
Optimization Strategies
for Quantum Computers
in Distributed Systems

Lian Remme

Master’s Thesis

Presented at the Chair of Operating Systems (HHU)
in Cooperation with

the Institute of Software Technology (German Aerospace Center, DLR).

Submission: February 2025
First Reviewer: Univ.-Prof. Dr. Michael Schöttner
Second Reviewer: Dr. Andre Waschk





Abstract

Quantum computing has become an increasingly relevant topic in computer science due
to the development of functional quantum computers in recent years. Quantum process-
ing units (QPUs) use quantum particles in the form of qubits as information carriers.
By using properties of quantum particles, quantum algorithms have been developed that
can solve problems in polynomial time, for which only exponentially scaling classical al-
gorithms are known.

QPUs will not run on their own in the foreseeable future, due to high error rates and
low stability of qubits. Instead, quantum devices will be one component in a quantum-
classical (hybrid) computing system (distributed system). Quantum computers embed-
ded in distributed hybrid quantum-classical systems get instructions from a main CPU,
execute them and report their results. To fully utilize quantum calculations, a QPU
should be able to communicate with a CPU in “real-time”. This means the qubits’
information content should stay stable during communication time.

In this thesis, we will look at quantum computing systems with real-time feedback
between a QPU and a CPU. As quantum computers are going to be used in real-time
hybrid systems, we need optimization routines for code running on these systems. Ex-
isting works on the optimization of quantum code focus on the optimization of quantum
circuits only, and neglect potential classical calculations that are necessary on a hybrid
distributed system. We want to examine which kind of optimization routines are possible
and sensible for hybrid quantum-classical computations.

We will evaluate some of today’s quantum programming languages (QPLs), especially
with respect to their ability to support and optimize real-time hybrid calculations. We
will find that most languages support real-time calculations to some extent, but are more
adapted to the programming approach of static circuit creation. Additionally, none of
the QPLs offer optimization routines targeted at quantum-classical calculations.

Therefore, we will examine options for real-time quantum-classical optimization. For
this, we use the low-level QPL Quil. We will introduce optimization operations and apply
them to real-time quantum-classical algorithms. We will present metrics to evaluate the
performance of hybrid calculations. The results of applying our optimization operations
to Quil code will be evaluated against our performance metrics. We will find that we
are in principle able to optimize hybrid quantum-classical programs.

We encourage more research in this field. QPLs will become more abstract in the
future and need more compilation steps until they can be executed on hardware. This
will make the optimization of quantum-classical hybrid code more relevant.

3





Contents

1. Introduction 7

2. Background 9
2.1. Quantum Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1. Properties of Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2. Calculations on a QPU . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3. Quantum Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2. Distributed Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.1. Distributed Quantum Computing . . . . . . . . . . . . . . . . . . . 26

2.3. Compilation and Optimization Techniques . . . . . . . . . . . . . . . . . . 28
2.3.1. Abstraction Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2. Optimization Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3. Related Work 33

4. Evaluation of Today’s Quantum Languages 35
4.1. Properties of the Quantum Languages . . . . . . . . . . . . . . . . . . . . 35

4.1.1. Introduction of Known Quantum Programming Languages . . . . 35
4.1.2. Comparison of Quantum Language Properties . . . . . . . . . . . . 39

4.2. Support for Heterogeneous Architectures . . . . . . . . . . . . . . . . . . . 46
4.2.1. Real-Time Feedback Algorithms . . . . . . . . . . . . . . . . . . . 46
4.2.2. Evaluating Languages . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5. Optimizing Quil-Programs 53
5.1. Quil Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2. Naive Quil Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3. Analyzing Quil Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4. Metrics to Evaluate Quil Programs . . . . . . . . . . . . . . . . . . . . . . 62
5.5. Optimization Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5.1. Adapted Classical Optimization Operations . . . . . . . . . . . . . 64
5.5.2. Optimizations for Quantum-Classical Calculations . . . . . . . . . 67

5.6. Evaluate Optimization Methods . . . . . . . . . . . . . . . . . . . . . . . . 70
5.7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6. Conclusion 73
6.1. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5



Contents

7. Statutory Declaration 77

A. Appendix 79
A.1. Code and Data Availability . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.2. List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6



1. Introduction

In recent years, quantum computing has advanced from a theoretical concept in physics
towards the development of working quantum computers. Thus quantum computers
become an increasingly relevant topic in computer science. Quantum computing devices
use quantum particles in the form of qubits as information carriers, instead of voltage
differences used for classical bits. The calculations are done on a quantum processing
unit (QPU) instead of on a central processing unit (CPU). By using unique properties
of quantum particles, quantum algorithms have been developed that can solve prob-
lems in polynomial time, for which only exponentially scaling classical algorithms are
known [1, 2]. One famous example is the Shor algorithm [1] which achieves prime fac-
torization that scales in polynomial time.

Typically qubit numbers on a QPU are currently around a few hundred [3, 4, 5, 6].
The largest qubit numbers are 1180 qubits on a device by Atom Computing [7] and
1121 qubits on the IBM Condor chip [8].

The QPUs are programmed using a quantum programming language (QPL) (a domain-
specific language (DSL) for a QPU). In recent years, multiple QPLs have been developed,
with different properties, advantages and disadvantages.

The aim of quantum computing is to reach quantum advantage (or quantum supremacy).
Quantum advantage is the ability “to perform tasks with controlled quantum systems
going beyond what can be achieved with ordinary digital computers” [9]. I.e. we have
reached quantum advantage when we have a QPU that can calculate a problem in a
feasible amount of time that would take an unfeasible amount of time on a CPU, i.e.
several months or even years.

Whether we reach quantum advantage or not, QPUs will not run on their own in the
foreseeable future. The error rates on qubits are too high and the qubits are too unstable
(as we will examine more closely in Section 2.1.3). Instead, quantum devices will be one
component in a quantum-classical (hybrid) computing system (distributed system). In
this scenario, the QPU merely calculates problems that are classically unfeasible. Other
calculations are done by classical devices (e.g. CPU, or a graphics processing unit
(GPU)), where the lower error rates and easier execution is beneficial.

Quantum computers embedded in distributed hybrid quantum-classical systems get
instructions from a main CPU, execute them and report their results. To fully utilize
quantum calculations, a QPU should be able to communicate with a CPU in “real-time”.
This means the communication time should be much shorter than the qubits’ coherence
time (cf. Section 2.2.1). The coherence time is the time the qubits remain stable and
keep their information content. This concept is further looked into in Section 2.1.3.

In this thesis, we will look at quantum computing systems with real-time feedback
between a QPU and a CPU. This kind of computing systems are the ones in which

7



1. Introduction

quantum computers are going to be used in in the foreseeable future (cf. Section 2.2.1).
Therefore, it will become necessary to enable developers to program these systems. This
results in the need for optimization routines for code running on quantum computing
systems with real-time feedback.

The optimization of code running on these kind of systems will be the main concern
of this thesis. Works on the optimization of quantum code [10, 11, 12, 13] focus on the
optimization of the quantum part only, and neglect potential classical calculations that
are necessary on a hybrid distributed system.

In this work, we want to examine which kind of optimization routines are possible and
sensible for hybrid quantum-classical computations. We will especially look at real-time
calculations, i.e. those where a classical and a quantum component communicate within
the qubits’ coherence times.

To do this, we will first look at some key concepts of quantum computation, distributed
computing and optimization techniques in Chapter 2, as well as at related work in
Chapter 3.

In Chapter 4, we will evaluate some of today’s QPLs, especially with respect to their
ability to support and optimize real-time hybrid calculations. We will find that most
languages support real-time calculations to some extent, but are more adapted to the
programming approach of static circuit creation (cf. Section 4.1.2). Additionally, none
of the QPLs offer optimization routines targeted at quantum-classical calculations.

Therefore, we will examine options for real-time quantum-classical optimization in
Chapter 5. For this, we use the low-level QPL Quil [14]. We will introduce metrics to
evaluate the performance of hybrid calculations. Our optimization operations will be
applied to real-time quantum-classical algorithms. The results will be evaluated against
our performance metrics. We will find that we are in principle able to optimize hybrid
quantum-classical programs. For current algorithms, the difference between optimized
and original code is not very high. However, in the future this field will become more
relevant, when QPLs become more abstract and need more compilation steps until they
can be executed on the hardware.

8



2. Background

In this section, we will examine some concepts needed for the remaining parts of the
thesis. In Section 2.1, we introduce the key concepts of quantum computing. We will
cover distributed computing and how quantum computers can be part of a distributed
system in Section 2.2. Finally, we will look into compilation and optimization techniques
in classical computing systems in Section 2.3.

2.1. Quantum Computing

In recent years, quantum computing has advanced from a theoretical concept in physics
towards the development of working QPUs. Therefore, quantum computing becomes
an increasingly relevant topic in computer science. Using unique properties of quantum
mechanics, quantum computers promise to offer calculation speedup for certain problems
like prime factorization [1], unstructured search [15], or chemical simulations [16].

Quantum computers are theoretically able to calculate the same problems as classical
computers. This means they are capable of performing Turing-complete calculations,
but cannot solve, e.g., the Halting-Problem [17, chapter 3.1.1]. Simulating QPUs with
a CPU, in general, scales exponentially with the number of qubits [18]. No efficient
algorithm to simulate a QPU with a CPU is known. On the other hand, CPUs can
be efficiently simulated on a QPU, e.g. by simulating NAND gates [17, chapter 1.4.1].
However, QPUs are currently slower and much more error-prone than CPUs, meaning
they will not replace CPUs in the foreseeable future.

In this section, we will look at concepts of quantum computing relevant for the re-
maining thesis. This will be a brief introduction into the topic of quantum computing
and only cover what is necessary to understand the succeeding parts of this thesis. We
refer the interested reader to Nielsen’s and Chuang’s book [17] for a more detailed in-
troduction to quantum computation.

Section 2.1.1 introduces the properties of a qubit. Afterwards, Section 2.1.2 will be
about calculations on a QPU, and Section 2.1.3 is about quantum hardware and today’s
challenges around it.

2.1.1. Properties of Qubits

The big difference between classical computers and quantum computers is that the former
use bits for their calculations, while the latter use qubits.

Bits are expressed by voltage differences in a CPU. They hold classical information,
which is restricted to either 0 or 1. Values between 0 and 1 are not defined.

9



2. Background

Figure 2.1.1.: An illustration how the measurement of the qubit influences its state. The
qubit is originally in a superposition between two state. In the moment of
the measurement, the qubit randomly “decides” on 0 or 1 (here 0) and is
in this state afterwards, i.e. the superposition is lost.

Qubits consist of elements that can be in quantum states. There are different phys-
ical realizations for qubits available, e.g. superconducting qubits [19], or ion-trapped
qubits [20]. In contrast to bits, a qubit cannot only be either 0 or 1, but also in a
mixture (superposition) of 0 and 1, which is quantum information. The states that a
qubit can take on are known as quantum states.

Measurements

To transfer quantum information to classical information, a qubit needs to be measured.
While a qubit may be in a superposition between 0 and 1, the result of a measurement
can only be either 0 or 1. The quantum state of the qubit influences the likelihood of
the measurement outcome: E.g. the probability of the measurement outcome for a 0
can be 60% and the one for a 1 can be 40%.

However, while it is possible to predict the probability of a measurement outcome, the
measurement itself is an inherently non-deterministic process. It is impossible to predict
the measurement outcome (except if the probability for an outcome is 100%) due to the
laws of quantum physics.

In quantum physics, the measurement of a system influences the state of said system.
A measurement causes the quantum state to collapse into the result of the measurement.
This is commonly referred to the quantum state “deciding” on either 0 or 1 at the moment
of measuring. After the measurement, the qubit is not in superposition between 0 and
1 anymore, but at the state of 0 or 1 with 100% certainty. The state the qubit remains
in is the one that has been measured beforehand. This is illustrated in Figure 2.1.1.

A measurement process can therefore also be described as a process where quantum
information is destroyed in exchange for gaining one bit of classical information about
the quantum system.

10



2.1. Quantum Computing

Formal Description of Qubits

To describe qubit states in a more formal matter, the braket notation [21] is used. This
notations consists of bras and kets. A ket is a complex vector v written in the form
of |v〉. A bra is the complex conjugate of |v〉, depicted as 〈v|. One can write a matrix
multiplication between a bra and a ket as 〈w|v〉.

In this thesis, we will mostly need kets, as they are commonly used to describe qubits.
A qubit in the zero-state is described by |0〉, a qubit in the one-state by |1〉. The states
can also be expressed as vectors in C2:

|0〉 =

[
1
0

]
|1〉 =

[
0
1

]
. (2.1.1)

A (general) superposition of both states can be depicted by a summation:

α |0〉+ β |1〉 , with α, β ∈ C. (2.1.2)

The probability to measure |0〉 is |α|2, the probability to measure |1〉 is |β|2. From this
arises the condition that

|α|2 + |β|2 = 1. (2.1.3)

A classical bit could be depicted similarly, though its seldom done due to the simplicity
of bits. If the zero-state of a bit was depicted by B0 and the one-state by B1, a general
bit-state would be:

a ·B0 + b ·B1, with a, b ∈ {0, 1} (2.1.4)

with the condition that a+ b = 1.
We end up with a general qubit state |ψ〉 that is described by

|ψ〉 = α |0〉+ β |1〉 , with α, β ∈ C, |α|2 + |β|2 = 1 (2.1.5)

with |α|2 being the measurement probability of 0 and |β|2 being the measurement prob-
ability of 1.

To mathematically combine multiple qubits, a tensor product between the qubits is
calculated: |ψ〉 ⊗ |ϕ〉 ⊗ · · · ⊗ |ξ〉. For further mathematical details, we refer the reader
to [17, chapter 2]. Relevant for this thesis is to note that the ⊗ symbol can be omitted
and multiple qubits can simply be described as |ψϕ . . . ξ〉.

A general 2-qubits state is

α |00〉+ β |10〉+ γ |01〉+ δ |11〉 , with |α|2 + |β|2 + |γ|2 + |δ|2 = 1. (2.1.6)

As we will later see, it is possible to negate qubits. Negating a classical bit means
putting a zero-state to a one-state and vice versa. Applying this to Equation (2.1.4),
the values of a and b would be switched.

Analogously, the negated qubit
∣∣ψ〉 of |ψ〉 has |ψ〉’s values of α and β switched:∣∣ψ〉 = β |0〉+ α |1〉 (2.1.7)

⇐⇒ |ψ〉 = α |0〉+ β |1〉 . (2.1.8)

11



2. Background

ϕ

θ

x

y

|0〉

z

|1〉

1

|0〉

z

|1〉

y

x

|1〉

|0〉

z

y

x

Figure 2.1.2.: Example for Bloch spheres. They have a radius of 1. The Bloch-vector
(thick line) depending on ϕ and θ indicates a qubit state. As the vector of
the left Bloch sphere points to the upper half of the sphere, a measurement
is more likely to result in |0〉 than |1〉. The Bloch spheres on the right show
the qubit in the basis states |0〉 (upper) and |1〉 (lower).

The Bloch Sphere

The Bloch sphere is a way to depict qubits. We will look into this concept as it can help
understanding the effects of quantum gates.

Both α and β are complex numbers, meaning a priori the numbers have two degrees
of freedom each, one for their real (a) and one of their imaginary (b) part: α = a + ib.
This would lead to four degrees of freedom to describe one qubit.

However, we have the condition |α|2 + |β|2 = 1. Due to this restriction, the degrees of
freedom for a qubit reduce to three.

Using the Hopf map, we can express α and β with the three free parameters ξ, θ
and ϕ [22]:

α = eiξ cos

(
θ

2

)
(2.1.9)

β = ei(ξ+ϕ) sin

(
θ

2

)
. (2.1.10)

Both α and β have a so-called global phase of eiξ. This global phase has no observable
physical effects [17, chapter 2.2.7] and can therefore be set to 1.

12



2.1. Quantum Computing

ϕ

θ

x

y

|0〉

z

|1〉

2 · p(|1〉)

2 · p(|0〉)

Measurement result |0〉

Measurement result |1〉

Figure 2.1.3.: How a measurement influences the Bloch sphere. The Bloch-vector’s z-
direction shows the probability for measuring |0〉 and |1〉. The probabilities
are derived from Equations (2.1.9) and (2.1.10).

This leads to α and β having two degrees of freedom in total, θ and ϕ:

α = cos

(
θ

2

)
(2.1.11)

β = eiϕ sin

(
θ

2

)
(2.1.12)

where 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π.

The variables ϕ and θ of Equations (2.1.11) and (2.1.12) can be interpreted as angles
of a vector pointing to a spherical surface. This is used to depict a qubit value using the
Bloch-sphere [17, chapter 1.2], a 3D sphere with radius 1.

An example of a Bloch sphere depiction of a qubit is given in Figure 2.1.2. The state
of the qubit is shown by the position of the Bloch-vector. The z-direction of the Bloch-
vector indicates the probability for the measurement outcomes. A Bloch-vector in the
xy-plane represents a qubit that will be measured |0〉 and |1〉 with 50% probability each.
If the vector is completely on the z-axis, it is either |0〉 (if θ = 0) or |1〉 (if θ = π) with
100% certainty. A measurement projects the vector onto the z-axis. This is depicted in
Figure 2.1.3.

Pauli Basis States

If a Bloch-vector is on one of the coordinate axes, the qubit is in a Pauli basis state.
They represent the eigenvectors of the Pauli matrices σx, σy and σz [17, chapter 2.1.3]:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.1.13)

13



2. Background

There are six Pauli basis states, two for each of the x-, y- and z-basis. The basis states
of the Pauli-z basis are |0〉 and |1〉. These are the states that typically correspond to the
classical 0 and 1 bit values.

The basis states of the Pauli-x basis are:

|+〉 =
1√
2

(|0〉+ |1〉) (2.1.14)

|−〉 =
1√
2

(|0〉 − |1〉) (2.1.15)

and of the Pauli-y basis:

|φ+〉 =
1√
2

(|0〉+ i |1〉) (2.1.16)

|φ−〉 =
1√
2

(|0〉 − i |1〉) . (2.1.17)

The Pauli basis states are relevant for some theorems, e.g. the Gottesmann-Knill
theorem [23], which we will look at in Section 2.1.2. We will also use the Pauli basis
states in some optimization routines in Chapter 5.

No-Cloning Theorem

An important theorem about qubit states is the no-cloning theorem [24, 25]: An un-
known quantum state cannot be copied (cloned) perfectly on another quantum particle.
It is possible to transfer the state from one quantum particle to another, but as this
always destroys the state on the first particle, the state is not copied. This theorem is
especially relevant in quantum cryptography, where it prevents potential eavesdroppers
from copying the qubits used for communication [17, chapter 12.6.3].

We will have to consider the no-cloning theorem during optimization. The copying
of classical bits is relevant for some optimization routines, which we cannot do in the
quantum case.

2.1.2. Calculations on a QPU

In this section, we will examine how one can run calculations on a QPU.
One way of doing a quantum calculation is to apply quantum gates on qubits. This

is the most common approach (cf. Chapter 4) and the one we will look at in this thesis.

Quantum Gates

In classical computation, we do calculations by applying a series of gates onto bits and
checking the result. This procedure is usually abstracted away from software developers:
The gates are arranged in a CPU and the application of the gates is decided by CPU
instructions.

In gate-based quantum computation, we apply quantum gates to the qubits and even-
tually do measurements. We will look at some quantum gates that are needed to do

14



2.1. Quantum Computing

Table 2.1.1.: Gates acting on a single qubit, their symbols and their effects on |0〉 and
|1〉. As |0〉 and |1〉 are a basis and the gates are linear, their effects on |0〉
and |1〉 completely describe the gates.

Gate Symbol Effect on |0〉 Effect on |1〉

Pauli-X / Not X |1〉 |0〉
Pauli-Y Y i |1〉 −i |0〉
Pauli-Z / P (π) Z |0〉 − |1〉
Phase shift P (ϕ) |0〉 eiϕ |1〉
S / P

(
π
2

)
S |0〉 ei

π
2 |1〉

T / P
(
π
4

)
T |0〉 ei

π
4 |1〉

Hadamard H 1√
2

(|0〉+ |1〉) 1√
2

(|0〉 − |1〉)

gate-based quantum calculations. We do this to get an intuition for how quantum cal-
culations work. Additionally, many current QPLs directly use quantum gates that are
applied on qubits, and an understanding for the gates is necessary to understand quan-
tum code.

To do arbitrary calculations, gate-based quantum calculations require a set of uni-
versal quantum gates [17, chapter 4.5]. This is analogous to the classical case, where a
functionally complete set of gates is needed.

There are several sets of universal quantum gate sets. We will look at some commonly
used gates in scientific publications and literature.

In general, quantum gates can be described as matrices that act on the vector repre-
sentation of a qubit (see Equation (2.1.1)). An alternative description is that gates are
rotations of the Bloch-vector on the Bloch-sphere around an axis.

As quantum gates depict the transformation of a quantum state, they have to satisfy
some conditions to be physically possible:

Every quantum gate needs to be reversible. This, in particular, means that a quantum
gate needs to have as many input as output qubits. A quantum gate can neither create
nor destroy a qubit, but only change the state of the qubit(s). A gate like the AND
gate would therefore not be possible. If one wants to simulate a non-reversible classical
gate, we need to use ancilla qubits that are discarded without being measured. From
these requirements follows the mathematical condition that the matrix representation
of a gate U has to be unitary, i.e. U †U = 1, where U † is the result of transposing
and complex conjugating U . This is the only mathematical requirement on a quantum
gate [17, chapter 1.3.1].

A summary of gates that act on a single qubit is given in Table 2.1.1. As |0〉 and
|1〉 are a basis and the gates are linear, their effects on |0〉 and |1〉 completely describe
the gates. In particular, the effects on |0〉 and |1〉 can be applied to a superposition by
applying the gate to each of the states, because the gate operations are linear.

15



2. Background

Original Bloch Vector

x

y

z
Pauli X Pauli Y Pauli Z

Figure 2.1.4.: An example of how Pauli gates influence the Bloch vector. Each gate
rotates the Bloch vector a half around the respective coordinate. The
thick line indicates the Bloch vector, the gray line its original position and
the dotted line the axis around which the Bloch vector is rotated.

An example of a Hadamard gate applied to the state 1√
2

(|0〉+ |1〉) is:

H · 1√
2

(|0〉+ |1〉) =
1√
2

(H |0〉+H |1〉) (2.1.18)

=
1√
2

(
1√
2

(|0〉+ |1〉) +
1√
2

(|0〉 − |1〉)
)

(2.1.19)

=
1√
2

((
1√
2

+
1√
2

)
|0〉+

(
1√
2
− 1√

2

)
|1〉

)
(2.1.20)

=
1√
2

(
2√
2
|0〉

)
(2.1.21)

= |0〉 . (2.1.22)

To depict single qubit gates in a quantum circuit, we use lines to depict qubits, and
labeled boxes with the symbols of the gates to depict gates. E.g., the circuit

Y S H

applies first a Pauli-Y gate, then an S gate, and then a Hadamard gate to the qubit.
The Pauli-X gate has two common depictions:

X

.

The first three gates given in Table 2.1.1 are the Pauli gates. They are the application
of the three Pauli matrices (see Equation (2.1.13)) on the vector representation of the
qubit (see Equation (2.1.1)).

The Pauli gates rotate the Bloch vector representing the qubit half a circle around
their respective axis in the Bloch sphere: The Pauli-X gate rotates the vector around
the x-axis, the Pauli-Y gate around the y-axis, and the Pauli-Z gate around the z-axis.
This is depicted in Figure 2.1.4.

16



2.1. Quantum Computing

Original Bloch Vector

x

y

z

P(ϕ)

ϕ

Figure 2.1.5.: An example of how a phase gate P (ϕ) is applied to the Bloch vector and
rotates the vector ϕ radians around the z-axis. The thick line indicates
the Bloch vector, the gray line its original position and the dotted line the
axis around which the Bloch vector is rotated.

Original Bloch Vector

x

y

z

xz

Hadamard

xz

Figure 2.1.6.: An example of how a Hadamard gate is applied to the Bloch vector and
rotates the vector. The rotations is done a half around the xz-axis (dotted
line).

The Pauli-X gate can be interpreted as NOT-gate, because it swaps the coefficients of
|0〉 and |1〉. The multiplication of two equal Pauli gates results in 1, meaning that two
equal Pauli gates after each other cause a qubit to be in its initial state.

The general phase shift gate P (ϕ) takes a parameter ϕ and adds a phase eiϕ to |1〉.
This is equivalent to rotating the Bloch vector ϕ radians around the z-axis, parallel to
the xy-plane. This is shown in Figure 2.1.5.

The parameters ϕ = π
4 ,

π
2 , π describe special cases of the phase gate. ϕ = π is the

already mentioned Pauli-Z gate. ϕ = π
2 describes the S-gate. It rotates the Bloch vector

a quarter around the z-axis. ϕ = π
4 describes the T-gate. It rotates the Bloch vector

one eighth around the z-axis.
The matrix representations of the gates are

P (ϕ) =

(
1 0
0 eiϕ

)
, S =

(
1 0

0 ei
π
2

)
, T =

(
1 0

0 ei
π
4

)
. (2.1.23)

17



2. Background

Table 2.1.2.: Truth table of a CNOT gate. The target qubit is flipped if the control qubit
is |1〉.

Control (Input) Target (Input) Control (Output) Target (Output)

|0〉 |0〉 |0〉 |0〉
|0〉 |1〉 |0〉 |1〉
|1〉 |0〉 |1〉 |1〉
|1〉 |1〉 |1〉 |0〉

The Hadamard gate puts the basis states |0〉 and |1〉 into superposition. It can be
interpreted as a rotation around an axis in the xz-plane that has an equal distance from
x- and z-axis. This can be seen in Figure 2.1.6. Its matrix representation is

H =
1√
2

(
1 1
1 −1

)
. (2.1.24)

As H ·H = 1, two Hadamard gates after each other cause a qubit to be in its initial
state.

In addition to single qubit gates, a universal set of quantum gates requires at least
one multi-qubit gate. One of the most common multi-qubit gates is the controlled NOT
(CNOT) gate. Its truth table can be found in Table 2.1.2. A CNOT gate is applied
to two qubits: A target and a control qubit. The target qubit is negated if the control
qubit is |1〉 and left unchanged if the control qubit is |0〉.

It is represented in a quantum circuit like this:

•
.

The two horizontal lines are the qubits the CNOT gate acts on. The black dot indicates
the control qubit, the bigger circle the target qubit.

A universal set of quantum gates contains the Hadamard gate, phase gate, and
CNOT [17, chapter 4.5.3].

One can add control qubits to arbitrary gates. For example, the circuit

•
S

applies an S gate to the second qubit if the first qubit is |1〉.
The symbol to indicate a qubit measurement is

.

18



2.1. Quantum Computing

Quantum Circuits

To perform a quantum calculation, the different quantum gates have to be put together
into a quantum circuit. One example of a circuit like this is:

|0〉 H •

|0〉
• .

The single horizontal lines represent qubits and the double lines classical bits. In
this circuit, a Hadamard gate is applied to the first qubit. Afterward, a CNOT gate is
applied between both qubits and at the end the first qubit is measured. The result of
the measurement is saved in the classical bit of the circuit.

A quantum circuit consisting of gates (not measurements) can be depicted as a for-
mula. For this, the matrix representations of the gates are used. The gates that act on
the qubits first (left in the circuit) are written right in the formula, i.e. closest to the
qubit in the formula. For example, the circuit

|0〉 Y S H

is represented by

H · S ·Y |0〉 . (2.1.25)

If a circuit consists of multiple qubits, a tensor product between two gates at the same
time on different qubits is used. The identity 1 is used to indicate that no gate is applied
to a qubit. E.g.

|0〉 H Y

|0〉 H

is represented by

(Y⊗H) · (H⊗ 1) |00〉 . (2.1.26)

A subscript can be used to indicate which gates act on which qubits:

|0〉A H •

|0〉B

is represented by

CNOTAB · (HA ⊗ 1B) |00〉 . (2.1.27)

An important part of quantum computing is classical feedback, e.g. classically con-
trolled gates. As the name suggests, these are quantum gates which are only applied if a

19



2. Background

classical bit is set to 1. These gates are especially useful if the classical bit has received
its value by a previous measurement, as in this circuit:

|0〉 H •

|0〉 T

• • .

In this circuit, the first qubit is measured after a Hadamard- and CNOT-gate. Af-
terwards, a T-gate is applied to the second qubit if the measurement outcome of the
first bit is 1. Measurements write classical bits and other gates read classical bits. The
quantum circuit notation does not differentiate between reading and writing classical
bits.

Gottesman-Knill Theorem

An important set of quantum gates are the elements of the Clifford group [26], the
so-called Clifford gates. These are gates that normalize the Pauli group, i.e. they map
Pauli basis states to Pauli basis states. A set of quantum gates that generate the Clifford
group are the Hadamard gate, the S gate and CNOT [23]. The Pauli gates are Clifford
gates as well by definition.

Clifford gates are interesting to us because of the Gottesman-Knill theorem [23]: It
states that any quantum circuit that consists only of Clifford gates, preparation of qubits
in computational-basis states and measurements in said basis can be simulated efficiently
on a classical computer. This means that we have to use non-Clifford gates in calculations
for a chance to gain quantum advantage. Any quantum algorithm that consists of Clifford
gates only can better be executed on a CPU than on a QPU, as CPUs are much less
error-prone and bits much more stable than qubits.

We will use this theorem for optimization routines in Chapter 5. For some of the
optimization routines, it is relevant to know which quantum gates can be simulated
efficiently by a classical computer.

Entanglement

Entanglement is a qubit property that causes the measurement of one qubit to influence
another qubit’s state. For example, we will look at a qubit that is in a superposition
between |0〉 and |1〉: |+〉A = 1√

2
(|0〉+ |1〉) and use it as control of a CNOT gate:

|+〉A •
|0〉B .

As already established, the CNOT puts qubit B to |1〉B if qubit A is |1〉A. However,
in this scenario, qubit A is both |0〉A and |1〉A. Therefore, the CNOT puts qubit B into
a superposition that depends on qubit A. If qubit A is measured to be a |0〉A, qubit B
collapses to the state |0〉B as well and will be measured as such. The reverse is the case
if qubit A is measured to be a |1〉A. It is also possible to measure qubit B first, causing

20



2.1. Quantum Computing

qubit A to collapse to either |0〉B or |1〉B. This happens because the qubits are in an
entangled state.

From a mathematical point of view, an entangled state is a state for which no factorized
product can be found. A state for which a factorized product can be found would be
called a separable state. No existing factorized product is the mathematical definition
for an entangled state.

We will examine what this means. The mathematical expression of the above circuit
is

CNOT · (|+〉A ⊗ |0〉B) = CNOT ·
(

1√
2

(|00〉AB + |10〉AB)

)
(2.1.28)

=
1√
2

(|00〉AB + |11〉AB) (2.1.29)

=
1√
2

(
|0〉A ⊗ |0〉B

)
+

1√
2

(
|1〉A ⊗ |1〉B

)
. (2.1.30)

In Equation (2.1.30), the states of qubit A and B cannot be factorized to a form of
|ψ〉A ⊗ |φ〉B. If that was the case, the equation would show a separable or product state.
An example for a separable state is

1√
2

(|00〉AB + |01〉AB) = |0〉A ⊗
1√
2

(|0〉+ |1〉)B (2.1.31)

with |ψ〉A = |0〉A and |Φ〉B = 1√
2

(|0〉+ |1〉)B.

In an entanglement like Equation (2.1.30), physically, the first measurement “decides”
on one of the factors for all of the qubits in the equation. If we measure |1〉A for qubit A,
the coefficient for |0〉A becomes zero. Therefore, it becomes mathematically impossible
for the coefficient of |0〉B to be something else than zero, and qubit B collapses to |1〉B.
In general it is an NP-hard problem to determine whether a quantum state is entangled
or not [27].

No-Communication Theorem

Entangled states have caused discussion in physics, as the measurement on one qubit
instantaneously causes the other qubit’s state to collapse, seemingly transferring the
information about a measurement faster than the speed of light. However, it is consensus
in physics that any communication faster than the speed of light is impossible [28]. This
problem is solved by the fact that one cannot tell by measurement of one entangled
qubit whether the other entangled qubit(s) have already been measured [29, II.E]. A
classical communication channel (e.g. via internet) is needed to check that the qubits’
measurement results correlate. This classical communication is again limited by the
speed of light.

The no-communication theorem is a theorem restricting the information exchange be-
tween entangled qubits. As information exchange is restricted by the speed of light,
quantum particles should not be able to exceed this principle, even if they are entan-
gled. The no-communication theorem underlines this. It says that even if two qubits

21



2. Background

|q0〉 H •

|q1〉

Figure 2.1.7.: A quantum circuit to create one of the four Bell states. Depending on the
initial states of |q0〉 and |q1〉, one of the four Bell states is created (see
Table 2.1.3).

|q0〉 • H

|q1〉

Figure 2.1.8.: A quantum circuit to measure one of the four Bell states. Depending on
the Bell state, one of the four combinations of |q0q1〉 is measured (see
Table 2.1.3).

are entangled, local operations on only one qubit cannot affect the statistics of the mea-
surement on the other qubit [29, II.E]. This means: If two people (Alice and Bob) both
have a qubit of one entangled system, Alice cannot receive information from Bob by only
working on her local qubit, no matter what Bob does with his qubit.

In a quantum computer, this is relevant for some optimization operations, as we have
to know which qubits can influence other qubits in successive operations.

Bell States

The Bell-states [17, chapter 1.3.6] are four important examples of entangled 2-qubit
states. We will look at them as their creation and measurement is relevant in some
quantum circuits, including one we will look at in Section 4.2.1.

The Bell states are defined as:

|Φ+〉 =
1√
2

(|00〉+ |11〉) (2.1.32)

|Φ−〉 =
1√
2

(|00〉 − |11〉) (2.1.33)

|Ψ+〉 =
1√
2

(|01〉+ |10〉) (2.1.34)

|Ψ−〉 =
1√
2

(|01〉 − |10〉) . (2.1.35)

Figure 2.1.7 shows a circuit that creates a Bell state. Depending on the initial states
of |q0〉 and |q1〉, one of the four Bell states is being created. The created Bell states
depending on the initial values can be taken from Table 2.1.3.

Figure 2.1.8 shows the circuit to measure a Bell state. The measured |q0q1〉 corre-
sponding to the Bell states can be seen in Table 2.1.3.

22



2.1. Quantum Computing

Table 2.1.3.: Initial and measured values of |q0q1〉 if a Bell-state is initialized/measured
by the circuits in Figures 2.1.7 and 2.1.8.

Initial |q0q1〉 Bell-State Measured |q0q1〉

|00〉 |Φ+〉 |00〉
|10〉 |Φ−〉 |10〉
|01〉 |Ψ+〉 |01〉
|11〉 |Ψ−〉 |11〉

2.1.3. Quantum Hardware

Creating quantum devices with arbitrary many qubits that stay stable for an arbitrary
long time is one of the goals of quantum hardware developers.

Currently, we are in an era that Preskill called the noisy intermediate-scale quantum
(NISQ) era [30]. NISQ QPUs are characterized by 50 to a few hundred qubits. The
application of gates in these QPUs is error-prone, meaning the intended applied gate
and the actual applied gate can differ. Additionally, the qubits stay stable for only a
limited amount of time. NISQ QPUs can be useful for proof-of-concepts and may surpass
CPUs in some regards, but the ultimate goal is to leave the NISQ era in the foreseeable
future.

Decoherence in Quantum Devices

One challenge on the way to surpass the NISQ era is quantum decoherence. This is
the process of qubits loosing information to the environment, i.e., they become deco-
herent over time [31]. The coherence time is the time a qubit holds its superposition
(i.e. state) [32, chapter 4.1] and stays useful for calculations.

Another important parameter is the fidelity. Fidelity is a metric about the “closeness”
between two quantum states. Operation fidelity shows how successful quantum gates
and quantum measurements on qubits are. This means it quantifies how close gates and
measurements are to the ideal operation [17, chapter 9.3].

Decoherence and low-fidelity are two factors that pose a challenge in QPU develop-
ment.

IBM’s Marrakesh [4], Fez [3] and Torino [5] have a coherence time of around 100 µs.
Their error rates are between 10−2 and 10−4, with read-out being especially error-prone
and single qubit gates being most robust. IonQ’s Aria [6] has a coherence time of around
1000 ms and error rates between 10−3 and 10−4 [6]. The error rate of CPUs is much
lower and usually negligible.

23



2. Background

DiVincenzo [33] formulated five requirements that have to be met for a quantum
computer that can offer quantum advantage (cf. Chapter 1). The QPU needs to ...

1. consist of scalable, well-defined qubits.

2. be able to put all qubits into a well-defined start state, e.g. |0〉.

3. have small error rates. How small exactly depends on the error correction abilities.
The errors should be corrected faster than they come up, or at least fast enough
to calculate all desired quantum circuits.

4. be able to apply an universal (functionally complete) set of unitary transformations
(gates) onto arbitrary qubits.

5. be able to measure the qubits in an orthogonal basis, e.g. |0〉 and |1〉.

Requirement 1 and 3 are particularly tricky to fulfill at the same time, as error rates
on qubits typically increase with the number of qubits in the QPU [8].

Concrete Hardware Implementations

There are different ways to physically realize a QPU. For example: Superconducting
qubits, realized by IBM [19] and Google [34], ion-trapped qubits, realized by IonQ [20],
trapped neutral atoms, realized by Atom Computing [35], qubits created by nitrogen-
vacancy centres in diamonds [36], and photonic qubits [37].

The different hardware technologies have different advantages and disadvantages. For
example, superconducting qubits are sensitive to decoherence and therefore need to be
cooled down to a temperature close to 0 K. Additionally, qubits in superconducting
QPUs influence each other easily [38]. On the other hand, superconducting qubits are
implemented by macroscopic electric circuits, while other qubit technologies use micro-
scopic quantum particles. This leads to advantages in coupling qubits and producing
QPUs [39]. Ion trap qubits have a rather long coherence time and a good fidelity, but
the operations on the ion qubits are comparably slow [40] (see the following subsection).
Photonic qubits are fast and scalable, but rather sensitive to noise [40]. Nitrogen-vacancy
centres in diamonds create qubits with long coherence times. Additionally, these kind of
QPUs can be operated at room temperature. On the other hand, the behavior of these
qubits is difficult to predict [40].

QPU Speeds

While QPUs based on different technologies have different calculation speeds, they are
generally all slower than a CPU. IBM indicates the speed of their QPUs in circuit
layer operations per second (CLOPS). CLOPS say how many layers of operations can
be applied to the qubits in one second [41]. It can be roughly compared to the tact
frequency of classical CPUs, at least in our case, as we will end up at several orders of
magnitude difference.

24



2.2. Distributed Computing

Typical clock frequencies of an Intel processor are in the GHz range [42]. Meanwhile,
IBM’s superconducting QPUs Marrakesh [4], Fez [3] and Torino [5] have around a few
hundred kCLOPS. IonQ’s trapped ion QPU Aria [6] takes 135 µs for one-qubit gate
operations and 600 µs for two-qubit gate operations. This results into a rate in the order
of magnitude of a few kHz.

Executing Gate-Based Quantum Hardware

There are two different state-of-the-art execution models for QPUs: Gate-based and
annealing.

In this work we only consider gate-based quantum hardware, i.e. QPUs that apply
gates on qubits to receive a result. Gate-based QPUs typically have a set of native
gates, i.e. gates that they can directly execute [43]. The QPUs can only execute cir-
cuits consisting of their native gates. This is why the circuits need to be transpiled
before submitting to QPUs. This is a functionality that is provided by many QPLs
(cf. Section 4.1.2).

A quantum circuit can be executed by submitting it to a QPU. Notable vendors are,
e.g., IBM [19], Amazon Braket [44], or IonQ [45]. A difficulty for direct programming
of quantum hardware is that the vendors do not publicly share their QPUs’ architec-
tures. After submission of the circuit, the execution is not transparent to the quantum
developer.

Next to gate-based hardware there is also annealing hardware [46]. A notable vendor
is D-Wave [47]. When using such hardware, quantum annealing is used to find the
minima of functions. Qubits are initially put into superpositions between |0〉 and |1〉.
The function that needs to be minimized is slowly applied to the qubits. Values of
the qubits that correspond to small function values are made to be more energetically
favorable. As physical systems naturally strive to states of low energy, the qubits will
end up in a state that corresponds to the minimum of the function.

2.2. Distributed Computing

Van Steen and Tanenbaum define: “A distributed system is a collection of autonomous
computing elements that appears to its users as a single coherent system.” [48]. These
computing elements can be a hardware device or a software.

To appear as a single system, the computing elements need to collaborate with each
other. Ensuring that the collaboration works error-free is one of the most important
tasks in computing distributed systems.

We carefully distinguish between hybrid and distributed computing. Hybrid com-
puting is computation using both classical and quantum components, while distributed
computation is what Van Steen and Tanenbaum defined [48] and does not need to contain
quantum devices.

Examples for distributed computing are high performance computing (HPC) clusters,
distributed information systems, or pervasive systems. It should be noted that there

25



2. Background

is a difference between distributed and parallel computing: Distributed systems con-
sist of multiple computing nodes connected through a network and do not share main
memory. Parallel computing/processing uses multiple processors that access the same
memory [48].

Distributed systems can be created by different communicating hardware components,
like CPUs and GPUs. This kind of system can be found in high performance clusters.

In the future, QPUs could be a component in distributed systems as well. In the next
section, we will discuss how QPUs can be added into a distributed system.

2.2.1. Distributed Quantum Computing

A QPU is much more error-prone than a CPU and more difficult to build and run
(cf. Section 2.1.3). This is one of the reasons why QPUs will not “replace” CPUs in the
foreseeable future. Instead, QPUs will probably become a new hardware component in
distributed systems, similar to GPUs. In such systems, a QPU can be used to calculate
specific problems and gets its instruction by (a) main CPU(s).

However, the communication between QPU and CPU would be too slow to happen
during the coherence time of the qubits. IBM’s Marrakesh [4], Fez [3] and Torino [5]
have a coherence time of around 100 µs, while IonQ’s Aria [6] has one of around 1000 ms.

Fu et al. [49] give a calculation example for the reaction time of a CPU: A CPU that
controls the qubits and is not close to the QPU has to communicate with the QPU
in some sort of way. The communication via bus or ethernet is not possible without
latency. The communication alone can take milliseconds. Additionally, due to the
operating system and scheduling, there is no guarantee as of how long the CPU takes to
process requests for a QPU.

A communication time of several milliseconds makes the distributed computation be-
tween CPUs and QPUs a non feasible option for the current superconducting QPUs’
coherence times. This is particularly inconvenient, as superconducting QPUs are one
of the most advanced technologies for quantum computation at the moment. In the-
ory, ion-trapped QPUs have a coherence time long enough to wait for communication
lasting milliseconds. However, ion-trapped QPUs are still in early stage of development
compared to superconducting QPUs, and do not offer as many qubits to work on [50].

Therefore, it is worthwhile to consider how to work with real-time feedback that is not
possible between a QPU and a (main) CPU. Real-time communication is communication
between CPU and QPU during the coherence time of a qubit, e.g. applying gates to
qubits depending on the output of a measurement. This kind of quantum communication
allows to dynamically adjust a quantum circuit depending on measurements. Therefore,
this kind of computation is called dynamic quantum circuit calculation [51].

Dynamic quantum circuit computing is needed for some algorithms and can be used
to reduce quantum resources of a calculation. Examples for dynamic circuit algorithms
are quantum teleportation [52], active reset [53], magic state distillation [54, 55, 56],
repeat-until-success [57, 58], iterative phase estimation [49, 59], and Shor’s algorithm for
2n+ 1 qubits [60, 61]. Some of these algorithms are explained in Section 4.2.1.

26



2.2. Distributed Computing

(a) QRAM model (b) Restricted HQCC model (c) Refined HQCC model

Figure 2.2.1.: The execution models for HQCC (from [49, Fig. 2]). Dotted lines indicate
slow communication (i.e. communication that takes longer than the co-
herence time of the qubits), continuous lines indicate fast communication
(shorter than qubit coherence time).

Currently, the possibility to do dynamic circuit calculations on real quantum hardware
is very restricted, even though vendors seem to be aware of the demand. IBM points
out “several considerations and limitations to be aware of” if one uses classical feed
forward and control flow, namely limited working memory and latency of the classical
computation [62]. Amazon’s Braket only supports classical operations and control on
their LocalSimulator, not on the QPUs [63, p. 67], which are provided by IonQ, IQM,
QuEra and Rigetti [64].

To implement dynamic circuit calculations, we do not only need the appropriate hard-
ware, but also a QPL that allows quantum-classical calculations. Fu et al. [49] sum-
marized three different execution models a QPL can be designed on with respect to
quantum-classical calculations. The models are depicted in Figure 2.2.1.

We will now look at the properties of the three different architectures.

The QRAM model (see Figure 2.2.1a) has been proposed by Knill [65] in 1996. In this
model, a CPU controls qubits by applying operations in form of circuits on them. The
CPU can do measurements on the qubits and gets the measurement results. With the
CPU, only “slow” communication (longer than the coherence time) is possible.

The restricted heterogeneous quantum-classical computation (HQCC) model puts a
hardware component between CPU and qubits [49]. This hardware component is a
quantum circuit executor, which can apply a fixed quantum circuit onto the qubits.
This does not allow real-time feedback, but prevents the CPU from having to control
the qubits itself. The quantum circuit executor can communicate with the qubits within
their coherence time (“quickly”).

The refined HQCC model upgrades the quantum circuit executor to a quantum control
processor (co-CPU). This processor can apply real-time feedback on the qubits and
execute classical instructions. The classical calculations are limited by the coherence
time of the qubits, but not by the abilities of the quantum control processor. The
quantum control processor and the qubits form a quantum component, which gets a
quantum program from the main CPU and returns the results to said main CPU.

Both hardware and software should be moving towards the refined HQCC architec-
ture, as it allows highest control and flexibility on quantum calculations. This is why we
will look at how programs intended for the refined HQCC architecture can be optimized.
In the remaining thesis, we will refer to the co-CPU as CPU and indicate when we are
specifically talking about the main CPU. We will check to which extent current pro-

27



2. Background

gramming languages already offer support for the refined HQCC model (cf. Chapter 4)
and what kind of optimizations could be possible (cf. Chapter 5).

To be able to do so, we will first look at already established optimization routines
done by classical compilers in the next section.

2.3. Compilation and Optimization Techniques

Aho et al. define a compiler as “a program that can read a program in one language –
the source language – and translate it into an equivalent program in another language –
the target language” [66].

A compiler typically consists of multiple phases. Two required phases are analysis
and synthesis. The analysis phase creates an intermediate representation (IR) of the
program and checks whether the source program aligns with the syntactic and semantic
requirements of the source language. The synthesis phase creates the target language
from the IR.

2.3.1. Abstraction Levels

Compilers typically compile from a high-abstraction programming language to a low-
abstraction programming language [66, chapter 1.5]. “More abstract” means that more
of the actual hardware functionality is “hidden” and not relevant for the programmer.

Su and Yan [67, chapter 1.2] differentiate between high-abstraction and low-abstraction
by calling high-abstraction mankind-oriented and low-abstraction machine-oriented. They
describe Assembly and machine instruction sets as low-level (low abstraction). They call
the common feature of high-level (high abstraction) languages that “they broke away
from the restriction of the computer instruction set” [67, chapter 1.2].

It is rather challenging to formally define abstraction levels, and to make a fine-grained
decision about which languages are “how” abstract (in a quantitative sense). Classical
programming languages can use different abstraction options, e.g. instructions, func-
tions, objects, or first class functions. Typically, language developers choose an as co-
herent as possible set of abstractions for their languages, which provides a consistent
picture of the language’s abstraction level. QPLs most commonly work with the appli-
cation of gates to a program, as we will see in Chapter 4, and do not have such clear
differences between the abstraction level as classical programming languages do.

2.3.2. Optimization Steps

One or multiple optimization phases are optional phases for a compiler. A typical se-
quence of phases in a compiler is given in Figure 2.3.1. It shows that during the synthesis
of a program, a machine-independent and machine-dependent optimization phase can
take place. The effectiveness of the optimizations can be evaluated against different
metrics, for example wall-time or number of instructions.

A way of analyzing a program for different compilation steps is to do a control flow
analysis [68]. This can be done using a control-flow graph (CFG). A CFG represents all

28



2.3. Compilation and Optimization Techniques

Source language

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code Generator

Machine-Independent Code Optimizer

Code Generator

Machine-Dependent Code Optimizer

Target language

character stream

token stream

syntax tree

syntax tree

intermediate representation

intermediate representation

target-machine code

target-machine code

Figure 2.3.1.: Typical phases of a compiler [66, fig. 1.6].

a = randomInt()
if a > 3:

a += 7
i = 0

else:
a += 1
i = a

print(i)
print(a)

a = randomInt()
if a > 3:

a += 7
i=0

a += 1
i = a

print(i)
print(a)

Figure 2.3.2.: An example for the creation of a CFG.

29



2. Background

int i = 0
int a = 3
a += 1
i = a

int i = 0 int a = 3

a += 1

i = a

Figure 2.3.3.: An example for the creation of a DDG.

possible execution paths of a program. The directed edges of the graphs represent jumps.
The nodes describe a basic block, which are “sequences of statements that are always
executed one-after-the-other, with no branching” [66, chapter 2.8.1]. This means that a
jump on the current instruction as well as a label (jump target) at the next instruction
ends a basis block [66, chapter 8.4.1]. An example for the creation of a CFG is given in
Figure 2.3.2.

Most optimization techniques depend on data-flow analysis [66, chapter 9.2]. One way
to do data-flow analysis is to create a data-dependence graph (DDG)1 [69, chapter 5.3.2]
of the program. A DDG is a directed graph. Nodes represent basic blocks (or, in our
case, single instructions) of a program. An instruction A is a successor of instruction B
in the graph, if A has to be executed after B in order for the program to be correct, e.g.
if A and B access the same variable. Edges only appear between instructions/nodes if
no other instruction C has to be executed between A and B. An example for a DDG
created from code can be seen in Figure 2.3.3.

To optimize code, a set of optimization methods are applied on the code. The oper-
ations change the instructions of the program without changing the semantics. This is
done to improve the program with respect to one or several metrics [66].

The operations are divided into analysation and transformation. Analysations are op-
erations that extract information about the program, but do not change it. Transforma-
tions change the program. Typically, transformations use the information analysations
extracted.

The optimization operations we look at are given in Table 2.3.1 and taken from [66].
Optimization techniques targeted at loops are out of scope for this work and left out.

Available expressions is about checking whether an expression a•b is available at a
program point p. An expression is available if it is evaluated on every path between the
start node and p. Additionally, there must not be new assignments to a or b between
the last evaluation and p.

Constant-propagation means to check whether a variable holds a unique constant
value at a program point p.

1Also called program-dependence graph [66, chapter 11.8.2].

30



2.3. Compilation and Optimization Techniques

Table 2.3.1.: Analysation and transformation techniques to optimize code, taken
from [66].

Analysation operations Transformations

Available expressions Constant folding
Constant propagation Copy propagation
Live-variable analysis Dead code elimination
Reaching definitions

Live-variable analysis is used to determine which variables are still “in use” (alive)
at a point p of the program. If there is any usage of a variable’s value in the DDG between
p and the program halt, it is alive. Otherwise, it is dead. Values of dead variables have
no influence on the remaining program, and they do not need to be considered any
further.

Reaching definitions is used to determine which definitions of a variable can reach
a program point p.

Constant folding is evaluating constant expressions and replacing the expressions
by their values.

Copy propagation checks when a copy statement (e.g. a = b) is given, whether
a can be removed and b be used instead of a. Copy propagation is especially useful
followed by dead code elimination, as it can turn copy statements into dead code.

Dead code elimination removes “dead” (or useless) code from the program. This
affects unreachable code as well as code that computes values which are never used.

Most QPLs currently have a very low abstraction level, as we will see in Chapter 4.
Programmers program by deciding which gate(s) to apply in which order onto which
qubit.

Research on optimization routines for quantum programs is usually restricted to the
quantum circuit of the program [10]. A main goal of these optimizations is to reduce the
quantum resources, e.g. by reducing the qubit count, the circuit depth or the two-qubit
gate count.

The quantum circuit optimization routines generally transform the quantum circuit
and work with the mathematical properties of the applied gates. For example, gates
whose respective matrices commute can be swapped. Alternatively, if it holds: AB =
BC, the gate corresponding to A can be swapped with the gate B if it is changed
to the gate corresponding to C. Additionally, the optimization routines are used to
find an optimal mapping of the programmed quantum circuit to the hardware, e.g. to
have minimal distance between qubits that have multi-qubit gates applied onto them
simultaneously or to minimize error rates.

When programming a refined HQCC architecture, we have hardware that has inherent
hybrid characteristics (the CPU and the QPU). The compilation and optimization stages
for programs on this devices have to consider this hybrid nature to do more efficient
optimization. We will examine this requirement and the optimization possibilities for
this device in the remaining thesis.

31





3. Related Work

Optimizing quantum circuits is an active field of research [10, 11, 12, 13]. First ap-
proaches have been done in the 2000s [70, 71]. In recent years, the field as gotten more
attention due to the grown availability of functioning quantum hardware.

Optimization procedures typically work with the mathematical properties of the ma-
trices representing quantum gates. The gates can be swapped, removed or exchanged.
Additionally, a hardware-dependent optimization becomes necessary when the quantum
circuit is supposed to be executed by physical hardware. In this case, the qubits on
the programmed circuit need to be mapped to the physical qubits on the QPU. For the
mapping, parameters like error rates of single qubits and the distance between qubits
need to be considered.

In this thesis, we want to examine another approach. Our optimization procedures
are orientated on optimization procedures of classical compilers (cf. Chapter 5) and not
on the mathematical properties of quantum gates.

The optimization of quantum circuits brings up NP-hard problems, like T-count op-
timization [72], a fault-tolerant implementation of topological error-correction [73], or
parameter optimization with specific requirements on the circuit [74]. Research about
quantum circuit optimizations usually does not consider the interference between classi-
cal and quantum components of a larger computing system. This is something intended
to do in this thesis.

There have been multiple surveys and reviews about the current state-of-the-art of
quantum computing.

Jimnez-Navajas et al. [75] did a survey asking which quantum programming tool
(QPT) quantum researchers and developers use during the quantum software lifecycle.
They found that quantum-classical hybrid software is most commonly created by us-
ing Python that implements classical calculations alongside quantum circuits. We will
see in Section 4.1 that many current quantum programming languages support these
implementations, as they are often Python frameworks themselves.

Elsharkawy et al. [76] examined how current programming tools can be used to inte-
grate quantum computing into an HPC environment. They categorize the potential of
different QPTs to integrate QPUs into HPC environments. However, the review does
not look at the optimization measures of the QPTs.

Barral et al. [77] did an extensive review on the aspects of distributed quantum com-
puting. They describe the relevant components from hardware to software, and look at
the current state-of-the-art. The survey examines optimization of distributed quantum
software, but not with respect to quantum-classical hybrid calculations.

Multiple QPTs have been published to support the implementation of quantum cal-
culations in hybrid environments. We will examine today’s QPLs in detail in Chapter 4.

33



3. Related Work

Here, we will only look at some tools that are not mentioned or used in other parts of
this thesis:

Tweedledum [78] is an open-source compiler companion for quantum computation,
written in C++. The developers of tweedledum intend to support more abstract QPLs
with it. It can translate classical logic functions into quantum circuits. An important
part of tweedledum is its IR, which is used to support different abstraction levels of one
quantum circuit. The last commit in tweedledum’s GitHub repository was in November
2022 [79] (as of February 2025).

Qualtran [80] is an open-source Python library that can be used to analyze and present
quantum algorithms. It can create diagrams, e.g. circuit diagrams or compute graphs and
estimate the resources a program needs. Qualtran supports classical logic, but classical
data (e.g. from measurement results) is not yet considered in the compute graph. This
is a feature intended for future releases [81].

Quantum Intermediate Representation for Optimization (QIRO) [82, 83] is an multi-
level intermediate representation (MLIR) that has been designed to find quantum and
classical data dependencies, as well as determining the control flow. The authors bring
up the idea that QIRO could enable quantum-classical co-optimization. The GitHub
QIRO project has not been updated since November 2022 [84] (as of February 2025).

34



4. Evaluation of Today’s Quantum
Languages

In recent years, many different embedded and stand-alone DSLs for quantum computing
have been developed. The embedded DSLs are not a regular language with syntax. We
will still refer to them as language for the sake of simplicity. We want to examine which
optimization steps for quantum-classical heterogeneous architectures the languages pro-
vide.

The support of QPLs for a HQCC architecture, as well as general quantum-classical
programming, differs. In this section, we will first introduce different quantum languages
and compare them by their properties (cf. Section 4.1). Afterwards, we will look at the
support of a subset of these languages for quantum-classical computation in Section 4.2.

4.1. Properties of the Quantum Languages

We want to look at the properties of some QPLs in more detail. The QPLs we assess
are taken from Elsharkawy et al.’s review of quantum programming tools [76], Barral et
al.’s review of distributed quantum computing [77] and popular languages from Jimnez-
Navajas et al.’s survey [75], i.e. languages that were used by more than 10 respondents.
Additionally, we will look at the language Silq (0.0.39) [100], which we found during
our research. It has been developed as a more high-level programming language than
the other languages we look at. As “[h]igh-level language constructs can introduce
substantial run-time overhead if we naively translate each construct independently into
machine code” [66, chapter 9], optimization becomes especially important for high-level
languages. This makes Silq interesting for our research question, as we want to find
optimization steps languages provide for quantum-classical computation.

This results into the QPLs given in Table 4.1.1.

4.1.1. Introduction of Known Quantum Programming Languages

Braket [44] is a cloud quantum computing service by Amazon. It includes a Python
software development kit (SDK) and a service to execute quantum circuits on quantum
hardware or simulators. The Python framework is a gate programming language (GPL),
meaning a developer has to individually decide which gates to apply to qubits. One can
submit a quantum circuit to the Braket cloud service. Additionally, the Amazon cloud
service can be addressed via Qiskit, PennyLane and OpenQASM.

Cirq [101] is an open-source Python framework developed by Google Quantum AI.
It is a GPL and can be run on QPUs or QPU simulators. A developer defines a circuit,

35



4. Evaluation of Today’s Quantum Languages

T
ab

le
4
.1

.1
.:

C
om

p
arison

o
f

Q
u

an
tu

m
C

om
p

u
tin

g
L

an
gu

ages
w

ith
resp

ect
to

th
e

im
p

lem
en

tation
ty

p
e,

d
ev

elop
er,

an
d

v
ersion

.
T

h
e

d
ev

elop
ers

are
ca

tego
rized

as
m

a
jor

tech
com

p
an

y
(M

T
C

),
q
u

an
tu

m
tech

com
p

an
y

(Q
T

C
),

or
u

n
i/research

in
stitu

te
(U

/
R

).
If

n
o

version
n
u

m
b

er/last
p

u
b

lic
activ

ity
is

given
,

th
e

p
rogram

m
in

g
lan

gu
age

h
as

n
o

offi
cial

release.
T

h
e

la
st

p
u

b
lic

activ
ity

h
as

b
een

ch
ecked

in
F

eb
ru

ary
2025.

L
a
n

g
u

a
g
e

D
S

L
T

y
p

e
D

e
v
e
lo

p
e
r

V
e
rsio

n
L

a
st

P
u

b
lic

A
c
tiv

ity

B
raket

P
y
th

on
-E

m
b

.
M

T
C

(A
m

azon
)

1
.84
.0

F
eb

ru
ary

2025
[85]

C
irq

P
y
th

o
n

-E
m

b
.

M
T

C
(G

o
ogle)

1
.4
.4

F
eb

ru
ary

2025
[86]

C
U

D
A

-Q
u

a
n
tu

m
P

y
th

on
/
C

+
+

-E
m

b
.

M
T

C
(N

V
ID

IA
)

0
.8
.0

F
eb

ru
ary

2025
[87]

D
-W

ave
O

cea
n

P
y
th

o
n

-E
m

b
.

Q
T

C
(D

-W
ave)

8.0
.1

D
ecem

b
er

2024
[88]

In
Q

u
IR

S
ta

n
d

-A
lon

e
U

/R
(S

ōk
en

d
ai)

-
F

eb
ru

ary
2023

[89]
N

etQ
A

S
M

S
ta

n
d

-A
lon

e
U

/R
(Q

u
T

ech
)

-
J
an

u
ary

2025
[90]

O
p

en
Q

A
S

M
3

S
ta

n
d

-A
lon

e
M

T
C

(IB
M

)
3
.1
.0

J
an

u
ary

2025
[91]

O
p

en
Q

L
P

y
th

on
/C

+
+

-E
m

b
.

U
/R

(Q
u

T
ech

)
0
.12.2

J
an

u
ary

2024
[92]

P
en

n
y
L

an
e

P
y
th

o
n

-E
m

b
.

Q
T

C
(X

an
ad

u
)

0.38.0
F

eb
ru

ary
2025

[93]
Q

#
S

tan
d

-A
lon

e
M

T
C

(M
icrosoft)

1
.8
.0

F
eb

ru
ary

2025
[94]

Q
isk

it
P

y
th

on
-E

m
b

.
M

T
C

(IB
M

)
1.2
.4

F
eb

ru
ary

2025
[95]

Q
M

P
I

C
+

+
-E

m
b

.
M

T
C

(M
icrosoft)

-
-

Q
u

il
S

ta
n

d
-A

lo
n

e
Q

T
C

(R
igetti)

2021.1
S

ep
tem

b
er

2024
[96]

Q
W

IR
E

C
o
q

Im
p

l.
U

/R
(U

n
iv

.
of

P
en

n
sy

lvan
ia)

-
D

ecem
b

er
2023

[97]
S

ilq
S

tan
d

-A
lo

n
e

U
/R

(E
T

H
Z

ü
rich

)
0.0
.39

F
eb

ru
ary

2022
[98]

X
A

C
C

P
y
th

o
n

/C
+

+
-E

m
b

.
U

/R
(O

ak
R

id
ge

N
at.

L
ab

.)
1.0
.0

A
u

gu
st

2023
[99]

36



4.1. Properties of the Quantum Languages

which is optimized and transformed. The transformed circuit is sent to a quantum device
(or simulator) afterward.

CUDA-Q [102] by NVIDIA is a platform for hybrid quantum-classical computing.
It provides the nvq++ compiler, which maps quantum expressions to a MLIR-based IR.
The compiler transforms and optimizes the IR, before lowering it to a Low Level Virtual
Machine (LLVM).

D-Wave Ocean [88] is a Python framework developed by D-Wave. It is not a GPL,
instead, it implements quantum annealing (cf. Section 2.1.3), which makes it useful for
optimization problems. D-Wave Ocean uses D-Wave’s Advantage QPU [47], which can
be accessed through an API.

InQuIR [103] is an IR for distributed quantum computing. It supports quantum and
classical communication between different devices. It allows quantum communication
and entanglement across devices. At the time of writing, InQuIR’s GitHub repository
was last updated in February 2023 [89].

NetQASM [104] is a Quantum Assembly Language (QASM) variant that supports
distributed structure of quantum devices. It provides an instruction set architecture
(ISA) for quantum network processing units (QNPUs), with quantum instructions as well
as classical control and memory operations. The QNPUs are end-nodes in a quantum
network, e.g. quantum clients and servers. Next to writing NetQASM code directly, one
can use a Python SDK for programming NetQASM applications.

OpenQASM 3 [105] is an attempt to create a QASM. It build on OpenQASM 2 [106],
but extends its functionality by the creation of real-time calculations, timing, pulse con-
trol, and gate modifiers. In this work, if we refer to OpenQASM we mean OpenQASM 3,
unless stated otherwise. OpenQASM is designed to be used as IR, like Assembly in clas-
sical compilation procedures. It is a GPL. Arbitrary classical functions can be computed
in addition to quantum circuits.

It is important to note that OpenQASM provides no own compilation or execution
structure. However, e.g. IBM Quantum [107] or Amazon Braket [108] support it.

OpenQL [109] is a quantum programming framework for C++ or Python. It is a
GPL. OpenQL provides two compilation stages: A hardware independent compilation to
an IR, and a hardware dependent compilation from the IR. It supports different backend
architectures and a developer can also specify a completely new backend.

PennyLane [110] by Xanadu is a Python quantum software framework. It is a GPL.
A developer can create circuits and submits them to a backend hardware, e.g. IBM’s or
Rigetti’s. New backend hardware can be added if desired. PennyLane allows simplifying
and transformation of quantum circuit [111].

Q# [112] by Microsoft is part of Microsoft’s Quantum Development Kit and an open-
source, stand-alone quantum language. Q# is a GPL and its compiler performs opti-
mizations on the code. It is possible to execute the code on a simulated QPU or on a
real QPU, of which Microsoft provides some through Azure Quantum.

Qiskit [113] by IBM Quantum is a very well known open-source development kit for
quantum hardware, embedded in Python. It claims to be the world’s most popular
quantum software.

37



4. Evaluation of Today’s Quantum Languages

Qiskit is a GPL and provides out-of-the-box circuits for certain algorithms directly.
It can submit the quantum circuits to a real backend (or simulator). This functionality
is mainly designed to connect to IBM’s QPUs, but other hardware is possible as well.

Quantum MPI [114] is an extension to Message Passing Interface (MPI) [115] to
support quantum hardware. MPI is a message-passing standard to support parallel com-
puting architectures. It implements point-to-point and collective operations. According
to [114], a C++ prototype of Quantum MPI has been implemented. However, to the
best of our knowledge, no implementation of Quantum MPI is publicly available.

Quil [14] by Rigetti is an instruction set created for quantum-classical computation
on an abstract machine architecture. It is an assembly-style low-level language and a
GPL. Single quantum instructions are gates applied to one or multiple qubit(s).

Quil’s developers provide some additional tools to work with: PyQuil [116], a Python
library to generate and execute Quil code. Quilc [117], a compiler that compiles Quil
circuits to circuits a defined hardware can execute. It also performs optimization. And
the Quil-Lang quantum virtual machine (QVM) [118], that can simulate the execution
of Quil code.

QWIRE [119] is a language focused on formally verifying quantum circuits. It im-
plements the QRAM model. QWIRE was implemented in the Coq proof assistant [120]
but can be embedded in other host languages as well. At the time of writing, the Coq
implementation was last updated in December 2023 [97].

Silq [100] is a quantum language developed at the ETH Zürich. It is a comparably
high-level quantum programming language: It works less with directly applying gates to
qubits, though applying gates to qubits is still possible in this language. Silq allows log-
ical operations on qubits (e.g. negations, conjugations) as well as conditional branching.
Conditional branching on a superposition can be translated to the CNOT gate acting
on a superposition. This means the conditional instructions only have an effect on the
states which fulfill the condition. Silq does not yet provide a possibility to execute its
code on real quantum hardware. It is only executed by a Silq interpreter.

XACC [121] is a quantum compilation framework. It is divided in a front- and
backend as well as a middle layer. The frontend compiles quantum code to an IR. The
middle layer optimizes and transforms the IR. The backend submits the code to an
executing hardware. XACC supports IBM, Rigetti and D-Wave hardware, as well as
some simulators.

XACC’s main goal is device interoperability. Its backend can target gate-based and
annealing QPU models. Its frontend code can be written in any language for which a
XACC compiler exists, e.g. C++ or Python. At the time of writing, XACC’s GitHub
repository was last updated in August 2023 [99].

38



4.1. Properties of the Quantum Languages

1 from braket.circuits import Circuit

2

3 qc = Circuit()

4 qc.h(1)

5 qc.cnot(1, 0)

6 qc.measure(1)

Listing 4.1.1: Braket bell entanglement.

1 from cirq import Circuit, LineQubit, H, CNOT, measure

2

3 qc = Circuit()

4 qubits = LineQubit.range(2)

5 qc.append(H(qubits[1]))

6 qc.append(CNOT(qubits[1], qubits[0]))

7 qc.append(measure(qubits[1]))

Listing 4.1.2: Cirq bell entanglement.

4.1.2. Comparison of Quantum Language Properties

In this section, we will compare the QPLs listed in the last subsection in more detail. For
this, we focus on quantum languages developed for implementing quantum algorithms
in gate-based quantum computers. This work’s scope is the embedding of one QPU
into a distributed, classical system. Therefore, we do not consider languages specifically
designed to implement communication of multiple QPUs.

Due to these criteria, we remove the following languages from our comparison:

• D-Wave Ocean, as it is developed for quantum annealers.

• QWIRE, as it is a language to formally verify quantum algorithms, not to execute
them.

• QuantumMPI, InQuIR and NetQASM, as they have been created to imple-
ment communication between QPUs.

This leaves us to compare Braket, Cirq, CUDA-Quantum, OpenQASM 3, OpenQL,
PennyLane, Q#, Quil, and XACC.

Example implementations of a bell entanglement are shown in Listings 4.1.1 to 4.1.11.
Of these eleven languages, seven are frameworks implemented in Python (and occasion-
ally also C++). This kind of implementation has the advantage of re-using existing

39



4. Evaluation of Today’s Quantum Languages

1 from cudaq import QuantumCircuit, QuantumRegister

2

3 qr = QuantumRegister(2)

4 qc = QuantumCircuit(qr)

5 qc.h(1)

6 qc.cx(1, 0)

7 qc.measure(1)

Listing 4.1.3: CUDA-Q bell entanglement.

1 OPENQASM 3.0;

2 include "stdgates.inc";

3

4 qubit[2] q;

5 bit[1] c;

6 h q[1];

7 cx q[1], q[0];

8 c[0] = measure q[1];

Listing 4.1.4: OpenQASM bell entanglement.

1 from cudaq import QuantumCircuit, QuantumRegister

2

3 platform = ql.Platform('openql_platform', 'none')

4 kernel = ql.Kernel('bell_kernel', platform, 2)

5 kernel.h(1)

6 kernel.cnot(1, 0)

7 kernel.measure(1, 0)

Listing 4.1.5: OpenQL bell entanglement.

40



4.1. Properties of the Quantum Languages

1 import pennylane as qml

2

3 qml.Hadamard(wires=1)

4 qml.CNOT(wires=[1, 0])

5 m = qml.measure(1)

Listing 4.1.6: PennyLane bell entanglement.

1 namespace BellStateExample {

2 open Microsoft.Quantum.Intrinsic;

3 open Microsoft.Quantum.Canon;

4 open Microsoft.Quantum.Measurement;

5

6 operation CreateBellStateAndMeasure() : Result {

7 use q = Qubit[2];

8 H(q[1]);

9 CNOT(q[1], q[0]);

10 result = M(q[1]);

11 ResetAll(q);

12 return result;

13 }

14 }

Listing 4.1.7: Q# bell entanglement.

1 from qiskit import QuantumCircuit

2

3 qc = QuantumCircuit(2, 1)

4 qc.h(1)

5 qc.cnot(1, 0)

6 qc.measure(1, 0)

Listing 4.1.8: Qiskit bell entanglement.

41



4. Evaluation of Today’s Quantum Languages

1 DECLARE c BIT[1]

2

3 H 1

4 CNOT 1 0

5 MEASURE 1 c[0]

Listing 4.1.9: Quil bell entanglement.

1 def main() {

2 q0 := 0:B;

3 q1 := 0:B;

4

5 q1 := H(q1);

6 if q1 {

7 q0 := X(q0);

8 }

9 m := measure(q1);

10 measure(q0);

11 }

Listing 4.1.10: Silq bell entanglement. Note that instead of using CNOT, the high-level
if-statement is used.

1 import xacc

2

3 provider = xacc.getIRProvider('quantum')

4 program = provider.createComposite('initial-state')

5 program.addInstruction(createInstruction('H', [1]))

6 program.addInstruction(createInstruction('CX', [1, 0]))

7 prog.addInstruction(xacc.gate.create("Measure", [0]))

Listing 4.1.11: XACC bell entanglement.

42



4.1. Properties of the Quantum Languages

coding infrastructure. Additionally, aspiring quantum developers that are already famil-
iar with Python (or C++) do not have to learn a completely new programming language
if their QPL of choice is a framework. Also, the developers of the quantum languages
have to put less thought into the syntax if they do not create a completely new language
from scratch. This is especially handy if the focus of a framework lays elsewhere, e.g. the
compilation and optimization of circuits (e.g. OpenQL) or interoperability (e.g. XACC).

The challenge of creating a framework for an existing classical programming language
is the dependence on said programming language. The developers have to work with the
syntax and execution model said languages offer, and are less flexible in the creation of
their code.

The developers of the languages we look at can be divided into three groups:

• Major tech companies which have been founded for another purpose than quan-
tum technologies, e.g. Microsoft.

• Quantum tech companies which have been founded with the intention of de-
veloping and enhancing quantum technologies, e.g. Rigetti.

• Universities or research institutes, e.g. ETH Zürich.

Six of eleven of the quantum languages we look at are developed by major tech com-
panies, three by universities or research institutes and two by companies that have been
founded to work on quantum technologies.

The quantum languages that are frameworks of Python and C++ follow a similar
programming approach, which Q# follows as well. We will call it object-oriented static
circuit creation: The programmer defines a programming structure (generally an object)
that represents a quantum circuit. One can apply different operations, e.g. quantum
gates or measurements, on the qubits in the circuit. When the complete circuit has been
created, the programmer can submit it to a QPU or a quantum simulator. An example
for the programming process of an object-oriented static circuit creation program written
in Qiskit can be found in Listing 4.1.12.

The quantum frameworks in general offer to transpile or compile circuits, as most
QPUs accept quantum circuits consisting of only their native gates only [122, 123].

This way of implementing quantum algorithms can be perceived as low abstraction
level compared to common classical programming languages (cf. Section 2.3). It directly
depicts the way gate-based QPUs work and is not developed to implement more abstract
routines that do not require direct understanding of quantum gates by the developer.
However, some languages offer methods to apply multiple gates at once in order to
implement well-known quantum algorithms, e.g. the variational quantum eigensolver or
the quantum phase estimation [16, 59]. This is for example possible in Qiskit [124] and
PennyLane [125].

Three of the examined quantum language follow different programming approaches:
OpenQASM, Quil and Silq.

Silq offers the possibility to directly add gate operations to quantum circuits, but also
offers higher levels of abstraction. For example, one can apply an or-operator on qubits
as well as if- and else-structures (see Listing 4.1.10).

43



4. Evaluation of Today’s Quantum Languages

1 from qiskit import QuantumCircuit, transpile

2

3 # Initialize a quantum circuit

4 qc = QuantumCircuit(number_qubits, number_classical_bits)

5

6 # Apply gates to circuit

7 qc.h(0)

8 ...

9

10 # Transpile circuit to native gate set of used QPU/Simulator

11 simulator = AerSimulator()

12 circ = transpile(qc, simulator)

13

14 # Run circuit and receive result

15 result = simulator.run(circ).result()

Listing 4.1.12: An example of an object-oriented static circuit creation program written
in Qiskit.

1 OPENQASM 3;

2 include "stdgates.inc";

3

4 qubit[1] q;

5 bit[1] creg;

6 int[32] t = 10;

7

8 h q[0];

9 creg[0] = measure qubit[0];

10

11 if (creg[0] == 1) {

12 t = t * t;

13 } else {

14 t = t - 5;

15 }

Listing 4.1.13: An example of OpenQASM measuring a qubit and applying a classical
calculation on a bit depending on the measurement outcome.

44



4.1. Properties of the Quantum Languages

1 DECLARE creg BIT[1]

2 DECLARE t INTEGER[1]

3

4 MOVE t 10

5

6 H 0

7 MEASURE 0 creg[0]

8

9 JUMP-UNLESS @ELSE creg[0]

10 MUL t[0] t[0]

11 JUMP @END

12 LABEL @ELSE

13 SUB t[0] 5

14 LABEL @END

Listing 4.1.14: An example of Quil measuring a qubit and applying a classical calculation
on a bit depending on the measurement outcome.

On the other hand, OpenQASM’s and Quil’s abstraction levels can be perceived as
lower than the object-oriented static circuit creation quantum languages’. They can be
found at Listings 4.1.13 and 4.1.14 for comparison.

OpenQASM has been proposed as IR. It requires the declaration of the qubits and
classical bits used in its program. One can define gates and measurements on the qubits,
as well as arithmetic operations, branching and looping on the classical bits. Some of
its functionalities can be compared to object-oriented static circuit creation, especially
the application of gates to qubit variables for quantum calculations. However, contrary
to languages implementing the static circuit creation model, it does not create a circuit
object. OpenQASM also does not offer functions or methods to transpile or execute a
quantum program, as it is not necessary for its intended use as IR. This is why we describe
it of lower abstraction level than object-oriented static circuit creation languages.

Quil has been proposed as an instruction set architecture. It is comparable to classical
Assembly and offers (conditional) jumps only as classical control structures. The lack
of if and while control structures as well as the lack of an execution or transpilation
functionality is the reason we describe Quil as the language of the lowest abstraction
among those we examine.

Quil and OpenQASM provide two options of low-level programming languages that
a compiler could compile towards. Nevertheless, none of them are a fixed standard yet.
The object-oriented static circuit creation languages offer transpilation functionalities,
but they do not necessarily compile to Quil, OpenQASM or another IR. This is ampli-
fied by the fact that QPU hardware has also no standard way of accepting execution
instructions yet. For example, IBM’s devices can be addressed with OpenQASM [128],

45



4. Evaluation of Today’s Quantum Languages

Rigetti’s devices accepts Quil programs and QIR bitcode [129] and IonQ’s devices can
be addressed by expressing quantum circuits in .json format [130]. Additionally, any
code modification after submitting to a cloud QPU service is usually not disclosed. This
makes an understanding of the quantum code compilation and possible standards more
difficult.

However, some of the static circuit creation languages accept input written in Quil
or OpenQASM and transpile it to the language’s respective circuit representation. This
is for example the case with Braket [108], Qiskit [126] or XACC [127]. These transpi-
lation functionalities are typically restricted to a modification of the quantum circuit.
Optimizations on classical control or hybrid structures in a refined HQCC architecture
are, to the best of our knowledge, not yet available. This even holds for Silq, which we
expected to offer optimization steps due to its high level of abstraction.

Most programming languages are more adapted to the QRAM than the (refined)
HQCC model. They work with the static creation of a circuit that is supposed to be
completely executed, before a CPU receives the result or reacts to it. Optimizations on
the circuits do not consider classical instructions.

However, Silq, OpenQASM, Quil and some of the static circuit creation languages
allow adding classical control structures in their control flow. We will look at the support
for heterogeneous architectures of the different languages in the next section.

4.2. Support for Heterogeneous Architectures

We want to examine which quantum languages allow real-time feedback of quantum-
classical computing (dynamic circuit creation). Not all languages allow unrestricted
application of classical control structures and classical calculations next to the quantum
calculations. To check which languages do allow dynamic circuit creation, we will look
at two algorithms that require real-time classical control structures and check which
languages allow the implementation of these algorithms.

4.2.1. Real-Time Feedback Algorithms

To check which languages support dynamic circuit creation, we implemented two exam-
ples of heterogeneous algorithms on the QPLs: Quantum teleportation and active
reset.

Quantum teleportation [52] is the process of transferring quantum information
from one qubit to the other using one ancilla qubit. We will look at a brief introduction
to the workings of the algorithm. For a more detailed explanation, we refer to Nielsen
and Chuang [17, chapter 1.3.7].

The quantum state is transferred without any gates that act directly on original and
target qubit at the same time, which is why the term teleportation is being used. The
state might be in a superposition, meaning we would not be able to measure it classically
and transfer the information using bits. It is important to note that the state of the
original qubit is not copied, which is impossible according to the no-cloning theorem [24,

46



4.2. Support for Heterogeneous Architectures

q0 : |ψ〉 • H •

q1 : |0〉

q2 : |0〉 H • X Z |ψ〉

Figure 4.2.1.: The quantum circuit that teleports the quantum state |ψ〉 from q0 to q2.

Table 4.2.1.: The measured states of the first two qubits in the quantum teleportation
circuits, and the succeeding required gates on |q2〉.

Measured Bell State Measured |q0q1〉 |q2〉 Necessary gates on |q2〉

|Φ+〉 |00〉 (α |0〉+ β |1〉)
|Φ−〉 |10〉 (α |0〉 − β |1〉) Z
|Ψ+〉 |01〉 (α |1〉+ β |0〉) X
|Ψ−〉 |11〉 (α |1〉 − β |0〉) XZ

25] (cf. Section 2.1.1). Instead, the quantum state of the original qubit is destroyed by
measurement during the process.

The quantum circuit used for teleportation is given in Figure 4.2.1. The arbitrary
state |ψ〉 = α |0〉+ β |1〉 is teleported from q0 to q2. We calculate the equation depicted
by the teleportation circuit until the first barrier (dotted line):

(1⊗ CNOT21) · (1⊗ 1⊗H) |ψ00〉 (4.2.1)

= (1⊗ CNOT21)

(
1√
2
|ψ0〉 ⊗ (|0〉+ |1〉)

)
(4.2.2)

=
1√
2
|ψ〉 ⊗ (|00〉+ |11〉) (4.2.3)

= (α |0〉+ β |1〉)⊗ 1√
2

(|00〉+ |11〉) (4.2.4)

The quantum state of the three qubits can be reordered and depicted using Bell states
(cf. Section 2.1.2).

47



4. Evaluation of Today’s Quantum Languages

We use the properties

|00〉 =
1√
2

(
|Φ+〉+ |Φ−〉

)
(4.2.5)

|01〉 =
1√
2

(
|Ψ+〉 − |Ψ−〉

)
(4.2.6)

|10〉 =
1√
2

(
|Ψ+〉+ |Ψ−〉

)
(4.2.7)

|11〉 =
1√
2

(
|Φ+〉 − |Φ−〉

)
(4.2.8)

to calculate

(α |0〉+ β |1〉)⊗ 1√
2

(|00〉+ |11〉) (4.2.9)

=
1√
2

(α |000〉+ α |011〉+ β |100〉+ β |111〉) (4.2.10)

=
1

2

( (
|Φ+〉+ |Φ−〉

)
α |0〉+

(
|Ψ+〉 − |Ψ−〉

)
α |1〉

+
(
|Ψ+〉+ |Ψ−〉

)
β |0〉+

(
|Φ+〉 − |Φ−〉

)
β |1〉

) (4.2.11)

=
1

2

(
|Φ+〉 (α |0〉+ β |1〉) + |Φ−〉 (α |0〉 − β |1〉)

+ |Ψ+〉 (α |1〉+ β |0〉)− |Ψ−〉 (α |1〉 − β |0〉)
)
.

(4.2.12)

We can see from Equation (4.2.12) that measuring the first two qubits in the Bell
basis results into the last qubit taking one of four specific forms which can be seen
in Table 4.2.1. The Bell measurement is done by a CNOT and Hadamard gate with
a following measurement, as explained in Section 2.1.2. Depending on the Bell state
measurement outcome, we need to apply certain gates to the target qubit to recreate
|ψ〉.

Table 4.2.1 shows the necessary gates to apply on |q2〉 to re-create |ψ〉. These gates
correspond with the classically controlled gates applied to |q2〉 in Figure 4.2.1.

The application of gates depending on measurement outcomes while |q2〉 has to stay
coherent causes quantum teleportation to be an algorithm needing dynamic circuit cre-
ation.

Active reset [53] is used to achieve high-fidelity zero-state qubits. Resetting a qubit
to state 0 has a small probability of failure. This is why the active reset requires having
measured the qubit in state 0 twice, as shown in Listing 4.2.1. If the qubit is measured
to be in state 1, the qubit is flipped and afterwards measured again.

Even though being rather primitive, this algorithm has high requirements for its pro-
gramming language. A measurement has to be possible mid-circuit, and a classical count
variable has to be used, which is dependent on measurement outcomes. The calculation
whether to execute the next loop hast to be done in real-time, as well as the branching
inside the loop.

48



4.2. Support for Heterogeneous Architectures

1 numberOfSuccesses = 0

2 while(numberOfSuccesses < 2):

3 measure qubit, store result in bit

4 if bit == 0:

5 numberOfSuccesses++

6 else:

7 numberOfSuccesses = 0

8 apply X on qubit

Listing 4.2.1: A pseudocode of the active Reset Algorithm.

4.2.2. Evaluating Languages

In this section, we will look at the languages we examined in Section 4.1.2. We tried to
implement quantum teleportation and active reset to check which ones support real-time
hybrid calculations.

The languages must be executable to check if the classical control structures can be
executed correctly. This results in removal of four languages from this section of the
thesis, because their code could not be executed:

• We were unable to get XACC’s interpreter running following the installation pro-
cess given in the XACC documentation [131]. We could not use the pre-configured
integrated development environment (IDE) offered on XACC’s GitHub page [99]
either, as this IDE lacked Python modules needed for XACC execution.

• CUDA-Q’s semantic is restrictive and forbids many operations. The documen-
tation and error messages of the Python interpreter were not helpful enough to
execute a program in this language.

• OpenQASM delivers no native way to execute its code.

• OpenQL delivers no native way to execute its code, it only compiles towards
OpenQASM.

Table 4.2.2 summarizes which languages can implement quantum teleportation and
active reset.

Braket is the only quantum language which cannot implement either of the algo-
rithms. Braket does not support classical control structures in any way, and neither do
Amazon’s QPUs support HQCC computing models [63, p. 67].

All other languages allow implementing quantum teleportation, but only Q# and Quil
additionally allow active reset.

Quil and Q# offer a turing-complete classical instruction set, thus one can implement
any executable quantum-classical algorithm.

49



4. Evaluation of Today’s Quantum Languages

Table 4.2.2.: Ability of QPLs to implement real-time hybrid quantum algorithms.

Language Quantum teleportation Active reset

Braket 77 77

Cirq 33 77

PennyLane 33 77

Q# 33 33

Qiskit 33 77

Quil 33 33

Silq 33 77

Table 4.2.3.: Operations of the object-oriented static circuit creation languages to im-
plement classical branching and looping.

Language Conditional Branching Looping

Cirq CircuitOperation

with repeat until.
PennyLane cond while loop

Qiskit c if while loop

Silq allows conditional logic on classical variables, which means one can implement
quantum teleportation in it. We can also implement loops that depend on classical logic
and classical arithmetic in Silq. However, when we measured a qubit once, we cannot
use it again without redefining it. Therefore, while we can in principle implement loops
depending on measurement results, we cannot implement the active reset algorithm.

The remaining object-oriented static circuit creation languages Cirq, PennyLane
and Qiskit have operations to add gates depending on classical variables to the circuit.
They offer both conditional application of gates and looping. The necessary instructions
are listed in Table 4.2.3. However, while the branching allows to implement the quantum
teleportation algorithm, the loops fail to implement active reset. The reasons are:

• Cirq cannot do arithmetic on two classical values which are afterwards used in the
repeat until condition.

• PennyLane’s loop cannot iterate over a classical value that is updated by a mea-
surement in the loop.

• Qiskit offers a loop, but it cannot assign a value to a classical register without a
measurement or do arithmetic on two classical values.

50



4.3. Summary

4.3. Summary

In this section, we examined the properties of existing QPLs. We found that most
languages follow the programming approach of object-oriented static circuit creation
and are implemented as Python framework. All languages of different approaches than
object-oriented static circuit creation are stand-alone languages and not frameworks.
This could indicate that stand-alone languages work better than embedded languages on
programming approaches that are different from object-oriented static circuit-creation.

We saw that most quantum languages lack not only optimization specifically for het-
erogeneous quantum-classical architectures, but also the possibility to implement ar-
bitrary quantum-classical algorithms. Programming languages that support quantum-
classical algorithms are still in early development, but crucial for the progress of quantum
computation.

In the next chapter, we will examine possibilities of optimizing code for heterogeneous
quantum-classical architectures in the future.

51





5. Optimizing Quil-Programs

As we have seen in Chapter 4, existing QPLs offer little to no optimizations for hetero-
geneous architectures. In this section, we want to assess which static optimizations can
be done by the main CPU of a refined HQCC architecture, before the program is sent
to the QPU/CPU component (cf. Section 2.2.1).

Classical compilers typically apply many small optimization strategies to a program,
such as constant-propagation, constant-folding, liveness analysis, reaching definitions or
available expressions [66] (cf. Section 2.3.2). We aim to create a similar set of optimiza-
tion methods for heterogeneous quantum-classical architectures. For this, we wrote a
program that parses, analyzes, optimizes, and evaluates Quil code.

Quil has been used for these examinations, as Quil with its assembly-like syntax
and goto branching is straightforward to analyze. Additionally, Quil programs can be
created with PyQuil [116] and executed with Quilc [117] and the Quil-Lang QVM [118]
(cf. Section 4.1), which is helpful for our work.

We will first look at Quil’s instructions in Section 5.1 and examine how to execute Quil
on a HQCC architecture (cf. Section 5.2). Afterwards we will explain how we analyzed
Quil programs (cf. Section 5.3) and how we evaluated them in Section 5.4.

In Section 5.5, we will propose a set of optimization methods to optimize a Quil
program with respect to heterogeneous architectures. We will evaluate the optimization
methods in Section 5.6 and discuss the results in Section 5.7.

The GitHub repository containing the code we developed is given in Appendix A.1.

5.1. Quil Instructions

In this subsection, we will give an overview of the instructions that Quil provides, to
the extent that it is relevant in this thesis. For a more extensive overview, we refer the
reader to the paper introducing Quil [14].

In Quil, integer indices are used to refer to qubits. As integers can also occur in
other parts of the program (e.g. as classical parameters), this leads to an ambiguity
considering the usage of integers. However, the position of an integer clearly indicates
if the integer is used as qubit or a parameter, as qubits follow after gate instructions or
measurements. Qubits do not need to be declared upfront.

Quil supports four classical variable types: BIT, OCTET, INTEGER, and REAL. Classical
variables need to be declared before usage, e.g. DECLARE a BIT to declare a bit value of
the name a. Afterward, the value can receive a value (MOVE a 0) and be used in classical
instructions.

Classical variables can be declared as an array, e.g. DECLARE a BIT[2]. The values
can then be accessed by [n], e.g. MOVE a[1] 0.

53



5. Optimizing Quil-Programs

Quil offers different categories of instructions, namely

• quantum gates: Instructions that name a gate and at least one qubit that is
applied to the gate, e.g. H 0, or CNOT 0 1.

• classical instructions: Calculations applied on classical variables. The classical
instruction set is turing-complete.

• parameterized quantum gates: Quantum gate instructions with gates that re-
ceive a classical parameter, e.g. RZ(angle) 0, with the classical parameter angle.
Quantum gates that receive a fixed value (e.g. RZ(1.57)) do not count as param-
eterized.

• measurements: Instructions that measure the value of a qubit. The value can
be saved in a classical parameter. E.g.: MEASURE 0 ro[0].

• control structures: One can define labels (LABEL @label name) and jumps in
Quil. Jumps can be conditional (e.g. JUMP-WHEN @label name cond) or uncondi-
tional (e.g. JUMP @label name).

Quantum gates that are not parameterized can be exclusively executed by a QPU and
are therefore quantum instructions. Classical instructions can be exclusively executed
by a CPU and are therefore classical instructions. All other instructions need to be
executed by QPU and CPU at the same time, and are therefore hybrid instructions.

5.2. Naive Quil Execution

Quil provides instructions for both quantum and classical instructions. We will assume
that each Quil instruction takes one time step to be executed for our proof-of-concept.
We neglect the communication time between QPU and CPU, as we do not know its
speed and it depends on the concrete hardware.

Purely quantum or classical instructions can be executed in parallel, as they are exe-
cuted by two different devices. Hybrid instructions (like measurements, parameterized
gates, or branching) need to be executed by both devices at the same time.

We assume the following execution process for the CPU – QPU component:

• If the next instruction is a hybrid instruction, it is executed by the CPU and QPU
in parallel.

• If the next instruction is a classical (or quantum) instruction, it is sent to the CPU
(or QPU). Additionally, if there is a quantum (or classical) instruction in the code
before the next hybrid instruction, it is sent to the QPU (or CPU) as well. Both
instructions are then executed in parallel.

CPU and QPU can work in parallel, and at the next hybrid instruction, the devices have
to wait for each other.

54



5.3. Analyzing Quil Programs

Figure 5.2.1.: An example how a naive execution of Quil would cause the CPU to wait
for a hybrid instruction (MEASURE), even though the succeeding MOVE in-
struction would be executable.

This execution model can cause unnecessary idling of a device. An example for this
can be seen in Figure 5.2.1. It shows a CPU that needs to wait for the QPU, even though
a succeeding classical instruction would be executable. A previous optimization routine
could find that an instruction is executable before the hybrid instruction and change the
order of the instructions in the program.

We want to explore the possibility of optimizing Quil code with respect to hetero-
geneous architecture. At the moment, this architecture is not considered during Quil
compilation or the execution on the Quil QVM to the best of our knowledge.

5.3. Analyzing Quil Programs

We did analyzation procedures that can be applied to arbitrary Quil programs. In this
work, we will use a few algorithms as ongoing example, namely:

• Quantum teleportation [52]

• Magic state distillation [54, 55, 56]

• Repeat-until-success [57, 58]

• Iterative phase estimation (IPE) [49, 59]

We will not go into detail about how the algorithms work. This is not necessary
for this work, and we refer the reader to the given sources for further reading. The
important point about the algorithms for this thesis is that they all require dynamic
circuit creation in order to work, and thus communication between CPU and QPU.

We created a CFG [68] for all programs we evaluate. Recall that a CFG is used to
depict all possible execution paths of a program (cf. Section 2.3). Each node/basic
block of the CFG consists of either only quantum instructions, classical instructions, or
hybrid/control structures. Quantum and classical instructions that are executed without

55



5. Optimizing Quil-Programs

Figure 5.3.1.: Creating basic blocks in the CFG from alternating quantum and classical
instructions.

a hybrid/control instruction in between are written into two parallel basic blocks. An
example of this is shown in Figure 5.3.1. By creating a CFG in this way, one can easily
see which parts of the code are executed by which device(s).

Recall that a DDG is a graph that shows which instructions need to be executed
before another instruction (cf. Section 2.3). We create a DDG using information from
the Quil program and the CFG. Every node of the DDG holds a single Quil instruction.
The edges indicate which instructions have to be executed before their instruction can
be executed. This is done by checking variable dependency. Unconditional jumps are
resolved before creating the DDG and not listed as nodes.

Conditional jumps in the program pose a problem to the DDG. If a conditional jump
targets an already executed line, it introduces circular dependencies. This could only
be resolved exactly if we knew the number of iterations, which would be analogous to
solving the Halting problem, and therefore not generally possible.

We resolve this issue by creating a DDG only up to the next conditional jump. By
that, we can receive multiple DDGs for a single program, all depicting a part of the
program. One of the DDGs is the start DDG, which is the DDG describing the entry
of the program. Additionally, we have one or multiple halt DDGs, which include the
program instructions last executed before the program terminates. An example for a
program that results in multiple DDGs is given in Listing 5.3.1, and the corresponding
DDGs in Figure 5.3.2.

As an example, the code for the IPE is given in Listing 5.3.2, and the corresponding
CFG in Figure 5.3.3. The given code calculates two bits of the phase ϕ of a given matrix,
with the matrix’ eigenvalue λ = eiϕ.

In the algorithms we implemented to evaluate our optimizations, an algorithm that
calculates five bits was used. The shorter algorithm is given here for simplicity.

An DDG of the IPE code (Listing 5.3.2) is given in Figure 5.3.4. For the IPE, we
resolved conditional jumps before DDG creation. In the executable IPE, we use the code
given in Listing 5.3.3 to add 1 to param no pi[0] if lastMeasurement[0] is 1.

Conditional jumps have to be used, as Quil’s semantic does not allow adding a bit-
value to a real value. In the IPE that is used for the DDG and during the optimization,

56



5.3. Analyzing Quil Programs

1 DECLARE m BIT

2 H 0

3 MEASURE 0 m

4 JUMP-WHEN @label m

5 Y 0

6 LABEL @label

7 Z 0

8 MEASURE 0 m

Listing 5.3.1: An example for Quil code that results into multiple DDGs. The corre-
sponding DDGs can be found in Figure 5.3.2.

Start DDG

DECLARE m BIT H 0

MEASURE m 0

JUMP-WHEN @label m

Halt DDG 1

Y 0

Z 0

MEASURE m 0

Halt DDG 2

Z 0

MEASURE m 0

Figure 5.3.2.: An example for multiple DDGs originating from one Quil code. The code
can be found in Listing 5.3.1.

57



5. Optimizing Quil-Programs

1 DECLARE theta REAL[1]

2 DECLARE result REAL[1]

3 DECLARE param_no_pi REAL[1]

4 DECLARE lastMeasurement BIT[1]

5

6 MOVE theta[0] 0

7 MOVE param_no_pi[0] 0

8 MOVE lastMeasurement[0] 0

9

10 H 0

11 CONTROLLED targetMatrix_two 0 1 2

12 RZ(theta[0]) 0

13 H 0

14 MEASURE 0 lastMeasurement[0]

15 RESET 0

16 MOVE theta[0] 3.1415

17 JUMP-UNLESS @noadd1 lastMeasurement[0]

18 ADD param_no_pi[0] 1

19 LABEL @noadd1

20 DIV param_no_pi[0] 2

21 MUL theta[0] param_no_pi[0]

22

23 H 0

24 CONTROLLED targetMatrix_zero 0 1 2

25 RZ(theta[0]) 0

26 H 0

27 MEASURE 0 lastMeasurement[0]

28 MOVE theta[0] 3.1415

29 RESET 0

30 JUMP-UNLESS @noadd2 lastMeasurement[0]

31 ADD param_no_pi[0] 1

32 LABEL @noadd2

33 DIV param_no_pi[0] 2

34 MUL theta[0] param_no_pi[0]

35

36 MOVE result[0] 3.1415

37 MUL result[0] 2

38 MUL result[0] param_no_pi[0]

Listing 5.3.2: Calculating two bits of targetMatrix zero’s phase ϕ, which is stored in
result[0]. The matrix’ eigenvalue is λ = eiϕ. targetMatrix two is
targetMatrix zero squared.

58



5.3. Analyzing Quil Programs

Figure 5.3.3.: The CFG created from Listing 5.3.2.

59



5. Optimizing Quil-Programs

1 DECLARE param_no_pi REAL[1]

2 DECLARE lastMeasurement BIT[1]

3

4 JUMP-UNLESS @noadd1 lastMeasurement[0]

5 ADD param_no_pi[0] 1

6 LABEL @noadd1

Listing 5.3.3: Executable version of adding 1 to param no pip[0] if lastMeasurement[0]
is true. Quil’s semantic does not allow to add a BIT variable to a REAL
variable. Therefore, we need conditional jumps.

1 DECLARE param_no_pi REAL[1]

2 DECLARE lastMeasurement BIT[1]

3

4 ADD param_no_pi[0] lastMeasurement[0]

Listing 5.3.4: Version we use for analyzation of adding 1 to param no pip[0] if lastMea-
surement[0] is true. The BIT value is directly added to param no pi[0] to
avoid conditional jumps.

the above code is changed to the one in Listing 5.3.4: The bit value is directly added to
the real value.

While Quil’s semantic forbids this construction, it has the same logical effect: Adding 1
to param no pi[0] if lastMeasurement[0] is 1. This is done to prevent conditional
jumps in the IPE algorithms, which makes the optimization and the evaluation of the
optimization simpler. This has only been done for IPE, not for the other algorithms.
The CFGs and DDGs for the other algorithms can be found in the GitHub repository
with our code (cf. Appendix A.1).

The properties of the created DDG are listed in Table 5.3.1. As the IPE algorithm
contains no conditional jumps, it is depicted by one DDG only, while the other algorithms
need at least three DDGs. We calculated a naive execution time for every DDG by
using the execution procedure from Section 5.2. We assume an execution time of 1
per instruction. We make this assumption as we do not have sufficient insight in real
hardware. Depending on the hardware, we could have large differences between the
execution time of quantum and classical instructions.

In the following, we will look at evaluation metrics for Quil programs and try to
optimize the programs with respect to the metrics.

60



5.3. Analyzing Quil Programs

Figure 5.3.4.: The DDG created from Listing 5.3.2. The conditional jumps have been
changed to an addition of param no pi[0] with lastMeasurement[0], to
avoid conditional jumps.

61



5. Optimizing Quil-Programs

Table 5.3.1.: Properties of the example programs and their respective DDG(s). Instruc-
tion number and naive wall time are given per DDG. The wall time is
calculated using the naive algorithm explained in Section 5.2 and assuming
a time of 1 for each instruction.

Example program Lines Instruction Number Naive Wall Time

Quantum teleportation 14 8, 2, 2 6, 2, 1
Magic state distillation 76 67, 63, 6 62, 62, 6

Repeat-until-success 24 12, 11, 10, 7 9, 10, 9, 6
IPE 67 55 45

5.4. Metrics to Evaluate Quil Programs

We will look at three metrics statically to evaluate Quil programs. The metrics can be
used to optimize Quil programs against or to evaluate how well optimization methods
worked. We implemented this functionality and evaluate our optimization methods
against these metrics. The results are given in Section 5.6.

Wall time: Considering that all instructions have the execution time 1, it is assessed
how long the program would take to execute. Whenever possible, the CPU and QPU
execute instructions in parallel. Two parallel executed instructions receive execution
time 1 together. At a hybrid or control instruction, one device waits for the other. For
example, the program in Figure 5.2.1 has a wall time of 7.

The wall time is calculated for all DDGs of a program and summed up for comparison
of syntactically different representations of the same program.

Quantum instruction number (QIN): Count the number of quantum instructions
per DDG and sum the result up for comparison to other codes. Hybrid instructions
are included in the counting, as the QPU and the quantum state are considered during
hybrid calculations. Minimizing the QIN is sensible, as quantum instructions are more
likely to introduce errors than classical instructions (cf. Section 2.1.3).

Quantum calculation time (QCT): As quantum states in a QPU have a limited
coherence time, it makes sense to minimize the time the QPU has to keep the qubits
coherent. This value is the QCT. As we assume that each instruction needs a time value
of 1, the time is given in units of the instruction number.

For the calculation of QCT, we assume the best case: The QPU starts with the first
quantum instruction on the latest possible time such that the CPU does not have to
wait for the QPU at the first hybrid instruction. Additionally, the QPU calculates the
quantum instructions after the last hybrid instruction directly after the hybrid instruc-
tion. Between the first and the last hybrid instruction, the wall time is equal to the time
the qubits have to stay coherent.

It should be noted that a reasonable program has no quantum instructions after the
last hybrid instruction. This would only create quantum information which is destroyed
again, as it would have to be measured for further usage. Measurement, again, would
be a hybrid instruction.

62



5.4. Metrics to Evaluate Quil Programs

DECLARE r REAL
DECLARE m BIT
H 0
Y 0
MEASURE 0 m
H 0
Z 0
MOVE r 2
RZ(r) 0
H 0
MEASURE 0 m
Z 0

Classical
Classical
Quantum
Quantum
Hybrid (first)
Quantum
Quantum
Classical
Hybrid
Classical
Hybrid (last)
Quantum

nq before = 2

δtbetween = 6

nq after = 1

Figure 5.4.1.: An example of how to determine δtbetween, nq before and nq after from Quil
code. The QCT is the sum of these three values.

This results in a QCT τQ of

τQ = δtbetween + nq before + nq after (5.4.1)

with the wall time between first and last hybrid instruction (including these hybrid
instructions) δtbetween, the number of quantum instructions before the first hybrid in-
struction nq before, and the number of hybrid instruction after the last hybrid instruction
nq after. An example can be seen in Figure 5.4.1.

A difficulty of this metric arises when the program is divided into more than one DDG.
The first hybrid instruction in the start DDG is the globally first hybrid instruction. The
last hybrid instruction in the halt DDG is the globally last hybrid instruction. If there
are multiple possible last DDGs, we take the one that causes the longest QCT (worst-
case). The QCT is calculated by the number of quantum instructions before the first
hybrid instruction and after the last hybrid instruction. Additionally, the wall time of all
other DDGs and between the first and the last hybrid instruction (included) are added.

If the last DDG has no quantum instruction, it does not add to the QCT. The wall
time of all other DDGs is simply added, as every DDG necessarily ends at a hybrid
conditional jump.

Note that, in an ideally optimized program, a DDG with only classical instructions
should not exist, as this could be calculated completely by the main CPU and does not
have to be sent to a CPU-QPU complex.

Table 5.4.1 shows the values of the different metrics for our initial implementations
of the algorithms. We will look at strategies to improve (i.e., reduce) the values in the
next sections.

63



5. Optimizing Quil-Programs

Table 5.4.1.: Wall time, QIN (quantum instruction number), and QCT (quantum calcu-
lation time) of the original Quil files of the different algorithms. The Wall
time is calculated by the naive execution time described in Section 5.2 and
per DDG.

Example program Wall time QIN QCT

Quantum teleportation 6, 2, 1 9 10
Magic state distillation 62, 62, 6 66 130

Repeat-until-success 9, 10, 9, 6 34 35
IPE 45 25 33

5.5. Optimization Strategies

In this section, we aim to create a set of optimization methods for heterogeneous
quantum-classical architectures.

In the beginning, we will derive some optimization strategies from already well estab-
lished classical (machine-independent) strategies. As introduced in Section 5.3, loops
play a critical role when analyzing program structures. Nevertheless, they are out of
scope for this work and we will not target optimization strategies that aim to work with
loops.

5.5.1. Adapted Classical Optimization Operations

We will examine if and how the classical machine-independent optimizations mentioned
in Section 2.3 can be applied to the quantum-classical heterogeneous case. Some op-
timization methods are not sensible for the quantum case, but could in principle be
implemented for the classical part of the algorithms. We will not implement these opti-
mizations, to keep our focus on quantum-classical hybrid code.

It is insensible to try to determine available expressions in Quil. Instructions
that calculate an expression a • b and assign the result to another variable do not exist.
Instead, quantum operators act directly on qubits and the results of classical calculations
are stored in one of the involved variables. For example,

ADD a b (5.5.1)

is interpreted as

a := a+ b. (5.5.2)

64



5.5. Optimization Strategies

1 DECLARE a INTEGER

2 DECLARE b INTEGER

3 MOVE a 3

4 ADD a 10

5 MOVE b 7

6 MOVE a 10

Listing 5.5.1: An example of Quil code with live and dead variables. Assuming a is a
readout variable, it counts as dead in line 4, as the addition result is not
read anywhere before a is written to in line 6. b is dead in line 5, as it is
not read afterward.

We apply constant propagation to the classical and the quantum part of the code.
For the classical part of the code, the algorithm works as follows: A classical value is

recognized as constant by a MOVE instruction if the instruction moves a constant value
onto it. E.g

MOVE a 10 (5.5.3)

results into a having the constant value 10.
A variable remains constant until it is being written to again.

ADD b a (5.5.4)

writes and reads b, but only reads a, thus a remains constant. This means the algorithms
recognizes b to be constant at the reading part of the instruction, but b looses its constant
state afterward. This would even hold if a was replaced by a constant value. Constant
folding will replace the instruction by a MOVE instruction if a and b were constant.

For the quantum part of the code, we restrict ourselves to the Pauli-basis and single
qubit gates. A qubit is constant at the start of the program and after a RESET with the
value Pauli X Zero. The constant propagation checks at which instructions a constant
qubit “arrives” with a specific value, either because it has been initially used or reset
before, or because constant folding has shown that it remained in a constant Pauli basis
after a gate application.

Live-variable analysis can be used for the classical and quantum parts of heteroge-
neous programs.

A classical variable counts as dead if it is written to and the value of the variable is not
read until the variable’s value is overwritten. For the application of the algorithm, we
need to know which classical variables hold readout values, i.e. which values need to be
reported back to the main CPU at the end of the quantum program. These variables are
by default alive at the end of the program, which is handled as if there was an additional
read of the variable after the halt of the program. An example is given in Listing 5.5.1.

65



5. Optimizing Quil-Programs

A quantum variable counts as dead if its information content does not influence any
classical information from the current instruction until the end of the program.

The quantum variable can safely be called dead at a program point p if it is

• not used by any multi-qubit gate, and

• not measured

until

• the end of the program, or

• the next reset.

These conditions even hold if the instruction at p is a measurement, as long as this
measurement is not saved in a classical variable.

The variable may be entangled with other variables. Due to the no-communication
theorem [29] (cf. Section 2.1.1), operations on a qubit A cannot influence the measure-
ment result on other qubits without using a measurement result of A. This even holds
if A and the other qubits are entangled. Single qubit operations on an entangled qubit
cannot influence other qubit states either (cf. Section 2.1.2). Therefore, we do not have
to check for entanglement if a qubit will not be used in any multi-qubit gates and if the
result of a measurement on it will not be considered in the program.

We can only apply live-variable analysis at the halt DDG of the program, as we
cannot say whether the variable will be used in future DDGs. This limits the usage of
the live-variable analysis. Live-variable analysis could be applied to non-halt DDGs in
a restricted manner: All values count as alive at the end of the DDG (handled as if a
read-instruction is about to follow). If a variable is dead because its value is overwritten
within one DDG, it can still safely be called dead. However, our current implementation
does not support this.

Reaching definitions can be implemented for the classical Quil variables by checking
DECLARE and MOVE statements. Quil programs do not offer define/declare statements for
qubits, neither direct assignment of a value to a qubit. Therefore, applying reaching
definitions to the quantum part of the program is not sensible.

Constant folding can be applied on classical and quantum parts of our hybrid code.
In classical instructions, all constant values that are read are replaced by their constant
values. This means, e.g.,

ADD a b (5.5.5)

is replaced by

ADD a 10 (5.5.6)

if b has a constant value of 10. The same holds for parameterized quantum gates. If the
classical parameter is constant, it is replaced by the constant value.

66



5.5. Optimization Strategies

If a value that is written to is constant and additionally, all read values in the instruc-
tions are constant, the instruction is replaced by a MOVE instruction. As example: If a

is 5, b is 7 and the instruction is

ADD a b, (5.5.7)

it is replaced by

MOVE 12 (5.5.8)

as a would be 12 after the addition.
For the quantum part of the program, constant folding calculates the result of the ap-

plication of a gate on a qubit. This is only calculated if the qubit is constant beforehand
(i.e. in a Pauli basis, as defined by constant propagation) and a single-qubit Clifford gate
acts on it. We calculate the next Pauli state and still assume the qubit as constant (in
the respective Pauli state).

Constant folding for quantum variables can be done efficiently for Clifford gates
(cf. Section 2.1.2). To avoid dealing with entangled states during constant propaga-
tion, we generally assume qubits to be non-constant after a multi-qubit gate.

Due to this, we only trace the constant value of a qubit until the first non single-qubit
or non-Clifford gate acts on it. This means we are tracing the six Pauli basis state as
values of the qubits.

Measurements are in general considered to be random and write non-constant values
in the classical values. The only exception is if we know that a qubit is either in the |0〉
or |1〉 state. In that case, the classical value receives the constant value 0 or 1.

Copy propagation can be used in the classical part of heterogeneous code. It is not
sensible for quantum code due to the no-cloning theorem [24, 25] (cf. Section 2.1.1).

Dead code elimination can be applied to classical and quantum instructions. We
use the results of the live-variable analysis of which variables are dead. Classical code is
dead if all variables written to in the instruction are dead. Quantum code is dead if all
quantum variables an instruction acts on are dead All dead instructions are deleted.

These were optimization methods taken from the compilation routine of purely clas-
sical code. We end up with implementing constant propagation, live-variable analysis,
constant folding, and dead code elimination.

5.5.2. Optimizations for Quantum-Classical Calculations

Besides the classical methods, we can apply algorithms that are specific for the het-
erogeneous quantum-classical architecture. We introduce three algorithms targeting
quantum-classical architecture in this thesis: An analysis operation that finds hybrid-
dependencies, and the two transformation operations instruction reordering and latest
possible quantum execution. All three operations have been implemented in our code.

Finding hybrid-dependencies checks which instructions have to be executed be-
fore a hybrid node becomes executable. This analysis first finds all hybrid instructions,
and afterwards determines which instructions have to be executed before the respective

67



5. Optimizing Quil-Programs

1 DECLARE m INTEGER[1]

2 H 0

3 MEASURE 0 m

4 RZ(m) 0

Listing 5.5.2: An example of Quil code with hybrid instructions that depend on previous
lines.

hybrid instruction by using the DDG. A hybrid instruction can have other hybrid in-
structions as dependencies. A hybrid instruction “blocks” the instruction dependencies
for all other hybrid instructions.

For example, Listing 5.5.2 contains the hybrid instructions MEASURE and RZ(m). All
other lines have to be executed before RZ(m). But the only direct dependency we save
for it is MEASURE, as MEASURE is a hybrid instruction and depends on H and the DECLARE

instruction as well. For MEASURE, the dependencies H and DECLARE are saved.
Instruction reordering can be done as long as instructions dependent on each

other are still in the same order. The DDG provides information about the dependent
instructions.

The goal is to reorder the instructions to maximize the number of parallel executions
of the CPU and QPU. In other words, the time in which only one device is calculating
and the other one is idling should be minimized.

The two devices only influence each other through hybrid nodes. To prevent long
waiting times of one device for the other, we use the knowledge we gained from the
DDG and the finding hybrid-dependency analysis.

Listing 5.5.3 shows the pseudocode of the instruction reordering algorithm. If the CPU
or the QPU have to wait for the other device before a hybrid instruction, the algorithm
aims to avoid that the waiting device does not execute instructions. It is checked whether
there are instructions for the waiting device that can already be executed, i.e. for which
all dependencies have been executed. If this is the case, the waiting device can to execute
the instructions while waiting instead of doing nothing.

Latest possible quantum execution is one method to keep the total execution
time of the quantum device small.

The goal of this algorithm is to execute as many classical instructions as possible
before the QPU starts to work. For this, the execution of instructions is reordered in
the following way:

• All classical instructions that are not dependent on quantum device are executed
at the start.

• The first quantum instruction is executed such that QPU and CPU reach the first
hybrid node simultaneously. This is again done with the assumption that each
instruction has an execution time of 1.

68



5.5. Optimization Strategies

1 Input:

2 instruction_ddg: The instructions of the programm with the dependencies of the

instructions.↪→

3

4 Output:

5 execution_queue: The (probably new) order in which the instructions should be executed.

Must keep the topological order of instruction_ddg.↪→

6

7 execution_queue ← empty list

8 relevant_instructions_list ← hybrid instructions and last instruction of

instruction_ddg↪→

9 next relevant_instruction to be executed:

10 dependencies ← instructions that still need to be executed before

relevant_instruction in instruction_ddg↪→

11 quantum_number ← amount of quantum instructions in dependencies

12 classical_number ← amount of classical instructions in dependencies

13 Add dependencies to execution_queue

14 while new instructions in instruction_ddg are excutable wrt current execution

queue and quantum_number != classical_number:↪→

15 if quantum_number > classical_number:

16 Add executable classical instructions to execution queue

17 else:

18 Add executable quantum instructions to execution queue

19 Update quantum_number and classical_number according to the number of

added instructions↪→

20 add relevant_instruction to execution_queue

21 repeat

Listing 5.5.3: Instruction reordering algorithm.

69



5. Optimizing Quil-Programs

Table 5.6.1.: Best (i.e. minimal) wall time, instruction number, and QCT that could
be reached by random application of 50 optimizations. No given number
indicates that no improvement could be done compared to the original
program. The QIN has never been improved. The original values can be
found in Tables 5.3.1 and 5.4.1.

Example program Wall time Instr. no. QCT

Quantum teleportation – – –
Magic state distillation 53, 53, 6 – 112

Repeat-until-success – – –
IPE 35 51 30

After setting up this set of optimization operations, we will check in the next section
how these operations could optimize the example algorithms introduced in Section 5.3.

5.6. Evaluate Optimization Methods

In this section, we will examine how the optimization operations introduced in Section 5.5
affect quantum algorithms. We use our own implementation for this.

Determining the best order to apply optimization operations on a given code (phase-
ordering) is an open question in classical compiler architecture [132, 133]. Finding a
sensible order is out of scope for this work, and we will simply draw operations to ap-
ply to the codes at random. We do this 500 times for each algorithm and apply 50
optimization operations every time. While the operation drawing was random, cer-
tain analysis-transformation routines had to follow directly after each other, as certain
analysis operations lay the groundwork for succeeding transformation operations. The
optimization routine consisted of a permutation of the following operations succeeding
each other:

• Constant propagation → constant folding.

• Live-variable analysis → dead code elimination.

• Finding hybrid-dependencies → instruction reordering.

• Finding hybrid-dependencies → Latest possible quantum reordering.

Which means we did 25 random draws per optimization routine.

After all optimization operations had been applied, the metrics of Section 5.4 were
calculated for the optimized Quil program. The best resulting values for the metrics to
evaluate Quil programs against can be seen in Table 5.6.1.

For quantum teleportation and repeat-until-success, no improvement compared to the
original programs could be found. The iterative phase estimation’s wall time, instruction

70



5.7. Summary

Table 5.6.2.: The results of optimizing the iterative phase estimation with respect to
the metrics we evaluate the code against. 500 runs have been done. The
frequencies of the different combinations of wall time, instruction number,
QIN and QCT are given. The bold results are the best ones for this metric
(only given if the metric does not have the same result for all sets).

Wall time Instr. no. QIN QCT Result frequency

35 51 25 30 49.2%
36 51 25 30 43%
36 51 25 31 6.6%
37 52 25 30 0.6%
37 53 25 31 0.2%
39 51 25 33 0.2%
39 55 25 32 0.2%

number, and QCT could be reduced by 22% (wall time), 7.3% (instruction number), and
9.1% (QCT).

The magic state distillation’s wall time (summed over all DDGs) could be reduced by
14%, its QCT dropped by 14% as well. It yields the same values for all metrics in every
optimization iteration.

The different result sets of the IPE algorithm and their frequencies can be found in
Table 5.6.2. The most frequent results are a wall time of 35, an instruction number of
51, and a QCT of 30. This is not only the most frequent result set, but also the result
set with most optimal values for all metrics.

The second most frequent result has a value of 35 for the wall time.

5.7. Summary

In this section, we could see that we are able to optimize code for heterogeneous quantum-
classical architecture. We implemented parsing, analysation, optimization, and evalua-
tion procedures for algorithms written in Quil. The optimization procedures were able
to improve some of the metrics we evaluate the code against.

It could be shown that the order of instructions has to be carefully considered in an
HQCC architecture. The integration of two devices (CPU and QPU) into one component
results into new properties that have to be taken into account for optimization.

Two of the algorithms we looked at could not be improved, and only some parameters
improved for the examples that did improve at all. This is most likely a consequence of
the fact that the programming language we are looking at has very low abstraction. This
means we do not have the necessity for optimization that is the result of more abstract
programming languages being compiled to a less abstract language.

The suggested optimization routines did not manage to reduce the total number of
quantum instructions for any algorithm. This raises the question how sensible it is

71



5. Optimizing Quil-Programs

to try and optimize a quantum circuit by routines derived from classical optimization.
Another way to optimize quantum circuits is to re-order and exchange quantum gates
based on their physical properties [10] (cf. Chapter 3). This optimization only considers
the quantum part of a program and is possibly the more sensible way of optimizing
quantum circuits.

To sum up, we showed that we are able to optimize programs for the heterogeneous
case. The order of the instructions is especially relevant for this kind of programs.
However, we have also seen that current quantum algorithm have only a limited potential
for being optimized. Nevertheless we can expect this field to become more relevant in the
future. QPLs will most likely become more abstract, like classical languages did. This
will also cause more necessity for code optimization, for which heterogeneous properties
will have to be considered.

72



6. Conclusion

In this thesis, we looked at QPUs in heterogeneous quantum-classical systems. Our
focus was on the refined HQCC architecture [49]. This architecture defines a quantum
component which is part of a distributed computing system. The quantum component
consists of a CPU and a QPU, which can communicate within the coherence time of the
qubits. We examined how programs dedicated to the refined HQCC architecture can be
optimized.

We will now discuss the results and examine the possibilities for future work.

6.1. Discussion

The aim of this thesis was to examine optimization routines for heterogeneous calcu-
lations. There is already research about the optimization of quantum circuits, but the
existing research neglects the classical part of real-time quantum-classical calculations.
We wanted to find out which kind of optimization routines are possible and which al-
ready exist. We looked at some of today’s QPLs in Chapter 4. We found that most
QPLs are best adapted to static circuit creation, i.e. one creates a quantum circuit that
does not have to be updated by a CPU during execution on a QPU. Additionally, none
of the languages we looked at support optimizations specifically targeting heterogeneous
quantum-classical architectures.

Due to that finding, we examined some optimization options ourselves in Chapter 5.
We used the programming language Quil [14] for that, as it is low in abstraction and there
are some tools that support developing and executing Quil. We introduced performance
metrics to evaluate a program in Section 5.4, namely wall time, quantum instruction
number and quantum calculation time. In Section 5.5 we suggested some optimization
operations for heterogeneous Quil programs, namely constant propagation, live-variable
analysis, constant folding, dead code elimination, finding hybrid-dependencies, instruc-
tion reordering, and latest possible quantum execution. We tried out and evaluated the
operations in Section 5.6. We found that we are in principle able to optimize programs
with respect to our performance metrics with the operations we suggested.

The optimization operations we worked with were derived from classical optimizations
during Chapter 5. In Chapter 3, we examined that there is a research field about
optimizing quantum circuits using physical and mathematical properties. Working with
these kind of optimizations was out of scope of this thesis.

The programs we used were only improved a small amount. This could be because the
programs we used were programmed on a very low-level of abstraction. Nevertheless, it
is highly probable that the optimization of heterogeneous quantum-classical programs

73



6. Conclusion

becomes more relevant in the future. The development of more abstract quantum pro-
gramming languages will lead to more compilation steps between the written program
and the hardware, which will also lead to a bigger need of optimization routines. There-
fore, the optimization of quantum-classical code is something that should be investigated
in more detail. We will look into some possibilities for this in the next section.

Within the evaluation process of this thesis in Section 5.3, multiple DDGs of a Quil
program were created, as we split the program after each conditional jump. We did
this to avoid having to work with circular dependencies and loops. Classical programs
execute loops most of the time, which is why optimizing loops has a high impact on
program performance [66].

During Chapter 5, we assumed that the instruction time of one instruction would be 1,
independent on the type of measurement. In reality, CPUs execute an instruction much
faster than QPUs, and the execution time for one instruction in a QPU varies greatly
with the qubit technology used (cf. Section 2.1.3). Additionally, the execution time of
one-qubit and multiple-qubit gates often differs [3, 4, 5, 6] and one gets latency times
due to communication between classical and quantum hardware.

6.2. Future Work

In this thesis, we examined some principles for the optimization of quantum software
running on heterogeneous quantum-classical architecture. There are many ways to do
further research in this direction.

As previously discussed, the limitation on loops and circular dependencies opens ad-
ditional fields for future research. It would be interesting to examine how loop optimiza-
tions and branch prediction can be applied to a quantum-classical program. One of the
simplest additions would be to remove a condition if we can say during static analysis
that a result is certain. However, this case can be expected to be the minority of cases,
due to the non-deterministic nature of quantum mechanics.

In Chapter 3 we mentioned that there is research on circuit optimization focused
solemnly on the quantum circuit. Combining these quantum circuit optimizations with
the optimizations we derived from classical procedures is another non-trivial problem
that could be interesting to look into.

As we assumed an execution time of 1 per instruction, future research could be about
considering real execution times. Additionally, the speed of the hardware is just one
property of the hardware to be considered. One challenge of this thesis was that we
have only little insight into the concrete hardware architecture of QPUs. When sufficient
information about QPU hardware gets available, it would be interesting to consider these
as well during the optimization process.

One of the quantum languages we looked at in Chapter 4 was Silq [100]. Silq is special
in the way that it is the most abstract language we examined. However, at the moment,
Silq cannot be compiled to quantum circuits. Silq combines quantum and classical
calculations and is comparably abstract which makes it interesting for future works.
Compiling Silq – or a comparable language – to a less abstract form and optimizing it

74



6.2. Future Work

during compilation would be one step towards abstract quantum languages that demand
less quantum mechanical insights of the developer.

75





7. Statutory Declaration

I hereby state that I have written this master’s thesis independently and that I have
not used any sources or aids other than those declared. All passages taken from
the literature have been marked as such. This thesis has not yet been submitted
to any examination authority in the same or a similar form.

Düsseldorf, February 6, 2025

Lian Remme

Declaration on the Usage of Generative AI

Generative AI was used for the following purposes in this master’s thesis:

• GitHub Copilot while working on the code as an integrated tool in the inte-
grated development environments (IDEs). It has been used to assist during
code-writing, helped writing documentation strings, deciding on variable/-
function names and wrote first drafts of some methods/functions.

• GitHub Copilot as an integrated tool in the IDE to write the README.md of
the GitHub repository corresponding to this thesis [134]. It has been used
for formulation suggestions and for Markdown formatting.

77





A. Appendix

A.1. Code and Data Availability

The code wrote to analyze, optimize and evaluate Quil code in Chapter 5 can
be found at [134] (release v0.0.1). The repository contains descriptions of how
to compile and execute the code for reproducibility. It provides the functionali-
ties of creating CFGs, creating DDGs and applying the optimization techniques
introduced in this thesis.

The repository contains the Quil codes as well as the CFGs and DDGs for quan-
tum teleportation, magic state distillation, repeat-until-success, and IPE, which
have been used for the optimizations evaluated in Chapter 5. Additionally, the
detailed optimization results can be found at [135].

79



A. Appendix

A.2. List of Abbreviations

CFG control-flow graph
CLOPS circuit layer operations per second
CPU central processing unit
DDG data-dependence graph
DSL domain-specific language
GPL gate programming language
GPU gate processing unit
HPC high performance computing
HQCC heterogeneous quantum-classical computation
IDE integrated development environment
IR intermediate representation
ISA instruction set architecture
IPE iterative phase estimation
LLVM low level virtual machine
MLIR multi-level intermediate representation
MPI message passing interface
NISQ noisy intermediate-scale quantum
QASM quantum assembly language
QCT quantum calculation time
QIN quantum instruction number
QIRO quantum intermediate representation for optimization
QNPUs quantum network processing units
QPL quantum programming language
QPU quantum processing unit
QPT quantum programming tool
QVM quantum virtual machine
SDK software development kit

80



Bibliography

[1] Peter W Shor. “Algorithms for Quantum Computation: Discrete Logarithms and
Factoring”. In: Proceedings 35th annual symposium on foundations of computer
science. Ieee. 1994, pp. 124–134.

[2] Stephen Jordan. Quantum Algorithm Zoo. Aug. 23, 2024. url: https://quantu
malgorithmzoo.org/ (visited on 12/29/2024).

[3] IBMQuantum. ibm fez. 2024. url: https : / / quantum . ibm . com / services /

resources?system=ibm_fez (visited on 12/20/2024).

[4] IBMQuantum. ibm marrakesh. 2024. url: https://quantum.ibm.com/service
s/resources?system=ibm_marrakesh (visited on 12/20/2024).

[5] IBMQuantum. ibm torino. 2024. url: https://quantum.ibm.com/services/
resources?system=ibm_torino (visited on 12/20/2024).

[6] Inc. IonQ. IonQ Aria: Practical Performance. Jan. 18, 2024. url: https://ionq.
com/resources/ionq-aria-practical-performance (visited on 12/20/2024).

[7] Inc. Atom Computing. Quantum startup Atom Computing first to exceed 1,000
qubits. Oct. 24, 2024. url: https://atom-computing.com/quantum-startup-
atom-computing-first-to-exceed-1000-qubits/ (visited on 12/29/2024).

[8] Davide Castelvecchi. “IBM releases first-ever 1,000-qubit quantum chip”. In: Na-
ture 624.7991 (2023), pp. 238–238.

[9] John Preskill. “Quantum computing and the entanglement frontier”. In: Bulletin
of the American Physical Society 58 (2013).

[10] Krishnageetha Karuppasamy et al. “Quantum Circuit Optimization: Current
trends and future direction”. In: arXiv:2408.08941 (Aug. 2024), arXiv:2408.08941.
doi: 10.48550/arXiv.2408.08941. arXiv: 2408.08941.

[11] Thomas Fösel et al. “Quantum circuit optimization with deep reinforcement
learning”. In: arXiv e-prints, arXiv:2103.07585 (Mar. 2021), arXiv:2103.07585.
doi: 10.48550/arXiv.2103.07585. arXiv: 2103.07585 [quant-ph].

[12] Francisco JR Ruiz et al. “Quantum Circuit Optimization with AlphaTensor”. In:
arXiv e-prints (2024), arXiv–2402.

[13] Zikun Li et al. “Quarl: A Larning-Based Quantum Circuit Optimizer”. In: Pro-
ceedings of the ACM on Programming Languages 8.OOPSLA1 (Apr. 2024). doi:
10.1145/3649831. url: https://doi.org/10.1145/3649831.

81

https://quantumalgorithmzoo.org/
https://quantumalgorithmzoo.org/
https://quantum.ibm.com/services/resources?system=ibm_fez
https://quantum.ibm.com/services/resources?system=ibm_fez
https://quantum.ibm.com/services/resources?system=ibm_marrakesh
https://quantum.ibm.com/services/resources?system=ibm_marrakesh
https://quantum.ibm.com/services/resources?system=ibm_torino
https://quantum.ibm.com/services/resources?system=ibm_torino
https://ionq.com/resources/ionq-aria-practical-performance
https://ionq.com/resources/ionq-aria-practical-performance
https://atom-computing.com/quantum-startup-atom-computing-first-to-exceed-1000-qubits/
https://atom-computing.com/quantum-startup-atom-computing-first-to-exceed-1000-qubits/
https://doi.org/10.48550/arXiv.2408.08941
https://arxiv.org/abs/2408.08941
https://doi.org/10.48550/arXiv.2103.07585
https://arxiv.org/abs/2103.07585
https://doi.org/10.1145/3649831
https://doi.org/10.1145/3649831


Bibliography

[14] Robert S. Smith, Michael J. Curtis, and William J. Zeng. “A Practical Quan-
tum Instruction Set Architecture”. In: arXiv e-prints, arXiv:1608.03355 (Aug.
2016), arXiv:1608.03355. doi: 10.48550/arXiv.1608.03355. arXiv: 1608.03355
[quant-ph].

[15] Lov K. Grover. “A fast quantum mechanical algorithm for database search”. In:
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Com-
puting. STOC ’96. Philadelphia, Pennsylvania, USA: Association for Computing
Machinery, 1996, pp. 212–219. isbn: 0897917855. doi: 10.1145/237814.237866.
url: https://doi.org/10.1145/237814.237866.

[16] Alberto Peruzzo et al. “A variational eigenvalue solver on a photonic quantum
processor”. In: Nature Communications 5.4213 (2014). doi: 10.1038/ncomms521
3.

[17] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information - 10th Anniversary Edition. 10th ed. Cambridge University Press,
2010. isbn: 978-1-107-00217-3.

[18] Xiaosi Xu et al. “A Herculean task: Classical simulation of quantum computers”.
In: arXiv e-prints, arXiv:2302.08880 (Feb. 2023), arXiv:2302.08880. doi: 10.485
50/arXiv.2302.08880. arXiv: 2302.08880 [quant-ph].

[19] IBMQuantum. QPU information — IBM Quantum Documentation. 2024. url:
https : / / docs . quantum . ibm . com / guides / qpu - information (visited on
12/16/2024).

[20] Inc. IonQ. IonQ — Our Trapped Ion Technology. 2024. url: https://ionq.
com/technology (visited on 12/16/2024).

[21] Paul Adrien Maurice Dirac. “A new notation for quantum mechanics”. In: Mathe-
matical Proceedings of the Cambridge Philosophical Society 35.3 (1939), pp. 416–
418. doi: 10.1017/S0305004100021162.

[22] Rémy Mosseri and Rossen Dandoloff. “Geometry of entangled states, Bloch
spheres and Hopf fibrations”. In: Journal of Physics A: Mathematical and Gen-
eral 34.47 (Nov. 2001), pp. 10243–10252. doi: 10.1088/0305-4470/34/47/324.

[23] Daniel Gottesman. “Theory of fault-tolerant quantum computation”. In: Physical
Review A 57 (1 Jan. 1998), pp. 127–137. doi: 10.1103/PhysRevA.57.127.

[24] William K Wootters and Wojciech H Zurek. “A single quantum cannot be cloned”.
In: Nature 299 (1982), pp. 802–803. doi: 10.1038/299802a0.

[25] Dennis Dieks. “Communication by EPR devices”. In: Physics Letters A 92.6
(1982), pp. 271–272. issn: 0375-9601. doi: https://doi.org/10.1016/0375-
9601(82)90084-6. url: https://www.sciencedirect.com/science/article/
pii/0375960182900846.

[26] A Robert Calderbank et al. “Quantum Error Correction and Orthogonal Geom-
etry”. In: Physical Review Letters 78 (3 Jan. 1997), pp. 405–408. doi: 10.1103/
PhysRevLett.78.405.

82

https://doi.org/10.48550/arXiv.1608.03355
https://arxiv.org/abs/1608.03355
https://arxiv.org/abs/1608.03355
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.48550/arXiv.2302.08880
https://doi.org/10.48550/arXiv.2302.08880
https://arxiv.org/abs/2302.08880
https://docs.quantum.ibm.com/guides/qpu-information
https://ionq.com/technology
https://ionq.com/technology
https://doi.org/10.1017/S0305004100021162
https://doi.org/10.1088/0305-4470/34/47/324
https://doi.org/10.1103/PhysRevA.57.127
https://doi.org/10.1038/299802a0
https://doi.org/https://doi.org/10.1016/0375-9601(82)90084-6
https://doi.org/https://doi.org/10.1016/0375-9601(82)90084-6
https://www.sciencedirect.com/science/article/pii/0375960182900846
https://www.sciencedirect.com/science/article/pii/0375960182900846
https://doi.org/10.1103/PhysRevLett.78.405
https://doi.org/10.1103/PhysRevLett.78.405


Bibliography

[27] Leonid Gurvits. “Classical Deterministic Complexity of Edmonds’ Problem and
Quantum Entanglement”. In: Proceedings of the Thirty-Fifth Annual ACM Sym-
posium on Theory of Computing. STOC ’03. San Diego, CA, USA: Association
for Computing Machinery, 2003, pp. 10–19. isbn: 1581136749. doi: 10.1145/
780542.780545. url: https://doi.org/10.1145/780542.780545.

[28] Roger G. Newton. “Relativity and the Order of Cause and Effect in Time”. In:
AIP Conference Proceedings. Vol. 16. American Institute of Physics. 1974, pp. 49–
64. doi: 10.1063/1.2948448.

[29] Asher Peres and Daniel R. Terno. “Quantum Information and Relativity Theory”.
In: Reviews of Modern Physics 76 (1 Jan. 2004), pp. 93–123. doi: 10.1103/

RevModPhys.76.93.

[30] John Preskill. “Quantum Computing in the NISQ era and beyond”. In: Quantum
2 (Aug. 2018), p. 79. doi: 10.22331/q-2018-08-06-79.

[31] Maximilian Schlosshauer. “Quantum decoherence”. In: Physics Reports 831
(2019), pp. 1–57. doi: 10.1016/j.physrep.2019.10.001.

[32] Tzvetan Metodi, Arvin I. Faruque, and Frederic T. Chong. Quantum Computing
for Computer Architects. 2nd ed. Morgan & Claypool Publishers, 2011. isbn:
9781608456208.

[33] David P DiVincenzo. “Topics in quantum computers”. In: Mesoscopic electron
transport. Springer Netherlands, 1997, pp. 657–677.

[34] Frank Arute et al. “Quantum supremacy using a programmable superconducting
processor”. In: Nature 574.7779 (2019), pp. 505–510. doi: 10.1038/s41586-019-
1666-5.

[35] Inc. Atom Computing. Technology - Atom Computing. 2024. url: https://atom-
computing.com/quantum-computing-technology/ (visited on 12/16/2024).

[36] Ya-Chi Liu, Yi-Chung Dzeng, and Chao-Cheng Ting. “Nitrogen Vacancy-
Centered Diamond Qubit: The fabrication, design, and application in quantum
computing”. In: IEEE Nanotechnology Magazine 16.4 (2022), pp. 37–43. doi:
10.1109/MNANO.2022.3175405.

[37] Sergei Slussarenko and Geoff J. Pryde. “Photonic quantum information process-
ing: A concise review”. In: Applied Physics Reviews 6 (2019). doi: 10.1063/1.
5115814.

[38] Siddharth Chander. “The Current Landscape of Quantum Hardware Develop-
ment - An Overview”. In: Intersect: The Stanford Journal of Science, Technology,
and Society 17.3 (2024).

[39] Michel H. Devoret and John M. Martinis. “Implementing Qubits with Supercon-
ducting Integrated Circuits”. In: Quantum Information Processing 3.1–5 (Oct.
2004), pp. 163–203. issn: 1570-0755. doi: 10.1007/s11128-004-3101-5.

83

https://doi.org/10.1145/780542.780545
https://doi.org/10.1145/780542.780545
https://doi.org/10.1145/780542.780545
https://doi.org/10.1063/1.2948448
https://doi.org/10.1103/RevModPhys.76.93
https://doi.org/10.1103/RevModPhys.76.93
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1016/j.physrep.2019.10.001
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://atom-computing.com/quantum-computing-technology/
https://atom-computing.com/quantum-computing-technology/
https://doi.org/10.1109/MNANO.2022.3175405
https://doi.org/10.1063/1.5115814
https://doi.org/10.1063/1.5115814
https://doi.org/10.1007/s11128-004-3101-5


Bibliography

[40] Eby Sebastian and Ramesh Chandra Poonia. “Compendium of Qubit Technolo-
gies in Quantum Computing”. In: International Conference on Communication
and Intelligent Systems. Springer. 2022, pp. 91–100.

[41] Andrew Wack et al. “Quality, Speed, and Scale: three key attributes to mea-
sure the performance of near-term quantum computers”. In: arXiv preprint
arXiv:2110.14108 (2021). doi: 10.48550/arXiv.2110.14108.

[42] Intel Corporation. Intel® Core™, Intel® Core Ultra, and Intel Processor Com-
parison Chart for Laptops. Dec. 18, 2024. url: https : / / www . intel . com /

content/www/us/en/content-details/843334/intel-core-intel-core-

ultra-and-intel-processor-comparison-chart-for-laptops.html (visited
on 12/20/2024).

[43] IBMQuantum. Native gates and operations. 2024. url: https://docs.quantum.
ibm.com/guides/native-gates (visited on 12/23/2024).

[44] Amazon Web Services. Cloud Quantum Computing Service - Amazon Braket -
AWS. 2024. url: https://aws.amazon.com/braket/ (visited on 07/22/2024).

[45] Inc. IonQ. QPU Submission Checklist. 2024. url: https://docs.ionq.com/
guides/qpu-submission-checklist (visited on 12/23/2024).

[46] Giuseppe E. Santoro and Erio Tosatti. “Optimization using quantum mechan-
ics: quantum annealing through adiabatic evolution”. In: Journal of Physics A:
Mathematical and General 39.36 (2006). doi: 10.1088/0305-4470/39/36/R01.

[47] Catherine McGeoch and Pau Farré. “The D-Wave Advantage System: An
Overview”. In: D-Wave Systems Inc., Burnaby, BC, Canada, Tech. Rep (2020).

[48] Maarten Van Steen and Andrew S. Tanenbaum. Distributed Systems. 3rd ed.
Maarten van Steen Leiden, The Netherlands, 2020. isbn: 978-90-815406-2-9.

[49] Xiang Fu et al. “Quingo: A Programming Framework for Heterogeneous Quantum-
Classical Computing with NISQ Features”. In: ACM Transactions on Quantum
Computing 2 (4 2021). doi: 10.1145/3483528.

[50] Alexander Geng et al. “Quantum image processing on real superconducting and
trapped-ion based quantum computers”. In: tm - Technisches Messen 90.7-8
(2023), pp. 445–454. doi: 10.1515/teme-2023-0008.

[51] Kun Fang et al. “Dynamic quantum circuit compilation”. In: arXiv preprint
arXiv:2310.11021 (2023).

[52] Charles H Bennett et al. “Teleporting an Unknown Quantum State via Dual
Classical and Einstein-Podolsky-Rosen Channels”. In: Physical Review Letters
70 (13 1993), pp. 1895–1899. doi: 10.1103/PhysRevLett.70.1895.

[53] Thomas Lubinski et al. “Advancing hybrid quantum–classical computation with
real-time execution”. In: Frontiers in Physics 10 (2022). doi: 10.3389/fphy.
2022.940293.

84

https://doi.org/10.48550/arXiv.2110.14108
https://www.intel.com/content/www/us/en/content-details/843334/intel-core-intel-core-ultra-and-intel-processor-comparison-chart-for-laptops.html
https://www.intel.com/content/www/us/en/content-details/843334/intel-core-intel-core-ultra-and-intel-processor-comparison-chart-for-laptops.html
https://www.intel.com/content/www/us/en/content-details/843334/intel-core-intel-core-ultra-and-intel-processor-comparison-chart-for-laptops.html
https://docs.quantum.ibm.com/guides/native-gates
https://docs.quantum.ibm.com/guides/native-gates
https://aws.amazon.com/braket/
https://docs.ionq.com/guides/qpu-submission-checklist
https://docs.ionq.com/guides/qpu-submission-checklist
https://doi.org/10.1088/0305-4470/39/36/R01
https://doi.org/10.1145/3483528
https://doi.org/10.1515/teme-2023-0008
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.3389/fphy.2022.940293
https://doi.org/10.3389/fphy.2022.940293


Bibliography

[54] Emanuel Knill. “Fault-Tolerant Postselected Quantum Computation: Schemes”.
In: arXiv preprint quant-ph/0402171 (2004). doi: 10.48550/arXiv.quant-

ph/0402171.

[55] Sergey Bravyi and Alexei Kitaev. “Universal quantum computation with ideal
Clifford gates and noisy ancillas”. In: Physical Review A 71 (2 2005). doi: 10.
1103/PhysRevA.71.022316.

[56] Austin G. Fowler et al. “Surface codes: Towards practical large-scale quantum
computation”. In: Physical Review A 86 (3 Sept. 2012). doi: 10.1103/PhysRevA.
86.032324.

[57] Adam Paetznick and Krysta M. Svore. “Repeat-Until-Success: Non-deterministic
decomposition of single-qubit unitaries”. In: Quantum Information & Computa-
tion 14.15–16 (Nov. 2014), pp. 1277–1301.

[58] Peng Fu et al. “Proto-Quipper with Dynamic Lifting”. In: Proceedings of the
ACM on Programming Languages 7.11 (POPL Jan. 2023), pp. 309–334. doi:
10.1145/3571204.

[59] Miroslav Dobš́ıček et al. “Arbitrary accuracy iterative quantum phase estimation
algorithm using a single ancillary qubit: A two-qubit benchmark”. In: Physical
Review A 76 (3 Sept. 2007). doi: 10.1103/PhysRevA.76.030306.

[60] Stephane Beauregard. “Circuit for Shor’s algorithm using 2n+ 3 qubits”. In:
Quantum Information & Computation 3.2 (Mar. 2003), pp. 175–185.

[61] Martina Rossi et al. “Using Shor’s algorithm on near term Quantum computers:
a reduced version”. In: Quantum Machine Intelligence 4.18 (July 2022). doi:
10.1007/s42484-022-00072-2.

[62] IBMQuantum. Hardware considerations and limitations for classical feedforward
and control flow. 2024. url: https://docs.quantum.ibm.com/guides/dynamic
-circuits-considerations (visited on 12/26/2024).

[63] Amazon Web Services. Developer Guide Amazon Braket. 2024. url: https://
docs.aws.amazon.com/pdfs/braket/latest/developerguide/braket-devel

oper-guide.pdf (visited on 09/10/2024).

[64] Amazon Web Services. Amazon Braket Quantum Computers - AWS. 2024.
url: https://aws.amazon.com/braket/quantum- computers/ (visited on
12/26/2024).

[65] E. Knill. Conventions for Quantum Pseudocode. Tech. rep. Los Alamos National
Lab. (LANL), Los Alamos, NM (United States), June 1996. doi: 10.2172/3664
53. url: https://www.osti.gov/biblio/366453.

[66] Alfred V. Aho et al. Compilers: Principles, Techniques and Tools. 2nd ed. Pearson
Education, 2007. isbn: 0-321-48681-1.

[67] Yunlin Su and Song Y. Yan. Principles of Compilers. Springer, 2011. isbn: 978-
3-642-20834-8.

85

https://doi.org/10.48550/arXiv.quant-ph/0402171
https://doi.org/10.48550/arXiv.quant-ph/0402171
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1145/3571204
https://doi.org/10.1103/PhysRevA.76.030306
https://doi.org/10.1007/s42484-022-00072-2
https://docs.quantum.ibm.com/guides/dynamic-circuits-considerations
https://docs.quantum.ibm.com/guides/dynamic-circuits-considerations
https://docs.aws.amazon.com/pdfs/braket/latest/developerguide/braket-developer-guide.pdf
https://docs.aws.amazon.com/pdfs/braket/latest/developerguide/braket-developer-guide.pdf
https://docs.aws.amazon.com/pdfs/braket/latest/developerguide/braket-developer-guide.pdf
https://aws.amazon.com/braket/quantum-computers/
https://doi.org/10.2172/366453
https://doi.org/10.2172/366453
https://www.osti.gov/biblio/366453


Bibliography

[68] Frances E. Allen. “Control flow analysis”. In: ACM SIGPLAN Notices 5 (7 July
1970), pp. 1–19. doi: 10.1145/390013.808479. url: https://doi.org/10.
1145/390013.808479.

[69] Keith D. Cooper and Linda Torczon. Engineering a Compiler. Morgan Kaufmann,
2006. isbn: 1–55860–699–8.

[70] Dmitri Maslov, Gerhard W. Dueck, and D. Michael Miller. “Simplification of
Toffoli Networks via Templates”. In: 16th Symposium on Integrated Circuits and
Systems Design, 2003. SBCCI 2003. Proceedings. IEEE. 2003, pp. 53–58. doi:
10.1109/SBCCI.2003.1232806.

[71] Dmitri Maslov et al. “Quantum Circuit Simplification Using Templates”. In: De-
sign, Automation and Test in Europe. IEEE. 2005. doi: 10.1109/DATE.2005.249.

[72] John van de Wetering and Matt Amy. “Optimising T-count is NP-hard”. In:
arXiv e-prints (Sept. 2023). doi: 10.48550/arXiv.2310.05958.

[73] Daniel Herr, Franco Nori, and Simon J Devitt. “Optimization of lattice surgery
is NP-hard”. In: npj Quantum Information 3.35 (2017). doi: 10.1038/s41534-
017-0035-1.

[74] John van de Wetering et al. “Optimal compilation of parametrised quantum cir-
cuits”. In: arXiv e-prints (Jan. 2024). doi: 10.48550/arXiv.2401.12877.

[75] Luis Jimnez-Navajas et al. “Quantum Software Development: A Survey”. In:
24.7&8 (2024), pp. 609–642.

[76] Amr Elsharkawy et al. “Integration of Quantum Accelerators with High Per-
formance Computing – A Review of Quantum Programming Tools”. In: arXiv
preprint arXiv:2309.06167 (Sept. 2023).

[77] David Barral et al. “Review of Distributed Quantum Computing. From single
QPU to High Performance Quantum Computing”. In: arXiv e-print (Apr. 2024).
doi: 10.48550/arXiv.2404.01265.

[78] Bruno Schmitt and Giovanni De Micheli. “Tweedledum: A Compiler Compan-
ion for Quantum Computing”. In: 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE. Mar. 2022, pp. 7–12. doi: 10.23919/
DATE54114.2022.9774510.

[79] boschmitt. boschmitt/tweedledum: C++17 Library for analysis, compilation/syn-
thesis, and optimization of quantum circuits. 2025. url: https://github.com/
boschmitt/tweedledum (visited on 02/05/2025).

[80] Matthew P Harrigan et al. “Expressing and Analyzing Quantum Algorithms with
Qualtran”. In: arXiv e-prints (Sept. 2024). doi: 10.48550/arXiv.2409.04643.

[81] quantumlib. Measurement and Classical Data · Issue #445 · quantumlib/Qual-
tran. Oct. 25, 2023. url: https://github.com/quantumlib/Qualtran/issues/
445 (visited on 12/28/2024).

[82] David Ittah et al. “Enabling Dataflow Optimization for Quantum Programs”. In:
arXiv e-prints (Jan. 2021). doi: 10.48550/arXiv.2101.11030.

86

https://doi.org/10.1145/390013.808479
https://doi.org/10.1145/390013.808479
https://doi.org/10.1145/390013.808479
https://doi.org/10.1109/SBCCI.2003.1232806
https://doi.org/10.1109/DATE.2005.249
https://doi.org/10.48550/arXiv.2310.05958
https://doi.org/10.1038/s41534-017-0035-1
https://doi.org/10.1038/s41534-017-0035-1
https://doi.org/10.48550/arXiv.2401.12877
https://doi.org/10.48550/arXiv.2404.01265
https://doi.org/10.23919/DATE54114.2022.9774510
https://doi.org/10.23919/DATE54114.2022.9774510
https://github.com/boschmitt/tweedledum
https://github.com/boschmitt/tweedledum
https://doi.org/10.48550/arXiv.2409.04643
https://github.com/quantumlib/Qualtran/issues/445
https://github.com/quantumlib/Qualtran/issues/445
https://doi.org/10.48550/arXiv.2101.11030


Bibliography

[83] David Ittah et al. “QIRO: A Static Single Assignment-based Quantum Program
Representation for Optimization”. In: ACM Transactions on Quantum Comput-
ing 3.14 (3 June 2022), pp. 1–32. doi: 10.1145/3491247.

[84] dime10. dime10/QIRO: Source code for the QIRO research project - a novel IR
for hybrid quantum program optimization. 2025. url: https://github.com/

dime10/QIRO (visited on 02/05/2025).

[85] amazon-braket. amazon-braket/amazon-braket-sdk-python: A Python SDK for in-
teracting with quantum devices on Amazon Braket. 2025. url: https://github.
com/amazon-braket/amazon-braket-sdk-python (visited on 02/05/2025).

[86] quantumlib. quantumlib/Cirq: A Python framework for creating, editing, and in-
voking Noisy Intermediate-Scale Quantum (NISQ) circuits. 2025. url: https:
//github.com/quantumlib/Cirq (visited on 02/05/2025).

[87] NVIDIA. NVIDIA/cuda-quantum: C++ and Python support for the CUDA
Quantum programming model for heterogeneous quantum-classical workflows.
2025. url: https://github.com/NVIDIA/cuda-quantum (visited on 02/05/2025).

[88] dwavesystems. GitHub - dwavesystems/dwave-ocean-sdk: Installer for D-Wave’s
Ocean tools. 2024. url: https://github.com/dwavesystems/dwave-ocean-sdk
(visited on 02/05/2025).

[89] team-InQuIR. team-InQuIR/InQuIR: OpenQL: InQuIR: Intermediate Represen-
tation for Interconnected Quantum Compters. 2025. url: https://github.com/
team-InQuIR/InQuIR (visited on 02/05/2025).

[90] QuTech-Delft. QuTech-Delft/netqasm. 2025. url: https://github.com/QuTech
-Delft/netqasm (visited on 02/05/2025).

[91] openqasm. openqasm/openqasm: Quantum assembly language for extended quan-
tum circuits. 2025. url: https://github.com/openqasm/openqasm (visited on
02/05/2025).

[92] QuTech-Delft. QuTech-Delft/OpenQL: OpenQL: A Portable Quantum Program-
ming Framework for Quantum Accelerators. 2025. doi: 10.1145/3474222. url:
https://github.com/QuTech-Delft/OpenQL (visited on 02/05/2025).

[93] quantumlib. PennyLaneAI/pennylane: PennyLane is a cross-platform Python li-
brary for quantum computing, quantum machine learning, and quantum chem-
istry. Train a quantum computer the same way as a neural network. url: https:
//github.com/PennyLaneAI/pennylane (visited on 02/05/2025).

[94] microsoft. microsoft/qsharp: Azure Quantum Development Kit, including the Q#
programming language, resource estimator, and Quantum Katas. 2025. url: htt
ps://github.com/microsoft/qsharp (visited on 02/05/2025).

[95] Qiskit. Qiskit/qiskit: Qiskit is an open-source SDK for working with quantum
computers at the level of extended quantum circuits, operators, and primitives.
2025. url: https://github.com/Qiskit/qiskit (visited on 02/05/2025).

87

https://doi.org/10.1145/3491247
https://github.com/dime10/QIRO
https://github.com/dime10/QIRO
https://github.com/amazon-braket/amazon-braket-sdk-python
https://github.com/amazon-braket/amazon-braket-sdk-python
https://github.com/quantumlib/Cirq
https://github.com/quantumlib/Cirq
https://github.com/NVIDIA/cuda-quantum
https://github.com/dwavesystems/dwave-ocean-sdk
https://github.com/team-InQuIR/InQuIR
https://github.com/team-InQuIR/InQuIR
https://github.com/QuTech-Delft/netqasm
https://github.com/QuTech-Delft/netqasm
https://github.com/openqasm/openqasm
https://doi.org/10.1145/3474222
https://github.com/QuTech-Delft/OpenQL
https://github.com/PennyLaneAI/pennylane
https://github.com/PennyLaneAI/pennylane
https://github.com/microsoft/qsharp
https://github.com/microsoft/qsharp
https://github.com/Qiskit/qiskit


Bibliography

[96] quil-lang. quil-lang/quil: Specification of Quil: A Practical Quantum Instruction
Set Architecture. 2025. url: https://github.com/quil-lang/quil (visited on
02/05/2025).

[97] inQWIRE. GitHub - inQWIRE/QWIRE: A quantum circuit language and formal
verification tool. 2025. url: https://github.com/inQWIRE/QWIRE (visited on
02/05/2025).

[98] silq-lang. silq-lang/vscode-silq. 2025. url: https://github.com/silq-lang/
vscode-silq (visited on 02/05/2025).

[99] eclipse. eclipse/xacc: XACC - eXtreme-scale Accelerator programming framework.
2025. url: https://github.com/eclipse/xacc (visited on 02/05/2025).

[100] Benjamin Bichsel et al. “Silq: A High-Level Quantum Language with Safe Un-
computation and Intuitive Semantics”. In: Proceedings of the 41st ACM SIG-
PLAN Conference on Programming Language Design and Implementation. New
York, NY, USA: Association for Computing Machinery, 2020, pp. 286–300. doi:
10.1145/3385412.3386007.

[101] Google Quantum AI. Cirq — Google Quantum AI. 2024. url: https://quantu
mai.google/cirq (visited on 04/22/2024).

[102] The CUDA-Q development team. CUDA-Q. Version 0.7.1. May 2024. doi: 10.
5281/zenodo.11236586. url: https://doi.org/10.5281/zenodo.11236586.

[103] Shin Nishio and Ryo Wakizaka. “InQuIR: Intermediate Representation for Inter-
connected Quantum Computers”. In: arXiv e-prints (Feb. 2023). doi: 10.48550/
arXiv.2302.00267.

[104] Axel Dahlberg et al. “NetQASM—A low-level instruction set architecture for
hybrid quantum–classical programs in a quantum internet”. In: Quantum Science
and Technology 7.035023 (June 2022). doi: 10.1088/2058-9565/ac753f.

[105] Andrew Cross et al. “OpenQASM 3: A broader and deeper quantum assembly
language”. In: ACM Transactions on Quantum Computing 3.12 (3 Sept. 2022),
pp. 1–50. doi: 10.1145/3505636.

[106] Andrew W. Cross et al. “Open Quantum Assembly Language”. In: arXiv e-prints
(July 2017). doi: 10.48550/arXiv.1707.03429.

[107] IBMQuantum. OpenQASM 3 feature table — IBM Quantum Documentation.
2024. url: https://docs.quantum.ibm.com/guides/qasm-feature-table
(visited on 07/18/2024).

[108] Amazon Web Services. Run your circuits with OpenQASM 3.0 - Amazon Braket.
2024. url: https://docs.aws.amazon.com/braket/latest/developerguide/
braket-openqasm.html (visited on 12/08/2024).

[109] Nader Khammassi et al. “OpenQL: A Portable Quantum Programming Frame-
work for Quantum Accelerators”. In: ACM Journal on Emerging Technologies
in Computing Systems (JETC) 18.13 (1 Dec. 2021), pp. 1–24. doi: 10.1145/
3474222.

88

https://github.com/quil-lang/quil
https://github.com/inQWIRE/QWIRE
https://github.com/silq-lang/vscode-silq
https://github.com/silq-lang/vscode-silq
https://github.com/eclipse/xacc
https://doi.org/10.1145/3385412.3386007
https://quantumai.google/cirq
https://quantumai.google/cirq
https://doi.org/10.5281/zenodo.11236586
https://doi.org/10.5281/zenodo.11236586
https://doi.org/10.5281/zenodo.11236586
https://doi.org/10.48550/arXiv.2302.00267
https://doi.org/10.48550/arXiv.2302.00267
https://doi.org/10.1088/2058-9565/ac753f
https://doi.org/10.1145/3505636
https://doi.org/10.48550/arXiv.1707.03429
https://docs.quantum.ibm.com/guides/qasm-feature-table
https://docs.aws.amazon.com/braket/latest/developerguide/braket-openqasm.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-openqasm.html
https://doi.org/10.1145/3474222
https://doi.org/10.1145/3474222


Bibliography

[110] Ville Bergholm et al. “PennyLane: Automatic differentiation of hybrid quantum-
classical computations”. In: arXiv e-prints (Nov. 2018). doi: 10.48550/arXiv.
1811.04968.

[111] Xanadu. Compiling circuits – PennyLane 0.38.1 documentation. 2024. url: htt
ps://docs.pennylane.ai/en/stable/introduction/compiling_circuits.

html (visited on 10/31/2024).

[112] Krysta Svore et al. “Q#: Enabling Scalable Quantum Computing and Develop-
ment with a High-level DSL”. In: Proceedings of the Real World Domain Specific
Languages Workshop 2018. RWDSL2018. Association for Computing Machinery,
Feb. 2018. doi: 10.1145/3183895.3183901.

[113] IBMQuantum. Qiskit — IBM Quantum Computing. 2024. url: https://www.
ibm.com/quantum/qiskit (visited on 07/14/2024).

[114] Thomas Häner et al. “Distributed quantum computing with QMPI”. In: Pro-
ceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis. New York, NY, USA: Association for Computing
Machinery, Nov. 2021, pp. 1–13. doi: 10.1145/3458817.3476172.

[115] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard
Version 4.1. Nov. 2023. url: https://www.mpi-forum.org/docs/mpi-4.1/
mpi41-report.pdf.

[116] Rigetti Computing. Pyquil documentation. Version 2.3.0. Jan. 2019. url: https:
//readthedocs.org/projects/pyquil/downloads/pdf/v2.3.0/.

[117] R. S. Smith et al. “An open-source, industrial-strength optimizing compiler for
quantum programs”. In: Quantum Science and Technology 5.4 (July 2020). doi:
10.1088/2058-9565/ab9acb.

[118] quil-lang. qvm: A High-Performance Quantum Virtual Machine. 2024. url: htt
ps://github.com/quil-lang/qvm (visited on 10/30/2024).

[119] Jennifer Paykin, Robert Rand, and Steve Zdancewic. “QWIRE: A Core Language
for Quantum Circuits”. In: ACM SIGPLAN Notices 52 (1 Jan. 2017), pp. 846–
858. doi: 10.1145/3093333.3009894.

[120] Robert Rand, Jennifer Paykin, and Steve Zdancewic. “QWIRE Practice: Formal
Verification of Quantum Circuits in Coq”. In: arXiv e-prints (Mar. 2018). doi:
10.4204/EPTCS.266.8.

[121] Alexander J McCaskey et al. “XACC: A System-Level Software Infrastructure
for Heterogeneous Quantum–Classical Computing”. In: Quantum Science and
Technology 5.2 (Feb. 2020). doi: 10.1088/2058-9565/ab6bf6.

[122] IBMQuantum. Native gates and operations — IBM Quantum Documentation.
2024. url: https://docs.quantum.ibm.com/guides/native-gates (visited on
12/06/2024).

89

https://doi.org/10.48550/arXiv.1811.04968
https://doi.org/10.48550/arXiv.1811.04968
https://docs.pennylane.ai/en/stable/introduction/compiling_circuits.html
https://docs.pennylane.ai/en/stable/introduction/compiling_circuits.html
https://docs.pennylane.ai/en/stable/introduction/compiling_circuits.html
https://doi.org/10.1145/3183895.3183901
https://www.ibm.com/quantum/qiskit
https://www.ibm.com/quantum/qiskit
https://doi.org/10.1145/3458817.3476172
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://readthedocs.org/projects/pyquil/downloads/pdf/v2.3.0/
https://readthedocs.org/projects/pyquil/downloads/pdf/v2.3.0/
https://doi.org/10.1088/2058-9565/ab9acb
https://github.com/quil-lang/qvm
https://github.com/quil-lang/qvm
https://doi.org/10.1145/3093333.3009894
https://doi.org/10.4204/EPTCS.266.8
https://doi.org/10.1088/2058-9565/ab6bf6
https://docs.quantum.ibm.com/guides/native-gates


Bibliography

[123] Google Quantum AI. IonQ API Circuits — Cirq — Google Quantum AI. 2024.
url: https://quantumai.google/cirq/hardware/ionq/circuits (visited on
12/06/2024).

[124] IBMQuantum. PhaseEstimation (v1.2) — IBM Quantum Documentation. 2025.
url: https://docs.quantum.ibm.com/api/qiskit/1.2/qiskit.circuit.
library.PhaseEstimation#phaseestimation (visited on 01/04/2025).

[125] Xanadu. qml.QuantumPhaseEstimation – PennyLane 0.39.0 documentation.
2025. url: https://docs.pennylane.ai/en/stable/code/api/pennylane.
QuantumPhaseEstimation.html (visited on 01/04/2025).

[126] IBMQuantum. qasm3 (latest version) — IBM Quantum Documentation. 2024.
url: https : / / docs . quantum . ibm . com / api / qiskit / qasm3 (visited on
12/08/2024).

[127] Alex McCaskey. Extensions — XACC 1.0.0 documentation. 2024. url: https://
xacc.readthedocs.io/en/latest/extensions.html (visited on 12/08/2024).

[128] IBMQuantum. Qiskit Runtime REST API — IBM Quantum Documentation.
2024. url: https://docs.quantum.ibm.com/api/runtime/index (visited on
12/06/2024).

[129] Azure Quantum. Rigetti provider - Azure Quantum. 2024. url: https://lea
rn.microsoft.com/en- us/azure/quantum/provider- rigetti (visited on
11/06/2024).

[130] Inc. IonQ. Writing Quantum Programs - IonQ Quantum Cloud Documentation.
2024. url: https://docs.ionq.com/api-reference/v0.3/writing-quantum-
programs (visited on 12/06/2024).

[131] Alex McCaskey. XACC 1.0.0 documentation. 2019. url: https://xacc.readth
edocs.io (visited on 01/23/2025).

[132] Amir H Ashouri et al. “A Survey on Compiler Autotuning using Machine Learn-
ing”. In: ACM Computing Surveys (CSUR) 51.96 (5 Sept. 2018), pp. 1–42. doi:
10.1145/3197978.

[133] Spyridon Triantafyllis et al. “Compiler optimization-space exploration”. In: In-
ternational Symposium on Code Generation and Optimization, 2003. CGO 2003.
IEEE. Mar. 2003, pp. 204–215. doi: 10.1109/CGO.2003.1191546.

[134] Lian Remme. LiRem101/parser-analyser: Analysation and optimization of Quil
programs. Feb. 6, 2025. url: https://github.com/LiRem101/parser-analyser
(visited on 02/06/2025).

[135] Lian Remme. Supplementary Material for Optimization Strategies for Quantum
Computers in Distributed Systems. Version 0.0.1. Feb. 2025. doi: 10.5281/zeno
do.14823715. url: https://doi.org/10.5281/zenodo.14823715.

90

https://quantumai.google/cirq/hardware/ionq/circuits
https://docs.quantum.ibm.com/api/qiskit/1.2/qiskit.circuit.library.PhaseEstimation#phaseestimation
https://docs.quantum.ibm.com/api/qiskit/1.2/qiskit.circuit.library.PhaseEstimation#phaseestimation
https://docs.pennylane.ai/en/stable/code/api/pennylane.QuantumPhaseEstimation.html
https://docs.pennylane.ai/en/stable/code/api/pennylane.QuantumPhaseEstimation.html
https://docs.quantum.ibm.com/api/qiskit/qasm3
https://xacc.readthedocs.io/en/latest/extensions.html
https://xacc.readthedocs.io/en/latest/extensions.html
https://docs.quantum.ibm.com/api/runtime/index
https://learn.microsoft.com/en-us/azure/quantum/provider-rigetti
https://learn.microsoft.com/en-us/azure/quantum/provider-rigetti
https://docs.ionq.com/api-reference/v0.3/writing-quantum-programs
https://docs.ionq.com/api-reference/v0.3/writing-quantum-programs
https://xacc.readthedocs.io
https://xacc.readthedocs.io
https://doi.org/10.1145/3197978
https://doi.org/10.1109/CGO.2003.1191546
https://github.com/LiRem101/parser-analyser
https://doi.org/10.5281/zenodo.14823715
https://doi.org/10.5281/zenodo.14823715
https://doi.org/10.5281/zenodo.14823715

	Introduction
	Background
	Quantum Computing
	Properties of Qubits
	Calculations on a QPU
	Quantum Hardware

	Distributed Computing
	Distributed Quantum Computing

	Compilation and Optimization Techniques
	Abstraction Levels
	Optimization Steps


	Related Work
	Evaluation of Today's Quantum Languages
	Properties of the Quantum Languages
	Introduction of Known Quantum Programming Languages
	Comparison of Quantum Language Properties

	Support for Heterogeneous Architectures
	Real-Time Feedback Algorithms
	Evaluating Languages

	Summary

	Optimizing Quil-Programs
	Quil Instructions
	Naive Quil Execution
	Analyzing Quil Programs
	Metrics to Evaluate Quil Programs
	Optimization Strategies
	Adapted Classical Optimization Operations
	Optimizations for Quantum-Classical Calculations

	Evaluate Optimization Methods
	Summary

	Conclusion
	Discussion
	Future Work

	Statutory Declaration
	Appendix
	Code and Data Availability
	List of Abbreviations


