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Abstract—Very high-resolution optical imagery from un-
manned aerial vehicles (UAVs) enables detailed tree species
(TS) classification, surpassing the limitations of satellite imagery.
In this paper, we propose an individual tree crown (ITC)-
based loss and postprocessing approach, which can optimize
classifying single tree species, designed to minimize the impact
of overlapping canopies and dense mixed-species regions. Our
methodology uses U-Net as the baseline model to integrate the
proposed ITC-loss by treating each tree crown as a single unit to
refine the predictions through a voting process. Furthermore, we
apply a postprocessing method, merging the results with an ITC
segmentation to refine the results. This reshapes the ITC and
decides on a final species with a voting mechanism. Our results
show that both approaches improve the mean intersection over
union (mloU) by 1.60 % for the best test, with a mIoU score for
the baseline training of 42.03 % and 44.39 % after including our
proposed methods.

Index Terms—tree species classification, ITC loss, deep learn-
ing, tree crown segmentation.

I. INTRODUCTION

Tree species (TS) classification provides essential informa-
tion on forest biodiversity, which is crucial for forest man-
agement. It can be used for various purposes, such as forest
inventory [1], biodiversity assessment [2], and monitoring
changes in forests, such as disease spread or species distri-
bution [1]. Traditional forest survey and inventory approaches
are insufficient for collecting detailed TS information in large
areas [2, 3]. In contrast, Remote Sensing (RS) technology
allows TS to be distinguished more efficiently and frequently.

Over the past decades, deep learning (DL) and RS technolo-
gies have been proposed based on airborne and spaceborne
imagery. Research has shown that high spatial resolution data
improve the classification of TS, especially in environments
with simple TS categories [3—7]. Other studies successfully
classified 9 TS [4], while others even achieved classifica-
tion for 13 species [3]. Currently, various approaches to TS
classification have been introduced applying DL algorithms,
including CNN and transformer models [3-5, 8]. In addition,
approaches have been proposed to improve the classification
of densely mixed forests. Using multitemporal data [3] or a
digital surface model (DSM) [4] shows improvement.

However, DL-based TS classification remains challenging
in dense forests. Overlapping branches result in multiple
pixel-wise classifications of an individual tree crown (ITC).
Furthermore, differences in individual TS regarding traits,
texture, height, and vitality lead to inhomogeneous classifica-
tion results. This results in unclear boundaries and possible
misclassification of individual TS [3, 4, 9]. In addition, a
precise ITC segmentation has the potential to improve the TS
classification results, since each single tree crown inherently
represents only one species. In this paper, we propose an
ITC-based TS classification deep learning neural network
architecture by introducing an ITC-based loss function. In
addition, a postprocessing technique is adapted to achieve
further refined classification results. We enhance semantic
segmentation by incorporating knowledge of the tree crown
shape, improving model accuracy and scalability for reliable
TS classification systems.

II. MATERIALS AND STUDY AREA

The BAMFOREST benchmark dataset is adopted to assess
the performance of our proposed approach. Captured using
UAVs with a resolution of approximately 2 cm, it spans 105
hectares in three forest areas (Stadtwald, Tretzendorf 1 &
2) and one forest-like city park (Hain). The dataset includes
27,160 labeled tree crowns acquired in the summer of 2022
[10, 11]. The Hain area serves exclusively as a test region
because of its distinct tree distribution, primarily deciduous
species, compared to the predominantly coniferous Stadtwald
and Tretzendorf. The data is pre-split into training, validation,
and two test sets: one within the training region (Test-2)
and one from Hain (Test-1), representing unseen conditions;
see Table I. The BAMFOREST dataset features diverse TS
with significant size, texture, and color variability. Deciduous
species such as Beech and Oak exhibit dense canopies, while
conifers such as Spruce and Fir have sparser, structured
crowns. Differences in size and vitality further challenge the
classification, as trees of the same species can vary signif-
icantly due to environmental factors. The dataset contains
very high-resolution images and their corresponding ground
truth annotations. These provide the input image of the trees
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Fig. 1. Schematic overview of the two proposed methods for ITC-based semantic segmentation: (a) the ITC Loss method, which includes U-Net training with
total loss combining cross-entropy (CE) loss and ITC loss for segmentation, and (b) the postprocessing method, involving majority voting for aggregation of

segmentation maps and summation of ITC shapes.

and the labels that contain the TS information. Additionally,
single-shape JSON files focus on individual tree structures,
offering a binary representation that is used in training and
postprocessing to refine segmentation results. Preprocessing
involves categorizing TS, restructuring dead trees into a sep-
arate class, and modifying shapefiles to include only relevant
data. These files are converted into TIFF format for ground
truth usability and further adjusted to extract RGB channels
from the original four-channel data. Patches of 512512 pixels
with 50 % overlap were created to ensure that tree traits can
be meaningfully learned [10].

TABLE I
SUMMARY OF TREE DISTRIBUTION IN THE DATASET ACCORDING TO THE
CLASSES. THE PERCENTAGES ARE ACCORDING TO THE NUMBER OF TREES
AFTER TROLES ET AL. [10].

Train Val Test-2 Test-1
N of trees 17,212 4,390 3,580 1,978
Pinus (Pine) 3623% 31.94% 27.54% 1.11%
Fagus (Beech) 23.11% 2071% 23.10% 23.96%
Quercus (Oak) 2330% 2027% 2243% 19.01%
Picea (Spruce) 5.53% 7.22% 9.11% 1.06 %
Larix (Larch) 2.70 % 1.75 % 2.21% 1.26 %
Pseudotsuga (Douglas Fir) 1.12% 1.80 % 1.20 % 0.15%
Abies (Fir) 1.19% 1.12 % 1.01 % 0.00 %
Other 6.83 % 1519% 13.41% 52.88%
Vital 86.34% 8499% 8397% 91.20%
Degrading 11.88% 1235% 13.18%  8.49%
Dead 1.78 % 2.67 % 2.85% 0.30 %

III. METHODOLOGY

Our approach enhances semantic segmentation for TS clas-
sification through innovative approaches that integrate pixel-
and ITC-based segmentation techniques. Building on a base-
line architecture, U-Net, two significant enhancements are
proposed: ITC-based loss and postprocessing strategies. These
approaches address the challenges of classifying ITCs from
different species within very high-resolution datasets.

A. ITC Loss Function

Our first method incorporates an ITC-based loss function
that improves end-to-end model training by integrating TIC as
single units into the training process and introduces an accu-
racy loss, named ITC loss (see Figure 1(a)). This will improve
the model’s prediction of consistent species classifications for
entire tree crowns by multiplying the predictions with the ITC
shapes and majority voting. The ITC loss complements the
standard categorical Cross Entropy (CE) loss by evaluating
predictions at the tree crown level rather than solely on
individual pixels.

The refined predictions are then compared to the ground
truth to evaluate the consistency of the shapes and species clas-
sification. The number of wrong-classified pixels is counted.
The overall pixels and the sum of the wrongly predicted classes
are summarized. The final accuracy is calculated, resulting in
a value between zero and one, described in Equation 1 as the
ITC loss (Lirc).

_ Number of False Predictions
" Total Number of Predictions

(D

Lirc

This ITC-based loss is then summarized with the first pixel-
based CE loss to a total loss. This total loss (Equation 2)
combines the CE loss and the ITC loss. After the loss is
calculated, it is fed into backpropagation.

Loss = a X L¢cg + 8 X Litc 2)

The parameters can be weighted differently with o and S,
allowing us to optimize the impact of the ITC loss.

B. ITC-Based Postprocessing
The second method introduces ITC-based postprocessing to

refine initial predictions generated by the semantic segmen-
tation model, see Figure 1(b). This method utilizes ITC seg-



TABLE II
TS CLASSIFICATION ACCURACIES SHOWING THE MIOU OF BOTH TEST-1 AND TEST-2 AND THE PIXEL-RELATED DATA SHARE IN PERCENT. HIGHLIGHTED
VALUES SHOW THE BEST-PERFORMING VALUE ON EACH TEST, COMPARING THE BASELINE TESTING RESULTS TO THE TWO PROPOSED METHODS.

Class Test-1 Test-2
Name (Latin Name) CE Loss [%] CE + ITC Loss [%]  Postprocessing [%]  CE Loss[%] CE + ITC Loss[%]  Postprocessing[%]
Background 59.56 58.21 64.44 62.47 64.96 65.28
Pine (Pinus) 00.04 00.02 00.00 50.22 50.78 50.96
Beech (Fagus) 11.25 21.24 29.05 32.83 35.24 38.58
Oak (Quercus) 23.99 19.52 29.68 33.24 32.40 37.62
Spruce (Picea) 00.04 00.06 00.00 23.73 23.31 24.72
Larch (Larix) 00.55 00.59 00.52 10.38 11.03 10.06
Douglas Fir (Pseudotsuga) 00.00 00.00 00.00 00.97 00.21 00.27
Fir (Abies) 00.00 00.00 00.00 00.00 00.00 00.00
Other Trees 23.52 14.53 16.25 09.72 09.63 10.18
Dead Trees 01.25 01.01 01.32 17.34 13.86 16.72
Mean Score 15.46 17.33 20.93 42.03 42.79 44.39
mentation results that identify individual tree crowns, ensuring IV. RESULTS

spatial and classification precision. The ITC segmentation was
obtained by Tian et al. [11]. Combining these shapes with our
semantic segmentation output, we isolate each tree crown and
apply a voting mechanism to determine its most dominant
species classification. The majority voting mechanism selects
the species based on the most pixels within a tree crown.
For semantic segmentation, 512 x 512 sized patches are
best to enhance the traits of the trees, while ITC segmentation
performed best using 2048 x 2048 patches because of more
whole tree crowns per image. This concluded that the tinier
patches of the semnatic segmentation are concatenated to the
same size for postprocessing. This approach has no downside
after finishing the training since it is a pixel-based result.
These two proposed methods, ITC loss and postprocessing,
work synergistically to refine the baseline U-Net segmentation
architecture. Postprocessing enhances spatial and classification
accuracy after predictions, while ITC loss improves model
training by integrating structural and contextual information.
Together, these methods significantly advance the precision of
TS classification in very high-resolution imagery, making them
valuable for ecological mapping and forestry applications.

C. Implementation Strategy

Data were trained with a batch size of 10, using cross-
entropy loss. AdamW was used with a weight decay of 0.011.
30 epochs were trained using an early stopping mechanism
to avoid overfitting. Weighted loss and augmentations were
applied but not finally chosen, as they did not take advantage
of the training. A total of 10 classes were trained.

The metrics for evaluating the classification results are
measured with intersection over union (IoU). As described by
Kattenborn et al. [12], the IoU measures the relative spatial
agreement between the reference and predicted surfaces. It is
measured with true positives (TP), false positives (FP), and
false negatives (FN).

TP

IoU = ——F7—+—
TP 4+ FP + FN

3)

The ITC loss function, implemented in the U-Net baseline
model along with postprocessing, demonstrated measurable
performance improvements. For Test-Set-1, the mean intersec-
tion over union (mloU) increased by 5.47%, while Test-Set-2
showed a minor improvement of 2.36% (Table II). The ITC
loss showed improvements for some classes. Postprocessing,
performed on the output generated with the ITC loss, further
enhanced results, improving the IoU across most classes.

The two test datasets displayed different results due to their
distinct characteristics. Test-Set-2, which closely resembles
the training data, aligned better with the model improve-
ments. Classes well represented and trained in the baseline
U-Net model, such as Beech and Oak, showed significant
performance gains. In contrast, poorly performing classes with
limited training data below 5%, such as Larch, Douglas Fir,
and Dead Trees, showed minimal or no improvement.

Test-Set-1, on the other hand, exhibited a different species
distribution than the training data. This led to lower baseline
performance, although species with abundant data, such as
Beech, Oak, and Dead Trees, still showed notable improve-
ments. Classes combining multiple TS or representing dead
trees were less responsive to the ITC loss, with the classes
”Other Trees” and “"Dead Trees” showing limited performance
gains due to insufficient training and data variability.

For species with more than 20% data share, the proposed
methods consistently improved the results over the baseline
CE loss model under the condition that the baseline is well
trained. These findings underscore the effectiveness of the ITC
loss function and postprocessing in improving semantic seg-
mentation, particularly for well-trained and well-represented
classes.

Figure 2 displays selected results showing the improvement
of both methods. The ITC loss improved the identification of
wrong-classified classes, refined shapes, and reduced noise.
After postprocessing, the ITCs can be distinguished clearly in
the results, and one species is voted per tree. This eliminates
noise and further refines the classification into full tree shapes.
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Fig. 2. Result comparison of 2048 x 2048 images (a), ground truth (b), predictions (CE loss) (c), predictions (CE and ITC loss) (d), and postprocessing (e).

V. DISCUSSION AND CONCLUSION

Improving TS classification is crucial for effective forest
management and biodiversity monitoring. This research con-
tributes to more accurate and efficient forest inventories and
ecological surveys by applying advanced DL models. The
findings can support similar efforts in other forest ecosystems,
contributing to global biodiversity conservation. By providing
information at individual tree level, they enable large-scale
mapping and analysis based on detailed, tree specific data.

The proposed ITC-based loss function and postprocessing
methods improved significantly for classes with sufficient rep-
resentation and initial performance. We show that using ITC-
based methods to enhance training supports a more precise use
of TS classification for forest management and analysis. The
performance gap between Test-1 and Test-2 emphasizes the
model’s reliance on dataset similarity. The poor results of Test-
1 indicate limited generalizability. However, since the testing
data differed from the training data, this can not be associated
with our proposed method. Postprocessing proved effective in
correcting pixel-based classification and separating dense and
overlapping tree crowns, benefiting all well-trained classes. It
has to be mentioned, reliance on predefined shapes from the
ITC-segmentation results may restrict generalizability. Devel-

oping adaptive postprocessing strategies to accommodate more
diverse datasets could enhance its utility. The visual output
after postprocessing facilitates individual tree analysis in forest
management.

However, the inability to improve minority classes, such as
Douglas Fir and Fir, underscores the need for balanced datasets
and further baseline training optimization. Future work should
focus on strategies such as more diverse data implementation
and training, further data augmentation, or weighted methods,
to achieve sufficient baseline training for all classes that can
guarantee a better baseline for the proposed method that uses
natural forests as data with highly varying species occurrence.
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