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Abstract: Particle dispersion models (PDMs) are essential to capture the influence of
unresolved turbulent eddies on particle transport in computational fluid dynamics (CFD)
simulations. However, the validation of these models remains challenging, especially
when relying on experimental data or CFD simulations that are based on turbulence
models. In this work, we use time-averaged data obtained in a direct numerical simulation
(DNS) instead of relying on turbulence models to model particle dispersion. In addition,
a new particle dispersion model is presented, referred to as the limited particle–eddy
interaction time (LPI) model. For a detailed and systematic evaluation of the new LPI
model, we compare its performance with that of other commonly used models, such as
the mean particle–eddy interaction time (MPI) model implemented in OpenFOAM® and
the randomized particle–eddy interaction time (RPI) model from the literature. The MPI
model shows good agreement with the DNS for the largest particles tested (Stokes number,
St = 0.2) but exhibits erratic and unphysical trajectories for smaller particles (St ≤ 0.05).
To mitigate this erratic behavior, we have adjusted the eddy interaction time in the new
LPI model.

Keywords: particle dispersion; model; validation; DNS; exponential smoothing

1. Introduction
The interaction between turbulent eddies and aerosol particles plays a key role in

particle dispersion. Without turbulence, particles would follow similar trajectories with
minimal separation, resulting in limited dispersion. This process is important in several con-
texts, such as wind-driven pollination [1] and the dispersion of exhaled aerosol particles [2].
When it comes to respiratory events such as coughing, the effect of turbulent dispersion also
significantly affects the evaporation time and the mean velocity of the particle cloud [3].

A common way to predict the flow fields in the applications discussed above is to solve
the steady or unsteady Reynolds-averaged Navier–Stokes (RANS and URANS) equations
to obtain the mean flow fields at a low computational cost. However, these methods do not
capture all turbulent scales as they use turbulence models to account for these small scales.
As a result, when particle motion is of interest, particle dispersion models (PDMs) are used
to account for the effects of the unresolved velocity fluctuations induced by the unresolved
small-scale turbulent eddies and the duration of the particle–eddy interactions, which are
typically based on the turbulent kinetic energy (k) and its dissipation rate (ϵ).

In standard particle dispersion models, the eddy interaction time is predicted as a
function of the so-called eddy lifetime (ELT) and the time that it takes a particle to pass
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through an eddy [4]. Such a stochastic dispersion model is implemented in the open-
source computational fluid dynamics (CFD) toolkit OpenFOAM® [5], which Zhang et al. [6]
used to investigate particles with Stokes numbers below unity (0.3), around unity (1.4),
and above unity (11.2). By modifying the time that a particle requires to pass through an
eddy, they enhanced the predictive accuracy of RANS simulations combined with their
newly developed PDM, achieving better agreement with the DNS results.

With respect to the ELT, it is generally assumed that a particle remains within an eddy
for the duration of the ELT, for which the perturbation velocity of the particle’s carrier flow
(both magnitude and direction) remains constant. As a result, the particle trajectory is a
straight line, ignoring the rotational motion of the modeled eddy. The overall effect of this
simplification is the possible overprediction of the particle dispersion [2].

To improve the prediction of particle dispersion, we propose stopping the particle
interaction with the eddy once the distance traveled by the particle within the eddy ex-
ceeds a certain threshold with respect to the characteristic eddy length. This approach
limits the possible displacement caused by a single eddy, thereby reducing the potential
overestimation of the particle dispersion.

In addition, PDMs are often validated by comparison with experimental data [4]. The
main disadvantage is that the dispersion models do not only depend on the mean velocity
⟨U⟩ but also on k and ϵ, which are usually not provided. On the other hand, the k and ϵ

predicted in RANS/URANS simulations cannot be regarded as ground truth since they
are the results of the statistical turbulence models used, which are known to have limited
reliability. Therefore, validating the results of a dispersion model that depends on the k and
ϵ modeled in RANS and URANS simulations is not appropriate. In addition, experiments
that simultaneously provide three-dimensional Eulerian flow fields and particle trajectories
are rare and difficult to perform, especially when dealing with small particles that require
intense illumination to be captured by cameras.

Therefore, in the present work, validation is performed by means of a direct numerical
simulation (DNS), which resolves all turbulence scales and provides comprehensive flow
data. However, to mimic a URANS simulation, the fully resolved DNS velocity field is
time-averaged to filter out the fine-scale turbulent structures and to calculate the k and ϵ

required in the dispersion model. The resulting particle dispersion can then be directly
compared to that of the full DNS. Since the boundary conditions and mean flow field are
the same, any differences in particle dispersion must be caused by the dispersion model
itself, ensuring its proper and independent validation.

The implementation of this approach requires the definition of time windows over
which the DNS flow field is to be averaged. Calculating a conventional arithmetic mean
over N time steps would require storing all the data from these N steps, which is not feasible
due to the large memory requirements of DNS. To solve this problem, we use exponential
smoothing [7,8], which is based on only the current time-step data and the running mean.
This efficient method has previously been used to average large eddy simulation flow
fields [9], and it allows for real-time time averaging in the course of the DNS.

In summary, the described approach is performed in the following three steps:

1. Mimicking the statistical velocity fluctuations of URANS simulations via the exponen-
tial smoothing of DNS fields using real-time time averaging;

2. Modifying an existing particle dispersion model by limiting the particle displacement
within an eddy with respect to its size;

3. Validating the particle trajectories predicted with the new model by comparing them
with those of a DNS.
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2. Methodology
2.1. Simulation Setup and DNS Fields

A simplified but representative scenario of human exhalation was simulated in a
confined space of 2 m × 2 m × 1 m. A circular pipe was attached to the room wall at a
height of 1 m, representing the mouth opening, which was 6 cm long and had a diameter of
d = 1.2 cm. The computational domain is shown in Figure 1.

𝑥

𝑧

𝑦

2 m

2 m

1m

6 cm

𝑑 = 1.2 cm

𝒈

Figure 1. Schematic of the computational domain and its dimensions. The figure is not to scale.

The flow is governed by the incompressible Navier–Stokes equations. However,
the differences in the temperature and vapor concentration between the ambient air and the
exhaled breath lead to density variations and a non-negligible buoyancy effect. The exhaled
air is defined at the inlet at a constant temperature of 34 ◦C and 90% relative humidity (RH),
while the ambient air is introduced at a temperature of 20 ◦C with 50% RH. To account for
these effects on the velocity field, the temperature T and the vapor concentration C fields
are coupled to the velocity field using the Boussinesq approximation [10]:

∂U
∂t

+ (U · ∇)U = −1
ρ
∇p + v∇2U − g(β(T − Ta) + γ(C − Ca)), (1)

∂T
∂t

= ∇ · (κ∇T)−∇ · (UT), (2)

∂C
∂t

= ∇ · (D∇C)−∇ · (UC). (3)

Equations (1)–(3) are discretized using fourth-order accurate central differences to
predict the flow variables at the cell centers of a Cartesian grid consisting of hexahe-
dral cells. The discretized equations are solved using a finite volume method provided
by OpenFOAM®v2406 (ESI Group, 10 avenue Aristide Briand, 92220 Bagneux, France) [5].
To perform a DNS, we implement the projection method [11] for velocity–pressure cou-
pling and an explicit second-order accurate Euler-leapfrog time-stepping scheme. Kath



Atmosphere 2025, 16, 637 4 of 20

and Wagner [12] showed that the employed method is sufficiently accurate to perform
a DNS by comparing the results of a turbulent channel flow obtained in a DNS using a
Cartesian grid and the above-discussed method with those from other DNS approaches,
including a spectral method. The time-step size for the DNS is set in accordance with the
von Neumann stability criterion derived in [13], which is satisfied with an explicit time
step of ∆t = 10−4 s.

The maximum cell width of 3.5 mm is used, and the cells are linearly refined near the
pipe region, as shown in Figure 2, where the grid is isotropic with a width of 0.8 mm inside
the pipe. In the x-direction, the grid width of the room increases linearly from 0.8 mm
at x = 0.06 m and reaches 3.5 mm at x = 1 m. In the y- and z-directions, the grid width
remains constant when the absolute y and z distances are smaller than the pipe radius
and then increases linearly from 0.8 mm to 3.5 mm at y and z equal to 0.5 m. Compared
to our previous study [2], where a DNS of a cough puff was performed, the mesh used
in the refinement region is even finer. Using the relation η ∼ dRe−3/4, where η is the
Kolmogorov length scale and Rejet = Ujetd/ν is the jet Reynolds number, with Ujet being
the bulk expiratory velocity magnitude of a jet (assumed to be the peak velocity in the case
of a cough), the Kolmogorov scale of a breath can be estimated. Based on this scaling—with
the information that the bulk velocity of a breath is 16% of that of a cough, and the mouth
diameter d is about half the mouth diameter during a cough—the Kolmogorov length scale
is at least three times larger for a breath than for a cough. This indicates that the current
mesh resolves the smallest turbulent length scales present in a breath jet.

−0.04

0.04

0

0 0.05 0.10 0.15

𝑦 (m)

𝑥 (m)

Figure 2. Close-up cross-sectional view of the mesh near the pipe, showing the refinement region.

We define a steady homogeneous velocity profile at the inlet of the pipe as a Dirichlet
boundary condition. Since human exhalation is periodic, it is not possible to simultaneously
reproduce the volumetric flow rate and the momentum of real human exhalation with a
steady pipe flow. We therefore opt to mimic the average momentum of female human
exhalation [14] by doubling the typical average volumetric flow rate, resulting in a pipe
flow rate of 12 l/min. Since Dekker [15] argues that the airflow in the trachea of most people
is likely to be turbulent during most breathing activities, turbulence is superimposed by
adding 15 simultaneous eddy perturbations [16] to the inlet velocity profile throughout the
exhalation process, which corresponds to a turbulence intensity of 20%.
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To maintain mass continuity during the exhalation process, two square outlets
with areas of 0.01 m2 are placed with center coordinates of (1.5 m,−1 m, 0.5 m) and
(1.5 m,−1 m,−0.5 m), respectively, specifying a Neumann boundary condition for the
velocity and a Dirichlet boundary condition for the total pressure. All other boundaries are
treated as slip walls, except for the pipe wall, which is treated as a non-slip wall. All walls
are set to the ambient temperature and vapor concentration conditions. Further details of
the simulation are given in Table 1.

Table 1. List of breath, air and particle properties.

Property Symbol Value

Ambient temperature Ta 20 ◦C
Breath temperature Tb 34 ◦C
Ambient vapor concentration Ca 0.01151 (50% RH)
Breath vapor concentration Cb 0.04719 (90% RH)
Air density ρ 1.204 kg m−3

Air kinematic viscosity ν 1.516× 10−5 m2 s−1

Thermal expansion coefficient β 3.43 × 10−3 K−1

Thermal diffusivity κ 2.17 × 10−5 m2 s−1

Vapor molar fraction expansion coefficient γ 0.385
Vapor mass diffusivity D 2.5 × 10−5 m2 s−1

Particle density ρp 1000 kg m−3

The DNS was performed in parallel on 20 nodes, each equipped with 2 AMD EPYC
7702 “Rome” 64-core processors, on the CARO high-performance computing (HPC) system
hosted by the German Aerospace Center (DLR) in Göttingen, Germany. Using a time step
of 10−4 s, the DNS was run for 3.0 × 105 time steps to cover a physical time period of 30 s in
1 × 106 core hours.

2.2. Overview of the Validation Method

The main objective of this study is to evaluate and improve stochastic particle disper-
sion models using DNS data. To this end, we propose a validation framework in which the
fully resolved DNS velocity field is time-averaged to mimic RANS-like variables, such as
the mean velocity ⟨Un⟩, the turbulent kinetic energy k and the turbulent dissipation rate ϵ.
These fields serve as input for various dispersion models, allowing direct comparison with
particles solved in the DNS.

The flow chart in Figure 3 illustrates the proposed method in comparison with the
conventional method. It highlights that, in the conventional approach, the input fields for
the dispersion model are already approximated by a turbulence model, whereas, in the
approach proposed here, they are obtained in the DNS.

Figure 3. Flowchart of the proposed validation concept.
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2.3. Time-Averaging of DNS Velocity Field

To provide mean flow fields and their fluctuations in the considered time-dependent
flow, we apply the exponential moving average (EMA) method, also referred to as expo-
nential smoothing, to extract the long-term mean flow variations and to explicitly filter
out high-frequency fluctuations in the velocity field of the DNS. With this approach, we
extract the mean velocity field and its large-scale evolution over time. Note that only the
high-frequency turbulence is filtered out, while the mean flow still evolves over time in
accordance with the remaining low-frequency turbulence. If ⟨Un⟩ denotes the remaining
mean velocity field at time n in the considered EMA method, the update of this estimated
mean velocity field

⟨Un+1⟩ = αUn+1 + (1 − α)⟨Un⟩ (4)

is performed with the smoothing factor α. As mentioned in the Introduction, the algorithm
only requires the storage of ⟨Un⟩, which is a significant improvement compared to a moving
arithmetic average. The smoothing factor α controls the weighting of the current velocity
and the instantaneous velocity to compute the new mean velocity. According to [9], α is
related to the cut-off frequency ( fc) by

α ≃ 2π fc∆t√
3

≈ 3.628 fc∆t, (5)

where ∆t is the time-step size of the DNS. The smallest Kolmogorov time scale is
τη ≈ 4 × 10−3 s, which is typically an order of magnitude larger than the stability con-
straint imposed by the explicit time-stepping scheme (Section 2.1). Given that the jet
Reynolds number of the breath is 1400, the integral turbulence time scale τ0 can be esti-
mated using the Kolmogorov hypothesis as τ0 ∼ τηRe1/2 [17], yielding τ0 ∼ 1.4 × 10−1 s.
This corresponds to a characteristic turbulence frequency of 1/τ0 ∼ 6.8 Hz.

To investigate the effect of temporal smoothing, the following two cut-off frequencies
are used for exponential averaging: 5.5 Hz and 0.55 Hz. Both are below the above-discussed
characteristic turbulence frequency and differ by an order of magnitude. They correspond
to smoothing factors of α1 = 0.002 and α2 = 0.0002, respectively. The corresponding
time-averaged velocity fields obtained with α1 and α2 are denoted as ⟨U⟩α1 and ⟨U⟩α2 ,
respectively, in the following sections. Figure 4 shows the time series of the instantaneous
velocity component Uy and the signals obtained by smoothing using α1 and α2. As expected,
⟨U⟩α2 produces a smoother field compared to ⟨U⟩α1 due to the lower cut-off frequency.

7.6 7.8 8.0 8.2 8.4 8.6
time / s

0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15

u y
 / 

 m s

UDNS U 1 U 2

Figure 4. Time series of the instantaneous Uy predicted by the DNS (UDNS) and the velocity fields
obtained after smoothing with α1 (⟨U⟩α1 ) and α2 (⟨U⟩α2 ).

By subtracting the mean velocity vector field obtained with the EMA method from
the instantaneous velocity vector field, the vector of instantaneous velocity fluctuations
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can be calculated as u = U − ⟨U⟩. The corresponding time-averaged kinetic energy and
dissipation rate of these fluctuations are k = 1

2

(
⟨u2

x⟩+ ⟨u2
y⟩+ ⟨u2

z⟩
)

and ϵ = 2ν⟨Sij : Sij⟩,

where Sij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the strain rate of the fluctuating velocity u. The terms ⟨u2

x⟩,
⟨u2

y⟩, ⟨u2
z⟩ and ⟨Sij : Sij⟩ are calculated in the same way as ⟨Un+1⟩ in Equation (4), using

the EMA method and the same smoothing factor α. These time-averaged properties of the
fluctuations are used to predict the stochastic dispersion acting on the particles.

2.4. Particle Dynamics and Dispersion Models

The expiratory particles were injected randomly from a circular area with a diameter
of 1 cm located at the pipe outlet at the initial velocity of the surrounding air. Particle
injection started 24 s after the breathing flow was initiated to ensure that the particles
entered the fully developed breathing jet rather than the quiescent surrounding air. They
were injected at a constant rate of 10,000 particles per second, equally distributed over five
discrete particle size bins, namely 1µm, 2µm, 4µm, 8µm and 16µm, corresponding to
2000 particles per second for each size.

The Stokes relaxation time of a single droplet is given by τp = d2
p(ρp − ρ)/18νρ, where

dp and ρp are the diameter and the density of the particle, respectively. The corresponding
Stokes number St of the particle is St = τp/τη , as calculated in Snyder and Lumley [18].
In our study, this resulted in the smallest Stokes number St1 ≈ 0.0008 for a particle with a
diameter of 1µm and the largest Stokes number St16 ≈ 0.2 for a particle with a diameter of
16µm in the fully resolved velocity field.

To study the particle dynamics, the expiratory particles were assumed to be discrete
spherical points of constant mass. Newton’s second law of motion was applied and
solved simultaneously with the flow field at each time step, taking into account both the
aerodynamic drag forces FD and the gravitational forces FG, as follows:

mp
dUp

dt
= FD + FG = CD

πd2
p

8
ρ
(
Up − Uc

)∣∣Up − Uc
∣∣+ πd3

p

6
(
ρp − ρ

)
g. (6)

In Equation (6), mp, Up, ρp and dp represent the particle mass, velocity, density and diam-
eter, respectively. The drag coefficient CD is a function of the particle Reynolds number
(Rep) and is given by [19]

CD =


24

Rep

(
1 + 1

6 Re2/3
p

)
, if Rep ≤ 1000,

0.424, if Rep > 1000,
(7)

where Rep = dp|Up − Uc|/ν, with Uc being the carrier velocity from the continuous
phase—in the present case, air.

In the DNS, particles are moving within a fully resolved instantaneous turbulent
velocity field U, which includes turbulent fluctuations at all scales, so no additional disper-
sion modeling is required. Hence, Uc = U. In contrast, when the carrier velocity field is
time-averaged (e.g., ⟨U⟩), the effect of unresolved turbulence on particle motion must be
modeled explicitly.

To account for the effects of unresolved turbulence on particle motion, we use a
stochastic dispersion model that superimposes the vector of fluctuating velocities ut on
the time-averaged velocity vector, giving Uc = ⟨U⟩+ ut. Here, the superimposed vector
of velocity fluctuations determines the interaction between particles and turbulent eddies;
hence, it is named the eddy interaction model (EIM). In this approach, “virtual” eddies are
assumed to have a lifetime te and a characteristic length scale λe [4,20] and are subject to
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velocity fluctuations ut induced by the eddy. Assuming isotropic turbulence, ut is modeled
(see, for example, [4,20,21]) as

ut =

√
2k
3
|N|edir, (8)

where N is a Gaussian random number with zero mean and unit standard deviation,
and edir is a randomly chosen unit vector defining the direction of the velocity fluctuation
vector. While ut defines the magnitude and direction of the velocity fluctuation, the eddy
interaction time tint specifies how long the particle is affected by this modeled velocity
fluctuation ut before a new ut is sampled randomly. This particle–eddy interaction ends
when either the eddy lifetime te elapses or the particle crosses the eddy in time tr.

The characteristic eddy length scale λe—required to determine the interaction time
between the particle and the eddy—is typically defined as

λe = C3/4
µ

k3/2

ϵ
, (9)

with Cµ = 0.0891 as an empirical coefficient.
In the literature [20,22,23], several eddy lifetimes are defined, all based on the

eddy size λe and the velocity fluctuations ut, from which the eddy lifetime te can be
calculated (Equation (10) [5,22,23]; Equation (11) [20]):

te,1 =
λe√

2k
3

Equation (9)
= Ce

k
ϵ

, (10)

te,2 =
λe

|ut|
, (11)

where Ce = C3/4
µ /

√
2/3. The dispersion model implemented in OpenFOAM® is obtained

by setting Ce = 1 in Equation (10) so that te,1 = k/ϵ. ELT te,2 in Equation (11) corresponds to
the eddy lifetime at the randomized fluctuating velocity vector ut, while te,1 in Equation (10)
can be interpreted as the mean eddy lifetime. Dehbi [24] used Ce = 1/7, and Mito and
Hanratty [25] found Ce = 1/21 to be a good fit to DNS data. Although we were not able to
find Ce = 1 in the literature, we assume Ce = 1 here because this is how it is implemented in
the widely used OpenFOAM® toolkit [5]. A more detailed overview of the used dispersion
models is given in Table 2.

The following eddy crossing time is defined more consistently in the literature [4]:

tr =
λe

|urel |
= C3/4

µ
k3/2

ϵ|urel |
, where |urel | = |Uc − Up|. (12)

With te,1 and tr, the total eddy interaction time is given by

tint = min(te,1, tr) = min
(

k
ϵ

,
λe

|urel |

)
. (13)

For heavy particles with large inertia and relative velocity |urel |, tr—and, thus, the interac-
tion time—is rather small. Small particles, on the other hand, experience longer interaction
times, typically limited by te,1.

New Eddy Interaction Time

To overcome the overdispersion behavior of the particles, which was observed in a
previous study [2] when using the eddy interaction time implemented in OpenFOAM®
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(Equation (10)), we propose to modify the eddy interaction time by introducing an addi-
tional constraint on it:

tint,new = min(te,1, Cr te,2, tr) = min
(

k
ϵ

, Cr
λe

|ut|
,

λe

|urel |

)
, (14)

where the additional constraint Cr te,2 in Equation (14) limits the maximum displacement
of a particle within a single eddy to the optimum of Cr = 16 times the amount of time that
a particle needs to pass the eddy’s characteristic length λe, i.e., the size of the eddy, with the
randomized fluctuation velocity. Therefore, if the random |ut| is large, te,2 becomes small.
This effectively limits the displacement. Conversely, if the random |ut| is small, using te,2

alone could lead to unreasonably long interaction times. Note that Cr = 16 is the optimal
value for breathing, which was determined by varying Cr from 1 to infinity. Thus, instead
of replacing the eddy lifetime te,1 (as in the RPI model; see Table 2), we introduce te,2 as an
additional boundary to limit the displacement while maintaining realistic interaction times
for eddies with slow perturbation velocities. Although te,2 has been introduced as an eddy
lifetime formulation [20], we use it as a selective displacement limiter for large ut.

Table 2 provides an overview of the eddy interaction times used in this study: the
mean particle-eddy interaction time (MPI), which is available in OpenFOAM®; the ran-
domized particle-eddy interaction time (RPI), which is based on an eddy lifetime and the
randomized fluctuating velocity vector ut; and the new model using the limited particle–
eddy interaction time (LPI), which stops the interaction between the particle and the eddy
once the particle has been displaced with respect to the eddy’s length.

Table 2. Overview of the different eddy interaction times used in this study.

Label Abbreviation Eddy Interaction Time Used in

Mean Particle–Eddy Interaction Time MPI min(te,1, tr) OpenFOAM® [5]
Randomized Particle–Eddy Interaction Time RPI min(te,2, tr) Gosman and Ioannides [20]
Limited Particle–Eddy Interaction Time LPI min(te,1, Cr te,2, tr) –

2.5. Test Cases

To evaluate the effect of dispersion modeling on particle motion, a comparative
analysis was carried out for nine clouds with particles of different sizes. The development
of these clouds was computed in a reference DNS and by solving Equation (6) with the
mean DNS flow fields.

For each mean velocity field ⟨U⟩α1 and ⟨U⟩α2 obtained from the two smoothing factors
α1 and α2, we analyzed and compared the different stochastic particle dispersion models
(MPI, RPI) and the new limited particle–eddy interaction time (LPI) model described in
Section 2.4. Moreover, in order to highlight the effect of a dispersion model, the particle
dispersion induced by the mean flow field without a dispersion model was computed
for comparison.

The particle dispersion analysis of the particles resolved in the mean velocitcy field
⟨U⟩α1 is not shown, as the filtering effect is negligible and a particle dispersion model is
not necessary (see Section 3.1). Therefore, we focus only on the simulated particle clouds
using the mean velocity field ⟨U⟩α2 to evaluate the performance of the PDMs discussed
above. A detailed overview of the predicted particle clouds is given in Table 3.
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Table 3. Overview of the tested particle clouds with varying configurations.

Particle Cloud Velocity Field Cut-Off Frequency Dispersion Model Particle–Eddy Interaction Time

1 DNS − − −
2 ⟨U⟩α2 0.55 Hz − −
3 ⟨U⟩α2 0.55 Hz MPI min(te,1, tr)

4 ⟨U⟩α2 0.55 Hz RPI min(te,2, tr)

5 ⟨U⟩α2 0.55 Hz LPI min(te,1, Cr te,2, tr)

2.6. Evaluation Methods for Particle Dispersion

To demonstrate the performance of the new model (LPI) in comparison with the
dispersion model using the mean particle–eddy interaction time (MPI), the modeled particle
dispersions were analyzed in three ways. The first method is to determine the convex
hull, which is the maximum particle cloud volume. The second method is to use the mean
square distance D2 as a measure of the dispersion within the particle cloud, and the third
method is based on the particle concentration.

2.6.1. Convex Hull

The convex hull is the smallest possible shape that contains all particles where all
interior angles are convex (<180◦), as shown in Figure 5. It can be seen that the shape of
the convex hull is determined by a small fraction of the particles, while the majority of the
particles within the hull have no influence on the shape. Therefore, this method makes the
most “extreme” particles visible. In 2D, each line segment connects two points/particles.
We applied the same concept to the 3D cloud, with three particles spanning a triangular
surface. The convex hull volume can be interpreted as the “contaminated” volume where
interactions with particles are possible.

Figure 5. Illustration of the convex hull in 2D.

2.6.2. Mean Square Distance D2

Since the convex hull only captures the behavior of outlier particles, we also computed
the mean squared distance of all possible particle pairs using the D2 method:

D2 =
1

Nd

Np

∑
i,j=0

(Xi − Xj)
2, (15)

Nd = Np(Np − 1), (16)
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where Nd is the number of possible distances between the number of particles Np, and Xi

and Xj indicate the positions of the particles. This method provides insight into the general
dispersion of the cloud and is not dominated by individual outlier particles.

2.6.3. Particle Concentration

Although the D2 method takes the entire cloud into account, it represents the cloud
as a single scalar value and does not provide information on how the particles are dis-
tributed within the cloud. Therefore, as a third measure, we chose to evaluate the particle
concentration at different distances from the center of the breathing jet. Since the particle
concentrations must be averaged over a volume, a ring-shaped volume Vr around the
breathing jet at a distance xr = 0.8 m from the mouth was selected, as shown in Figure 6.

𝑥

y

z

𝑟𝑟

Δ𝑟𝑟

Δ𝑥𝑟

𝑥𝑟

Figure 6. Illustration of the ring-shaped volume Vr with distance to the mouth xr, width ∆xr, variable
radius rr and thickness in radial direction ∆rr.

We increased the radius rr in incremental steps to obtain the particle concentrations at
any distance from the jet. The particle concentration in the ring was calculated by

Cr =
NV
Vr

, (17)

Vr = π((rr +
∆rr

2
)2 − (rr −

∆rr

2
)2)∆xr, (18)

where NV represents the number of particles in the ring-shaped volume Vr, ∆x = 4 cm is
the width of the ring in the streamwise direction, and rr and ∆rr = 3 cm indicate the radius
and radial thickness, respectively. This allows us to analyze the particle distribution around
the jet.

3. Results and Discussion
In Section 3.1, the resulting mean velocity fields obtained with different smoothing fac-

tors (α1 and α2) are discussed. Subsequently, in Section 3.2, the main results of our study are
presented: a comparison of the particle dispersion based on different modeling approaches.

3.1. Comparison of Mean Velocity Fields

For the validation of the particle dispersion models, we applied strong (α2) and weak
(α1) exponential smoothing (see Section 2.3) to the turbulent DNS velocity field to obtain
the running mean velocity components of the DNS. Figure 7a shows the DNS velocity field
at t = 10 s, while the corresponding mean velocity fields ⟨U⟩α1 and ⟨U⟩α2 are shown in
Figure 7b,c.

The mean velocity field ⟨U⟩α1 in Figure 7b is very similar to the DNS velocity field for
x > 0.4 m, i. e., in the downstream region where the jet momentum has partially dissipated
and buoyancy effects are noticeable. In contrast, the mean velocity field ⟨U⟩α2(Figure 7c)
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shows a much smoother velocity field compared to the DNS velocity field throughout the
flow, highlighting the stronger smoothing effect of α2.

𝑦
/
m

𝑥 / m
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𝑼 /
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(a)
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/
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𝑼 /
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(b)

𝑦
/
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𝑥 / m

𝑼 𝛼2

𝑼 /
m

s

(c)

Figure 7. Magnitudes of (a) the DNS velocity field, (b) the velocity field obtained after smoothing
with α1 (⟨U⟩α1 ), and (c) the velocity field obtained after smoothing with α2 (⟨U⟩α2 ), at t = 10 s.

Figure 8a shows the smallest (1µm) and the largest (16µm) particle clouds predicted
by the DNS, while Figure 8b,c show the particle clouds predicted in the velocity fields ⟨U⟩α1

and ⟨U⟩α2 , without additional dispersion models. The particle clouds predicted in the
DNS and ⟨U⟩α1 look almost the same, indicating that ⟨U⟩α1 still contains a relevant amount
of turbulence in the smoothed part of the velocity field. This shows that an additional
dispersion model is not required to correctly estimate the particle tracks. However, the par-
ticle cloud predicted in ⟨U⟩α2 (Figure 8c) has less dispersion compared to the prediction
obtained from the DNS, highlighting the need to model turbulent dispersion in order to
reduce the dispersion error.

𝑦
/
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𝑼DNS
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(a)
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Figure 8. Particle clouds composed of particles with diameters of 1µm and 16µm, predicted using
(a) the DNS velocity field, (b) the velocity field obtained by smoothing with α1 (⟨U⟩α1 ) and (c) the
velocity field obtained by smoothing with α2 (⟨U⟩α2 ), 6 s after the start of the particle injection.

Based on the observations obtained when comparing the mean velocity fields and the
particle clouds predicted in ⟨U⟩α1 and ⟨U⟩α2 with those of the DNS, we choose not to show
the dispersion models’ performance in terms of ⟨U⟩α1 due to its similarity to the case of the
DNS. Hence, in the next section, we only evaluate the particle clouds predicted in ⟨U⟩α2

using the three dispersion models (see Table 2), as well as those simulated with the DNS
velocity field and without applying any dispersion model.

3.2. Comparison of Particle Dispersion

At the beginning of this section, a brief overview of the particle clouds predicted by
different dispersion models, focusing only on the smallest (1µm) and the largest (16µm)
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particle sizes, is provided. Further, the particle dispersion resulting from different particle
dispersion modeling approaches applied to the mean velocity field is evaluated and com-
pared to the DNS results using three evaluation metrics: the convex hull volume (CHV),
the mean square distance (D2) and the particle concentration. In addition, these evaluation
metrics are applied to the particle dispersion in the mean velocity field without a dispersion
model in order to demonstrate the absolute improvement provided by the dispersion
model regarding particle dispersion. Finally, the particle clouds with different particle sizes
(1µm, 2µm, 4µm, 8µm, 16µm) are compared by determining the root mean square errors
(RMSEs) of the particle dispersions evaluated by the CHV, D2and particle concentration
methods compared to the DNS.

Figure 9 shows the particle clouds predicted in the DNS (Figure 9a) and those predicted
with the MPI model (Figure 9b), the RPI model (Figure 9c), and the LPI model (Figure 9d).
Compared to the particle cloud obtained in the DNS, the particle cloud predicted with the
MPI model exhibits erratic particle dispersion when it comes to small particles, while the
large particles (16µm) remain within the jet flow, where the eddy interaction is terminated
by the particle crossing time tr, rather than by the eddy lifetime. As discussed in Section 2.4,
the reason for this non-physical behavior predicted for the small particles is that the eddy
interaction time is not determined by the randomized velocity fluctuation ut that the
particle actually experiences, but with the mean absolute ⟨|ut|⟩. Consequently, any particle
that randomly samples a particularly high ut will receive the same eddy interaction time as
any other particle and can thus travel several decimeters before the eddy lifetime expires.

To overcome this problem, we propose to limit the eddy interaction time (see
Section 2.4). In contrast to the MPI model, the RPI model suppresses the erratic parti-
cle motion. However, the resulting particle cloud is more confined than the cloud obtained
in the DNS. The cloud obtained with the LPI model achieves the desired outcome, similar
to the MPI model, but without the individual unrealistically dispersed particles.

Figure 10a,b show the evolution of the convex hull volume (CHV; see Section 2.6.1)
over time for the particle clouds with the smallest (1µm) and the largest (16µm) particle
sizes. All particles present in the domain are considered, regardless of their injection time.
As expected, all five clouds show an increasing trend in the CHV as the particles move
through the domain and progressively convect and disperse. The CHV of the particles
without a particle dispersion model (No PDM) is underpredicted compared to the DNS
cloud for both particle sizes. The MPI model significantly overpredicts the CHV of the
small particles, resulting in values that are an order of magnitude higher than the CHV
obtained from the DNS. This is caused by the erratic particle motion predicted by the MPI
model, as shown in Figure 9b.

In contrast to the MPI model, the RPI model stops this erratic behavior for both
particle sizes and slightly underpredicts the CHV, especially for the small particles. The
proposed LPI model, on the other hand, significantly improves the accuracy of the CHV
predictions, achieving near-perfect agreement with the DNS results for both particle sizes.
This makes it the most accurate dispersion model for this evaluation method. This shows
that limiting the particle–eddy interaction time in the MPI model has the intended effect of
reducing overdispersion.

For the larger particles (16µm), the observations are very similar to those for the
small particles for the RPI and LPI models, except that the erratic motion of the particles
computed with the MPI model disappears, showing reasonably better performance. Since
the eddy interaction time for larger particles is more likely to be determined by the particle
crossing time than by the eddy lifetime, and since all three dispersion models use exactly
the same particle crossing time, it is expected that the models will produce similar results
for large particles.
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Figure 9. Particle clouds predicted at t = 10 s (a) by the DNS, (b) by the mean particle–eddy
interaction time (MPI) model, (c) by the randomized particle–eddy interaction time (RPI) model,
and (d) by the newly proposed limited particle–eddy interaction time (LPI) model.

As the CHV is only determined by the outermost particles, it provides insight into
the extent of the most widely dispersed particles. However, it does not fully characterize
the dispersion of the entire particle cloud. Therefore, we also analyzed the mean square
distance D2 of these clouds separately for the small (Figure 11a) and large (Figure 11b)
particles released over the course of 2 s.

The D2 of the cloud predicted without a PDM is underpredicted compared to the
cloud predicted by the DNS for both particle sizes, showing that a PDM is required to
predict the correct D2. Using the RPI model results in a small improvement for the large
(16µm) particles, but no significant improvement for the small (1µm) particles is achieved.
In contrast, the LPI model predicts D2 values that are significantly closer to those predicted
by the DNS for both particle sizes. The MPI model, on the other hand, results in significant
overprediction for both particle sizes—even more so for small particles—compared to the
DNS results.
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Figure 10. Convex hull volumes (CHVs) of the four particle clouds predicted in the mean velocity
field with the three different dispersion models, MPI, RPI, and LPI, and without a model, compared
to the particle clouds predicted in the DNS, showing the particle clouds with a size of (a) 1µm and
(b) 16µm.
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Figure 11. Comparison of the mean square distance D2 for the five different clouds for particles with
a diameter of (a) 1µm and (b) 16µm, injected over the course of 2 s.

Overall, the D2 analysis confirms the results of the convex hull volume analysis:
the MPI model significantly overpredicts the particle dispersion, while the LPI model
suppresses erratic particle motion and results in better agreement with the DNS. Although
the mean square distance D2 is evaluated with all particles in the cloud, it provides only
limited insight into the internal distribution of the particles. Therefore, Figure 12 plots the
time-averaged particle concentration as a function of the radial distance from the jet center
(see Figure 6) for 1µm particles (a) and 16µm particles (b), measured at a downstream
position of 0.8 m from the jet outlet. The x-axis is plotted on a logarithmic scale. All
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models show a decreasing trend for both particle sizes, indicating that the highest particle
concentration occurs at the jet center in each cloud.
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Figure 12. Comparison of the particle concentration for the five different clouds for particles with a
diameter of (a) 1µm and (b) 16µm, time-averaged over 5 s (500 instances).

Without a PDM, the predicted particle concentration near the jet center (ring
radius → 0 m) is significantly higher than the particle concentration predicted in the DNS.
This suggests that dispersion models are needed to improve the dispersion away from the
jet center. Although the RPI model provides an improvement for the large particles (16µm),
it does not provide an improvment over the cloud obtained without a dispersion model for
the small particles (1µm); in both cases, the particle concentration decreases sharply beyond
a radius of 10 cm, indicating insufficient dispersion compared to the DNS results. The
LPI model significantly improves the predicted dispersion by moving the particles further
away from the jet center, almost exactly matching the DNS predictions for both particle
sizes. For the small particles (1µm), the MPI underpredicts the particle concentration for all
radial distances compared to the DNS results. This indicates that overdispersion upstream
of the location where the particle concentration is assessed (x = 0.8 m) results in fewer
particles reaching the location of the particle concentration evaluation. In contrast, the MPI,
like the LPI, agrees almost exactly with the DNS results for the large particles (16µm).

This analysis provides a more nuanced view of particle dispersion. It shows that the
excessive early dispersion of small particles (1µm) predicted by the MPI model (upstream
of x = 0.8 m) leads to noticebly lower particle concentrations downstream than predicted
by the DNS. This highlights the cumulative effect of overdispersion on downstream pre-
dictions. The RPI model falls short in improving the dispersion compared to the cases
where no PDM is used. In contrast, the overdispersion and therefore the loss of particles
upstream is suppressed with the LPI model, resulting in particle concentrations that are in
excellent agreement with those obtained in the DNS.

In the evaluations above, we compared particle clouds for diameters of 1 and 16µm.
Figure 13a extends this analysis by comparing the root mean square error (RMSE) between
the convex hull volume time series of each model and the DNS for particle diameters of 1, 2,
4, 8, and 16µm. These sizes correspond to Stokes numbers (St) ranging from 0.0008 to 0.2.
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Figure 13. Comparison of the RMSEs of different clouds with DNS over the particle diameter for
(a) the convex hull method, (b) the mean square distance D2, and (c) the particle concentration.

The MPI model shows a strong diameter dependence: for small particles (≤8µm),
the RMSE is orders of magnitude higher than without using a PDM. In contrast, for large
particles (16µm), the RMSE obtained with the MPI model is low and the model performs
better than if no model were used.

In contrast, the RPI model slightly reduces the RMSE compared to not using a PDM
for all diameters. The results obtained with the LPI model yield an even lower RMSE than
the RPI model for all diameters. For 16µm particles, the smallest errors are obtained with
the MPI and LPI models. Since the MPI and LPI models assume different eddy lifetimes but
the same eddy crossing time, this indicates that, for the largest particles (16µm), the eddy
crossing time determines the eddy interaction time.

Figure 13b presents a complementary analysis showing the RMSE of the mean square
distance D2 of the particle clouds obtained with the different models, namely MPI, RPI,
and LPI, and without a PDM. The observed trends are consistent with the RMSE analysis
of the convex hull volume: for small diameters (≤8µm), the MPI model achieves RMSE
values that are significantly higher compared to the results obtained without a PDM. For
the largest particles (16µm), the RMSE of the MPI model nearly reaches the values obtained
without a PDM, but it still results in a higher RMSE.

On the other hand, the RMSE obtained with the RPI model is similar to that obtained
without a PDM for particles with a diameter smaller than 8µm, and it is slightly lower
for the particles with a diameter of 16µm. In contrast, the smallest RMSE values for all
diameters are obtained using the LPI model.

Figure 13c shows the RMSE of the time-averaged particle concentration for the same
set of particle clouds. In this evaluation, not using a PDM results in the highest RMSE for
all diameters. The results predicted with the RPI model are only slightly more accurate
compared to the case without a PDM, and the RMSE values obtained using the MPI
model are significantly lower for all particle diameters, especially for the largest (16µm)
particles, for which the RMSE is nearly zero. However, the LPI model results in a further
significant reduction in the RMSE for particles smaller than or equal to 8µm compared to
the MPI model.

Overall, these results suggest that the MPI dispersion model implemented in
OpenFOAM® is likely to significantly overpredict the dispersion of small particles in
highly turbulent regions. This results directly in excessive CHV and D2 values and in-
directly causes excessively low particle concentrations downstream, because the overly
dispersed particles are “lost” upstream.

By suppressing the erratic particle dispersion of small particles, the new model (LPI)
yields the lowest RMSEs in the convex hull, mean square distance, and particle concentra-
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tion analyses, making it a promising alternative. This suggests that, while the MPI model
generally provides accurate predictions for most particles, its overall accuracy is reduced
by the unrealistic trajectories of individual particles. The LPI model addresses this issue by
introducing a constraint on the particle–eddy interaction time, which effectively suppresses
these unrealistic trajectories.

Across all three evaluation methods (CHV, D2, and particle concentration), the pre-
dictions obtained with the MPI model are significantly more accurate for 16µm particles
than for 8µm particles. This suggests that the transition between eddy lifetime-dominated
and eddy crossing time-dominated interaction occurs with the range of Stokes numbers
between 0.05 and 0.2 for the investigated breathing flow field.

It should be noted that validation studies are often based on experimental data, e.g., in
the study by Snyder and Lumley [18], where the reported minimum Stokes number is 0.145.
Therefore, when applying the MPI model to the low Stokes numbers studied by Snyder
and Lumley, the occurence of erratic particle trajectories is unlikely. Similarly, the Stokes
numbers used in the study by Zhang et al. [6] were also too high to capture this effect.
Consequently, the MPI model can accurately predict the CHV and D2 of a particle cloud
at the Stokes numbers used by Snyder and Lumley [18] or Zhang et al. [6]. However, our
study includes Stokes numbers as low as 0.0008 (1µm particles), reflecting smaller particle
sizes and flow conditions typical of human breathing. These particles (especially <5µm)
are highly relevant for the transmission of infectious viruses [26,27].

This emphasizes the value of the DNS-based validation approach presented here:
it allows for the evaluation of arbitrary particle sizes and flow conditions beyond the
constraints of experimental setups (e.g., limitations in capturing small particles on camera).
The inherent advantages of computational fluid dynamics—such as the ability to track the
exact position of each particle at any point in time—allow for detailed dispersion analyses
using metrics such as the convex hull volume, mean square distance D2, and spatial particle
concentration. Since the dispersion models all use velocity fields derived directly from
the DNS, any differences in the resulting particle clouds can only be attributed to the
performance of the respective dispersion model.

Based on the observations described above, we draw the following conclusions.

1. Exponential smoothing is a viable, memory-efficient alternative to the conventional
running average when processing DNS fields.

2. Applying particle dispersion models to time-averaged DNS flow fields allows inde-
pendent validation, free from secondary errors introduced by turbulence modeling or
measurement uncertainty.

3. The exponential smoothing approach allows us to validate arbitrary particle
sizes under arbitrary flow conditions, overcoming the limitations of typical
experimental setups.

4. The particle dispersion model currently implemented in OpenFOAM® (MPI) performs
satisfactorily for larger particles (≥16µm, St ≥ 0.2). However, it shows erratic
behavior for smaller diameters. This may be due to a lack of validation at low Stokes
numbers—especially those relevant for virus-laden aerosols.

5. The proposed model with the limited eddy interaction time (LPI) successfully sup-
presses erratic particle trajectories and outperforms both the randomized particle–
eddy interaction time (RPI) and the mean particle–eddy interaction time (MPI) models
in any of the dispersion evaluation methods applied. Due to its straightforward imple-
mentation and proven effectiveness in the turbulent jet configuration, this model could
be particularly useful for researchers investigating particle-laden flows in respiratory
or similar jet-like applications.
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3.3. Limitations and Assumptions

In order to be able to isolate the effects of the turbulence kinetic energy and the
turbulence dissipation rate in the particle dispersion model on particle motion, other
parameters like aerosol evaporation are neglected in this study, since solving particle
trajectories in either an instantaneous DNS velocity field or a mean velocity field can
impact the evaporation times and, consequently, the particle dynamics [3]. Furthermore,
to evaluate the performance of dispersion models for different particle sizes, the same Stokes
drag model is applied to all particles. Although the Cunningham correction factor may be
relevant for smaller particles, it is omitted here to ensure consistency in model evaluation.

Although turbulence in the exhaled breath jet is observed to be non-homogeneous
and anisotropic, only isotropic turbulence-based particle dispersion models are applied
in this study. These models are primarily designed for RANS/URANS simulations that
use eddy–viscosity turbulence models, and they inherently assume isotropic turbulence.
Additionally, a steady flow rate is assumed for the exhaled breath to enable temporal
exponential smoothing, even though natural exhalation involves flow rate variations with
typical periodicity of 2–3 s [14].
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