝑝𝑜𝑢𝑟}).
As described earlier, the EDAN framework in its current form presents the user with those
options and allows to automatically execute either one of them by selecting the task on a
tablet computer. Resorting to the NEEM Logger described in the previous chapter, the
PreferenceOracle then retrieves information on the previously executed tasks, using the
framework KnowRob (see [8]). As depicted in the blue section of Figure 4.1, this includes
on the one hand the situation that had last been executed 𝑝(𝑠𝑐) = 𝑠1 and therefore directly
led to the current situation 𝑠𝑐. In the exemplary situation, EDAN picked up the thermos from
inside the fridge. On the other hand, the set of all previously executed tasks 𝑆 is searched
for instances, where either one of the candidate tasks 𝑠𝑜 ∈ 𝑂 (𝑠𝑐) had been executed
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before. Those instances 𝐻 (𝑠𝑜) ∃𝑠𝑜 ∈ 𝑂 (𝑠𝑐) together with their respective predecessor tasks
𝑝(𝑠ℎ) ∀𝑠ℎ ∈ 𝐻 (𝑠𝑜) ∀𝑠𝑜 ∈ 𝑂 (𝑠𝑐) (represented as mini clouds in Figure 4.1) are collected
and compared with the last action 𝑠1, leading to the current situation.

The process of comparing the last action 𝑝(𝑠𝑐) with each of the historic predecessor tasks
of the currently available task options 𝑝(𝑠ℎ) ∀𝑠ℎ ∈ 𝐻 (𝑠𝑜) ∀𝑠𝑜 ∈ 𝑂 (𝑠𝑐) consists first and
foremost of a comparison between their task type 𝑡𝑠𝑘 (𝑠) and the types of objects they interact
with 𝑜𝑏 𝑗 (𝑠). Objects that take part in an action are only ever compared with other objects
that play the same dul:Role in their respective task, presented here as an index to the
𝑜𝑏 𝑗 function: 𝑜𝑏 𝑗0(𝑠) and 𝑜𝑏 𝑗1(𝑠). Both comparisons between objects and between tasks
leverage the odb ontology, based on both the SOMA ontology and EDAN’s odb as described
in the previous chapter, to determine the graph distance between them. The hierarchical
taxonomy of tasks and objects allows to determine, for example, a thermos bottle and a mug
to be closer related than a mug and a table, because both the thermos bottle and the mug are
containers that can hold liquids and be used to drink from. Figure 4.1 shows an example
in which the task of releasing the thermos bottle on the table has previously been executed
twice after picking a thermos bottle from the fridge (which is the same task, involving the
same objects, as the last action 𝑠1, therefore represented with a green border) and three
times after pouring some liquid from a thermos bottle into a mug (which is a different task,
involving the same object, and is depicted with a red border). However, the candidate task
of pouring liquid from the thermos into the mug has only ever been executed after EDAN
picked up a thermos from the fridge. The third aspect in comparing two tasks is the time of
day they had been executed. If one of the candidate tasks 𝑠ℎ ∈ 𝐻 (𝑠𝑜) ∀𝑠𝑜 ∈ 𝑂 (𝑠𝑐) has been
mainly executed in the morning, whereas the current situation 𝑠𝑐 takes place in the evening,
the path distance between both tasks is multiplied by a penalty:

𝑝𝑎𝑡ℎ(𝑠ℎ, 𝑠𝑐) =(𝑝𝑎𝑡ℎ(𝑡𝑠𝑘 (𝑠ℎ), 𝑡𝑠𝑘 (𝑠𝑐)) × 𝑋

+
|𝑂𝑏 𝑗 (𝑠ℎ ) |∑︁

𝑛=0
𝑝𝑎𝑡ℎ(𝑜𝑏 𝑗𝑛 (𝑠ℎ), 𝑜𝑏 𝑗𝑛 (𝑠𝑐)) × 𝑌 )

[×𝑍]

(4.2)

All three aspects of the calculation are multiplied by a different hyperparameter (represented
as 𝑋 , 𝑌 , and 𝑍 in the equation) that can be set in the beginning to adjust the calculations to
different goals. More on that later.

Another aspect of comparing situations is the comparison of the candidate actions in any
given situation (not visually depicted in Figure 4.1). For every task option 𝑠𝑜 ∈ 𝑂 (𝑠), the
described path distance calculation is repeated. The candidate tasks with the most similarity
in both situations (i.e. the two task options with the lowest 𝑝𝑎𝑡ℎ) are matched and averaged
to reach a situation path distance:
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𝑠𝑖𝑡 (𝑠𝑎, 𝑠𝑏) = 𝑝𝑎𝑡ℎ(𝑠𝑎, 𝑠𝑏) +

∑
𝑠𝑜∈𝑂 (𝑠𝑎 )

𝑚𝑖𝑛(𝑝𝑎𝑡ℎ(𝑠𝑜, 𝑠)∀𝑠 ∈ 𝑂 (𝑠𝑏))

| 𝑂 (𝑠𝑎) |
×𝑊 (4.3)

The factor 𝑊 again represents a hyperparameter that is introduced later.

In a last step, PreferenceOracle iterates over the recorded tasks and compares the latest
executed task chain with previously executed task chains to find similarities. In a next step, the
same calculations are repeated for the respective predecessor tasks (depicted as the shadow
behind the clouds in Figure 4.1). The predecessor of the last action 𝑝(𝑝(𝑠𝑐) is compared
with the predecessor of every second degree predecessor of every historical occurrence of
any of the candidate tasks 𝑝(𝑝(𝑠ℎ)) ∀𝑠ℎ ∈ 𝐻 (𝑠𝑜) ∀𝑠𝑜 ∈ 𝑂 (𝑠𝑐). With 𝑝(𝑝(𝑥)) = 𝑝2(𝑥) and
𝑄 and 𝑅 representing simplified hyperparameters, this can be represented as:

𝑠𝑐𝑜𝑟𝑒(𝑠𝑎, 𝑠𝑏) =
𝑄∑︁
𝑛=1

𝑠𝑖𝑡 (𝑝𝑛 (𝑠𝑐), 𝑝𝑛 (𝑠ℎ))∀𝑠ℎ ∈ 𝐻 (𝑠𝑜)∀𝑂 (𝑠𝑐)
𝑛 × 𝑅

(4.4)

Based on this score, the PreferenceOracle ranks the available tasks 𝑂 (𝑠𝑐) and suggests
the candidate task with the best score to the user. This allows an EDAN user to ideally find
their desired task in a prominent position on the tablet computer and directly select it to be
executed.

Finding task chains in history that are highly correlated with the task chain that had just been
executed by the user also allows the PreferenceOracle to predict not just one next task,
but aggregate the tasks that often followed after the given task chain and predict a longer
task chain, consisting of multiple tasks, into the future.

4.4 The Algorithm and its Hyperparameters
With the presented overview in mind, this section further elaborates on the calculations
behind the similarity calculations as well as the role of the hyperparameters in those calcu-
lations.

Comparing Task Types and Object Types
As mentioned in the previous chapter, tasks and objects are, thanks to the NEEM Logger,
represented as part of an ontology, storing narrative-enabled episodic memories (NEEMs).
Computing similarities between two individuals (nodes) in an ontology is a well-studied
problem with a vast literature. The most basic approach is to count the required steps
(path) to get from one individual to another in the knowledge graph that is the ontology.
For example, if task B and task C are both direct children of task A, it would take two
steps to get from task B to task C (one step to get from B to A and a second step from
A to C). However, this approach does not account for the granularity of task B and C,
that is, their depth in the graph. For instance, in the SOMA ontology the general task
Actuating has, among others, the children Pouring and Pushing , which in turn have
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Actuating

Pouring Pushing

Pushing away Pushing downPour into Pour onto

Figure 4.2: Excerpt of the SOMA ontology. Counting the steps from subclasses of Pouring leads
to the same result as counting steps from Pouring to Pushing , even though the latter
are far more different.

the children Pouring into and Pouring onto resp. Pushing away and Pushing down
(see Figure 4.2). Taking into account only the number of steps to move from one task to
another would result in the same similarity score for 𝑝𝑎𝑡ℎ( Pouring , Pushing ) = 2 as
for 𝑝𝑎𝑡ℎ( Pouring into , Pouring onto ) = 2. However, the two variations of a pouring
task are clearly more similar than the two tasks pouring and pushing, and should therefore
get assigned a lower distance. To address this, the authors of [5] have developed a metric
(originally designed for ontologies in the biomedical domain) to calculate the similarity of
two individuals in an ontology, taking into account the granularity of their difference.

The idea is to first identify the Least Common Subsumer node (LCS), a common ancestor
of both nodes, and measure its depth within the knowledge graph, which is considered
the common specificity (CSpec) of those nodes. If the entire graph looks like the one in
Figure 4.2, the LCS of Pouring into and Pouring onto would be Pouring , which is
the second highest level concept in an ontology with at most three levels. The depth of
Pouring , i.e. the common specificity (CSpec) of Pouring into and Pouring onto , is
therefore 2/3. The LCS of Pouring and Pushing , on the other hand, would be Actuating ,
leading to a common specificity of 1/3. To calculate the distance between two nodes, the
authors developed the formula that our PreferenceOracle uses to determine the distance
(dist) between two individuals 𝐴 and 𝐵 in the ontology:

𝑑𝑖𝑠𝑡 (𝐴, 𝐵) := 𝑙𝑜𝑔(𝑝𝑎𝑡ℎ(𝐴, 𝐵) × 𝐶𝑆𝑝𝑒𝑐(𝐴, 𝐵) + 1) (4.5)

Calculating this formula results in an algorithm similar to Algorithm 1 on the next page.

To determine the similarity between two tasks in the ontology, the distance between the two
task types as well as the distance between all objects involved in those tasks are being calcu-
lated. The total distance can be considered a weighted sum of the distances between the task
types and the object types, using two hyperparameters task factor and object factor .
Additionally, a third hyperparameter is used to assign a distance in cases where one task
involves more objects than the other: penalty . For example, the Pour task involves
two objects: one that the robot holds in its hand to pour something out of (for example, a
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Algorithm 1 Distances in the ontology
1: function calcOwlDistance(𝑖𝑎, 𝑖𝑏)
2: 𝑙𝑐𝑠 : owlClass ⊲ Least Common Subsumer
3: 𝑎𝑛𝑐𝑎 : List← 𝑖𝑎 ⊲ Ancestors of 𝑖𝑎, sorted by degree of kinship
4: 𝑎𝑛𝑐𝑏 : List← 𝑖𝑏 ⊲ Ancestors of 𝑖𝑏, sorted by degree of kinship
5: 𝑝𝑎𝑡ℎ : N ⊲ Path length from 𝑖𝑎 to 𝑖𝑏
6: while not 𝑙𝑐𝑠 do
7: 𝑎𝑛𝑐𝑎 ← 𝑑𝑖𝑟𝑒𝑐𝑡𝑃𝑎𝑟𝑒𝑛𝑡 (𝑎𝑛𝑐𝑎 [−1])
8: 𝑎𝑛𝑐𝑏 ← 𝑑𝑖𝑟𝑒𝑐𝑡𝑃𝑎𝑟𝑒𝑛𝑡 (𝑎𝑛𝑐𝑏 [−1])
9: for ∀𝑎 ∈ 𝑎𝑛𝑐𝑎,∀𝑏 ∈ 𝑎𝑛𝑐𝑏 do

10: if 𝑎 = 𝑏 then
11: 𝑙𝑐𝑠← 𝑎

12: 𝑝𝑎𝑡ℎ← 𝑖𝑛𝑑𝑒𝑥(𝑎, 𝑎𝑛𝑐𝑎) + 𝑖𝑛𝑑𝑒𝑥(𝑏, 𝑎𝑛𝑐𝑏)
13: end if
14: end for
15: end while
16:
17: 𝑑𝑒𝑝𝑡ℎ𝑙𝑐𝑠 : N← 1 ⊲ Depth of lcs in the ontology
18: 𝑙𝑎𝑠𝑡_𝑝𝑎𝑟𝑒𝑛𝑡 : owlClass← 𝑙𝑐𝑠

19: while True do
20: if 𝑙𝑎𝑠𝑡_𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑜𝑤𝑙𝑅𝑜𝑜𝑡 then
21: break.
22: end if
23: 𝑙𝑎𝑠𝑡_𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑑𝑖𝑟𝑒𝑐𝑡𝑃𝑎𝑟𝑒𝑛𝑡 (𝑙𝑎𝑠𝑡_𝑝𝑎𝑟𝑒𝑛𝑡)
24: 𝑑𝑒𝑝𝑡ℎ𝑙𝑐𝑠 ← 𝑑𝑒𝑝𝑡ℎ𝑙𝑐𝑠 + 1
25: end while
26:
27: 𝐶𝑆𝑝𝑒𝑐 ← 1 − 𝑑𝑒𝑝𝑡ℎ𝑙𝑐𝑠

𝑑𝑒𝑝𝑡ℎ𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦
⊲ Common specificity of 𝑖𝑎 and 𝑖𝑏

28:
29: return 𝑙𝑜𝑔(𝑝𝑎𝑡ℎ × 𝐶𝑆𝑝𝑒𝑐 + 1)
30: end function

Thermos ), and another object into which the liquid is being poured (for example a Mug ).
In contrast, tasks such as Pick up an object (for example a Thermos ) involve only one
object. When comparing such two tasks, the algorithm calculates the 𝑑𝑖𝑠𝑡 ( Pour , Pick ),
weighted by the task factor , adds it to the 𝑑𝑖𝑠𝑡 ( Thermos , Thermos ), weighted by the
object factor , and as the Pouring task includes one more object that the other does
not, the result is added to the penalty , again weighted by the object factor . As task
definitions are derived from the EDAN framework, which allows at most two objects to be
involved in the semantic representation of a task (a target object and a reference object, see
Chapter 3), no task can involve more than two objects. This results in an algorithm similar
to Algorithm 2 on the following page.

In any given situation 𝑠𝑐, the EDAN framework provides a list of candidate tasks ready
to be executed 𝑂 (𝑠𝑐), considering the current world state (depicted as green bar with the
tasks Pour and Release as examples in Figure 4.1 on page 28). For each available task



34

Algorithm 2 Overall distances

1: task factor : R
2: task factor : R
3: penalty : R
4:
5: function overallDistance(𝑠𝑐, 𝑠)
6: 𝑑𝑖𝑠𝑡𝑡𝑠𝑘 ← calcOwlDistance(𝑡𝑠𝑘 (𝑠𝑐), 𝑡𝑠𝑘 (𝑠)) ⊲ see Alg. 1
7: 𝐷𝑖𝑠𝑡𝑜𝑏 𝑗𝑠 : List
8:
9: if 𝑜𝑏 𝑗1(𝑠𝑐) ∧ 𝑜𝑏 𝑗1(𝑠) then

10: 𝐷𝑖𝑠𝑡𝑜𝑏 𝑗𝑠 ← calcOwlDistance(𝑜𝑏 𝑗1(𝑠𝑐), 𝑜𝑏 𝑗1(𝑠)) ⊲ see Alg. 1
11: else if 𝑜𝑏 𝑗1(𝑠𝑐) then
12: 𝐷𝑖𝑠𝑡𝑜𝑏 𝑗𝑠 ← penalty

13: end if
14: if 𝑜𝑏 𝑗2(𝑠𝑐) ∧ 𝑜𝑏 𝑗2(𝑠) then
15: 𝐷𝑖𝑠𝑡𝑜𝑏 𝑗𝑠 ← calcOwlDistance(𝑜𝑏 𝑗2(𝑠𝑐), 𝑜𝑏 𝑗2(𝑠)) ⊲ see Alg. 1
16: else if 𝑜𝑏 𝑗2(𝑠𝑐) then
17: 𝐷𝑖𝑠𝑡𝑜𝑏 𝑗𝑠 ← penalty

18: end if
19:
20: return task factor × 𝑑𝑖𝑠𝑡𝑡𝑠𝑘 + object factor × 𝑎𝑣𝑔(𝐷𝑖𝑠𝑡𝑜𝑏 𝑗𝑠))
21: end function

𝑠𝑜 ∈ 𝑂 (𝑠𝑐), the PreferenceOracle aims to determine the probability that it is the next item
in the task chain, given the chain of previously executed tasks by that user. To achieve this,
the algorithm compares each available task 𝑠𝑜 ∈ 𝑂 (𝑠𝑐) with every task in the chain of historic
tasks 𝑆 and identifies similar tasks, i.e., tasks with a low distance according to algorithm
2. While the resulting weighted graph distance is being kept for further calculations, the
hyperparameter knockout determines a threshold that a task 𝑠 ∈ 𝑆 has to pass in order to
be considered similar to one of the candidate task options 𝑠𝑜 ∈ 𝑂 (𝑠𝑐). The set of historic
tasks that are considered similar to a candidate task option 𝐻 (𝑠𝑜) is therefore defined as:

𝐻 (𝑠𝑜) =
{
𝑠 ∈ 𝑆 | 𝑑𝑖𝑠𝑡 (𝑠𝑜, 𝑠) < knockout

}
(4.6)

If, for example, the algorithm is to compare the current task option 𝑠𝑜 to Pick a mug with
a previously executed action 𝑠 of picking a mug, the distance between both tasks is always
0:

𝑑𝑖𝑠𝑡 (𝐴, 𝐵) := 𝑙𝑜𝑔(𝑃𝑎𝑡ℎ(𝐴, 𝐵) × 𝐶𝑆𝑝𝑒𝑐(𝐴, 𝐵) + 1)

⇒ 𝑑𝑖𝑠𝑡 (𝐴, 𝐴) = 𝑙𝑜𝑔(0 × 𝑑𝑒𝑝𝑡ℎ(𝐴) + 1) = 𝑙𝑜𝑔(1) = 0

task_factor × 0 + object_factor × 0 = 0

(4.7)
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soma:PhysicalTask

soma:Actuating soma:Manipulating

soma:Opening soma:PickingUp

odb:open odb:pick

dul:PhysicalObject

odb:object

odb:surface odb:graspable

odb:container odb:pourable

odb:drawer odb:drinkable

odb:red_mug

Figure 4.3: Comparing the task close drawer with the task pick mug in the ontology.

On the other hand, when comparing the same current task option 𝑠𝑜 with a previously
executed task 𝑠 ∈ 𝑆 to Close a drawer , given an ontology that looks as depicted in
Figure 4.3, the distance calculation looks as follows:

𝑃𝑎𝑡ℎ( Open , Pick ) = 6

𝑙𝑐𝑠( Open , Pick ) = PhysicalTask

𝑑𝑒𝑝𝑡ℎ( PhysicalTask ) = 1
5

⇒ 𝐶𝑆𝑝𝑒𝑐( Open , Pick ) = 1 − 1
5
=

4
5

𝑑𝑖𝑠𝑡 ( Open , Pick ) = 𝑙𝑜𝑔(𝑃𝑎𝑡ℎ( Open , Pick ) × 𝐶𝑆𝑝𝑒𝑐( Open , Pick ) + 1)

⇒ 𝑑𝑖𝑠𝑡 ( Open , Pick ) = 𝑙𝑜𝑔

(
6 × 4

5
+ 1

)
= 𝑙𝑜𝑔(5.8)

⇒ 𝑑𝑖𝑠𝑡 ( Open , Pick ) ≈ 1.758
(4.8)

𝑃𝑎𝑡ℎ( drawer , mug ) = 7

𝑙𝑐𝑠( drawer , mug ) = object

𝑑𝑒𝑝𝑡ℎ( object ) = 2
7

⇒ 𝐶𝑆𝑝𝑒𝑐( drawer , mug ) = 1 − 2
7

⇒ 𝑑𝑖𝑠𝑡 ( drawer , mug ) = 𝑙𝑜𝑔

(
7 ×

(
1 − 2

7

)
+ 1

)
= 𝑙𝑜𝑔(6)

⇒ 𝑑𝑖𝑠𝑡 ( drawer , mug ) ≈ 1.792

(4.9)
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X 𝑑𝑖𝑠𝑡 (𝑠, 𝑠𝑜)

𝑠 ∈ 𝑆
𝑠ℎ ∈ 𝐻 (𝑠𝑜)

Figure 4.4: Ontological distance values, comparing the task option to pick a mug in the current
situation with a history of executed tasks, based only on task types and object types.

Given an object factor of 1 and a task factor of 2, this would result in:

object factor = 1

task factor = 2

overallDistance = object factor × 1.792 + task factor × 1.758

overallDistance = 5.308

(4.10)

The resulting distance of ≈ 5.308 is then being compared to the knockout value to deter-
mine, whether the tasks of closing a drawer and picking up a red mug should be considered
similar. For the upcoming examples, a knockout value of 1.5 is assumed, leading the
presented tasks to be considered not similar. To get an idea of other ontological distances
for objects as well as tasks, Figure 4.4 depicts an exemplary history of situations 𝑆 and a
distance value for all of the historically executed tasks compared to the task option 𝑠𝑜 of
picking a mug. Compared to a knockout value, four of these situations are considered to
be in 𝐻 (𝑠𝑜), i.e. similar, and depicted with a thick blue border.

Comparing Situations
A situation 𝑠, in contrast to a task 𝑡𝑠𝑘 (𝑠), is defined to link not only the executed task 𝑡𝑠𝑘 (𝑠)
and the involved objects 𝑜𝑏 𝑗 (𝑠), but also the candidate tasks, available in that specific point
in time 𝑂 (𝑠). For instance, the user is currently opening the drawer: Usually in such a
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situation, the user might want to grab their favorite red mug from the drawer and then take
a spoon. Therefore, if the last executed task was opening the drawer, the prediction for the
next situation should be picking up the red mug. However, if there is already a mug standing
on the countertop, because the user had been drinking coffee all morning, this might change
the purpose of opening the drawer (perhaps they just want to get the spoon). To differentiate
such situations, the PreferenceOracle not only compares the currently available tasks
(𝑂 (𝑠𝑐)) with previously executed ones (𝑆), but also the currently available tasks 𝑂 (𝑠𝑐) with
the available tasks in a previous situation𝑂 (𝑠) ∀𝑠 ∈ 𝑆, determining how similar the available
tasks are on average.

Accordingly, Figure 4.4 on the preceding page depicts situations that are compared with
every situation containing a list of candidate tasks 𝑂 (𝑠) in red as well as the executed task
𝑡𝑠𝑘 (𝑠) in green. Comparing the list of candidate tasks in a given situation, first requires a
matching of candidate tasks. This is achieved by the surjective function 𝑚(𝑠𝑜, 𝑂 (𝑠)) | 𝑠𝑜 ∈
𝑂 (𝑠𝑐), 𝑠 ∈ 𝑆, finding the most similar task option in 𝑂 (𝑠) | 𝑠 ∈ 𝑆 for every 𝑠𝑜 ∈ 𝑂 (𝑠𝑐),
i.e. the task option with the lowest value for the 𝑑𝑖𝑠𝑡 function. With every candidate
task in the current situation 𝑂 (𝑠𝑐) being assigned a candidate task in the historic situation
𝑂 (𝑠) | 𝑠 ∈ 𝑆, their respective 𝑑𝑖𝑠𝑡 values are averaged, which constitutes the distance
between both situations as a whole: 𝑑𝑖𝑠𝑡 (𝑠, 𝑠𝑐). This situation distance is weighted by
the hyperparameter compare situations and added to the overall distance between the
current task option and the historically executed task (see Algorithm 3 on the next page).

When computing time becomes a significant issue, the option of comparing situations (i.e.
setting compare situations > 0) also has its drawback. For distance calculations, which
involve comparing only task types and object types with each other, a preference prediction
compares the current task options 𝑂 (𝑠𝑐) with all previously executed tasks 𝑆, resulting
in a linear time dependency O(𝑛), depending on 𝑛 being the number of already stored
history tasks1. For every additional situation in 𝑆, the algorithm compares the current
situation 𝑠𝑐 with one more situation 𝑠 ∈ 𝑆. However, when introducing a comparison
of situations, each candidate task 𝑠𝑜 ∈ 𝑂 (𝑠𝑐) must be compared to all historical task
options as well, effectively multiplying the computing time by the number of available
task alternatives |𝑂 (𝑠𝑐) |. To prevent this behavior, the PreferenceOracle implements
the option to set compare situations = 0, which causes the program to completely omit
comparing situations, reducing the computing time by a factor of |𝑂 (𝑠𝑐) |.

Looking Further Back
For a more precise measure, the algorithm considers the current situation 𝑠𝑐 as part of an
ongoing chain of tasks, i.e. expects every situation to have a predecessor 𝑝(𝑠) ∀𝑠 ∈ 𝑆. When
trying to determine what a user might do in a specific situation, their previous actions are a

1We assume the number of available tasks at any current moment to be relatively constant and not excessively
high. If the number of available tasks increases faster than the number of tasks already executed, the time
complexity would depend primarily on the number of available tasks. However, there does not appear to be any
practical situation in which this might be a concern.
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Algorithm 3 Calculating situation distance
1: compare situations : R
2: knockout : R
3:
4: function calcSituationDistace(𝑠𝑐, 𝑠)
5: 𝑑𝑖𝑠𝑡 ← overallDistance(𝑠𝑐, 𝑠) ⊲ see Alg. 2
6: if 𝑑𝑖𝑠𝑡 ≥ knockout ∨ compare situations ≤ 0 then
7: return 𝑑𝑖𝑠𝑡

8: end if
9:

10: 𝐷 : List
11: for ∀𝑠𝑜 ∈ 𝑂 (𝑠𝑐) do
12: 𝑑𝑏𝑒𝑠𝑡 ←∞
13: for ∀𝑠𝑜ℎ ∈ 𝑂 (𝑠) do
14: 𝑑 ← overallDistance(𝑠𝑜, 𝑠𝑜ℎ) ⊲ see Alg. 2
15: if 𝑑 ≤ 𝑑𝑏𝑒𝑠𝑡 then
16: 𝑑𝑏𝑒𝑠𝑡 ← 𝑑

17: end if
18: end for
19: 𝐷 ← 𝑑𝑏𝑒𝑠𝑡
20: end for
21:
22: return 𝑑𝑖𝑠𝑡 + avg(𝐷) × compare situations
23: end function

crucial factor in determining their goal. For example, a user who is opening a drawer with
cutlery might want to grab a spoon if they had previously prepared a mug with tea or coffee,
whereas the user might be more likely to choose a knife if they previously placed a breakfast
plate on a table.

To account for such correlations, after comparing the current situation 𝑠𝑐 with a historic one
𝑠 ∈ 𝐻 (𝑠𝑐), the PreferenceOracle repeats the same process for their respective predeces-
sors 𝑝(𝑠𝑐) and 𝑝(𝑠) | 𝑠 ∈ 𝑆. If the calculated distance between these predecessor situations
exceeds the knockout value, the process terminates. Otherwise, the program repeats this
loop as many times as specified by the hyperparameter event horizon backwards or until
it encounters an odb:IdleTask , whichever comes first. Since an odb:IdleTask marks the
beginning and end of a sequence of tasks, examining their predecessors would not provide
any relevant information, therefore the design decision has been made to consider them
delimiters of the task chain.

Even though the situations leading to the current situation are very relevant for predicting
the next task, they are not as relevant as the current situation 𝑠𝑐. The further down in
the task chain the predecessor 𝑝𝑛 (𝑠𝑐) is, the less relevant it is to determine the next task.
The distance between the current task 𝑠𝑐 and its counterpart in history 𝑠 ∈ 𝐻 (𝑠𝑐) has a
greater impact on the final result than the comparison between their predecessors 𝑝(𝑠𝑐) and
𝑝(𝑠) | 𝑠 ∈ 𝐻 (𝑠𝑐), which in turn have a greater impact than their predecessors 𝑝(𝑝(𝑠𝑐)) =
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Figure 4.5: Different values for decreasing importance factor (x-axis) and the resulting
weights of the 𝑛-th predecessor situation.

𝑝2(𝑠𝑐) and 𝑝(𝑝(𝑠)) = 𝑝2(𝑠) | 𝑠 ∈ 𝐻 (𝑠𝑐), and so on. This is achieved by introducing the
decreasing importance factor , which assigns a decreasing weight to predecessor tasks
that lie further back in history (see Figure 4.5), as calculated by this formula (with 𝑝𝑛 (𝑠)
describing the 𝑛-th predecessor of 𝑠 and 𝑤(𝑝𝑛 (𝑠)) describing the weight given to 𝑝𝑛 (𝑠)):

𝑤𝑥 (𝑝𝑛 (𝑠)) = decreasing importance factor × (1 −
𝑛−1∑︁
𝑘=0

𝑤𝑥 (𝑝𝑘 (𝑠)))

𝑁 = event horizon backwards

𝑤(𝑝𝑛 (𝑠)) = 𝑤𝑥 (𝑝𝑛 (𝑠)) ÷
𝑁∑︁
𝑘=0

𝑤𝑥 (𝑝𝑘 (𝑠))

(4.11)

As can also be seen in Figure 4.5, a lower value for the decreasing importance factor
approaching 0 leads the algorithm to consider predecessor situations 𝑝𝑛 (𝑠) almost as impor-
tant as the original situations 𝑠, whereas a high value approaching 1 reduces the weight given
to predecessor situations to almost 0, effectively eliminating them from the calculation.

With a naive implementation, a number of predecessors to be considered might again dra-
matically increase computing time. After all, the calculations to be executed get multiplied
with every additional predecessor task. However, since the 𝑑𝑖𝑠𝑡 value of any predecessor
𝑝𝑛 (𝑠𝑐) with the predecessors in history 𝑝(𝑠) | 𝑠 ∈ 𝐻 (𝑠𝑐) must have already been calculated
when calculating predictions for the previous task, the results of those calculations are being
stored by the PreferenceOracle. Additional predecessor tasks to be considered therefore
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only require additional lookup operations in the stored distance values rather than additional
calculations.

Comparing Time of Day
Depending on the user, their habits may change over the course of a day. Most people
have a morning routine, an evening routine, etc.. Although the SOMA ontology already
incorporates the concept of a dul:TimeInterval from the DUL ontology (see [21]) and
introduces the new relations soma:hasEventBegin and soma:hasEventEnd to mark the
beginning and end of any event, this does not include a semantic representation of the time of
day. The odb ontology therefore introduces the odb:TimeOfDay concept with the children
odb:Morning , odb:Midday , odb:Evening , and odb:Night . These can be annotated to
any event to indicate the time of day of that event.

After comparing situations and their predecessors, the PreferenceOracle compares the
odb:TimeOfDay of the current situation 𝑠𝑐 and the historic situation 𝑠. The algorithm then
applies a penalty to the 𝑑𝑖𝑠𝑡 value of all situations that differ in their odb:TimeOfDay . The
penalty itself is another hyperparameter: time of day penalty .

Multiple Occurrences of the same Candidate Situation in History
The candidate tasks in 𝑂 (𝑠𝑐) can get assigned multiple situations in the task chain 𝑆, which
are considered similar, i.e. |𝐻 (𝑠𝑜) | > 1, 𝑠𝑜 ∈ 𝑂 (𝑠𝑐). Reflecting on the discussions of
N-Grams in the beginning, the probability for any candidate task 𝑠𝑜 ∈ 𝑂 (𝑠𝑐) to be executed
next should be the probability of this task following its predecessor, given the task chain.
In boolean terms, this would be as simple as dividing the number of occurrences of similar
tasks in history, i.e. |𝐻 (𝑠𝑜) |, by the number of occurrences of its predecessor situation
|𝐻 (𝑝(𝑠𝑐)) |. However, since the tasks are not identical but similar, this would cancel out the
differences between a number of identical tasks in history vs. a number of vaguely similar
tasks in history.

It is not obvious, how the different distance values of the similar tasks should be weighted.
Table 4.1 on the next page presents an example of this problem, where the last action
𝑝(𝑠𝑐) was picking a thermos bottle with three proposed successor tasks 𝑂 (𝑠𝑐): place the
thermos bottle on the kitchen table, drink from the thermos bottle, or pour some liquid
from the thermos bottle into a blue cup. In the example, the Pour task has been assigned
to only two tasks in history |𝐻 (𝑠𝑜) |, 𝑠𝑜 ∈ 𝑂 (𝑠𝑐), both with a fairly high distance value,
leaving this option to be discarded early on. The candidate task Place has four similar
tasks |𝐻 (𝑠𝑜) = 4 and the candidate task Drink has |𝐻 (𝑠𝑜) | = 5. Based on occurrences
alone, the Drink task would be considered to have the highest probability to be the next
task. On the other hand, the average distance value for the Place task is significantly
lower with 𝑎𝑣𝑔(𝑑𝑖𝑠𝑡 (𝑠𝑜, 𝑠ℎ)) = 0.35 with 𝑠ℎ ∈ 𝐻 (𝑠𝑜), compared to the Drink task with
𝑎𝑣𝑔(𝑑𝑖𝑠𝑡 (𝑠𝑜, 𝑠ℎ)) = 1.22. Based on the average distance of the similar tasks, the Place
task should therefore be favored.
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...place on kitchen table : [0.0, 0.1, 0.4, 0.9]
pick thermos... ...drink from thermos : [0.5, 0.9, 1.3, 1.5, 1.9]

...pour from thermos to blue cup : [2.0, 0.7]
Table 4.1: Collecting successor tasks poses the question of how to weigh number of occurrences vs.

the overall distance between each occurrence and the current task.

p open fridge

p pick ikea_thermos

$ open drawer

Current task option: 𝑠𝑜

p others

$ pick red_mug

p others

Historic situations A and C
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p others

$ pick plate

p others

Historic situation B
0.3

p others
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$ close drawer

p others

Historic situation C
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p others

$ transport plate

p others

Historic situation B
0.3

Figure 4.6: Example of a preference tree (calculated with multiple occurrences factor =
0.7)

The PreferenceOracle allows the user to weigh both aspects, the number of occur-
rences and the average distance score of the similar tasks, by providing the hyperparameter
multiple occurrences factor (𝑥), using the following formula

𝑣 =
𝑎𝑣𝑔 + 0.0001

𝑙𝑒𝑛𝑥
(4.12)

A higher value for the multiple occurrences factor places more emphasis on the num-
ber of similar tasks |𝐻 (𝑠) |, while a lower value prioritizes a low average distance among
those similar tasks 𝑎𝑣𝑔(𝑑𝑖𝑠𝑡 (𝑠ℎ∀𝑠ℎ ∈ 𝐻 (𝑠))).

Looking into the Future, Calculating with 𝑁 > 1 in the N-Gram
Reflecting again on the discussion of N-Grams at the beginning of this section, it becomes
clear that while the algorithm does calculate with a larger 𝑁 , i.e. calculates with a larger
sub-chain of tasks when looking at the chain of task tokens 𝑆, it does up to this point not
include a prediction of more than one task token into the future.

To achieve such a prediction of a larger event horizon in the future, the PreferenceOracle
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builds on the previously mentioned list of tasks that are considered similar to any task
option in the current situation 𝐻 (𝑠𝑜), 𝑠𝑜 ∈ 𝑂 (𝑠𝑐). For every similar situation 𝑠ℎ ∈ 𝐻 (𝑠𝑜),
the algorithm collects the successor tasks, executed in the situations that followed next in
the previous situations: 𝑁 (𝐻 (𝑠𝑜)) := {𝑛(𝑠ℎ)∀𝑠ℎ ∈ (𝐻 (𝑠𝑜)} with 𝑛(𝑠) representing the
next situation, i.e. the inverse of 𝑝(𝑠). Just as it weights the situations in 𝐻 (𝑠𝑜), the
multiple occurrences factor also weights their successors in 𝑁 (𝐻 (𝑠𝑜)), resulting in
a weighted tree of successor tasks. Each branch represents a different task that could be
executed next. An example of this tree can be found in Figure 4.6 on the preceding page: In
the example, one currently available task 𝑠𝑜 ∈ 𝑂 (𝑠𝑐) is to open the drawer. There are three
historic situations, labeled 𝐴, 𝐵, and𝐶 in 𝐻 (𝑠𝑜), each with a different overall distance value:
𝑑𝑖𝑠𝑡 (𝐴, 𝑠𝑜) = 0.5, 𝑑𝑖𝑠𝑡 (𝐵, 𝑠𝑜) = 0.3, and 𝑑𝑖𝑠𝑡 (𝐶, 𝑠𝑜) = 0.4. In the historic task corpus 𝑆,
after the task of opening a drawer was executed in situation 𝐵, the next two tasks were to
pick up a plate and then transport that plate. After situation 𝐴 had been executed, a mug
was picked and transported, while after situation 𝐶 was executed, a mug was also picked
and then the drawer was closed. Since historic situations 𝐴 and 𝐶 both have picking a mug
as a direct successor 𝑛(𝐴) = 𝑛(𝐶), the current task option 𝑠𝑜 has two possible successors
in 𝑁 (𝑠𝑜): picking a mug and picking a plate. Because picking a plate is the successor
of historic situation 𝐵 with an overall distance of 𝑑𝑖𝑠𝑡 (𝐵, 𝑠𝑜) = 0.3, its successor value
based on Equation 4.12 on the previous page is calculated as 𝑣1 = 𝐵+0.0001

1 ≈ 𝐵 = 0.3.
However, the successor value for picking a mug must be calculated based on the distance
values of both 𝑑𝑖𝑠𝑡 (𝐴, 𝑠𝑜), and 𝑑𝑖𝑠𝑡 (𝐶, 𝑠𝑜), using the presented formula. Assuming a
multiple occurrences factor of 𝑥 = 0.7, this results in:

𝑣2 =

𝐴+𝐶
2 + 0.0001

2𝑥
=

0.4+0.5
2 + 0.0001

20.7 = 0.28 (4.13)

To determine the event horizon for future events, the algorithm allows to set the hyperpa-
rameter event horizon forward , which indicates the number of successor tasks to be
calculated. This is the only parameter that does not change any distance value. Instead, it
determines how many future tasks should be suggested (Figure 4.6 shows a value of 3).

Since the only criterion for predicting successor tasks is previously executed tasks as well
as a list of currently feasible tasks, the algorithm might suggest successor tasks that are not
feasible given the current world state. This could be due to a different world state, where
an object present during the execution of the historic task is not available. It could also
be because the historic tasks are not necessarily identical to the current ones but similar.
For example, a current task option 𝑠𝑜 to pick a spoon may be matched with a historically
executed task 𝑠ℎ to pick a butter knife (with a distance > 0), since both the spoon and the
knife are cutlery and in this sense relatively similar. In such a case, after the user picked up
a knife in the historical situation 𝑠ℎ, a cutting task may have followed in 𝑛(𝑠ℎ). However,
in the current situation 𝑠𝑐 where the user is about to pick up a spoon 𝑠𝑜, cutting something
with a knife is not a feasible option. To prevent such infeasible suggestions, the algorithm
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p others
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Historic situation B
0.6

Ý pick spoon

Ý pick red_mug

Ý close drawer

Currently available options: 𝑂 (𝑠𝑐)

Figure 4.7: Example of finding and removing suggestions from the preference tree that involve objects
that are not available in the current world state.

traverses the tree and removes all suggestions that involve objects that are not currently
present (see Figure 4.7). An exception applies to tasks of type soma:’Opening’ , as these
involve opening a container, which may reveal new objects and offer more task options.
Consequently, predicted successors of tasks derived from soma:’Opening’ are not checked
for object existence.

4.5 Hyperparameter Tuning based on Data
Finding good values for all the mentioned parameters can be done automatically using the
PreferenceOracle. After some tasks have been executed, the program can reprocess the
already executed tasks with different values for the hyperparameters and compare the newly
calculated predictions with the executed tasks. For any NEEM, the recorded history can
thus be used to create a training scenario, where the history itself serves as ground-truth
information. The tuning algorithm is relatively simple. It just iterates over all hyperparame-
ters, recalculates preferences with slightly adjusted parameter values, and focuses in greater
detail on parameter values that show promise for improving prediction accuracy. The basis
for this fine-tuning process can be either a previously recorded and stored NEEM that is
reloaded for tuning purposes, or the calculations can even be performed during runtime
while the robot is idling.

The criterion for tuning the hyperparameters can also be adjusted between different top 𝑘

settings. For a real-world application that involves a tablet screen with large fonts and images
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object factor 1.0
task factor 2.0
knockout 1.16
penalty 3.7
event horizon backwards 16
decreasing importance factor 0.81
compare situations 1.0
time of day penalty 1.18
event horizon forward not trained
multiple occurrence factor 0.25

Table 4.2: Recommended hyperparameter settings for a good performance in top 5 metric

that suggests only a few task alternatives, the goal is to have the perfect suggestion within the
top five or even the top three suggestions. In scenarios with few alternatives, the goal may
be to maximize the number of cases where the first suggestion is already correct, allowing
the user to simply confirm with an OK button. For training and evaluation in this thesis, we
focus primarily on the top five metric.

Although it seems promising to fine-tune the parameters during run-time and adjust them
to the specifics of the current workflow, the overall direction of these values is unlikely to
change significantly between workflows. Tuning the parameters using an automated dataset
(see the next section) yielded a set of values that provide good default settings. The values
that resulted in the most cases with the correct prediction within the top five predictions are
listed in table 4.2.

4.6 Modeling Predictions
As mentioned above, SOMA also includes a preference model to store the predicted prefer-
ences as part of the ontology (see [3]). The SOMA developers also developed the KnowRob
framework (see [8]), which enables querying the generated knowledge base during runtime.
By storing the calculated predictions in the SOMA ontology, developers can use KnowRob
to query information about previous behavior. This capability provides users with a sense of
control and understanding of the robot’s behavior. With a history of calculated preferences
accessible via KnowRob, the robot can answer questions such as:

Why didn’t you do X? This could be something like "Why didn’t you pick up the banana?"
or "Why didn’t you open the door?". In different situations, users might expect the robot
to behave in a certain way and may feel that it is obvious what the next task should be.
The reason why a desired task was not executed can vary depending on the robot’s world
state and preference calculations. For example, the robot could explain to the user that it
prioritized another task before getting to the task the user is asking about. This might even
include working on some preconditions for the task that the user forgot about (e.g., boiling
the water before making tea with it). On the other hand, the robot may have expected the
user to desire a different workflow.
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What do you want to do next? Understanding the next tasks that the calculations predict
can help the user to make sense of the action that is currently taking place. In situations
where robotic actions seem unreasonable at first, users might be able to infer the larger goal
of a task based on the next few steps the robot is planning to take. For example, in a situation
where the robot starts getting a mug out of the drawer, the user might ask the robot, "What
do you want to do with the mug?"

Do not do this, do something else! Although a command interface has not yet been
implemented, the preference model is capable of returning the action with the second
highest probability of being chosen by the user. If a user wants the robot to automatically
infer the next tasks, they might notice that the robot is starting to execute a wrong task. By
instructing the robot, "Do not do this, do something else!", KnowRob can review the history
and identify the next likely task that had been calculated before starting the current one.

4.7 Summary
This section demonstrates a potential application of integrating NEEMs with the EDAN
framework by recording user actions and all their properties in a SOMA compatible knowl-
edge graph, as demonstrated in Chapter 3. This approach enables algorithmic processing of
previously executed tasks, their properties, and relationships, thus validating the effective-
ness of the integration in improving task anticipation and preference-based decision-making.
This study explores how the EDAN framework can leverage recorded actions stored in a
knowledge graph to perform a computational analysis on past tasks. In doing so, an algo-
rithm is developed that anticipates user preferences and predicts the next tasks they are likely
to execute under various circumstances, effectively demonstrating the utility of integrating
NEEMs into the EDAN framework.

The algorithm presented in this chapter combines the traditional notion of preferences with
the concept of N-Grams, usually used in next-word prediction. This approach highlights the
importance of previously executed tasks by considering all tasks as part of a task chain. The
predicted task preferences of a user are calculated using two concepts newly introduced into
the EDAN framework by the NEEM logger: (1) the recorded chain of tasks executed by a
specific user controlling EDAN and (2) the topological relationship of tasks and objects in
the knowledge graph.

By calculating the suggestions solely based on a user’s previous actions, the algorithm en-
sures complete safety regarding user data and does not require users to share their workflows
for training purposes. All calculations can be performed directly on the computer attached to
EDAN and are deterministic, without using external data. This also ensures the algorithm’s
compatibility with different world setups for the EDAN robot. Introducing new objects with
a new object hierarchy or removing existing ones does not pose additional challenges to
the algorithm. Furthermore, the algorithm can accommodate users with diverse behaviors,
cultural backgrounds, habits, and abilities without introducing any pre-trained bias into the
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preference predictions.
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C h a p t e r 5

EVALUATION

5.1 Introduction
To evaluate the predicted user preferences, they can be compared with the actual decisions
made by a user. Such a comparison, however, requires a larger dataset of human interactions
with the EDAN robot, that can be used to first calculate user-specific preferences and then
compare them to the actual human decisions. Such a dataset in the form of the previously
mentioned NEEMs has been generated for this chapter:

By equipping the NEEM Logger to the robot EDAN, we could record the actual behavior
of users interacting with the robot and assess whether the preference calculations are able
to predict that behavior. On a larger scale, this approach would be the gold standard for a
field test and provide the best proof of the quality of the calculated preferences. However,
the EDAN robot is still under development and has a limited, albeit steadily increasing,
set of available actions and objects to interact with. In recent competitions, the team has
demonstrated EDAN’s ability to interact with various objects, e.g. EDAN can grasp a towel,
empty a dishwasher, open a door, or retrieve a package from a physical mailbox (see [20]).
Although the list of tasks is impressive from a technical standpoint, the number of different
objects and tasks is still quite limited. Clearly, the research team focuses on learning to
handle different types of object that present technical challenges, rather than increasing
the number of different objects that can be handled in a similar way. Although handling a
mailbox, a towel, and a dishwasher is impressive, these tasks are too dispersed to be included
in a scenario in which different users behave differently. We need a setup with similar objects
and similar tasks to make it challenging to predict different user behavior. With only one
cup and one thermos bottle in the kitchen, every user would use that one cup and that
one thermos bottle. But what if there were five different fruits, a thermos bottle, a water
bottle, and three different cups, which would still be a very limited setup, compared to a
real kitchen? These are the questions where preference calculations become interesting and
provide meaningful results. However, even with a more equipped laboratory kitchen with
a larger set of similar objects, simulating a user’s daily workflow with all its repetitiveness
would require a significant amount of time and energy (both human and electrical). Since
most other research topics working with EDAN focus on refinement of specific task types
or identifying and overcoming technical challenges, repeatedly executing and recording a
similar workflow every day would not be particularly helpful for researchers.

Rather than using the robot to execute and record a daily workflow, we can also gather data
by having people describe their daily routines to us. This enables us to significantly expand
the dataset and record a wide variety of people’s daily routines. Furthermore, this method
allows us to include a much larger number of objects in the hypothetical laboratory kitchen
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for users to interact with, since none of the objects need to be physically present.

To collect data on people’s workflows, we could conduct a study and interview individuals
on the street. This would provide us with a valuable dataset of actual human beings sharing
their daily routines. However, this approach has its limitations when it comes to capturing
the repetitive aspect of a typical daily workflow. The research would require participants
to describe not only their daily activities, but also variations in their routines over multiple
days, including subtle differences in their interactions with the kitchen. For example, they
would need to recall how one day they took a mug out of the drawer before turning on the
coffee machine, whereas on another day they turned on the coffee machine first and then
retrieved the mug. Such nuances are difficult to elicit through oral interviews. This issue
becomes even more pronounced when considering very minor tasks, such as entering the
kitchen solely to grab a glass of water and then leaving again.

Recent advancements in Large Language Models (LLM) have presented an alternative
strategy for collecting the necessary data: leveraging the LLM itself. Since it is trained
to concatenate words in a way that mimics human language, it should be able to provide
natural language descriptions of how different human beings would describe their daily
workflows. Although the model’s output is non-deterministic, meaning it rarely produces
identical workflows, it can follow detailed instructions on what to include and exclude from
the results.

5.2 Generating and Curating the Daily Living Dataset
To create user workflows that can be used to evaluate the PreferenceOracle, a Large Lan-
guage Model has been prompted to generate a set of synthetic personas with different daily
habits. In a first iteration, the experimenter generated a very abstract persona description
in yaml format consisting of a name, a description of the persona’s habits (taking just one
to two sentences), a daily routine, and some variations to this routine. The daily routine as
well as the variations are a list with every entry consisting of a very brief action description
and a time for the action to happen. For illustrative purposes, two example personas used
to prompt the LLM are shown in Listing 5.1. The complete list of example personas can
be found in the Appendix in Listing B.1 on page 83. The LLM was then prompted to
replicate the same basic file structure, but with different personas and varying routines and
preferences.

1 − f i l e_name: v e g a n _ t w e n t i e s
2 persona: You are a hea l t h y − l i v i n g vegan i n your t w e n t i e s , t r y i n g t o s t a y

away from c o f f e e as b e s t you can .
3 d a i l y _ r o u t i n e :
4 - d e s c r i p t i o n : You want t o p repare a b r e a k f a s t w i t h t e a
5 t ime: 10
6 - d e s c r i p t i o n : You g e t home from c o l l e g e and want t o r e l a x .
7 t ime: 15
8 - d e s c r i p t i o n : You want t o e a t d i n n e r .
9 t ime: 20
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10 v a r i a t i o n s :
11 - d e s c r i p t i o n : You f i n d y o u r s e l f d r i n k i n g c o f f e e .
12 t ime: 13
13

14 − f i l e_name: 90 _year_dr ink ing_man
15 persona: You are a 90−year o l d man w i t h a h e a r t c o n d i t i o n and a t e nd en c y

t o d r i n k t oo much .
16 d a i l y _ r o u t i n e :
17 - d e s c r i p t i o n : You want t o p repare b r e a k f a s t
18 t ime: 07
19 - d e s c r i p t i o n : You want t o snack .
20 t ime: 14
21 - d e s c r i p t i o n : You want t o e a t d i n n e r .
22 t ime: 20
23 v a r i a t i o n s :
24 - d e s c r i p t i o n : You are g e t t i n g home from t h e d o c t o r
25 t ime: 15
26 - d e s c r i p t i o n : You want t o d r i n k some th ing
27 t ime: 18

Listing 5.1: Excerpt of the list of personas, used to prompt an LLM for some auto-generated personas

By incorporating different prompts, such as a persona’s love for tea or a favorite cup, the
LLM created a more nuanced and realistic set of characters. This resulted in a set of more
than one hundred different personas, each with a unique daily routine and some variations
on that routine.

Given that this project does not intend to contribute research data to for-profit organizations,
the selection of LLMs is limited to those that can be run locally without compromising data
security. Furthermore, the chosen model must be capable of adhering to strict boundaries in
its text output, specifically interacting only with the predefined kitchen setup outlined in table
5.1. After careful consideration, the model qwen2.5:32b was chosen (see [6]), as it was
the most competitive open-source model at the time of the test runs, yielding the best results
in its more performant 32b version, surpassed only by the less performant Llama 70b (see
[49]). Our experience with the model, particularly in the context of this thesis, has shown
that it produces the most satisfactory results. However, in instances where performance was
of greater concern and prompts were relatively simple, the model mistral-small has also
been used.

The synthetically generated personas have served as an input parameter for a next prompt,
asking the LLM to elaborate on the actions of a user with a specific user description (for
example: "You are a healthy-living vegan in your twenties, trying to stay away from coffee
as best you can."), acting to achieve a specific goal at a given time (for example: "You get
home from college and want to relax. It is 3 pm."). All entries in the previously generated
daily routine as well as the variations are hereby included to each define a different prompt.
This process is repeated for the equivalent of seven virtual days, during which the daily
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routine is being repeated, but occasionally replaced with the stored variations at random.

To limit the synthetic list of actions, a hypothetical laboratory kitchen setup was created,
which includes a variety of cups and glasses, different types of beverages, and various food
items. Since the evaluation is conducted outside of the robot’s actual environment, this setup
was able to incorporate objects and tasks that the robot has not yet learned to interact with
or to execute, making the calculations more interesting. This hypothetical kitchen setup,
comprising a set of objects, their hierarchical structure, and a set of tasks, is presented in
table 5.1 on the following page. The setup also incorporates the concept of certain objects
being contained within other objects, such as drawers or a dishwasher, which can only be
accessed and interacted with if the container object is opened first.

Based on both the description of a situation as well as the description of a kitchen environment
including available objects and available tasks with some objects being enclosed in others,
the LLM has been prompted to generate a list of actions to achieve the goal, described in the
situation. Table 5.2 on page 52 provides an example of the textual description of the user’s
workflow generated through this method, as well as an excerpt of the prompt.

The resulting textual descriptions of tasks, such as "I pour the contents of the thermos into the
green mug", are then transformed into the machine-readable format of <task>(<obj1>[,
<obj2>]), using a third prompt for an LLM. Tasks like "I pour the contents of the thermos
into the green mug" have thereby been transformed into pour(thermos, green_mug,
while tasks like "I pick up the thermos" have been transformed into pick(thermos).
Although language models excel at following prompted restrictions compared to other non-
deterministic models, there have been instances where the prompt did not result in a task that
could be executed in our hypothetical kitchen setup. In some cases, the model omitted trivial
intermediate tasks necessary for executing a specific task, such as opening a drawer before
retrieving an item. In other cases, the model invented or misspelled objects or tasks. While
the former issues were relatively easy to resolve using a reasoner that added the necessary
intermediate tasks, the hallucinated objects and tasks posed a more significant problem.
After making some minor manual adjustments, datasets with an excessive number of errors
were discarded.

This results in a dataset, that consists of a number of machine-readable tasks for each
synthetically generated persona. Together with a world description as shown in Table 5.1
on the following page, these actions are read and stored as NEEMs by the NEEM Logger,
forming a NEEM for every persona.

5.3 Methodology
A synthetically generated dataset of NEEMs, generated by a Large Language Model and
recorded by the NEEM Logger, consisting of 105 NEEMs, has been built as described in
the previous section. Each NEEM consists of a number of actions by one hypothetical
persona, with 105 hypothetical personas each being recorded in their own separate NEEM.
This dataset has been split into a subset of 17 NEEMs used for development and fine-tuning
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kitchen_table:
counter_top:

thermos pick , place , pour , drink_from
water_bottle pick , place , pour , drink_from
bread pick , place , eat

big_drawer: open , close
knife pick , place , cut , eat_with
spoon pick , place , stir
fork pick , place , stir , eat_with
chamomile_tea_bag pick , place
peppermint_tea_bag pick , place
green_tea_bag pick , place
black_tea_bag pick , place
chai_tea_bag pick , place

small_drawer: open , close
instant_coffee pick , place , pour
red_mug pick , place , drink_from
green_mug pick , place , drink_from
blue_mug pick , place , drink_from
drinking_glass pick , place , drink_from
espresso_cup pick , place , drink_from
cereal_bowl pick , place , drink_from
cereal_box pick , place , pour
plate pick , place

fruit_bowl:
orange pick , place , eat
apple pick , place , eat
lemon pick , place , eat
banana pick , place , eat

fridge: open , close
milk_carton pick , place , pour , drink_from
juice pick , place , pour , drink_from
beer_bottle pick , place , pour , drink_from
cucumber pick , place , eat
avocado pick , place , eat
yogurt pick , place , pour

tap: turn_on , turn_off
coffee_machine: turn_on , turn_off
microwave: turn_on , turn_off
dish_washer: turn_on , turn_off
stove: turn_on , turn_off

Table 5.1: List of objects and their afforded tasks in the kitchen setup used for evaluating the
preference calculations
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User:

You can do the actions
- pick
- place
...

With the following objects:
"Drinkable": [
"blue_mug",
"red_mug",
...
],

"Pourable": [
"milk",
"juice",
...
],

You want to drink some water. It is 11am. What do you do?’

Assistant:

- I open the drawer.
- I pick up the green mug.
- I place the green mug on the countertop.
- I pick up the thermos.
- I pour the contents of the thermos into the green mug.
- I place the thermos.
- I pick up the green mug.
- I drink from the green mug
- I place the green mug.

Table 5.2: Excerpt of the prompt to generate a textual user workflow as well as an example of the
answer
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Figure 5.1: Number of actions per sample NEEM in the test dataset

purposes (training dataset) and a subset of 88 NEEMs that have not been seen before and used
for testing. As described in Section 4.5 on page 43, the PreferenceOracle is equipped with
a function for self-fine-tuning. This function had been run on the training dataset, resulting
in a recommendation for a specific set of parameter settings (see Table 4.2 on page 44).

The remaining test dataset consists of 88 NEEMs / personas with each NEEM / persona
containing a different number of actions. As shown in Figure 5.1, the average number of
actions per NEEM is around 218 with a very small NEEM consisting of only 109 actions
and a very large NEEM consisting of 344 actions. This dataset has then been used to answer
the following research questions:

1. With what accuracy does the PreferenceOracle predict the next action? With what
accuracy does the correct prediction lie within the Top 3 / Top 5 predictions? How
does this accuracy compare to chance?

2. How many actions by a specific user does the algorithm need to see in order to have
an accuracy of at least 80 % for the correct prediction lying withing the Top 5 of
predictions?

3. How big is the influence of the different hyperparameters, i.e. how much does the
prediction accuracy change for each hyperparameter that is being set to its neutral
element?

4. How much time does the algorithm need to calculate a prediction?

To answer questions (1), (2), and (4), the NEEM Logger has loaded each of the NEEMs in
the test dataset, one NEEM at a time, progressively. The equipped PreferenceOracle has
been set to iterate over all actions in a given NEEM with its hyperparameters set according
to Table 4.2 on page 44. For each action, the PreferenceOracle was instructed to predict
the next action solely based on the list of actions prior to the current one. Given only the
respective prior actions, the PreferenceOracle has predicted a list of successor tasks,
ordered by their predicted probability of being executed in the next action. The predicted
next action has then been compared with the actual next action in the NEEM, resulting in a
hit or a miss for each of the Top 5, Top 3, and Top 1 metrics with a hit defined as the correct
next action being predicted as part of the Top 5, Top 3, or Top 1 of predictions.

In another iteration, the PreferenceOracle is set to repeat the process with different
hyperparameters. To answer question (3), each hyperparameter has been set to its neutral
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Figure 5.2: Comparison of prediction accuracy for the recommended settings, using different metrics

element, some hyperparameters have also been set to a very high value, with the remaining
hyperparameters left at their recommended settings, according to Table 4.2 on page 44.

All calculations have been run on an Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz with
x86_64 architecture. Even though the machine is equipped with 56 CPUs, the NEEM
Logger and all evaluated algorithms run single-threaded and use only one CPU at a time.
The machine is equipped with 250 GB of RAM with an additional swap memory of 5.9 GB.
All presented experiments have been run on the Linux openSUSE 15.5 system.

5.4 Results
To get a general idea of the accuracy of the prediction of the PreferenceOracle, Figure 5.2
presents a box plot illustration of the overall average accuracy of the PreferenceOracle in
the test setup for the Top 1, Top 3, and Top 5 metrics. It shows that all NEEMs achieved at
least a 75 % accuracy averaged over all actions in the NEEM for the Top 5 metric, with an
overall average of 89.1 % and some NEEMs exceeding 96 % over all actions. For the Top 3
metric, the best-performing samples achieve over 96 % accuracy as well, while the average
drops to just above 80 %. When considering only the topmost prediction, the overall average
accuracy lies at around 60 %. However, the Top 1 metric shows a much wider variability,
with the PreferenceOracle performing on some NEEMs with an accuracy of below 40 %
and on some other NEEMs nearing 85 %.

Breaking down the results by the number of actions recorded, Figures 5.3 on the next page
and Figure 5.4 on the following page show an evolution of the accuracy of the prediction
over time. Figure 5.3 shows that the prediction accuracy across all metrics is near chance
for the first 9 predictions with an accuracy of (near) zero for the first actions. After the
algorithm has seen the first 9 actions, the 10th prediction already lies significantly above
chance. Until around the 30th action, the prediction accuracy continues to increase for all
metrics and stabilizes slightly above the overall averages, already shown in Figure 5.2. For
comparison, the chance level shows a steady accuracy of around 5 % for Top 1, around 15 %
for Top 3, and around 24.5 % for Top 5. Depending on the context of a given situation in a
sample NEEM, the robot affords a different number of actions, which is indicated by a slight
fluctuation in the chance level across the number of actions.

While Figure 5.3 is cropped after 75 actions to get a closer look at the evolution of the
prediction accuracy within the first few actions, Figure 5.4 shows the accuracy for the Top 5
metric over all actions that have been recorded in the test dataset. After approximately
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Figure 5.3: Average prediction accuracy after a number of actions in the test dataset.
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Figure 5.4: Average prediction accuracy after a number of actions in the test dataset, compared to
the number of samples providing a different number of actions.
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200 to 250 actions, the reader can observe greater fluctuations in accuracy, with some data
points showing a lower accuracy of below 80 % after 250 actions and even below 50 %
after 300 actions, while the majority of data points show an average accuracy of 100 %.
This higher fluctuation correlates with a lower number of NEEMs in the test dataset, which
contain more than 200 actions. While all sample NEEMs contain at least 100 actions, the
number of NEEMs reaches less than 20 after around 250 actions. This also results in a
higher fluctuation in the chance level: Depending on the context of a situation, EDAN has
fewer or more actions available to be executed, and therefore different chances for a random
suggestion to pick the task that was actually executed.

To assess how various parameters influence the accuracy (question (3)), Figure 5.5 on the
next page presents a box plot of the overall Top 5 accuracies when the PreferenceOracle is
run with the recommended settings, compared to the results of setting each of the parameters
to their neutral element. The corresponding box plot for Top 3 (Figure B.1 on page 85) and
Top 1 (Figure B.2 on page 86) metrics are included in the appendix for further reference.

Given the synthesized dataset, the time of day penalty fails to show a significant de-
crease in prediction accuracy when set to its neutral factor 1 (Plot D), which effectively
disables the penalty for actions at different times of day. On the other hand, a penalty of
factor 10 (Plot C), which completely disregards actions from different times of day, shows
significantly worse results with an accuracy of 85.5 % and some outliers having an accuracy
of less than 70 %.

Plot H shows a significant decrease in accuracy, down to an average of 55 %, when object
types and their roles in a task are ignored. In contrast, Plot I shows a dramatically smaller
(yet significant with 𝑝 = 0.003 in the Mann Whitney U test) decrease in accuracy down to
86.6 % on average, when task types rather than object types are ignored.

Changes in the knockout parameter, which determines the degree of similarity required
between tasks and objects to be considered similar, show a big difference in accuracy. Setting
it to a very low value of 0, where only identical tasks with identical objects are considered
similar, provides significantly worse results of 81.6 % as shown in Plot L. Conversely, setting
it to a very high value of 20, where almost all tasks are considered similar but still ranked by
their calculated similarity score, results in an even worse performance of 52.7 % accuracy,
as shown in Plot M.

Setting the penalty parameter to its neutral element can either mean to set it to be equal
to the knockout parameter. This leads the algorithm to omit any distinction between the
𝑑𝑖𝑠𝑡 value of a situation that is beyond knockout and a situation that is just reaching
knockout . Setting the penalty parameter in such a way, results in a slight, but not
significant (𝑝 = 0.052 in the Mann Whitney U test) drop in prediction accuracy of on
average 87.3 %, as shown in Plot J. On the other hand, the parameter could be set to be
very high, resulting in effectively eliminating any situation and element of a situation, that
receives the penalty . In the test runs for Plot K, the parameter had been set to 20, resulting
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Figure 5.5: Comparison of Top 5 accuracies between different settings.

Legendary:
A: Recommended settings (see tab. 4.2 on page 44) H: object factor = 0

B: compare situations = 0 I: task factor = 0

C: time of day penalty = 10 J: penalty = knockout

D: time of day penalty = 1 K: penalty = 20

E: multiple occurrences factor = 1 L: knockout = 0

F: multiple occurrences factor = 0 M: knockout = 20

G: decreasing importance factor = 1 N: event horizon backwards = 0
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Figure 5.6: Comparison of prediction accuracies for Top 1, Top 3, and Top 5 metrics, comparing
recommended settings (see Table 4.2) and knockout = 0.

in an average accuracy of 80.9 %.

The parameter with the greatest impact on the prediction outcome is determining, how far the
order of task execution should be considered: event horizon backwards . Plot N shows
the PreferenceOracle to perform poorly when comparing only singular events with the
current situation, i.e. setting the parameter to 0 and ignoring all predecessors of situations,
resulting in an average accuracy of 39.9 %.

While most settings exhibit similar results for the Top 3 and Top 1 metrics as they do
for the Top 5 metric, the knockout value is an interesting exception, particularly when
knockout = 0 (see Figure 5.6). For the Top 5 metrics, a lower knockout value generally
leads to poorer performance, as already shown in Figure 5.5 on the previous page. However,
for the Top 3 metric, the relationship becomes less clear-cut. Although for the the best and
worst performing sample NEEMs, the accuracy for Top 3 predictions is higher with the
recommended settings (see Table 4.2), the average performance across all NEEMs in the
test dataset is with 82.5 % higher for setting knockout = 0, than using the recommended
settings, which provides an average accuracy of 81.2 %. This trend is even stronger for the
Top 1 metric, which provides better overall results with setting knockout = 0 resulting in
an average accuracy of 73.5 %, than running the PreferenceOracle with the recommended
settings, which provides an average accuracy of 61.9 %. On the other hand, Figure 5.6 shows
a low knockout value to provide more negative outliers, i.e. samples that the algorithm
handles significantly poorer than the average sample NEEM.

With different parameter settings, not only does the prediction accuracy vary, so does the
computing time. For running the recommended settings in a process as discussed in Section
5.3, the computing time per action ranges from apx. 0.1 seconds up to apx. 0.5 seconds,
as shown in Plot A of Figure 5.7 on the following page. On average, these settings require
0.19 seconds per action for the PreferenceOracle to calculate its suggestions. Although
many parameters have no impact on computing time (see plots C, D, E, F in Figure 5.7),
some parameters do.
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Figure 5.7: Comparison of average computing time per task using different settings

Legendary:
A: Recommended settings (see Tab. 4.2 on page 44) H: object factor = 0

B: compare situations = 0 I: task factor = 0

C: time of day penalty = 10 J: penalty = knockout

D: time of day penalty = 1 K: penalty = 20

E: multiple occurrences factor = 1 L: knockout = 0

F: multiple occurrences factor = 0 M: knockout = 20

G: decreasing importance factor = 1 N: event horizon backwards = 0
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When setting the event horizon backwards to 0 (Plot N in Figure 5.7), the average
computing time per action is apx. 0.186 seconds, which is a small, yet statistically significant
reduction (with 𝑝 = 0.002 in the Mann Whitney U test).

Perhaps surprisingly significant regarding computing time reduction is a low knockout

value (see Plot L and M). While a value of 0, which eliminates a higher proportion of tasks
early in the calculation process, reduces the computing time down to 0.165 seconds (with
𝑝 = 0.004 in the Mann Whitney U Test) (Plot L), calculating with a high knockout value
of 20 (Plot M), the computing time dramatically increases up to nearly 4 seconds per task in
the worst sample case, which reaches a level that is barely usable in a real life scenario.

Setting a lower value for the object factor (Plot H), the task factor (Plot I) or the
penalty (Plot J) effectively lowers all non-perfect 𝑑𝑖𝑠𝑡 values for situation comparisons and
therefore have, regarding computing time, the same effect as choosing a higher knockout
value: They increase the computing time, but all stay below one second per prediction.

The most significant impact on computing time is associated with the parameter compare situations .
When set to any value greater than 0, every task in the current situation is compared against
all tasks in every historical situation, including not just those that have been executed but also
all available alternatives at any moment. In contrast, setting this parameter to 0 completely
skips these comparisons, resulting in a substantial reduction in computational effort down
to 0.025 seconds per action, ensuring that the computing time remains below 0.1 seconds
per prediction even for outliers.

5.5 Discussion
As described above, the evaluation works under the assumption that the output of a large
language model, which has been used to generate the NEEM dataset, approximates the
statistical distribution of actions in a human workflow. Since large language models do have
a bias to follow statistical patterns, there is reason to look at this hypothesis critically, since
the model might have generated a much cleaner dataset than human workflows would have.
However, testing this hypothesis is beyond the scope of this thesis.

While the PreferenceOracle does show a reasonably high accuracy of close to 90 % in
providing the correct next task within its Top 5 of predictions given the generated dataset,
the score for a perfect suggestion is less impressive with around 60 %.

Given that the algorithm does not require preexisting knowledge in the form of any training,
nor is it limited to a specific context of objects and tasks, the prediction accuracy starts
converging reasonably fast. After just 10 actions, the algorithm already provides custom
predictions that are well above chance level with the accuracy increasing for the next 20 to
40 actions, where the accuracy seems to converge. This is a time frame that might allow for
even smaller demonstrations with the robot to show an interesting prediction.

The hyperparameters show different results regarding their effect on prediction accuracy.
The time of day penalty does not seem to increase prediction accuracy, which may
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be due to the synthetic dataset not providing enough variety of actions depending on the
time of day. Assessing the influence of the time of day for a user workflow would require
some human data, which goes beyond the scope of this thesis. Different settings for the
multiple occurrences factor also seem to have very limited effect on the prediction
accuracy. For future iterations, it might be reasonable to remove this hyperparameter and
set a constant number for this parameter instead.

Recognizing different tasks appears to be highly dependent on recognizing the objects
involved in the task. This is evident from the significant decrease in accuracy when object
types and their roles in a task are ignored, and the minimal decrease in accuracy when task
types are ignored. A possible explanation for this behavior is that a specific setup of objects
and their roles in a task (for example: using odb:Thermos to perform an unknown task with
object odb:BlueMug ) is typically associated with only one or two task types (the example
can only be achieved with the soma:PouringInto task). On the other hand, the same task
type can often be executed with a number of different objects. Depending on the structure
of the object and task hierarchy, as well as the type of available tasks, this behavior might
change for different setups.

For the event horizon backwards , a higher value provides a higher prediction accuracy,
but also increases the computing time. However, the evaluation has shown that the increase
in computing time is barely measurable. In future iterations, this parameter might also be
omitted in favor of a high constant value for the event horizon.

The most important hyperparameters for a good prediction accuracy seem to be on the
one hand the task factor and object factor and on the other hand the knockout
parameter, which also depends on the structure of the generated ontology. In a very fine-
grained ontology with a lot of subconcepts, the paths between objects are generally all longer
and therefore require a higher value for the knockout parameter than in an ontology with
just a few very general distinctions in objects and tasks. Since EDANs odb has been created
with a focus on supporting existing applications, the question must be raised, whether the
resulting ontology even returns a meaningful knowledge graph that allows to calculate graph
distances, as presented in this chapter. To some extent, this question can be answered Yes,
given the prediction accuracy presented. However, a restructuring of the object and task
hierarchy might yield some further improvements in accuracy.

The parameter compare situations should also be further investigated. In the synthetic
dataset, the parameter does not yield a big improvement in prediction accuracy, on the
other hand, the parameter controls the single most time-consuming aspect of the algorithm.
Comparing the given results with some real-life evaluation could help in deciding whether
to remove that part of the algorithm completely.

All in all, the computing time to predict the next action usually stays below 0.5 seconds
with an average of 0.19 seconds, which does allow the algorithm to be run in a real life
application.
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5.6 Overview over the Hyperparameters
Overall, the evaluated test runs show the following effects of the different parameters:

The compare situations parameter is a multiplier that controls the weight given to
the surrounding situation in the prediction. It can be set to exactly 0, which significantly
reduces the computing time. Alternatively, setting it to a higher value between 0 and 1
provides slightly improved prediction accuracy with an optimal value around 1.

The time of day penalty is a penalty multiplier for tasks that have been executed at
different times of day. The neutral value for this parameter is 1, indicating that there is
no penalty. The impact of this parameter changes across datasets and depends on how
significantly a user’s workflow changes throughout the day. A suitable value ranges from 1
to 2.

The multiple occurrences factor weights the number of similar tasks found in history
against the average calculated distance to those tasks (see formula 4.12 on page 41). A value
of 0 completely disregards the number of hits, considering only the average task distance,
whereas a high value of 1 or even 2 gives significant weight to the number of hits and reduces
the importance of the distances to the found tasks. A suitable value would be between 0.6
and 0.9

The decreasing importance factor weights the predecessor tasks with respect to the
main tasks to be compared (see formula 4.11 on page 39). A value of 0.1 makes almost no
distinction between the comparison of the main task and the comparison of the predecessor
task with the predecessor of a historic task. On the other hand, a value of 1 assigns all the
weight to the main task and completely ignores all predecessor tasks. An optimal value
for this parameter depends on the event horizon backwards . With a high event horizon,
this factor needs to be smaller to still recognize events lying further back. A good value is
around 0.25.

The object factor and task factor control the relative weight of task types versus
object types when calculating distances between tasks. Experiments have consistently shown
that the best performance is achieved with the object factor set to 1 and the task factor to 2.

The knockout parameter has the most significant impact among the listed parameters.
A low value (near or equal to 0) considers only very similar or identical tasks similar and
discards all other tasks. This leads to a shorter computation time and a higher probability
that the correct task is the topmost prediction of the algorithm. In contrast, a higher value
allows the algorithm to make non-perfect suggestions with a high accuracy of being within
the Top 5 even with a limited recorded history. A value of around 1 indicates a higher chance
that the correct task is within the Top 5 predictions with the evaluated settings. However,
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the optimal value also depends on the structure of the object and task hierarchy, since a
more detailed knowledge tree results in higher values for the calculated distances between
different tasks and objects and therefore requires a higher knockout value to achieve the
same effect.

The penalty parameter determines the distance assigned to items that exceed the
knockout value. For example, the algorithm could compare two actions as well as their
predecessors with a current task option. While one of the actions has five predecessor
actions that are all similar to the predecessor actions of the current task (i.e., they all have
a 𝑑𝑖𝑠𝑡 value that is below the knockout parameter), the other action could have only three
similar predecessor actions, with the fourth having a 𝑑𝑖𝑠𝑡 value that reaches beyond the
knockout parameter. In such a case, the fourth and fifth predecessor action in the latter
chain will automatically get assigned this penalty value. This parameter should be set
slightly higher than the knockout value, otherwise, it would not be a penalty but a reward.
However, setting the parameter too high reduces the prediction accuracy, since an action
would automatically be considered dissimilar just because there is a predecessor that is
different from the predecessors of the current action. A suitable value for this parameter
would be between 4 and 5 with the knockout parameter set between 1.0 and 1.5.

The event horizon backwards determines the number of predecessor tasks that are
compared as a property of any task. Although a low event horizon slightly reduces compu-
tation time, a higher event horizon shows a significant increase in prediction accuracy. A
value greater than 10 is recommended.

The event horizon forward has no impact on prediction accuracy. Instead, it deter-
mines the number of successor tasks that the algorithm proposes after the next task. In terms
of an N-Gram, this parameter determines the N, i.e. the number of tokes, for the algorithm.

5.7 Summary
By using both aspects of the SOMA ontology, the algorithm provides the user with a set of
task suggestions that have a 90 % chance of the preferred task being in the Top 5 suggestions
and a greater than 80 % chance of the preferred task being in the Top 3 suggestions.

However, conducting user studies involving a broader user base over extended time periods,
using a comprehensive set of objects and tasks to approximate real-world workflows, is
currently infeasible. This limitation arises primarily due to the ongoing prototype status of
EDAN and its concurrent development by other researchers. Consequently, the proposed
algorithm has been evaluated using a synthetic dataset generated through a prompt-based
pipeline with a large language model. The dataset contains several newly introduced objects
and actions, making preference prediction more challenging, and includes over 200 actions
per user that are used to predict user-specific preferences. The evaluation is carried out by
comparing these predictions with previously stored actions within the datasets. Additionally,
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this methodology has been used to explore how various hyperparameters influence the
algorithm’s behavior regarding different user needs. This approach provides insights into
the algorithm’s adaptability and performance across a range of parameter settings, revealing
variations in its predictive capabilities depending on these adjustments.
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C h a p t e r 6

CONCLUSION

6.1 Thesis Summary
This thesis has presented the NEEM Logger, which interfaces the knowledge represen-
tation for the robotic framework EDAN with the SOMA ontology. The NEEM Logger
automatically generates a merged ontology that is based on the SOMA ontology and the
latest concepts of EDAN’s internal object database. The merged ontology is the basis for
logging not just all actions done by the EDAN robot and the perceived objects, but also all
alternatively available actions, given the world state at any given time.

The proposed NEEM Logger records a semantic log in the form of a narrative-enabled
episodic memory (NEEM), that can be used for a variety of further calculations. To
demonstrate one use case, this thesis has also presented the PreferenceOracle, which
reads the semantic log and infers the next tasks based on the notion of task chains. Similar
to an N-Gram, the algorithm considers tasks to be tokens in a very long chain of tokens,
with the previous tokens determining the probability of the next token. For tokenization of
tasks, this thesis proposes a notion of similarity between situations based on the taxonomic
distance of task types, object types, the time of day, and alternatively available tasks. By
combining the idea of an N-Gram algorithm with this notion of similarity between tasks,
allowing the token chain to consist of not just identical, but similar tokens, the algorithm is
able to predict a next task to be executed solely based on the chain of previously recorded
situations by the same user without requiring any other logging data and without exposing
any logging data to the world.

To evaluate the prediction accuracy of the presented algorithm, this thesis has built a synthetic
dataset with the use of modern large language models to approximate daily human actions
in a kitchen over the course of a week. The models have been instructed to first generate
a set of different personas and then a list of simple actions, those different personas might
perform. These sets of actions were the groundwork for testing both the reliability of the
NEEM Logger, which was used to record the actions as NEEMs, as well as the prediction
accuracy of the PreferenceOracle.

The evaluation has shown that the PreferenceOracle is capable of predicting the next
action of a user after as little as 10 to 50 actions recorded by that user with a probability of
more than 50 % for the prediction to be correct (compared to a chance level of just below
5 %) and a probability of close to 90 % for the correct prediction to be in the Top 5 of
predictions (compared to a chance level of 24.5 %). To accommodate different types of user
workflows with, for example, some users having very different workflows depending on the
time of day and other users acting regardless of the time of day, the algorithm also allows to
be customized with hyperparameters, that can be automatically tuned to achieve the highest
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possible prediction accuracy based on the previous workflow of that user.

6.2 Further Research
During the development of and in parts based on the work presented in this thesis, the
framework RACCOON has been developed at the German Aerospace Center (DLR) (see
[18]):

At least one framework at the German Aerospace Center (DLR) has used the NEEM Logger
method for recording a semantic log of NEEMs as presented in this thesis. The framework
has been published in an independent publication under the name RACCOON (see [18]).
RACCOON uses the recorded NEEMs to generate one of the so-called "state summaries"
of the robot state, allowing a large language model to speak and answer questions about the
robots past actions.

While Large Language Models have more and more been used to make robots explain
aspects of the surrounding world, much of these explanations have been based on general
knowledge that can be found on the internet and is incorporated in the large models. With
Visual Language Models, a robot is also able to describe that can be seen by the cameras
of a robot. But while such models can describe a world similar to how a human would
perceive it, that description might fundamentally differ from the way, the robot is able to
perceive it. For example, such a model is able to classify almost every object in a kitchen
according to its name in natural language, while the robot recognizes only a portion of those
objects. A talking robot that explains its environment should always reflect on what objects
are there and what objects does the robot know about. In addition, many technical details
such as available robotic actions or previous experiences can not be accurately described by a
language model based on visual information only. The framework RACCOON has been built
to include a set of robotic modules into the reasoning process of a language model, similar to
a RAG system. RACCOON classifies a user’s question into multiple categories, indicating
which robotic modules might be able to give the requested information. Those modules are
then internally queried based on the user’s prompt with their answers being added to the
prompt as "state summaries", that are additional ground truth information for the language
model. One of the robotic modules that have been used for the RACCOON framework is the
NEEM Logger, presented in this thesis. For all queries regarding the robot’s past decisions
and actions, the NEEM Logger is used to send queries to the KnowRob (see [8]) database.
In future iterations, this also includes queries to the predicted user preferences, calculated
by the PreferenceOracle, allowing EDAN to ask the user in natural language, if they want
to execute a specific task that is predicted to be their favorite.

6.3 Future Work on the NEEM Logger
1. When further developing the NEEM Logger, researchers could further explore and rethink
the option of including some kind of matching algorithm to automatically merge the SOMA
ontology with the odb. In the current state of the odb, this matching can be performed
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manually with just a few assertions. However, considering a larger odb, this might no longer
hold.

2. On the other hand, the EDAN framework could choose a different path and adapt the odb
ontology as their native way to represent tasks and object, overcoming the odb in its current
form and forcing any developer adding new objects to the odb to think about where to sort
in that object in the ontology. Thinking about the taxonomic relationship of any new object
with the pre-existing taxonomy of objects might be considered good practice for keeping a
well-organized knowledge representation.

3. The NEEM Logger in its current form stores only semantic descriptions of actions.
However, the general idea of a NEEM, as also discussed in the previous chapter, is to
combine both raw technical data with a semantic annotation (see [15]). Future research
projects could build on the NEEM Logger and enable it to record raw technical data by the
EDAN robot as well.

6.4 Future Work on the PreferenceOracle
Introducing the PreferenceOracle represents a first step toward using the SOMA ontology
use NEEMs to calculate user-specific preferences for desired task chains. One key purpose
of the PreferenceOracle was to demonstrate a major use case for transforming the robotic
infrastructure into an internally represented, richer, and well-defined ontology that is gener-
ated by the NEEM Logger. Based on this work, there are several ways to improve and enrich
the presented calculations to help users find their preferred actions faster. Some potential
ideas are presented below, ordered by and ranging from readily implementable suggestions
to more long-term proposals.

Including the Preference Calculations in a User Interface
With a calculated ranking of available tasks, the user interface can be updated to display the
suggestions directly to the user. This can be achieved through a ranked list of suggestions,
allowing the user to execute the top suggestion or navigate down the list if desired.

This interface can also incorporate a decision making algorithm that determines whether to
propose a single action to the user or to suggest components of a workflow. For example, the
user can instruct the robot to complete tasks like setting a breakfast table or brewing coffee,
rather than proposing each individual task of the workflow separately.

Remove Invisible Byproducts of Changes in the Hyperparameters or the Ontology.
The algorithm for predicting preferences in its current form heavily depends on a set of
hyperparameters. Depending on their settings, the calculated graph distance between tasks
and objects are greater or lower, requiring the user to change other hyperparameters as well
as a side effect. For example, if the task factor gets a higher value, all non-zero values
for 𝑑𝑖𝑠𝑡 are automatically higher, requiring the user to also increase the knockout value,
which in turn requires a different setting for the penalty parameter. These unwanted side
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effects should be eliminated by normalizing the resulting value for the 𝑑𝑖𝑠𝑡 function such
that a user can change the value for one hyperparameter without thinking about the others.

A similar problem arises with the structure of the ontology. Depending on the depth of the
graphs representing the hierarchy of objects and the hierarchy of tasks, the 𝑑𝑖𝑠𝑡 values for
tasks and objects change on average. For example, the difference between a Cup and a
Plate is considered smaller if those are the most specific definitions of their kind in a given
knowledge graph, than if the graph also includes EspressoCup or even different brands of
EspressoCup as further differentiation of the general concept Cup .

Improving the Predictions of a Further Future
As discussed above, the EDAN framework includes a module that infers a list of available
tasks based on a given situation, applying the algorithm presented in [9]. To improve
task predictions with an event horizon that is larger than one, this algorithm could also be
leveraged to limit the calculations to the set of actions that would be available if a specific
action had been executed before. For example, if the PreferenceOracle predicts the next
action to be picking up a knife, the algorithm could be leveraged to infer that stirring a pot
with a spoon is not an available action after that. Removing such infeasible predictions could
improve predictions that look further into the future.

Including more Robotic Properties in the Preferences
Studies have shown that it is important for disabled and elderly people to be active and
perform as many tasks as possible on their own or only with the partial help of a robot.
Regarding elderly people, a user study has stated:

"The professional caregivers also immediately stated that older adults should
not become passive (similar to the informal caregivers) and that the robot should
only perform those tasks the users no longer can perform themselves in order
to maintain the abilities they still have (‘use it or lose it’). It would be ideal if
the user and the robot could perform tasks together. When performing a task
together, the robot would only need to perform that part of the task the user
cannot perform. For example, when the user is still able to make a cup of coffee
but unable to carry the cup of coffee to the living room, the robot should do that
latter part of the task for the user." ([7])

Addressing this issue can be integrated within the preference prediction by adding the
autonomy mode as a task property. This would enable the robot to refrain from automatically
executing a complete workflow on its own, instead checking which parts of the workflow the
user usually performs in manual mode and which ones they leave to the automatic execution.
This could enable the robot to help the user stay active and encourage user engagement by
incorporating manual task performance in automated workflows.
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Another important property that users typically prefer controlling is the robotic behavior
regarding its speed of movement and the manner in which it executes a task:

"Elderly participants found it very important that the way the robot executed a
certain task would match the user preferences. It was even suggested by one
participant that the robot could be trained by the user (i.e. learning the user’s
preferences over time) in order to have a perfect match. This would include the
way the robot should approach the user (e.g. the speed, the side from which it
approaches the user, how nearby the robot stops, the warning signals it uses to
announce its presence), meaning the robot should be adaptable per user." ([7])

These properties can also be incorporated into the definition of a task and, as a result, become
part of the calculated user preferences, enabling user-specific task execution.

Preparing the Environment
Another field of research that the PreferenceOracle touches upon is preparing the envi-
ronment to support the most probable user actions. For example, if the robotic system can
predict that the user wants to start their morning by drinking coffee from their favorite cup,
the robot could suggest cleaning the cup the night before. In multirobot setups, this could
even involve other robots preparing a drink that the user is likely to want or finding an object
that the user will probably interact with.

Evaluating the Prediction Accuracy with a Real User Base
To gain a deeper understanding of the prediction accuracy of the PreferenceOracle in a
real environment, the presented evaluation should be repeated with a real user base. Since
users have different schedules and workflows, it is important to evaluate how the calculated
prediction accuracies hold for different setups. However, this would require a larger study
with users willing to work with the EDAN robot (or a similar setup) over an extended period.
Moreover, the robot EDAN would need to be available for those experiments. Both could
result in challenges regarding the finding of participants and the permission of the DLR.
Nevertheless, the results could be highly informative.
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A p p e n d i x A

THE NEEM LOGGER

1 # namespace of this ontology

2 namespace: h t t p s : / / o n t o l o g y . d l r . de / soma / odb
3

4 # these also define namespaces that can be used in this file

5 imports:
6 soma: h t t p : / / www. ease−c r c . org / on t /SOMA. owl#
7 dul: h t t p : / / www. o n t o l o g y d e s i g n p a t t e r n s . org / on t / du l /DUL. owl#
8 knowrob: h t t p : / / knowrob . org / kb / knowrob . owl#
9

10 # map odb objects to soma object classes

11 soma_odb_map:
12 _robot: soma: A r t i f i c i a l A g e n t
13 _ t o o l : soma:Des ignedToo l
14 human: du l :Na tu ra lPe r son
15 _gr ipper: soma:Gripper
16 _con ta iner : soma:Des ignedCon ta i n e r
17 _cof fee_machine: soma:App l i anc e
18 _conten t : soma:Des ignedSubs t ance
19 _ f r u i t : soma: B i o l o g i c a l O b j e c t
20 _microwave: soma:App l i ance
21 _phone: soma:Des ignedToo l
22 _tray: soma: S u r f a c e
23 _cube: soma:DesignedComponent
24 edans_ ikea_k i t chen_door: soma:DesignedComponent
25 oven_knob: soma:Des ignedToo l
26

27 # default soma object for objects without mapping

28 r o o t _ o b j e c t : du l : P h y s i c a l O b j e c t
29

30 # default action classifications for scts without mapping

31 a c t i o n _ d e f a u l t s :
32 ta sk : soma: P h y s i c a l T a s k
33 r e f _ r o l e : False
34 t a r g e t _ r o l e : soma: P a t i e n t
35 d i s p o s i t i o n : soma: D i s p o s i t i o n
36

37 # map sct-names to soma classification

38 a c t i o n s :
39 drink:
40 ta sk : soma: S e r v i n g
41 r e f _ r o l e : soma:MovedObject
42 t a r g e t _ r o l e : soma: R e c i p i e n t R o l e
43 d i s p o s i t i o n : soma:S t o rage
44
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45 pour:
46 ta sk : soma:Pour ing
47 r e f _ r o l e : soma:PouredObjec t
48 t a r g e t _ r o l e : soma: R e c i p i e n t R o l e
49 d i s p o s i t i o n : soma:S t o rage
50

51 r e l e a s e :
52 ta sk : soma: R e l e a s i n g
53 t a r g e t _ r o l e : soma:MovedObject
54 r e f _ r o l e : False
55 d i s p o s i t i o n : soma: G r a s p a b i l i t y
56 re l ease_ in to_mug:
57 parent: r e l e a s e
58 p lace :
59 parent: r e l e a s e
60

61 pick:
62 ta sk : soma:Pick ingUp
63 t a r g e t _ r o l e : soma:MovedObject
64 r e f _ r o l e : False
65 d i s p o s i t i o n : soma: G r a s p a b i l i t y
66 pick_from_s ide :
67 parent: p i c k
68 pick_from_top:
69 parent: p i c k
70

71 t r a n s f e r :
72 ta sk : soma: T r a n s p o r t i n g
73 t a r g e t _ r o l e : soma:MovedObject
74 r e f _ r o l e : False
75 d i s p o s i t i o n : soma: G r a s p a b i l i t y
76 t r a n s f e r _ t ub e :
77 parent: t r a n s f e r
78 t rans f er_washer :
79 parent: t r a n s f e r
80

81 open:
82 ta sk : soma:Opening
83 t a r g e t _ r o l e : soma:ShapedObjec t
84 r e f _ r o l e : False
85 d i s p o s i t i o n : soma:Enc l o s i n g
86 open_door:
87 parent: open
88 open_fr idge :
89 parent: open_door
90

91 open_drawer:
92 parent: open
93 d i s p o s i t i o n : soma:S t o rage
94 open_drawer_down:
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95 parent: open_drawer
96 open_cabinet :
97 parent: open_drawer
98

99 c l o s e :
100 ta sk : soma:Clo s i ng
101 t a r g e t _ r o l e : soma:ShapedObjec t
102 r e f _ r o l e : False
103 d i s p o s i t i o n : soma:Enc l o s i n g
104 c l o s e_door :
105 parent: c l o s e
106

107 push:
108 ta sk : soma:Push ing
109 t a r g e t _ r o l e : soma:ShapedObjec t
110 r e f _ r o l e : False
111

112 r o t a t e :
113 ta sk : soma: O r i e n t i n g
114 t a r g e t _ r o l e : soma:ShapedObjec t
115 r e f _ r o l e : False
116 ro t a t e _ t imer :
117 parent: r o t a t e
118 turn_knob:
119 parent: r o t a t e
120

121 s t i r _ b r o t h :
122 ta sk : soma: S t i r r i n g
123

124 r o l l _ d i c e : { }

Listing A.1: The configuration file, describing all manually defined matchings from concepts in
EDAN’s odb to concepts in the SOMA ontology.
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A p p e n d i x B

PREFERENCES

The full list of example personas, used for prompting LLMs to generate personas:

1 − f i l e_name: grandma_ tee th
2 persona: You are a 98−year o l d grandma , hav ing prob lems w i t h your t e e t h .
3 d a i l y _ r o u t i n e :
4 - d e s c r i p t i o n : You want t o p repare b r e a k f a s t .
5 t ime: 06
6 - d e s c r i p t i o n : You want t o e a t a snack f o r bed t ime .
7 t ime: 18
8 v a r i a t i o n s :
9 - d e s c r i p t i o n : You are coming home from your d e n t a l appo i n tmen t .

10 t ime: 14
11 − f i l e_name: programmer_red_co f f e e
12 persona: You are a programmer , l i v i n g on c o f f e e , a lways p r e f e r r i n g your

red c o f f e e mug .
13 d a i l y _ r o u t i n e :
14 - d e s c r i p t i o n : You want t o p repare b r e a k f a s t .
15 t ime: 09
16 - d e s c r i p t i o n : You are hav ing a l i t t l e break from work .
17 t ime: 13
18 - d e s c r i p t i o n : You are p r epa r i n g a snack f o r bed t ime .
19 t ime: 20
20 v a r i a t i o n s :
21 - d e s c r i p t i o n : You are g e t t i n g home l a t e , l o o k i n g f o r some th ing t o e a t

.
22 t ime: 23
23 − f i l e_name: 90 _year_dr ink ing_man
24 persona: You are a 90−year o l d man w i t h a h e a r t c o n d i t i o n and a t e nd en c y

t o d r i n k t oo much .
25 d a i l y _ r o u t i n e :
26 - d e s c r i p t i o n : You want t o p repare b r e a k f a s t
27 t ime: 07
28 - d e s c r i p t i o n : You want t o snack .
29 t ime: 14
30 - d e s c r i p t i o n : You want t o e a t d i n n e r .
31 t ime: 20
32 v a r i a t i o n s :
33 - d e s c r i p t i o n : You are g e t t i n g home from t h e d o c t o r
34 t ime: 15
35 - d e s c r i p t i o n : You want t o d r i n k some th ing
36 t ime: 18
37 − f i l e_name: v e g a n _ t w e n t i e s
38 persona: You are a hea l t h y − l i v i n g vegan i n your t w e n t i e s , t r y i n g t o s t a y

away from c o f f e e as b e s t you can .
39 d a i l y _ r o u t i n e :
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40 - d e s c r i p t i o n : You want t o p repare a b r e a k f a s t w i t h t e a
41 t ime: 10
42 - d e s c r i p t i o n : You g e t home from c o l l e g e and want t o r e l a x .
43 t ime: 15
44 - d e s c r i p t i o n : You want t o e a t d i n n e r .
45 t ime: 20
46 v a r i a t i o n s :
47 - d e s c r i p t i o n : You f i n d y o u r s e l f d r i n k i n g c o f f e e .
48 t ime: 13
49 − f i l e_name:
50 persona: You are an i n j u r e d person , your f a v o u r i t e cup i s t h e b l u e one ,

your goa l i s t o g e t b e t t e r .
51 d a i l y _ r o u t i n e :
52 - d e s c r i p t i o n : You want t o p repare some th ing t o e a t f o r b r e a k f a s t .
53 t ime: 09
54 - d e s c r i p t i o n : You want t o d r i n k some th ing
55 t ime: 13
56 - d e s c r i p t i o n : you want t o d r i n k some th ing
57 t ime: 17
58 - d e s c r i p t i o n : You want t o p repare d i n n e r .
59 v a r i a t i o n s :
60 - d e s c r i p t i o n : You are g e t t i n g home from a d o c t o r s appo i n tmen t .
61 t ime: 16

Listing B.1: Example personas, used to prompt an LLM for some auto-generated personas
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Figure B.1: Comparison of top 3 accuracies between different settings.

Legendary:
A: Recommended settings (see tab. 4.2 on page 44) H: object factor = 0

B: compare situations = 0 I: task factor = 0

C: time of day penalty = 10 J: knockout penalty = knockout

D: time of day penalty = 1 K: knockout penalty = 20

E: multiple occurrences factor = 1 L: knockout = 0

F: multiple occurrences factor = 0 M: knockout = 20

G: decreasing importance factor = 1 N: event horizon backwards = 0
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Figure B.2: Comparison of top 1 accuracies between different settings.

Legendary:
A: Recommended settings (see tab. 4.2 on page 44) H: object factor = 0

B: compare situations = 0 I: task factor = 0

C: time of day penalty = 10 J: knockout penalty = knockout

D: time of day penalty = 1 K: knockout penalty = 20

E: multiple occurrences factor = 1 L: knockout = 0

F: multiple occurrences factor = 0 M: knockout = 20

G: decreasing importance factor = 1 N: event horizon backwards = 0


