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ABSTRACT
Landslide mapping is critically important for providing detailed spatial information on hazard extent in 
a timely manner that ultimately contributes to the protection of human lives and critical infrastructure. 
In the context of increasing demands for scalable and automated solutions, Earth Observation (EO) data 
coupled with deep learning offer great potential to enhance the speed and accuracy of emergency 
mapping. This study explores the utility of a deep learning model with the U-Net architecture for 
automated landslide mapping using data from optical Sentinel-2 and Synthetic Aperture Radar (SAR) 
Sentinel-1 satellites. We investigate the effectiveness of various optical (visible, near-infrared, and short- 
wave infrared) and SAR-derived features (backscatter coefficients, polarimetric features, interferometric 
coherence), used both independently and in combination. Additionally, we assess the impact of 
increasing the number of pre-/post-event SAR observations on classification performance. The U-Net 
models are trained and tested using globally distributed and limited reference data (563 unique 
patches). Optical features consisted of one pre-/post-event feature, whereas SAR features had three 
for each reference sample. Our analysis shows that the highest classification accuracies are consistently 
achieved using optical features (F1-score of 0.83 with visible, near-, and short-wave infrared bands). No 
substantial improvements were recorded when SAR features were combined with optical features. The 
usage of the most common optical features (visible and near-infrared) shows the lowest accuracies 
compared to their combination of short-wave infrared or red-edge bands. Increasing the number of 
pre-/post-event SAR features improves the SAR-based accuracies. To promote further advancements in 
automated landslide mapping using deep learning, the landslide reference dataset generated in this 
study is freely available at (https://doi.org/10.5281/zenodo.15284357).
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1. Introduction

Landslides, as a significant natural hazard, pose 
a substantial threat to human lives, infrastructure, and 
the environment. The projected increase in extreme 
weather events and ongoing rapid informal urbanization 
are anticipated to amplify the frequency and severity of 
landslide hazards worldwide (Froude and Petley 2018; 
Ozturk et al. 2022). Despite significant scientific efforts to 
predict the timing and location of landslides (Guzzetti 
et al. 2020), they often occur unexpectedly (van Westen 
Cj et al. 2006). Therefore, accurate and comprehensive 
landslide mapping is of vital importance for effective 
disaster management and risk reduction.

Landslide mapping has gone through significant 
advancements with the usage of Earth Observation 

(EO) datasets, which became one of the primary sources 
for monitoring landslide processes (Guzzetti et al. 2012). 
Recent developments in machine learning (ML) and 
deep learning (DL) solutions have further propelled the 
field (Zhong et al. 2020). DL, in particular, offers several 
advantages over the traditional ML or statistical meth
ods, particularly when dealing with large EO datasets. As 
outlined by Tehrani et al. (2022), DL excels at capturing 
non-linear relationships with multi-dimensional remote 
sensing data and autonomously learns complex spatial 
and temporal patterns present in the data. This substan
tially reduces or eliminates the labor-intensive feature 
engineering tasks, which typically require domain- 
specific expertise. Recent comparative studies on the 
performance of conventional machine learning 
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classifiers (e.g. Random Forest and Support Vector 
Machine) and state-of-the-art DL models showed the 
superior performance of the last (Ghorbanzadeh et al.  
2019; Prakash, Manconi, and Loew 2020; Wang et al.  
2021). In the context of landslide mapping using EO 
data and DL, the primary objective is typically to gener
ate a binary layer that distinguishes landslide-affected 
pixels from non-landslide pixels. This task falls under the 
category of semantic segmentation, wherein each pixel 
in an image is assigned a specific class label. A vast 
number of semantic segmentation models have been 
applied and compared for their landslide mapping cap
abilities, ranging from classical convolutional architec
tures like U-Net (Ronneberger, Fischer, and Brox 2015) to 
more advanced frameworks such as DeepLabv3+ (Chen 
et al. 2018) and HRNet (Wang et al. 2019). While models 
like U-Net are favored for their simplicity and effective
ness on small datasets, more sophisticated approaches, 
such as DeepLabv3+ and HRNet, demonstrate superior 
performance in handling complex landscapes and 
boundary delineations due to their ability to capture 
multiscale features and maintain high-resolution repre
sentations (Jin, Liu, and Huang 2024; Yang et al. 2022). 
However, these advanced models come with increased 
computational demands. Additionally, transformer- 
based models such as SegFormer are now gaining popu
larity for remote sensing applications, offering state-of- 
the-art accuracy, though they require larger training 
datasets to perform optimally (Ghorbanzadeh, Xu, 
Zhao, et al. 2022). Given the limited training data avail
able for this study, we selected U-Net for this study due 
to its proven effectiveness on small datasets and its 
widespread adoption in the geoscientific community, 
aligning with our data-driven research objectives 
(Ganerød et al. 2023, Nava et al. 2022; Li et al. 2022).

A persistent challenge in landslide mapping, espe
cially when applying advanced ML/DL techniques, is 
the limited availability of high-quality reference data. 
Some studies have attempted to address this issue 
using contrastive self-supervised learning 
(Ghorbanzadeh et al. 2024) or data augmentation stra
tegies (Soares et al. 2020; Woodard et al. 2023), but these 
methods often rely on expansive global datasets or 
sophisticated algorithms to compensate for data scar
city. Publicly available benchmark datasets 
(Ghorbanzadeh, Xu, Ghamisi, et al. 2022; Meena et al.  
2023; Xu et al. 2024) offer large volumes of data for 
comparing ML models; however, they frequently lack 
crucial landslide-specific metadata, such as georefer
enced footprints and precise occurrence dates. This 
absence makes it difficult to address more complex geo- 
environmental research questions, such as analyzing the 
influence of specific environmental factors.

Apart from data scarcity, choosing the right input 
features is critical for model accuracy. In recent years, 
the combination of optical and SAR features has become 
one of the prominent topics in remote sensing research 
due to the complementary characteristics of these data
sets. The launch of high-resolution Sentinel-1 and 
Sentinel-2 satellites has enabled numerous studies to 
explore the benefits of integrating both sensor types 
for various applications, including land use and land 
cover classification (Joshi et al. 2016), crop type mapping 
(Orynbaikyzy, Gessner, and Conrad 2019), flood detec
tion (Fichtner et al. 2023), and landslide detection (Fu 
et al. 2024). However, in the context of natural hazards, 
particularly landslides, the advantages remain inconclu
sive (Mondini et al. 2021). Unlike agricultural studies, 
which benefit from multi-temporal data across growing 
seasons (Orynbaikyzy et al. 2020), landslide mapping 
requires near-real-time outputs for emergency response. 
Rainfall-triggered landslides often occur under adverse 
weather, making optical data unavailable when needed 
most. In such cases, SAR imagery is essential due to its 
all-weather capabilities. However, SAR data is prone to 
geometric distortions in mountainous regions and 
increased noise in vegetated areas, which can reduce 
detection accuracy (Lindsay et al. 2023). While optical- 
SAR fusion shows promise, its effectiveness is applica
tion-specific and still under-researched for landslide 
mapping, particularly in time-critical scenarios (Lacroix, 
Handwerger, and Bièvre 2020; Sivasankar, Ghosh, and 
Joshi 2021; Nava et al. 2022). To maximize the benefits 
of optical-SAR fusion, understanding the contributions 
of individual features is essential. Many landslide studies 
rely on very high-resolution (VHR) EO data to capture 
changes in terrain morphology, surface characteristics, 
and vegetation cover. Since most VHR optical sensors 
primarily include visible and near-infrared (NIR) bands, 
these features are the most common choice for landslide 
mapping (Soares et al. 2022; Yang and Xu 2022). The 
spectral shifts indicative of modified surface properties 
resulting from ground movements contribute to the 
identification of areas impacted by landslides. 
Additionally, the red-edge (RE) and short-wave infrared 
(SWIR) bands offer valuable insights into vegetation 
health and moisture content, expanding beyond the 
capabilities of visible and NIR bands (Lu et al. 2021). 
However, the application of these bands (RE, SWIR) in 
landslide mapping using deep learning methods 
remains underexplored.

Although SAR data is less frequently used than 
optical data, key features such as interferometric 
coherence and amplitude are widely employed to 
detect surface deformation associated with landslides 
(Jelének and Kopačková-Strnadová 2021; Nava, 
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Monserrat, and Catani 2022; Zhang et al. 2022). 
Interferometric coherence measures the degree of 
similarity in phase between two SAR images, captur
ing changes in surface deformation, while amplitude 
represents the strength of the reflected radar signal, 
revealing variations in surface characteristics caused 
by landslide activity. However, despite the advance
ments, the application of SAR features in DL for land
slide mapping remains underexplored. Recent findings 
suggest (Nava et al. 2022) that incorporating multiple 
pre- and post-event SAR scenes can significantly 
improve model performance by capturing temporal 
dynamics and enhancing the detection of subtle sur
face changes. Furthermore, SAR polarimetry, which 
analyses radar wave polarization states, could provide 
additional insights into a more comprehensive under
standing of landslide dynamics (Plank, Twele, and 
Martinis 2016) but has been insufficiently studied in 
this context.

Despite the increasing number of studies dedicated 
to employing deep learning techniques in landslide 
mapping, certain research questions remain underex
plored. Here, we address the following research 
questions:

● Does the integration of optical and SAR features 
result in higher classification accuracies compared 
to their individual usage?

● Does the increase in the number of pre- or post- 
event Sentinel-1 scenes contribute to enhancing 
the U-Net performance?

● Would the usage of additional spectral bands (e.g. 
SWIR and RE) or SAR polarimetric features com
pared to a conventional set of features help to 
increase the classification accuracies?

This study aims to contribute to above listed open 
issues by evaluating the landslide classification per
formance of the commonly used semantic segmen
tation model, U-Net, using a wide variety of optical 
features from Sentinel-2 and SAR features from 
Sentinel-1 derived based on the limited but globally 
distributed reference data.

2. Study sites and data

2.1. Landslides inventory

The supervised machine learning requires labeled 
reference data for building the model. Depending on 
the properties of the selected classifier, requirements 
for training data may differ (Foody et al. 2006). For 
deep learning classification models such as U-Net, the 

quality and quantity of the training data have 
a significant impact on model performance. While 
a large sample size allows the model to learn more 
complex relationships present in the data, the sam
ples’ quality ensures the accuracy and reliability of 
the model.

To address our research objectives, we decided to 
compile a landslide inventory based on reported large 
landslides that occurred worldwide from July 2015 
onwards (Figure 1). The temporal threshold was chosen 
to acquire both, Sentinel-1 and Sentinel-2 data, for the 
same landslide event. Apart from landslides in southern 
Kyrgyzstan, the great majority of the landslides were first 
discovered based on a report on The Landslide Blog1 and 
then visually interpreted using the pre- and post-event 
Sentinel-2 and Sentinel-1 scenes. The only exception was 
the subset of the reference data from southern Kyrgyzstan 
(study site U) delineating the landslides that occurred in 
April 2017. The landslides were detected based on Behling 
and Roessner (2017) and later manually corrected by us.

The compiled landslide inventory mainly consists of 
single events with varying landslide extents (e.g. tailings 
dam collapse in Brazil (study site A), ice-rock avalanche 
in Pakistan (study site Z1)). The reference dataset from 
Kyrgyzstan, Ireland, and Iran are only three examples 
where more than one landslide was reordered for the 
same event. The dataset contains landslide examples 
from different environmental and climatic settings. 
Also, most of the landslides are rainfall-triggered.

2.2. Sentinel-1 data

We use SAR data acquired by C-band SAR sensors 
onboard Sentinel-1 A/B satellites, which are radar satel
lite missions operated by the European Space Agency 
(ESA) in the frame of the European Union’s Copernicus 
Programme. From their launch to orbit on the 3rd April, 
2014, and 25th April, 2016, they acquired images of the 
same area every 12 days worldwide. When both satel
lites were operational in orbit, it was possible to acquire 
SAR images with a repeat cycle of up to 6 days. Due to its 
all-weather imaging capability and high spatial-temporal 
resolution, Sentinel-1 data is extensively tested for land
slide mapping tasks and has demonstrated good results 
in delineating the landslide extent (e.g. Figure 2).

For each landslide event, we selected three pre- and 
three post-event Sentinel-1 Interferometric Wide Swath 
Single-Look-Complex (SLC) scenes. In total, 252 SLC 
scenes were downloaded from Copernicus Data Space 
Ecosystem.2 In most landslide cases, the scenes were 
available only on ascending or descending data acquisi
tion modes. For the cases, where both data acquisition 
modes were available, we selected the dataset that was 
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most favorable concerning slope visibility where the 
landslide has happened. The list of all Sentinel-1 SLC 
scenes used in the study is provided as Supplementary 
Material 1.

One of the study objectives is to examine the utility 
of interferometric coherence and polarimetric decom
position features such as entropy, alpha angle, and 
anisotropy (H/A/α) in addition to more commonly 
used radar backscatter coefficient data (VV, VH in 
gamma nought). Considering this, we run three pre- 
processing chains using the Graph Processing Tool 
(GPT) of ESA’s Sentinel Application Platform (SNAP) 
software in version 9.0.0. For terrain correction, we 
used the digital elevation model (DEM) from 
Copernicus DEM (European Space Agency, Airbus  
2022).

2.3. Sentinel-2 data

As an optical remote sensing data source, we used 
data acquired from the optical satellites Sentinel-2 A/ 
B of ESA’s Copernicus Programme (Figure 2). The 
data has been openly available for public use since 

late 2015 (launch of Sentinel-2 A) and provided glo
bal coverage with 10 m spatial resolution for visible 
(RGB) and near-infrared (NIR) bands, 20 m for four 
red-edge (RE (1–4)), two short-waves near-infrared 
(SWIR (1–2)) bands. The launch of Sentinel-2 B in 
2017 the repeat cycle was increased in some areas 
of the globe to 5 days.

For each landslide event, we selected one pre- and 
one post-event cloud- and cloud-shadow-free optical 
scene, totaling 56 scenes. We have selected only one 
scene before and after the landslide event due to the 
high variability in the availability of cloud-free scenes 
(Figure 3). While for some study sites, it was possible to 
find cloud-free scenes directly after or before the land
slide (e.g. landslide in Kara-Keche region, Kyrgyzstan) 
for others the difference between pre-/post-event 
scenes could reach up to 6 months (e.g. fatal landslide 
in Sichuan province, China). The list of all Sentinel-2 
scenes used in the study is provided as Supplementary 
Material 1.

To access Sentinel-2 data, we used Microsoft’s Planetary 
Computer platform (Microsoft Open Source et al. 2022), 
a cloud-based platform that provides access to a wide 

Figure 1. Spatial distribution of landslide events (map) and corresponding meta-information (Table).
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Figure 2. (a) Pre- and (b) post-event Sentinel-1 and Sentinel-2 data with (c) binary masks of landslide events from our inventory.

Figure 3. Number of days between event occurrence date and acquired pre- and post-event Sentinel-2 scenes.
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range of geospatial datasets for research and analysis. The 
dataset was accessed through the STAC API by providing 
the predefined image acquisition date and area of interest.

2.4. Surface elevation and slope angle data

As one of the significant factors influencing the landslide 
generation (Wang et al. 2025), DEMs contribute valuable 
structural information about the landscape. Slope, 
derived from DEMs, further enriches the model by pro
viding a quantitative measure of terrain steepness, 
which deep learning algorithms can exploit to distin
guish landslide-affected areas from surrounding stable 
terrain, even in visually ambiguous scenes. Recent stu
dies confirm (Ghorbanzadeh et al. 2019; Sameen and 
Pradhan 2019; Soares et al. 2020) that elevation and 
slope are not just supporting information but play an 
active role in improving the precision and reliability of 
deep learning-based landslide detection. By embedding 
terrain awareness into model training, these features 
help resolve ambiguities in complex terrain, ultimately 
leading to more trustworthy and scalable landslide map
ping solutions.

We retrieved the DEM layers in meters for each land
slide event from the publicly available Copernicus DEM 
dataset (Soares et al. 2022). Based on these DEM data, we 
calculated slope angle layers using gdaldem tool 
(Figure 4).

3. Methods

3.1. Reference data preparation and train-test split

For effectively training a semantic segmentation model 
such as U-Net, it is essential to have good-quality anno
tated data with corresponding feature vectors. For each 

landslide event, we created a binary raster mask indicat
ing the spatial allocation of the landslide and non- 
landslide pixels using the earlier described landslide 
inventory. As a feature vector, we used the varying 
combination of Sentinel-2 and Sentinel-1 features. 
More details on the feature combinations are provided 
in the following section. All input features were harmo
nized by resampling them to 10 m spatial resolution, re- 
projecting, channel-wise normalization, and clipping to 
the extent of the area of interest of each landslide event 
(Figure 5).

Since the size (height × width) of the input Sentinel-1 
and Sentinel-2 features are too large to feed them 
directly into the DL network and due to their varying 
spatial extents, we split the input features into smaller 
equalized patches of the size 128 × 128 pixels. The patch 
size was selected based on the reports from the earlier 
studies that suggested that the models trained with 
a patch size of 128 × 128 pixels (compared to, e.g., 
32 × 32 pixels, 64 × 64 pixels) show higher classification 
accuracies (Ghorbanzadeh et al. 2021; Meena et al. 2022). 
Some studies have also reported that the models trained 
with larger patch sizes tend to have higher precision and 
lower recall rates (Prakash, Manconi, and Loew 2021; 
Soares et al. 2020, 2022).

After tiling the features from each landslide into smal
ler patches we had in total of 563 patches, which were 
then split at landslide event level to 80% for model train
ing and validation and 20% for model testing. In the 
landslide mapping literature, the splitting of reference 
data to training and testing samples is often done ran
domly (Ghorbanzadeh et al. 2019; Nava et al. 2022) or 
using spatial blocks (Liu et al. 2020; Prakash, Manconi, and 
Loew 2020; Z. Yang and Xu 2022). This implies that data 
from the same landslide event appear in training and 
testing data. Such scenarios are unrealistic in real-world 

Figure 4. (a) Elevation and (b) slope angle layers from the landslide event in Canada.
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applications, where training data for target landslides, 
even in insignificant amounts, are not available. 
Typically, machine learning or statistical models are 
trained using labeled data from previous landslide events, 
which are often environmentally and geographically dis
similar to the target event, and then spatially and tempo
rally transferred to predict the new unseen dataset. To 
mimic such real-world scenarios but also to test the com
monly applied “spatial block split” approaches (Roberts 
et al. 2017), we created two test sample sub-groups: (a) 
“independent patches” – image patches from four land
slide events that are spatially and temporally independent 
from the training data and only were used for model 
testing; (b) “dependent patches” – image patches from 
four landslide events, where one part of the landslide 
patch samples was used for model training and the 
other part for model testing (Figure 6). Here, a “spatial 

block split” was applied to ensure that there is no spatial 
overlap between training and testing patches.

According to earlier studies on landslide mapping 
using deep learning models (Cai et al. 2021; Yi and 
Zhang 2020, p.), increasing the number of training 
patches using image augmentation methods improves 
the predictive performance of the models. However, as 
Nava et al. (2022) have pointed out, augmentation of 
SAR data should be done with caution, since the unfa
vorable slope orientation to the sensor’s image acquisi
tion geometry could increase the number of 
inconsistent data that decreases model performance. In 
our study, to increase the number of training patches, 
we applied geometric image augmentation techniques 
such as image flipping (horizontal and vertical) and 
image rotation (90°, 180°, and 270°). This helped us to 
increase the size of training patches to 2130.

Figure 5. Generation of the landslide reference data for deep learning application.
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3.2. Input feature groups

In total, we ran 58 experiments with different sets of 
feature combinations from only optical, only SAR and 
a combination of both with four scenarios of data avail
ability. (The graphical overview of the general study 
workflow is provided as Supplementary Material 2.) 
First, we grouped the feature combinations based on 
their sensor origin to understand if the usage sensor 
dataset shows superior performance compared to others 
(Table 1). Second, we set the most used feature combi
nations such as backscatter coefficients at VV and VH 
polarizations from SAR data or a combination of RGB and 
NIR bands from optical features as a base and started 
including other feature groups (e.g. H/A/α, RE (1–4)) to 
evaluate the performance of the models with and with
out additional features. All feature combinations 
included elevation and slope angle features as standard 
topographic inputs, based on their demonstrated rele
vance in previous landslide detection studies (e.g. 
Sameen and Pradhan 2019).

3.3. U-Net Model

For a supervised automated classification task, we 
selected a convolutional neural network (CNN) model 
designed for semantic image segmentation tasks – 
U-Net (Ronneberger, Fischer, and Brox 2015). The U-Net 
model has gained significant attention in recent years 
due to its advanced performance compared to other 
machine learning classifiers in various application 
domains, and also among landslide classification studies 
(Ganerød et al. 2023; Konishi and Suga 2019; Nava et al.  
2022; Lei et al. 2019). The U-Net architecture consists of 
an encoder-decoder part with skip connections 
(Figure 7). The encoder path captures the contextual 
information by progressively down-sampling the input 
images through convolutional and pooling layers. On 
the other hand, the decoder path up-samples the fea
tures and reconstructs the spatial information, enabling 
precise localization of objects of interest. The skip con
nections between the corresponding encoder and deco
der parts allow the U-Net model to retain fine-grained 

Figure 6. Overview of the independent and dependent test sites.
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details during the up-sampling, facilitating accurate seg
mentation. This feature is particularly advantageous 
when dealing with complex or irregularly shaped objects 
in an image, such as landslides.

In our U-Net architecture, the encoder part processes the 
input patches through five convolutional blocks which 
extract the features at different scales. Within each convolu
tion block, two 3 × 3 convolutions with Rectified Linear Unit 
(ReLU) activation are applied that is followed by batch 
normalization. The block concludes with a max pooling 
operation with a kernel size of 2 × 2, which downsizes the 
feature maps by a factor of 4. However, the number of 
feature channels is doubled after each block. In the decoder 
part of the architecture, the feature maps are up-sampled to 

match their original input dimension. Similarly, the encoder 
part is done through five convolutional blocks. Each block 
comprises a 2 × 2 transpose convolution that reduces the 
number of feature channels by half. The resulting output is 
then concatenated with the corresponding feature map 
encoder part. Following this concatenation, two 3 × 3 con
volutions with ReLU activation are applied, each subse
quently normalized using batch normalization. The final 
layer of the architecture consists of a 1 × 1 convolution 
with sigmoid activation, which results in a landslide prob
ability layer. To get a binary landslide, non-landslide output 
mask, we apply a threshold of 0.5 to the probability layer. In 
this study, we utilized the “same” in all convolutional layers 
of the U-Net model to ensure that the spatial dimensions of 

Figure 7. U-Net architecture used in this study.

Table 1. List of the combination of features and a number of pre-/post-event scenes. All combinations also include slope angle and 
elevation features.

Satellite Features

Number of pre-/post-event scenes

1 pre + 
1 post-event  

(1+1)

3 pre- + 
1 post-event 

(3+1)

1 pre- + 
3 post-event 

(1+3)

3 pre- + 
3 post-event 

(3+3)

Sentinel-1 gVV+gVH x x x x
gVV+gVH, COHVV x x x x
gVV+gVH, H/A/α x x x x
gVV+gVH, COHVV, H/A/α x x x x

Sentinel-2 RGB, NIR x
RGB, NIR, NDVI x
RGB, NIR, RE (1–4) x
RGB, NIR, SWIR (1–2) x
RGB, NIR, RE (1–4), SWIR (1–2) x
NDVI x

Sentinel-1  
+ Sentinel-2

gVV+gVH, RGB, NIR x* x* x* x*
gVV+gVH, NDVI x* x* x* x*
gVV+gVH, RGB, NIR, RE (1–4), SWIR (1–2) x* x* x* x*
gVV+gVH, COHVV, RGB, NIR x* x* x* x*
gVV+gVH, COHVV, NDVI x* x* x* x*
gVV+gVH, COHVV, RGB, NIR, RE (1–4), SWIR (1–2) x* x* x* x*
gVV+gVH, H/A/α, RGB, NIR x* x* x* x*
gVV+gVH, H/A/α, NDVI x* x* x* x*
gVV+gVH, H/A/α, RGB, NIR, RE (1–4), SWIR (1–2) x* x* x* x*
gVV+gVH, COHVV, H/A/α, RGB, NIR, RE (1–4), SWIR (1–2) x* x* x* x*

*pre- and post-event scenes change only for features based on Sentinel-1 scenes.

GISCIENCE & REMOTE SENSING 9



the input images are preserved, thereby avoiding the intro
duction of artifacts associated with zero-padding at the 
edges.

The U-Net model was trained with augmented train
ing patches described in Section 3.1. All the input 
patches were scaled from 0 to 1 at the individual 
channel level before feeding them to the network. 
Considering the computational constraints and mem
ory limitations, we selected a moderate batch size of 
16 patches with a total of 200 epochs. With a low 
learning rate of 0.0001, we aimed to cautiously update 
the model parameters, preventing the drastic changes 
that may hinder convergence. The soft dice criterion 
was chosen as our loss function, as it effectively mea
sures the similarity between the predicted and ground 
truth segmentation masks. Overall, these parameter 
choices were made based on their compatibility with 
our dataset and task requirements, aiming to optimize 
the performance of the U-Net architecture in our spe
cific context.

3.4. Performance evaluation

In our study, the landslide classification accuracies 
were evaluated using two test sets – independent 
and dependent. Each of the test sets consists of 
patches from four separate landslide events. We 
report accuracies for each landslide but also group 
into independent and dependent test sites to address 
the question of spatial-temporal independence of the 
test samples. 

We selected the most frequently used metrics among 
landslide classification studies – precision (eq. 1), 
recall (eq. 2), F1-score (eq. 3), and Intersection over 
Union (IoU) (eq. 4). This would ensure comparability 
to other studies. All metrics have a range of values 
between 0 and 1, with higher values indicating 
superior performance.

4. Results

4.1. Landslide classification accuracies

As it was anticipated, the classification metrics signifi
cantly vary across eight test sites (Figure 8). For some 
test sites, we acquired high accuracies (F1-score above 
0.75) with all possible feature combinations (e.g. Tailing 
Dam Collapse in Brazil, Large Rockslide in China), 
whereas for others, no landslide pixels were detected 
(e.g. Peat Landslide in Ireland) or only with specific sen
sor data (e.g. Deep-Seated Collapse in India, High 
Mobility Landslide in Colombia). The last three landslides 
are below 0.5 km2 in size.

The highest F1-score of 0.96 was reached when map
ping the Large Rockslide in China using optical features. 
Whereas the lowest classification accuracy (F1-score of 0) 
was recorded when mapping Peat Landslides in Ireland 
with optical features and High Mobility Landslide in 
Colombia using SAR features. This occurred due to the 
total absence of correctly predicted landslide pixels (i.e. 
True Positives). On average, the model outcomes 
showed higher precision and lower recall values across 
all test sites (see Supplementary Material 3).

The difference between F1-scores derived from 
dependent and independent test sites was most notice
able when using only SAR features. The F1-score values 
across all combinations of SAR features were on average 
lower (∆ 0.21) for independent test sites compared to 
dependent test sites. In contrast, for only optical and 
optical-SAR combinations, the average accuracies were 
slightly higher for independent test sites (∆0.12 and 
∆0.09, respectively). When excluding the accuracies 
based on Peat Landslides (dependent test site), which 
showed extremely poor results, the average accuracies 
of dependent test sites across all three sensor combina
tions show higher values compared to those derived 
from independent test sites (∆ 0.21 for SAR, ∆ 0.05 for 
optical and ∆ 0.08 for combination). Also, the variability 
of classification accuracies with different sets of feature 
combinations within one sensor data is much higher in 
independent test sites compared to dependent test sites 
(Figure 8).

4.2. Optical, SAR, and their combination

The highest F1-score was systematically reached using 
only optical features across all test sites except for the 
Deep-Seated Collapsed in India (Figure 9). The highest 
average F1-score of 0.83 was reached using RGB, NIR 
with SWIR bands combination across all eight test sites. 
However, when calculated separately, for independent 
test sites the highest average accuracies (F1-score of 
0.87) were reached using NDVI bands alone. The 
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Figure 8. Classification accuracies (y-axis) across four dependent (first row) and four independent (second row) test sites using only 
optical, only SAR and a combination of optical and SAR features (colour) for one pre-/post-event. The corresponding values of 
precision, recall, and IoU can be found in Supplementary Material 3.

GISCIENCE & REMOTE SENSING 11



combination of RGB and NIR bands, which are most 
commonly used among landslide mapping studies, 
showed the lowest average performance (F1-score 
0.69) for runs with only optical features. The addition of 
four RE bands to RGB and NIR bands showed a minimal 
increase in the accuracies (F1-score ∆ 0.03) compared to 
using RGB, and NIR alone.

The lower performance of RGB and NIR bands com
pared to other optical band combinations was mainly 
due to the higher recall and low precision (see 
Supplementary Material 4). The landslides that occurred 
in densely vegetated areas (e.g. in Colombia and the 
Philippines) were well mapped using only NDVI data or 
a combination of RBG, NIR, and NDVI.

The low or high number of days between pre-event 
and post-event cloud-free scenes does not seem to cor
relate with the classification results (Figures 3 and 8). The 
shortest time difference of 20 days between pre-/post- 
event scenes for Peat Landslides in Ireland (low 

classification accuracies) and the biggest difference of 
185 days was recorded for Large Rockslide in China 
(highest classification accuracies).

Among runs based on only SAR features, the highest 
average accuracies (F1-score 0.60) across all test sites 
were reached when all SAR features were used to train 
the model. However, when averaged separately, the 
highest accuracies for dependent test sites were reached 
using gVV + gVH (F1-score 0.68) and with all features (F1- 
score 0.54) for independent test sites.

The models based on SAR data showed satisfactory 
classification accuracies (F1-score above 0.70) when 
mapping larger landslides (e.g. Large Rockslide in 
China, Tailings Dam Collapse in Brazil) but often failed 
to accurately predict smaller landslides (e.g. Peat 
Landslides in Ireland, High Mobility Landslide in 
Colombia) and landslide with more complex geometry 
(e.g. Loess Landslides in Kyrgyzstan). Apart from the size 
of the landslides, the surrounding landscape topography 

Figure 9. Landslide classification maps with different sets of optical features (columns) for independent test sites (rows). 
A corresponding map for dependent test sites is available as Supplementary Material 4.
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also had a negative effect on the SAR-based model 
performance. Mapping the narrow structures of Dam 
Tailings Collapse in Brazil (narrow mudflow runway 
through the forested area) and Rock Avalanche in 
Canada (deep river channel) was not feasible (Figure 10).

The combination of optical and SAR features (gVV 
+ gVH, H/A/α, NDVI) showed higher performance 
compared to only optical or only SAR features in 
Deep-Seated Collapse in India (F1-score 0.85). 
However, the F1-score difference to the best- 
performing optical features (RGB, NIR, RE) was ∆ 

0.08. Among all test sites, the highest accuracies 
were reached when radar backscatter and polari
metric features were combined with NDVI (average 
F1-score of 0.79). While the classification accuracies 
of the optical-SAR combination were always higher 
than only SAR-based results, they were also always 
below accuracies received from only optical runs.

Apart from the Peat Landslides in Ireland, the 
optical-SAR combination showed good mapping 
results for large as well as small landslides (Figures 
11 and 12).

Figure 10. Landslide classification maps with different sets of SAR features (columns) for dependent test sites (rows). A corresponding 
map for independent test sites is available as Supplementary Material 5.
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Figure 11. Landslide classification maps with best performing only optical only SAR and combination of optical and SAR features for 
dependent test sites.
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Figure 12. Landslide classification maps with best performing only optical only SAR and combination of optical and SAR features for 
independent test sites.
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4.3. Impact of multi-temporal SAR inputs

We observed a consistent improvement in classification 
accuracies when multiple pre-/post-event scenes were 
used for landslide mapping using only SAR features 
across all test sites (Figure 13). The most significant 
increase of F1-score (Δ 0.13) was recorded when three 
pre-event and three post-event scenes were used to 
map the Landslide on the Forested Hillslope. The lowest 
increase in F1-score (Δ 0.02) was recorded when three 
pre-event and three post-event scenes were used to 
map the Deep-Seated Collapse in India. However, 
despite the overall increase, the classification accuracies 
based on only SAR data did not reach the highest 
accuracies derived from only optical features for corre
sponding test sites (Figure 8).

5. Discussion

The outcomes of our study illustrate that U-Net can 
achieve promising accuracies in landslide mapping, 
even when trained on limited datasets, aligning with 
the findings of Meena et al. (2022) and Prakash, 
Manconi, and Loew (2020). However, the landslide- 
specific accuracies varied significantly depending on 
the complexity of the cases. Large landslides, such as 
the Large Rockslide in China or Tailings Dam Collapse in 
Brazil, achieved F1-scores exceeding 0.9. In contrast, 
smaller or geometrically complex landslides, such as 
Peat Landslides in Ireland or Loess Landslides in 
Kyrgyzstan, posed greater challenges, resulting in lower 
accuracies. These findings highlight the importance of 
accounting for the diverse characteristics (e.g. type, size, 
and shape) of landslides when building deep learning 
models and underscore the necessity for diverse training 
datasets with various landslide types, topographies, 
shapes, and geo-environmental conditions in order to 
enhance model’s generalizability and robustness.

The study results show that optical features consis
tently outperformed SAR features and their combination 
across all test cases. This finding aligns with previous 
studies by Nava, Monserrat, and Catani (2022) and 
Jelének and Kopačková-Strnadová (2021), which empha
size the superior ability of optical data to detect vegeta
tion cover change – one of the key indicators of 
landslides. The landslides analyzed in this study were 
primarily associated with the transition from dense or 
semi-vegetated land cover to bare soil or rock. This 
explains the higher performance of optical data, which 
is particularly effective in capturing vegetation cover 
changes. While SAR data offers the advantage of all- 
weather capabilities, its geometric distortions in mountai
nous regions, such as shadow, layover, and 

foreshortening, can reduce landslide detection accuracy. 
Despite acceptable average accuracies F1-score ≥0.7, SAR 
data requires cautious use, particularly in topographically 
challenging areas. When optical data is available, it should 
be prioritized over SAR data for landslide detection using 
U-Net. Before relying solely on SAR data, it is essential to 
thoroughly assess potential limitations, such as topogra
phical complexity and unfavorable viewing angles, which 
may adversely impact detection accuracy.

The combination of optical and SAR features shows 
minimal accuracy benefits only in one (out of eight) 
landslide cases. We found no particular advantages of 
using the optical-SAR combination over only optical 
data with a deep learning approach. This finding con
trasts with studies illustrating the utility of optical-SAR 
fusion in rule-based classification workflows (Plank, 
Twele, and Martinis 2016; Jelének and Kopačková- 
Strnadová 2021. Combining optical and SAR data also 
implies an increase in feature dimensionality. With lim
ited training data, this could lead to reduced perfor
mance of the model due to the dimensionality curse. 
This suggests that, in deep learning-based approaches, 
the additional complexity introduced by optical-SAR 
data combination may not always yield significant 
improvements and could potentially hinder model per
formance when training data is scarce.

Among the run utilizing only optical features, the 
addition of SWIR bands to the conventional RGB and 
NIR combination consistently yielded the highest classi
fication accuracies across eight test sites. SWIR bands 
capture valuable information on moisture content, 
mineral composition, and vegetation health, which are 
relevant factors in landslide mapping. These findings 
align with earlier studies, such as Lu et al. (2021), which 
demonstrated the utility of SWIR bands for mapping 
earthquake-triggered landslides in China and Japan. 
Therefore, incorporating SWIR bands with conventional 
RGB and NIR is strongly recommended for more accurate 
and comprehensive landslide mapping.

Our analysis revealed that increasing the number of 
pre- and post-event SAR scenes leads to improved classi
fication in performance when using SAR-only inputs. This 
observation is consistent with the findings by Nava et al. 
(2022), where higher accuracies were reached with two 
post-event Sentinel-1 scenes compared to a single one. 
The advantage of multiple SAR scenes lies in their ability 
to capture changes over time, thereby providing a more 
comprehensive understanding of surface deformation 
and land cover transitions associated with landslides. In 
regions, where optical data is limited or unavailable due 
to adverse weather conditions, the use of multiple SAR 
scenes can significantly enhance the reliability of the 
model by compensating for the lack of optical data.
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Figure 13. The F1-score values for dependent and independent test sites using a varying number of pre-/post-event scenes (x-axis) of 
only SAR features and optical-SAR feature combination (y-axis).
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Ensuring the robustness of deep learning models for 
landslide classification across diverse geo-environmental 
settings remains a critical challenge. Testing the spatial- 
temporal transferability of ML/DL models is essential for 
real-world applications, where geographical and tem
poral settings may vary significantly. While our study 
did not show any substantial difference between inde
pendent and dependent test sets, the limited size of 
training and testing datasets could potentially be the 
major influencing factor. Future research should lever
age larger and more diverse reference data to explore 
model transferability and generalizability more 
comprehensively.

A significant challenge in landslide mapping research 
is the limited availability of comprehensive, high-quality 
reference data. While benchmark datasets such as 
Landslide4Sense, CAS Landslide Dataset, and HR-GLDD 
provide a valuable foundation for exploring ML/DL mod
els and training configurations, they often lack essential 
landslide-specific metadata, including georeferenced 
footprints and precise occurrence dates. This omission 
constrains geoscientific research and limits the integra
tion of additional datasets, such as new sensor data or 
expanded temporal features. To address this gap, we 
openly share the dataset used in this study, which 
includes detailed georeferenced landslide footprints 
and associated metadata, via Zenodo (https://doi.org/ 
10.5281/zenodo.15284357). We encourage future stu
dies to adopt a similar approach by including landslide- 
specific metadata, thereby advancing the capabilities of 
the landslide mapping community.

When reflecting on the outcomes of this study, it is 
important to recognize and acknowledge the inherent 
limitations that may have influenced the results. The 
main limitation, as for many landslide studies, is limited 
reference data availability. It constrains model’s ability to 
fully capture the variability of landslide types and envir
onmental conditions, which could explain some variations 
in performance across different test cases. Another aspect 
is the type of considered landslide events. Our reference 
data mainly consists of the large and medium landslide 
events that occurred due to heavy rainfall. However, we 
do not have cases where one landslide event consists of 
many small landslides distributed over a large region, 
which is more common for earthquake-triggered land
slide events. These limiting factors should be considered 
when evaluating the general applicability of the study.

6. Conclusion

Rapidly changing climate and the growing impact of 
human activities are expected to increase the occurrence 

and mortality of landslide hazards. Applying deep learning 
techniques for landslide classification represents 
a significant stride in advancing our ability to accurately 
and efficiently monitor sites hit by this natural hazard. In 
this study, we explored the potential of Sentinel-1 and 
Sentinel-2 features, together and alone, for mapping land
slides using the U-Net semantic segmentation model. With 
the limited but globally distributed landslide inventory, we 
tested how the various combinations of features, and the 
increased number of pre-/post-event SAR scenes could 
affect the classification accuracies. Based on the results of 
our study, the following conclusions can be inferred:

- The classification accuracies of U-Net models based 
on optical features consistently outperform those 
based on SAR features.

- No substantial accuracy improvements were found 
when combining optical and SAR features com
pared to results achieved with only optical data.

- The highest average classification accuracy, an F1- 
score of 0.83, was reached with RGB, NIR, and SWIR.

- The commonly used RGB and NIR band combination 
showed the lowest average performance across all 
test sets (F1-score 0.68) among only optical features.

- Increasing pre- and post-event scenes improved 
accuracies across all test sets when using only 
SAR features.

While optical data remains the most effective for accu
rate landslide mapping, SAR data shows potential for 
improvement with enhanced temporal resolution. 
Given the global distribution and limited nature of the 
reference data used in this study, further research with 
larger, more diverse datasets is needed to refine the 
applicability of SAR-based approaches for rapid land
slide mapping.

Notes

1. https://blogs.agu.org/landslideblog/.
2. https://dataspace.copernicus.eu/.
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