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Abstract

Ensuring the correct and safe behavior of a spacecraft is a main objective in space-system design. Since spacecraft consist of
highly complex and tightly integrated components developed by large teams of engineers from various different disciplines,
this is a challenging task. Increasingly, formal verification methods such as model checking are applied to establish the
correctness of safety-critical parts or subsystems. Generally, the often limited scalability of model checking due to the state-
space explosion problem hinders the wide-spread adoption of this technique. In this paper, we systematically examine the
scalability of model checking for verifying behavioral models that arise within early space-system design phases. For this, we
created a representative model for the mode management of a satellite that can be scaled in terms of its size and the complexity
of interactions between system components. The model can be transformed into the input languages of various model-checking
tools, which enables a comparative study of various model-checking algorithms and also facilitates analyzing the impact of
different communication schemes on the scalability. The evaluation shows promising results regarding the applicability of
model checking within the spacecraft design process.
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1 Introduction

In space-system design, ensuring a high reliability of space-
Communicated by G. Taentzer, A. Cicchetti, A. Pierantonio, and T. craft is of utmost importance. Any critical design error that
Kiihne. remains undetected until after the launch potentially causes
a partial or complete mission failure, which not only leads
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philipp.chrszon@dIr.de to significant financial losses, but may also endanger other
Paulina Maurer spacecraft or even human lives. However, the inherent com-
paulina.maurer@dlr.de plexity of space systems makes guaranteeing their correct
George Saleip and safe behavior challenging. They consist of various highly
george.nasralla@dlr.de interconnected parts, often developed by engineers of differ-
Sascha Miiller ent disciplines, and are controlled by sophisticated on-board
sa.mueller@dlr.de computer systems. The interdependence and tight integra-
Philipp M. Fischer tion of components makes the correction of design errors in
philipp.fischer@dlr.de later development phases very costly. It is therefore highly
Andreas Gerndt desirable to find errors in a spacecraft’s design as early as
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Michael Felderer Traditionally, verification and validation schemes for
michael felderer@dlr.de space systems extensively utilize testing and simulation.

Here, the system or a model of the system is executed and
observed for unintended behaviors. However, this can only
show the presence of errors but not their absence, since full
coverage of all possible execution paths is never achieved
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in practice. For systems or subsystems that are safety criti-
cal, simulation can be complemented by formal verification.
Such formal techniques aim to provide a proof of correct-
ness, showing that the system’s specification is satisfied for
all possible executions.

Model checking is a formal verification technique that is
particularly well-suited for the analysis of highly concurrent
systems and can uncover errors that are caused by very spe-
cific task scheduling, e.g., race conditions. Such errors are
notoriously hard to reliably detect using simulation, as they
rarely manifest themselves. Given a system model or source
code, a model-checking tool verifies the system by a sys-
tematic exhaustive exploration of the system’s state space.
The main advantage of this approach is that it works fully
automatically and does not require any user input during the
verification process.

The main limitation of model checking is its scalability,
since potentially the whole state space of a system has to
be represented and explored. The state space usually grows
exponentially with the number of variables or parallel pro-
cesses, which is known as the state-space explosion problem.
A wide range of approaches and techniques to mitigate this
issue have been developed, which can make the verifica-
tion of large-scale systems tractable. However, the effective
use of these techniques often requires expert knowledge in
formal modeling and verification. This severely hinders the
widespread application of model checking in industry, and
the aerospace domain is no exception [1-3].

In this paper, we investigate the scalability of model check-
ing for the verification of behavioral models within early
spacecraft design phases. In particular, we examine up to
which model complexity model checking is still tractable
and fast enough to be incorporated into the design process.
For this, we

1. created a representative model for the mode management
of a spacecraft which allows a flexible scaling of its com-
plexity,

2. implemented transformations of the model into the mod-
eling languages of various model-checking tools, and

3. systematically examined the analysis durations and mem-
ory usage for detecting deadlocks and livelocks using
different model checkers.

To enable a semantically unambiguous modeling of the
mode management, we define a formal syntax and semantics
for state machines, where transitions between states define
the possible mode switches and where additional mode con-
straints can be formulated. Furthermore, state machines may
interact using synchronous and asynchronous communica-
tion, such that complex mode-management schemes and
(semi-)autonomous behavior can be adequately captured.
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The complexity of the representative mode-management
model can be adjusted in two dimensions. First, the model
can be scaled in the number of state machines. Second, the
type of interactions between the state machines can be freely
selected, ranging from no communication at all, over syn-
chronous communication, to asynchronous communication
with increasing message buffer sizes.

The implemented transformation of state-machine models
into the input languages of various model checkers is specif-
ically designed to be transparently integrated into the design
process and to be used by non-experts in formal verification.
Therefore, it only utilizes fully automated optimizations and
state-space explosion mitigation techniques that are provided
by the selected model-checking tools and require no hand-
crafted model transformations or abstractions. Furthermore,
the implementation compensates for the varying feature-sets
of the targeted modeling languages by generating additional
model code that emulates missing language constructs. In
order to achieve a wide coverage of different state-space
explosion mitigation techniques, we selected one or more
representative model checkers for each technique, which
allows us to compare their effectiveness for our specific appli-
cation.

This paper is an extended version of a conference paper [4]
and includes the following changes and additions. First, the
modeling formalism has been modified to support synchro-
nization between state machines. Second, the implemen-
tation of the transformational analysis approach has been
completely rewritten to support both synchronous and asyn-
chronous communication within the state-machine models.
Third, a new mode-management model has been created
that significantly differs from the model used in [4]. Finally,
the scalability evaluation now includes an assessment of the
impact of including synchronous and asynchronous commu-
nication.

2 Background

This section gives an overview of spacecraft systems engi-
neering processes and the model-checking approach for
formal verification and analysis.

2.1 Spacecraft systems engineering

The European Cooperation for Space Standardization (ECSS)
divides the life cycle of a space system into seven phases,
starting with phase 0, followed by phases A to F. Within
phases 0 to D, the design, development, and manufacturing
of spacecraft takes place [5]. The early design phase 0/A can
be (partially) carried out in Concurrent Engineering Cen-
ters (CEC). Concurrent Engineering (CE) is an approach for
design and development that emphasizes teamwork, discus-
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sion, and rapid iteration. Here, the development tasks of the
different engineering disciplines are conducted in parallel
and collaboratively. The goal is to quickly establish a consis-
tent system design incorporating the subsystems, equipment,
and satellite configuration. The involved engineers exchange
and store information using a common system model [6].
This model is created and manipulated using a CE software,
such as virtual satellite [7].

The Concurrent Engineering Facility (CEF) is the CEC of
the German Aerospace Center (DLR). A CE study in the CEF
usually takes between one to three weeks and consists of sev-
eral sessions. A session, generally lasting for approximately
four hours, is divided into moderated and unmoderated work.
The sessions are interrupted by breaks of up to one hour [6,
8]. A typical CE schedule can be found in [9]. During a CE
study, the engineers create, extend, and modify to the system
model. First, a decomposition of the system is established,
e.g., by modeling the components that constitute the differ-
ent subsystems. Then, various parameters, including masses
and average power usage, are assigned to the components in
order to enable system-level budget calculations. These are
then analyzed for various system modes [8].

Verification activities throughout the life cycle of a space
system are defined within the technical memorandum ECSS-
E-TM-10-21A [10]. It covers requirement and design ver-
ification from phase O to B. Different types of simulators
are introduced to verify mission, system, and performance
requirements. Several approaches for verification, analysis,
and simulation that can be run during or between CE sessions
have been presented. Fischer et al. show a formal approach
for checking whether an early design is feasible for reaching
the mission goals [11]. Here, a verification time of several
minutes is considered practical and allows for checking mis-
sion feasibility under certain restrictions. The approach has
been optimized in [12] and extended to allow for the inclu-
sion simulation models. In [13], itis shown how this approach
can be automated and used for continuous verification dur-
ing early design. A CE process tailored to launcher design
is presented in [14]. Here, simulations are integrated into the
design evaluation and are executed in parallel to unmoder-
ated sessions. Then, the simulation results are ready for the
next moderated session. For verification in phase B, a pro-
cess for generating simulator configurations for a functional
engineering simulator as well as a software validation facility
is presented in [15].

2.2 Model checking

Model checking [16, 17] is a fully automatic verification
technique. The system under consideration is classically rep-
resented using an automata-based formalism, e.g., labeled
transition systems [ 18] or Kripke structures. The operational
behavior of the system is expressed by transitions between

states. Transition labels may represent, e.g, actions, com-
mands, messages, or function calls. The system requirements
are given as a formal specification expressed in a temporal
logic, such as linear temporal logic (LTL) [19] or compu-
tation tree logic (CTL) [16]. Given both a model and a
specification, a model-checking tool automatically checks
whether the model satisfies the specification. In case there is
a violation, a counterexample is produced. Commonly, the
counterexample is a trace, i.e., a sequence of states and tran-
sitions, that shows how a state violating the specification can
be reached. Using this information, either the model or the
specification can be adjusted. For an in-depth introduction to
model checking, we refer to [20, 21].

In order to reason about quantitative system properties,
more expressive modeling formalisms are applied. Systems
that exhibit both nondeterministic as well as probabilistic
behaviors can be described by Markov decision processes
and analyzed using probabilistic model checking [22]. If not
only discrete system dynamics but also continuous dynamics
need to be considered, hybrid model checking [23-25] is
commonly utilized.

When model checking is applied to analyze complex sys-
tems, the corresponding models may become prohibitively
large. The model size generally grows exponentially in, e.g.,
the number of concurrent processes. This issue is known
as the state-space explosion problem. Several approaches
have been developed to mitigate this problem, including, for
instance, partial-order reduction [26, 27], assume-guarantee
reasoning [28, 29], symmetry reduction [30], and SAT-based
model checking [31, 32]. Furthermore, symbolic approaches
may be utilized [33, 34]. Here, whole sets of states are
represented symbolically using binary decision diagrams
(BDDs) [35], rather than representing each state explicitly.
With this technique, even the verification of large-scale sys-
tems becomes tractable [33].

3 Modeling of operational behavior

For describing spacecraft operational designs, we define a
state-based modeling formalism, which is intended to strike
a balance between simplicity and expressiveness. On the
one hand, it should be simple enough to quickly and intu-
itively describe behavior, such as mode management, within
early design phases or even during CE sessions. On the other
hand, its expressiveness should allow engineers to adequately
describe all behavioral aspects that arise during early design,
i.e., concurrency, possibly asynchronous communication,
and mode constraints. To this end, it incorporates constructs
typically found in mode-management diagrams [36] and
allows describing message-based communication like in,
e.g., Harel statecharts [37].
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Within this framework, an operational design may consist
of one or more state machines which are executed con-
currently. State machines can interact with each other by
means of “handshaking,” i.e., they synchronously partici-
pate in the interaction by executing their respective transition
at the same time. If either one of the state machines is
not ready to send or receive, the other’s respective send
or receive action is blocked. Choosing synchronization as
the basic and sole communication primitive has several
advantages. First, its formal definition is rather straightfor-
ward and some model-checking tools support it natively.
Second, asynchronous communication can be derived from
synchronization by modeling the asynchronous communica-
tion primitives explicitly as part of the model. This, in turn,
enables a flexible choice of the concrete mechanism for mes-
sage passing, e.g., whether all state machines share a message
queue or not and whether messages must be processed in a
strict FIFO ordering. Formally, both concurrency and syn-
chronization are captured by a parallel-composition operator
that combines two state machines into one, incorporating the
behaviors of both. The operational behavior of the overall
system is then obtained by a repeated application of the com-
position operator until all component state machines have
been combined into a single system state machine. Addi-
tionally, constraints between individual state can be defined
which express forbidden state combinations or dependencies
between states. The kinds of constraints supported by the for-
malism are inspired by the kinds of constraints provided by
ESA’s Space Systems Design Editor [38]. Typically, such
constraints are derived from mode tables [36] which spec-
ify the corresponding subsystem and equipment modes for
a given system mode or mission phase. Further constraints
may be inferred from dependencies between the subsystems
or physical constraints. The semantics of a composed state
machine under a set of constraints is defined as a transition
system, a standard formalism for describing the operational
behavior of reactive systems. Using such a standard formal-
ism allows us to apply a wide range of existing tools for the
simulation, analysis, and verification of the modeled system.

In the following, the syntax, graphical notation, and
semantics of the modeling formalism are presented.

3.1 State machines

We begin with the definition of a state machine, which is
adapted from the definition of labeled transition systems (see,
e.g., [20]).

Definition 1 (State machine) A state machine is atuple M =
(S, Act, —>, simit local) where S is a finite set of states,
Act is a finite set of actions, —> < S x Act x S is the
transition relation, s™* € S is the initial state, L is a set of
local state labels, and local : S — g (L) labels each state
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s € S with the set of local states that are active in s. For a
given action @ € Act and state s € S, the successor state of s
must be unique, i.e., if (s, @, 1) € — and (s, @, 53) € —>,
then s| = s7.

Intuitively, the operational behavior of a state machine
is represented by the transitions between its states, i.e., if
(s, o, s') e— then the state machine moves from state s to
state s’ on action o. We write s — s’ for (s, &, s') € —>. An
action o may be interpreted as a message that is either sent
or received, or it may also represent some internal operation.
The finiteness of S and Act ensures that the state machine can
be explored exhaustively and that model checking is decid-
able.

A state machine may either be atomic, representing, e.g., a
single system component, or it may arise via composition of
state machines. In the latter case, each state of the composed
state machine in turn comprises a combination of states from
the constituent state machines. The purpose of the set L and
the function local is to preserve the information about which
local states are active in a combined system state. For atomic
state machines, the set of local states L is equivalent to the
set of states, i.e., L = S, and the function local is defined as
local(s) = {s}.

We now turn to the concurrent execution of state machines
and interactions between them, which are formalized using
the standard parallel-composition operator.

Definition 2 (Parallel composition) The parallel composi-
tion of two state machines M; = (S;, Act;, —>;, sii”it, L;,
local;) fori € {1, 2} with L1 N Ly = & is defined as

My || My = (81 x Sp, Act; U Acty, —, (s, s5"),
LU Ly, local)

where local({s1, s2)) = locali(sy) U localy(sy) for s1 €
S1, 520 € Sy and — is the smallest transition relation ful-
filling the following rules.
o) ¢ Acty

(23] (&%)
S| —1 5] s =28, oy ¢ Act

o] o)
(s1,82) — (57, 52) (s1,82) = (51, 53)

o o
S1—=18] s2—>28, o€ActNAch

o
(s1,82) = (s1,8))

The parallel composition of two state machines is well-
defined and yields again a state machine. The composition
operator is both associative and commutative. Thus, to obtain
the complete system state machine, the component state
machines can be composed in any order, which always yields
the same result (up to isomorphism).
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The first two symmetric rules in Definition 2 realize the
concurrent execution of the state machines via interleaving
of transitions. That means there is a nondeterministic choice
between either transitioning in the first state machine or in the
second state machine. Intuitively, this nondeterminism may
correspond, for instance, to external control inputs, environ-
ment changes, or different task scheduling. In case both state
machines are ready to take a transition that is labeled with
the same action «, they can take their respective transitions
together and thus synchronize their execution, as stated in
the third rule. Note that transitions with shared, i.e., syn-
chronized, actions cannot be taken by one state machine
alone without involving the other. Therefore, transitions with
shared actions are blocked if the respective synchronization
partner does not provide a matching transition with the same
action.

3.2 Constraints

In an operational design, there are usually combinations of
local states or modes that are not allowed under any circum-
stance. For instance, unfolding the solar panels of a satellite
while it is still contained inside the launcher should generally
be avoided. In order to describe such invalid state combina-
tions, constraints can be added between states of different
state machines, as shown in the example in Fig. 1. A forbid
constraint (s, t), which is denoted as >, expresses that
the states s and ¢ must not be active at the same time. For
instance, the state where the Spacecraft is in the Operate
state but the Payload is turned Off is not a valid system state.
A required constraint (s, {t, t2, ..., tx}), which is denoted
as —p, indicates that state s can only be active if at least one
of the states 71, f2, ..., f is active as well. In the example,
the required constraint (Idle, {Off}) expresses that the Space-
craft state machine can only be in the Idle state if the Payload
state machine is in the Off state. Note that a single required
constraint (s, {t, ..., fx}) expresses a disjunction over the
states ?1, ..., tx. This is useful if these states belong to the
same state machine (since only ever one can be active at the
same time). To express a conjunction, multiple required con-
straints can be used. For instance, the constraints (s, {#{}) and
(s, {r2}) together require that both #; and #, must be active if
s is active. Based on these notions, we formally define the
valid states of a system.

Definition 3 (Valid system state) Given a state machine M =
(S, Act, —>, sinit local), a system state s € S is called
valid, denoted as valid r 1 (s), w.r.t. a set of forbid constraints
F € L x L, where F is a symmetric relation, and a set
of required constraints R < L X g (L), if the following
conditions hold:

1. V(p,q) € F. —-(p € local(s) Nq € local(s))

[ Spacecraft]

pl_off

prepare operate

Payload]

[\
X o

Fig. 1 Two state machines with constraints between them. States are
denoted as rounded boxes and are connected by transitions

2. ¥(p, Q) € R.p €local(s) — 3q € Q.q € local(s)

The semantics of a state machine under a set of constraints
is given in terms of a transition system. Since there is no
notion of forbid constraints and required constraints in transi-
tion systems, these constraints must be resolved. We assume
that in the concrete implementation of the modeled system,
the violation of the constraints is strictly prevented by con-
struction, the inclusion of some control mechanism, or by
operational procedures. Therefore, in the context of the for-
mal semantics, we assume that those state combinations that
violate some of the constraints are never entered in any run
of the system. Thus, the semantics of the constraints can be
embedded into the transition system by simply removing any
invalid states from the state space. This is formalized in the
following definition.

Definition 4 (Transition system semantics) The behavior of
a state machine /\/l. = (SM,ACIM, — M, sj(‘/’l’, L, lo?al)
under a set of forbid constraints F and a set of required
constraints R, where valid }-’R(s””l) holds, is defined as a

transition system 7 = (S7, ActT, —> 7, Si") where

St ={s €Sy validr r(s)}
ActT = Actpg
— 7 ={(s,a,s") e—>r: validr g (s), validr R (s") }
Séllit — {S'l;(l/ilt}

Consider again the example in Fig. 1. Its transition-system
semantics after the parallel composition of the two state
machines is presented in Fig.2. Note that the action pl_off
is shared by the state machines. Thus, in the resulting tran-
sition system both state machines change their respective
local states on the transition from Operate, On to Idle,
Off. Furthermore, in the system state Prepare, On, the Pay-
load state machine cannot execute its transition labeled with
pl_off, since the Spacecraft state machine does not provide
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prepare

Idle, Off :[ Prepare, Off
] l

A

pl_off pl_on

Y

Operate, On]: [Prepare, On
J operate l

Fig.2 Transition system semantics of the example in Fig. 1

the matching synchronizing transition in the Prepare state.
Finally, we can observe that the synchronization of the two
state machines is actually crucial under the given set of con-
straints. Supposing that the transition from Operate to Idle in
the Spacecraft state machine were not labeled with the pl_off
action, the system would contain a deadlock in the Operate,
On state. The Spacecraft cannot move to the Idle state, since
the Payload is not in its Off state and thus the required con-
straint would be violated. Similarly, the Payload cannot be
turned Off, as this is prevented by the forbid constraint.

3.3 Asynchronous communication

The presented modeling formalism only supports syn-
chronous communication between state machines, but not
asynchronous communication where a sent message does
not have to be received immediately but can be received at a
later point in time. This may seem like a major limitation of
the formalism. However, asynchronous message passing can
be “implemented” using synchronous message passing by
adding dedicated state machines that act as message buffers
or queues, which has the advantage of flexibility regarding
the choice of the concrete message-passing mechanism. The
downside of the outlined approach to asynchronous com-
munication is that the additional state machines have to
be specifically defined for each model. However, since our
verification approach relies on automated code generation
anyway, this is not an issue.

Figure 3 shows an example of a state machine implement-
ing a message queue of capacity 2, which can contain two
possible message types a and b. Each state represents one
possible configuration of the queue. Whenever a message
is sent into the queue (using a “!”-marked transition), it is
recorded by moving to the corresponding subsequent con-
figuration. Likewise, receiving a message from the channel
(using a “?”-marked transition) removes that message from
the queue. Note that in this example, sending a message is
blocked in case the queue is full. This is also the approach we
took for in our analysis approach and evaluation. Depending
on the context, it might also make sense to drop sent mes-
sages in case of a full queue. This can be achieved easily
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Fig.3 State machine for a FIFO-channel with capacity 2 and possible
messages a and b. The messages enter and leave from left to right (»),
where messages sent into the channel are prefixed with “!” and messages
received from the channel are prefixed with “?”

by adding self-loops to all states on the right. The example
can be straightforwardly extended to allow for more message
types or a higher capacity. The former increases the width of
the machine’s tree-like structure, whereas the latter increases
its depth. The size of the queue’s state space is both expo-
nential in the number of messages and the capacity, posing a
significant challenge to the scalability of verification.

4 Transformation-based analysis approach

To enable the formal verification of the state-machine models
described in Sect.3, we have implemented a transforma-
tion from state machines into the modeling languages of
selected modeling-checking tools. In particular, the tools
SPIN (version 6.4.9), NUSMV (2.6.0), PRISM (4.8.1), and
STORM (1.9.0) were chosen for this work in order to cover dif-
ferent model-checking approaches and state-space explosion
mitigation techniques. An overview of these tools is provided
in Table 1. Both PRISM and STORM support multiple so-called
engines, e.g., mtbdd and sparse, which differ in the under-
lying internal model representation as well as the analysis
approach, as outlined in Table 2. The tools SPIN, PRiSM, and
STORM support explicit model checking, where each state and
transition of the system is represented individually. SPIN uti-
lizes partial-order reduction to reduce redundancies caused
by equivalent interleavings due to concurrent execution of
state machines. Furthermore, NUSMV, PRISM, and STORM
implement symbolic model checking where the model is rep-
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Table 1 Overview of the

selected model-checking tools Model checker Model types Modeling languages
SPIN [39] Transition systems PROMELA
NuUSMYV [40] Transition systems SMV
PRISM [41] Markov chains, Markov decision processes PRISM language
STORM [42] MCs, MDPs, Markov Automata PRISM language, JANI, other
Ef(;zlihgzlzr;;:;;fniean d Model checker Engine Model representation and analysis
internal model representations SPIN Explicit, partial-order reduction
NUSMV Symbolic using BDDs
PRISM Explicit Explicit
MTBDD Symbolic using multi-terminal BDDs (MTBDDs)
Sparse MTBDDs, sparse matrices
Hybrid MTBDDs, sparse matrices
STORM Sparse Explicit, sparse matrices
DD MTBDDs
Hybrid MTBDDs, sparse matrices
Igrtzlcee;ts 2;:?323’;?;;2;6 dby Language Concurrent processes Synchronization Asynchronous messages
the modeling languages PROMELA N v (bounded channels)
SMV t 3 ®
PRISM language v x

resented using BDDs. Although the systems we consider in
this paper are purely nondeterministic, we included the prob-
abilistic model checkers PRISM and STORM, since they are
still actively developed and include state-of-the-art optimiza-
tions for state-space explosion mitigation. Additionally, their
quantitative analysis capabilities are required in case the state
machine formalism is extended with quantitative properties.
Since Markov decision processes (MDPs) subsume transi-
tion systems (by setting all transition probabilities to 1.0),
probabilistic model checkers can also be applied to verify
purely nondeterministic models. Note that neither partial-
order reduction nor symbolic model checking require any
additional information or annotations and can be used as-is
on the transformed models.

4.1 Transformation into formal modeling languages

The modeling languages of the selected tools differ in
the concepts that are supported natively (see Table 3 for
an overview). For this reason, we opted to first trans-
form a given set of state machines into an intermediate
representation, namely guarded-command programs. Then,
further transformation steps, such as the generation of addi-
tional model elements or the composition of programs, are
added to account for missing language features. Finally, the

guarded-command programs are converted into the concrete
syntax of the modeling languages. The overall transforma-
tion approach is outlined in Fig. 4.

A guarded-command program is represented using an
abstract syntax tree and does not have a concrete syntax yet.
It comprises a set of bounded integer variables, represent-
ing the possible states, and a set of commands that describe
the transitions between states. A command consists of an
action, a guard, and an update, where the guard is a Boolean
expression over the state variables. If the guard evaluates to
true for the current values of the variables, the command
may be executed, which updates the variables by assigning
new values. A command’s action serves the same purpose
as the transition actions in Definition] and may be used for
synchronization. The transformation also resolves the con-
straints between state machines by encoding them into the
appropriate guards.

4.1.1 PRISM language

For the PRISM language, the transformation of the abstract to
the concrete syntax is straightforward. The resulting PRISM
model for the example in Fig. 1 is shown in Listing 1. Each
state machine and its equivalent guarded-command program
corresponds to a module in the PRISM model (lines 1
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Fig.4 Workflow for
transforming a set of state
machines into the input
languages of selected model

transformation to}
guarded-command
programs J

PRrIsSM
STORM

checkers state

machines

module spacecraft

(async)

generate
channels

> SPIN

parallel
composition

// Idle: 0, Prepare: 1, Operate: 2
s_spacecraft : [0 2] init 0;
[prepare] s_spacecraft = 0 -> (s_spacecraft’ = 1);
[operate] s_spacecraft = 1 & s_payload != 0 -> (s_spacecraft’ = 2);
[send_pl_off] s_spacecraft = 2 & s_payload = 0 -> (s_spacecraft’ = 0);
endmodule
module payload
// Off: 0, On: 1
s_payload : [0 .. 1] init 0;
[recv_pl_on] s_payload = 0 & s_spacecraft != -> (s_payload’ = 1);
[recv_pl_off] s_payload = 1 & s_spacecraft != -> (s_payload’ = 0);

endmodule

Listing 1 Corresponding PRISM model for the system shown in fig. 1, transformed for asynchronous communication

and 10). The integer variable storing the machine’s state
(lines 3 and 12) is followed by the guarded commands, where
each command corresponds to one of the state machine’s
transitions. For instance, the command in line 5 represents the
transition from the Idle to the Prepare state, where the guard
specifies the source state and the update assigns the successor
state to the local variable. The encoding of the constraints into
the guards prevents the execution of any command that would
move the system into an invalid state. For example, moving
from Prepare to Operate is forbidden in case the Payload is
Off, which is captured by the condition s_payload != 0
inline 6 (the symmetric guard isin line 15). The required con-
straint is encoded analogously (lines 7 and 14). The modules
in a PRISM model are executed concurrently and synchronize
over shared actions, thus no further transformations of the
guarded-command programs are required.

4.1.2 SMV

Unlike PRISM and STORM, NUSMV does not provide a built-
in mechanism for concurrently executing state machines that
is compatible with our semantics. Therefore, it is necessary to
perform the composition of the guarded-command programs
into a single guarded-command program before the transfor-
mation into the SMV language (cf. the parallel-composition
step in Fig.4). The definition of parallel composition (Def-
inition 2) can be lifted to guarded-command programs and
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proceeds as follows. Let P; and P, be programs that are
composed into the program Py2. All unsynchronized com-
mands of both P and P, are copied without modification to
Py)2. The commands that share acommon action are pairwise
combined into a single command by taking the conjunction of
their guards and by joining their updates. Note that the paral-
lel composition on the level of guarded commands may lead
to an exponential blow-up in the number of resulting com-
mands, since for the synchronization all possible pairings of
commands have to be considered. The result of composing
the state machines from the example in Fig. 1 and transform-
ing them into SMV is presented in Listing 2. The transition
relation (lines 8—11) is described by a single Boolean expres-
sion over the variables of the model and the updated variables
of the successor (next) state. Transitions where only one of
the state machines moves to its successor state are realized by
only updating its variable and fixing all others. For instance,
in line 8, only the Spacecraft state machine takes its transi-
tion, while the Payload state machine remains in its current
local state (next (pl) = pl).Thesynchronization of both
state machines over the p1_of f action is realized in line 11,
where both update their respective state simultaneously.

4.1.3 Promela

The transformation of guarded-command programs into
PROMELA is, besides syntactical differences, very similar
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MODULE main

VAR
sc : {Idle, Prepare, Operate};
pl : {Off, On};
INIT
sc = Idle & pl = Off;
TRANS
(sc = Idle & next(sc) = Prepare & next(pl) = pl) |
(sc = Prepare & pl != Off & mnext(sc) = Operate & mnext (pl) = pl) |
(pl = Off & sc != Idle & next(pl) = On & mext(sc) = sc) |
(sc = Operate & pl = On & next(sc) = Idle & next(pl) = Off);
CTLSPEC EF sc = Prepare;
CTLSPEC EF sc = Operate;
CTLSPEC EF pl = On;
CTLSPEC AG (sc = Idle -> EF sc = Prepare);
CTLSPEC AG (sc = Prepare -> EF sc = Operate);
CTLSPEC AG (sc = Operate -> EF sc = Idle);
CTLSPEC AG (pl = Off -> EF pl = On);
CTLSPEC AG (pl = On -> EF pl = Off);

Listing 2 Corresponding SMV model for the system shown in fig. 1 with synchronous communication

module chan_spacecraft_payload

// empty: 0, pl_off: 1, pl_on: 2
c_0 : [0 .. 2] init O;
c_1l : [0 .. 2] init 0;

// if the channel still has capacity,

shift content

and add message

[send_pl_off] c_1 =0 -> (c_0’" =1) & (c_1’' = c_0);
[send_pl_on] c¢c_.1 =0 -> (c_0" =2) & (c_1" = c_0);

// 1f the message is in the channel, remove it from end
[recv_pl_off] c. 0 =1 & c_1 =0 -> (c_0" = 0);
[recv_pl_off] c_1 =1 -> (c_1" = 0);

[recv_pl_on] ¢ 0 =2 & c_1 =0 -> (c_0" =0);
[recv_pl_on] c_1 =2 -> (c_1" = 0);

endmodule
Listing 3 PRISM module for a channel with capacity 2

to the transformation into the PRISM language. However,
while PROMELA does provide built-in constructs for both syn-
chronization and even asynchronous message passing, their
semantics is slightly different from the one we defined in
Sect. 3. In particular, synchronization that is conditioned on
the current state of a state machine is not possible. Rather, the
synchronization and evaluation of the guard that determines
the current state are done sequentially, which introduces a
lot of additional states. The authors are not aware of any
workaround that allows us to synchronize and evaluate a
guard in a single atomic step. Therefore, we decided to fol-
low the same approach as for NUSMYV, i.e., performing the
composition beforehand, for all models that contain synchro-
nization.

4.2 Code generation for asynchronous
communication

As described in Sect.3.3, asynchronous communication
between state machines is realized by generating additional
guarded-command programs that implement the communi-
cation primitives. In this work, we opted for unidirectional
point-to-point channels with a fixed capacity. Since each
channel usually only needs to handle a few different message
types, this approach potentially allows for a more compact
model representation (in terms of system states) than a single
shared message queue. An example for a generated channel
between the Spacecraft and Payload state machines with
capacity 2 and the possible messages pl_on and pl_off
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label "SC_Idle" = (s_spacecraft = 0);
label "SC_Prepare" = (s_spacecraft = 1);
label "SC_Operate" = (s_spacecraft = 2);

// state Spacecraft.Prepare is reachable
E [ F "SC_Prepare" ];

// state Spacecraft.Operate is reachable
E [ F "SC_Operate" ];

//

// from Idle, Prepare is reachable
A [ G "sC_Idle" => E [ F "SC_Prepare" ] 1;

Idle is reachable
=> E [ F "SC_Idle" ] 1;

// from Operate,
A [ G "SC_Operate"

//

Listing4 Snippet of CTL properties corresponding to the system shown
in fig. 1

is shown in Listing 3. This module describes a FIFO-channel,
where putting messages into the channel and taking messages
fromitis achieved via synchronization. Note that, besides the
different action names, the corresponding state machine of
this module is equivalent to the one shown in Fig.3. Since
channels are also generated as guarded-command programs
(see again Fig.4), they are handled the same as the pro-
grams arising from the transformation of the state machines
in all subsequent steps, including the parallel composition
and transformation into the concrete syntax of the modeling
languages.

4.3 Generation of specifications

In addition to the behavioral model, a specification in the
form of temporal properties is automatically generated from
the state-machine model. Thus, the user does not need to be
familiar with temporal logics to check basic properties. Intu-
itively, the first part of the generated specification requires
that every local state of each state machine is actually reach-
able. More specifically, for each local state s in the model
there should be a reachable system state g that contains the
local state s, i.e., s € local(g). Furthermore, the second part
of the specification requires that a local state can eventu-
ally be left by transitioning to any of its successor states.
This ensures that every state machine can eventually make
progress and does not get stuck within a state indefinitely. In
the context of commanding a spacecraft, this ensures that all
components of the system remain controllable. Additionally,
the satisfaction of these properties guarantees that the system
does not contain local deadlocks, i.e., situations where only a
subset of the state machines are in deadlock but the remaining
state machines can still make progress. In our implementa-
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tion, the system must fulfill its specification for any possible
environment. Formally this means that in each state where
the system may receive a command, one of the enabled com-
mands is chosen nondeterministically and sent to the system.
This ensures that the system is free from deadlocks for any
possible command sequence.

The temporal properties derived from the state-machine
model are formulated in CTL. Consider again the example
in Listing 2. In the SMV language, the properties are defined
as part of the module description. The first three properties
(lines 12—14) correspond to the first part of the specification.
The EF operator intuitively means that there Exists a path
(from the initial system state), where Finally (i.e., eventually,
after some finite amount of steps) the condition given after
the operator holds. Thus, line 12 specifies that there is a path,
such that the Spacecraft state machine is in the Prepare state.
This property is satisfied, since there is such a path (see the
first transition in Fig. 2). The remaining properties formalize
the second part of the specification (lines 15-19). An AG
formula is satisfied if for All paths it holds that the condition
after the operator is true Globally (in every state of the path).
Thus, the property in line 16 expresses that from every state,
where the Spacecraft is in its Prepare state, a state where
the Spacecraft is in Operate can be reached eventually. For
PRISM and STORM, the properties are put in a separate file. An
excerpt of the PRISM properties is shown in Listing 4. Apart
from syntactical differences, the properties are equivalent to
the ones described for the SMV model.

4.4 Integration into the MBSE tool Virtual Satellite

The MBSE tool virtual satellite [7] provides both a graphical
editor and a table-based editor for authoring state machines
with constraints as described in Sect.3. Furthermore, vir-
tual satellite allows the user to extent its functionality using
so-called apps, which are standard Java programs that are
executed within virtual satellite and which have access to
virtual satellite’s data model, including the state machines,
over an API. We implemented the previously described trans-
formations into the model checker input languages as such an
app. For the code generation, we utilized the built-in template
expression mechanism of the XTEND language.

5 Evaluation

In this section, we present the experimental evaluation
of model-checking performance for spacecraft operational
designs. In particular, the following research questions are
addressed to determine whether the analysis of large-scale
early operational designs using model checking is feasible.
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(RQ1) How much time is required for the analysis, depend-
ing on the system size (in the number of states and
state machines) and the kind of message passing
between state machines?

(RQ2) How much memory does the analysis of an opera-
tional design require?

In order to answer these research questions, we have cre-
ated a representative operational design that may arise within
an early design phase of a satellite. The model can be instanti-
ated for different kinds of message passing between the state
machines. In particular, we have created the following model
variants:

e no comm.: There is no communication, i.e., no message
passing, between state machines.

e sync: State machines interact via synchronous messages.

e async n: Messages between state machines are sent asyn-
chronously, where the capacity n of each channel size
ranges from 1 to 3.

All variants of the model can be scaled by increasing
the number of state machines which, in turn, also increases
the number of states. Note that the number of states grows
roughly exponentially with the number of state machines and,
in case of asynchronous communication, with the channel
capacity. The largest operational designs we consider con-
sist of up to 254 state machines, as, from our experience,
a design with more components is highly unlikely to arise
during early design phases. For instantiating the operational
designs, we have implemented an app in virtual satellite [7]
that generates a set of state machines in virtual satellite’s
data model for a given size and communication kind. The
generated operational designs have been transformed into
the input languages of selected model-checking tools using
the implementation outlined in Sect. 4.4 and were finally ver-
ified, measuring both time and memory consumption.

The evaluation follows the guidelines for performing
empirical studies on formal methods [43] where appropriate.
The generated models, scripts for running the experiments,
and the measurement data is available online [44].

5.1 Analyzed operational design

To provide more context to the experiments, this section
gives a brief overview of the analyzed operational design.
The model is inspired by the state-machine models dis-
cussed in [45, 46], an internal reference model, and our
own experience in satellite system design. The different sys-
tem, subsystem, and equipment modes may be switched via
commands from the ground segment. In the model vari-
ants with message passing, some equipment modes are also
switched by other state machines. The model is completely

time-abstract and the latency of message passing is not quan-
tified. A high-level architectural overview of the design is
shown in Fig.5. It comprises a Spacecraft state machine
which captures the top-level mode, e.g., Launch or Nomi-
nal, a state machine describing the attitude and orbit control
system (AOCS) as well as power control and distribution
unit (PCDU) and command and data management (CDMU)
state machines. Additionally, there are several auxiliary state
machines for various equipment (payloads, batteries, reac-
tion wheels (RW), sensors, and thrusters). A representative
set of the state machines is presented in Fig. 6.

The states of the state machines are connected with var-
ious constraints stating which modes must and must not be
active at the same time. For instance, the On state of the
payload requires that the FinePointing mode of the AOCS
is active and in the FinePointing AOCS mode the reaction
wheels must not be turned Off, expressed using a forbid con-
straint. Generally, the states of the auxiliary state machines
are constrained by the top-level mode as well as the AOCS
state. However, there are no constraints between the auxiliary
state machines.

In the model variants with message passing, the sys-
tem state machine as well as the AOCS state machine may
exchange messages with the PCDU, CDMU, and auxil-
iary state machines, as shown in Fig.5. This is used, for
instance, to model the autonomous transition to a Safe mode.
Switching to this mode sends messages to the other system
components such that they either switch off or switch to their
redundant backup component. Some transitions, like the tran-
sition from FinePointing to OrbitControl (cf. Fig. 6), require
sending or receiving multiple messages. However, the mod-
eling formalism only allows for sending at most one message
on each transition. Therefore, such multi-message transitions
are split into a chain of intermediate states and transitions,
where each transition is only annotated with a single mes-
sage.

The smallest instance of the design without communi-
cation comprises 9 state machines and its corresponding
transition system has 3273 states.

5.1.1 Deadlock detection and repair

During the creation of the operational design, we detected
and fixed multiple unintended and unexpected deadlocks
using the implementation described in Sect.4. In particular,
the analysis was carried out on the smallest model instance.
Since for this model size the results were produced almost
instantly, fast iterations of modeling and analysis were pos-
sible. One class of defects we found was characterized by
the interaction between forbid constraints and requires con-
straints, similar to the example described in Sect. 3.2. Another
class of deadlocks was caused by a combination of synchro-
nization and constraints. For instance, one state machine
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Fig. 5 High-level overview of the operational design. Each box represents a state machine, and each dashed line represents a communication
channel, where the arrow indicates the direction. State machines that are cloned during model scaling are filled in gray and are marked with an

asterisk (*)
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could only progress upon receiving a certain message, but
the corresponding sender was blocked from actually send-
ing the message due to a forbid constraint. While some of
the deadlocks were caused by simple mistakes during mod-
eling, e.g., because two state were erroneously connected by
a constraint, other deadlocks revealed actual design errors.
In these cases, the system was found to be over-constrained
and removing the superfluous constraint fixed the deadlock.
Note that the found defects were not immediately apparent in
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a visual inspection of the state-machine diagrams and find-
ing the deadlocks using simulation alone would have been
difficult, since they were only triggered by a very specific
scheduling of the state machine execution. While the evalua-
tion of the approach’s practicability was not the focus of the
evaluation, this experience indicates that the formal verifica-
tion of early operational designs is indeed useful in practice.
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5.1.2 Model scaling

Scaling of the operational design to larger instances with
more state machines is accomplished by cloning the auxil-
iary state machines, which are marked in gray in Fig.5. For
generating a design with n 4 1 state machines from a design
with n state machines, one of the auxiliary state machines
with the least number of copies is selected. Then, a copy
of this state machine, including all connected forbid and
required constraints, is created and added to the design. If
the state machine can send or receive messages, copies of
the corresponding message types are created and, in case of
the model variants with asynchronous message passing, new
instances of the corresponding channels are created as well.
Note that adding an additional message type also implies
that the other party involved in sending or receiving that
message also must be modified, such that the message is
actually sent or received. For instance, adding another state
machine for a reaction wheel, which receives the rw_on
message from the AOCS, also adds one state and one tran-
sition to the AOCS state machine. The selection of the next
state machine to clone proceeds in a round-robin fashion,
i.e., the least recently cloned state machine is selected next.
The round-robin strategy guarantees a deterministic scaling
of the model and also ensures an even distribution of the
different types of auxiliary state machines. We have also
experimented with a randomized selection of the next state
machine to clone. However, this had no significant influence
on the measurements. Note that the general structure of the
model, i.e., several equipment state machines connected to
a central system state machine and an AOCS state machine,
is preserved by the described scaling approach. Thus, even
the scaled-up models provide a reasonable approximation
of real-world models. Furthermore, since copying the con-
straints and communication channels does not introduce new
constraint patterns, the scaling does also not introduce new
deadlocks. However, we have also verified that this is actu-
ally the case by checking all model instances for deadlocks
and no deadlocks were found. Since all the generated model
instances are free of deadlocks, it is ensured that the whole
state space is explored during model checking.

5.2 Data collection procedure

The model has been instantiated for a number of state
machines ranging from 9 to 254. The resulting state-space
sizes of all model variants are shown in Fig.7. For better
readability, the sizes upwards of 70 state machines have been
omitted. The largest instance with 254 state machines of the
model variant without communication has 5.9 x 1078 states.
Note that in the model-checking community, even models
with more than 108 states are considered as large-scale [33].
As expected, the exponential growth of the variants with
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Fig. 7 Number of system states depending on the number of state
machines for each model variant (no communication, synchronous com-
munication, asynchronous communication with channel sizes 1-3)

asynchronous communication increases with the channel
capacity. The variant with synchronous communication has
the slowest rate of growth, since the synchronization pro-
hibits some state combinations that are possible in all other
variants.

5.2.1 Variable ordering in symbolic model checking

Each generated instance has then been automatically trans-
formed into the modeling languages Promela (for SPIN),
SMYV (for NUSMV), and the PRISM language (for PRISM and
STORM). All mentioned model checkers with the exception
of SPIN support symbolic model checking which uses binary
decision diagrams (BDDs) for the model representation. The
size of these BDDs, and with it the verification time, cru-
cially depends on the ordering of the variables that span the
model’s state space. To avoid scalability issues due to a “bad”
variable ordering, reordering was applied to the generated
models. For the SMV models, the built-in reordering sup-
port of NUSMYV has been utilized. At the time of writing, the
standard version of PRISM did not support automated vari-
able reordering. Therefore, we used an extended version of
PRISM [47] to perform the BDD optimization.

5.2.2 Experiment setup

We conducted two sets of experiments for measuring the time
and memory requirements for the verification of all model
variants using the selected model checkers. In the first set,
the generated model instances were checked for global dead-
locks, i.e., system states that have no outgoing transition,
meaning that none of the state machines can progress. Since
none of the models actually contains a deadlock, the whole
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reachable state space of each instance is explored completely.
This is the worst case for deadlock checking and thus the mea-
surements provide an upper bound for the analysis time and
memory consumption. In the second set of experiments, the
satisfaction of the generated temporal properties (see Sect. 4)
is checked.

5.2.3 Time and memory measurements

For the time measurements, we rely on the built-in diag-
nostics of the model-checking tools. In what follows, we
consider the analysis time as the combined time needed for
model parsing, construction, and analysis. The peak mem-
ory consumption, specifically the maximum resident set size,
was measured using GNU time. We additionally used the
elapsed-time measurement of the t ime command to cross-
check the analysis time reported by the model checkers. The
experiments were executed sequentially, from the smallest
to the largest instance. A series of runs for a single model
checker was aborted once a timeout of 30 min or a memory
consumption of 10 GB was reached. Both PRISM and STORM
implement multiple engines, which use different internal
model representations and model-checking algorithms. For
PrISM, the hybrid and sparse engine show almost identical
timing and memory characteristics to the mtbdd engine, so
only the latter is presented in the following. For the same
reason, the results for the hybrid engine of STORM are not
shown. All experiments have been conducted on a worksta-
tion with an Intel Core i9-13900K and 128 GB RAM running
Ubuntu 22.04 LTS.

5.3 Results

In the following, the experiments are evaluated with respect
to the research questions.

5.3.1 Analysis time

We first consider the required time for deadlock checking of
increasingly large models using different model checkers.
The measurement results for the variant without commu-
nication are shown in Fig.8. The model-checking engines
relying on an explicit representation of the state space, where
every individual state is stored separately, are most suscepti-
ble to the state-space explosion problem and scale only to 19
(PrIsM explicit) or 24 (STORM sparse) state machines before
running out of memory or reaching a timeout. The SPIN
model checker is also based on explicit model checking, but
additionally uses partial-order reduction and thus reached a
size of 27 state machines. All other used model checkers and
engines which are based on a symbolic state space repre-
sentation with BDDs allowed us to check for deadlocks even
for the largest system instance without hitting a timeout, with
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STORM being the fastest. Even though the analysis time grows
exponentially for all approaches, the growth for symbolic
approaches is much slower than for explicit. The measure-
ments for verifying temporal properties show similar results
(see Fig.9). These results indicate that the model’s struc-
ture, i.e., concurrent state machines constrained by a small
set of central state machines, admits a compact symbolic
representation. Note that the symbolic engines of STORM
currently do not support the analysis of all considered tem-
poral properties and thus their run times were omitted from
the plot. Furthermore, the time for transforming the models
from their state-machine representation into the input lan-
guages of the model checkers is not included in the presented
analysis times. For the largest analyzed instance (254 state
machines), the transformation into the SMV model took 1.3
s, whereas the overall analysis took 50 s using NUSMV.
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Fig. 10 Time needed for deadlock checking (synchronous communi-
cation)

Introducing synchronous communication has a signifi-
cant negative impact on the scalability, as shown in Fig. 10.
Here, only STORM is able to check the largest instance, while
PRISM and NUSMYV hit the timeout much earlier. Since this
model variant’s state space is comparable to the variant with-
out any communication, this indicates that synchronization
significantly increases the size of the model’s symbolic repre-
sentation. Note that only PRISM and STORM natively support
synchronization (as defined in Sect. 3) and thus allow for bet-
ter scalability than NUSMV.

For the model variants with asynchronous communica-
tion, the scalability is much more limited. Using STORM,
checking the instances with 37 (for a channel size of 1) to
26 (for a channel size of 3) state machines is still possi-
ble (see Fig. 11). Notably, for these variants the scalability is
limited by the available memory rather than the time. Interest-
ingly, for the verification of temporal properties in the variant
with channel capacity 3, SPIN is able to outperform both
PRISM and NUSMYV, as shown in Fig. 12. The reason is that
SPIN uses on-the-fly model checking, where the state space
is explored during property checking, instead of exploring
the whole state space beforehand.

Given these results, we can answer RQ1, concluding that
an analysis of models with no communication or syn-
chronous communication using symbolic model checking
requires only minutes or tens of minutes even for the largest
instances. For asynchronous communication, only small- to
medium-sized models can be analyzed.

5.3.2 Memory usage

Figure 13 shows the peak memory usage for verifying the
temporal properties depending on the state space size for the
variants without communication. For explicit model check-
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Fig. 11 Time needed for deadlock checking (asynchronous communi-
cation, channel size 3)
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Fig. 12 Time needed for checking temporal properties (asynchronous
communication, channel size 3)

ing (SPIN, PRISM explicit, STORM sparse), the memory usage
grows exponentially. The same is true for NUSMV, although
the growth is much slower. For STORM and PRISM, the mem-
ory usage is capped at just below 4 GB and between 1 GB and
2 GB, respectively. In case of PRISM, the available memory
for the BDD representation is limited to 1 GB by default.
However, increasing this limit did neither incur a higher
memory usage nor did it reduce the analysis time.

The memory usage for models with synchronous commu-
nication shows similar characteristics (see Fig. 14), with the
exception of NUSMV, which exhibits a much faster exponen-
tial growth. For asynchronous communication, the memory
usage exceeded the limit even for medium-sized models.

@ Springer



P. Chrszon et al.

T T T | T
—— NuSMV
gl —— PRISM (mtbdd) |
— PRISM (explicit)
—— SPIN
= ——— Storm (sparse)
E% 6 Storm (dd) T
2
]
= 4t 4
5}
g
2 -
0 | | |
50 100 150 200 250

number of state machines

Fig. 13 Peak memory usage for checking temporal properties (no com-
munication)

T T I T T T T T
—— NuSMV
] — PRISM (mtbdd) o
—— PRISM (explicit)
—— SPIN
EE 6 —— Storm (sparse) B
(@) Storm (dd)
&
2] |
5}
g
2 - -
0 | | | | |

| |
20 40 60 80 100 120 140 16
number of state machines

Fig. 14 Peak memory usage for checking temporal properties (syn-
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These results provide an answer for RQ2. For the consid-
ered operational design, 4 GB of memory are sufficient in
case of no communication or synchronous communication
between state machines. However, the analysis of models
with asynchronous communication exceeded the memory
limit of 10 GB even for medium-sized instances.

5.4 Threats to validity

The operating system and the hardware may cause varia-
tions in the time measurements, which threatens internal
validity. This has been accounted for by using three runs
for each analysis with a warm-up run beforehand. The max-
imum relative standard deviation between runs was 13.8%,
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but for almost all analysis runs the deviation was below 5%,
showing minimal, or at least consistent, outside influences.
Internal validity is further threatened by the fact that the con-
sidered model checkers use different input languages, which
may introduce subtle semantic differences in the generated
models. In order to make sure all model checkers operate
on the same state spaces, the number of states and transi-
tions as reported by the model checkers have been compared
for all generated instances. For any given model instance,
the number of states and transitions of the SMV, PRISM,
and PROMELA models were identical. Additionally, the state-
space structure of the smallest generated models has been
investigated using the simulation facilities of the respective
model-checking tools. No differences between the generated
models have been found.

Using a single operational design for the experiments
threatens external validity. However, the considered oper-
ational model was specifically designed to be representative
and structurally close to the designs that may arise within real
projects. Note that the operational design analyzed in this
paper is not the same as the one presented in the conference
publication [4], but still exhibits similar time and memory
requirements for the analysis. This indicates that the results
are indeed generalizable to some degree for similarly struc-
tured models.

5.5 Discussion

The experiment results indicate that generally, the verifica-
tion of operational designs using model checking is feasible.
For models without communication between state machines,
even large-scale models can be analyzed. The scalability
of the approach is more limited in case of synchronous or
asynchronous communication within the model, where only
small- to medium-sized models were analyzable within the
given time and memory limits. However, early operational
designs with up to 250 different state machines are the excep-
tion rather than the rule and in practice, such designs are often
much smaller. Thus, even for designs that include message
passing, the verification using model checking is applicable
in most cases.

In contrast to our previous findings [4], where the model
checker NUSMYV outperformed all other tools for both dead-
lock checking and checking of temporal properties, the
experiments in this paper did not establish a clear best tool
for the verification and analysis in all scenarios. For deadlock
checking, the symbolic engine (dd) of STORM was perform-
ing best in all cases. For the verification of the temporal
properties, where STORM’s symbolic engine is not fully appli-
cable, NUSMYV (for no communication) as well as PRISM and
SPIN (for models with communication) were favorable. This
means that the implementation presented in Sect. 4 covering
the transformation into the input languages of several model
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checkers is useful beyond the experimental evaluation, as it
allows the selection of the most appropriate model-checking
tool for a given verification or analysis task.

Given the comparatively low time requirements of the
model-checking process, the verification can be potentially
conducted even alongside concurrent engineering sessions
(cf. Sect.2.1). Since the presented transformation approach
is fully automated and requires no hand-crafted abstractions
or optimizations of the generated models, the verification
can be transparently integrated into existing modeling and
engineering software. Also, while having an expert in formal
verification in the engineering team certainly is advanta-
geous, it is not strictly required for applying the presented
approach. The memory requirements of the verification can
easily be met by today’s commodity hardware. Thus, the
analysis can potentially be executed on the engineers’ local
workstations.

6 Related work

In the following, we discuss the related work concerning the
formal verification of behavioral models and the application
of formal methods in the space domain.

6.1 Formal verification of state-based behavioral
models

A wide range of approaches and tools targeting the for-
malization and formal analysis of high-level state-machine
models have been presented, in particular for Harel stat-
echarts [37] as well as UML/SysML state machines. A
recent survey by André et al. [48] provides a comprehensive
overview of both formal semantics for UML state machines
and transformation-based analysis approaches that leverage
model checking for the formal verification. Both Fecher
et al. [49] and Liu et al. [50] propose an almost com-
plete formal semantics for UML state machines in terms
of labeled transition systems, conceptually comparable to
our definition in Sect.3, but alternative characterizations,
e.g., in terms of graph-transformation systems [51], are pos-
sible as well. While there are dedicated model-checking
tools for UML state machines, e.g., presented in [52],
many model-checking approaches are transformation-based,
utilizing existing general-purpose model checkers. Exam-
ples range from the early work by Latella et al. [53],
which employs SPIN to verify a subset of UML statecharts,
to the recent approach proposed by Horvith et al. [54],
which is based on the Gamma framework [55] and utilizes
UPPAAL [56] as well as THETA [57] to analyze a subset
of SysML models, supporting constructs often found in
industry-grade models. The tool presented by Kolbl et al. [58]
is particularly related to our transformation approach (cf.

Section4), as it also targets PROMELA, SMV, and the PRISM
language. However, in contrast to our approach, which (par-
tially) performs the composition of the state machines before
the transformation to ensure isomorphic models across all
model checkers, their approach encodes the composition into
the models, resulting in structurally different state spaces.
The latter approach potentially results in much more com-
pact representations of the transformed models, i.e., the size
of the resulting PROMELA or SMV source code, but the result-
ing state space is usually larger due to the additional variables
required in the model. Interestingly, only few works [58-61]
utilized symbolic model checking, even though it has shown
the most promise with regards to scalability in our evaluation.
Furthermore, none of the aforementioned transformation-
based approaches were evaluated regarding their scalability,
but Horvath et al. mention it as a challenge [54].

Note that even though our formalism is not a subset of
UML/SysML state machines in the strict sense, it still shares
those constructs that have the most significant impact on the
scalability of model checking for state machines, in particular
message passing/events and concurrent execution. Thus, we
expect that the scalability results presented in Sect. 5 should
generalize to the analysis of UML/SysML state machines.

6.2 Applications of model checking in spacecraft
engineering

Several successful applications of model checking in the
aerospace domain have been reported in the literature. The
SPIN model checker [39] has been utilized to verify a dually
redundant spacecraft controller [62], the downlink mod-
ule, sequencing module [63] as well as the multi-threaded
plan execution module of the Deep Space One’s flight soft-
ware [64], critical parts of the Mars Science Laboratory’s
software [65], and parts of a launch vehicle’s on-board com-
puter software [66]. Brat et al. analyzed an autonomous
docking system [67] using the LTSA model checker [68].
In [45], an Attitude and Orbit Control System (AOCS) is
verified using the symbolic model checker NUSMV [40] to
show the applicability of model checking for this use case.
Esteve et al. demonstrate a formal modeling and analysis
approach accompanying the development of a modern satel-
lite platform [69]. They apply the COMPASS tool set [70]
for various analyses. In [71], the control software of the
CubETH nanosatellite is verified using NUXMV [72], an
extended version of NUSMYV featuring SAT-based and SMT-
based model checking. Nardone et al. propose an approach
for verifying the autonomous reconfiguration functionality of
a satellite system [73] using the probabilistic model checker
PRISM [41]. PRISM is also utilized in [74] to analyze the reli-
ability, availability, and maintainability of a satellite system.
The approach presented in [46] focuses on the concurrency
and interactions of components in a satellite’s mode manage-
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ment. Here, the CAAL [75] tool is utilized for the verification.
An application of hybrid model checking is presented by
Chan and Mitra [76]. Here, the safety of an autonomous
spacecraft rendezvous is analyzed using SPACEEX [25] and
their own hybrid model-checking approach.

While model checking can help to detect errors which are
hard to find using testing and simulation, its limited scal-
ability is still perceived as a major hurdle for widespread
adoption [2, 3, 77]. Several of the above mentioned works
([46, 62, 66, 71, 73]) state that they either faced or expected
scalability issues of their chosen approach. However, none
actually quantified or systematically evaluated the scalability
of the utilized model-checking tools.

The mentioned case studies and approaches can be divided
by the project phase they target. While [45, 63—66, 69] focus
on the verification of flight software which is typically devel-
oped during phases C and D, the approaches in [46, 62, 71,
73, 76] are applicable during earlier project phases. Only
few of the cited works state that the verification activities
were actually performed alongside the development [65, 69]
rather than after the fact. Furthermore, the formal modeling
and analysis were carried out by experts in formal verifica-
tion and thus were not transparently integrated into the design
process.

7 Conclusion

We have examined the scalability of model checking for
verifying spacecraft operational designs within early space-
system design phases. For this, a model of a satellite’s mode
management has been investigated. Its behavior is expressed
in a state-machine formalism that allows for the concurrent
execution of state machines and where interactions between
state machines are captured by synchronous or asynchronous
communication. The goal of the verification was to show
that the model contains no deadlocks and that all system
modes, subsystem modes, and equipment modes can even-
tually be activated or deactivated. The model was built to
be easily scalable by increasing the number of concurrent
state machines and furthermore allows a selection of the
complexity of interactions between state machines. We have
implemented transformations of the state-machine model as
well as the specification into the input modeling languages
of various model-checking tools. This enabled us to com-
pare different state-space explosion mitigation techniques
w.r.t. analysis time and memory consumption. The results
show that for models, where dependencies and interactions
between state machines are only expressed using constraints,
symbolic model-checking scales up to large-scale systems
with up to 250 state machines. For more complex models
that include synchronous or asynchronous communication,
the scalability is more limited, but the analysis of medium-
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sized models with up to 30 state machines is still tractable.
These results could be achieved without requiring hand-
crafted model optimizations or abstraction, only relying on
the automated built-in optimizations of the model check-
ers. This means that the verification approach using model
checking can be transparently integrated into early design
processes without requiring the support of experts in formal
verification.

The work presented here can be extended in several direc-
tions. The modeling formalism could be extended to enable a
reasoning about quantitative properties, such as energy con-
sumption or reliability. Since the usage of synchronous or
asynchronous communication has a significant impact on the
scalability of the present approach, automated techniques for
minimizing channel capacities while preserving the relevant
system properties could be investigated. The current imple-
mentation of the approach utilizes the tool Virtual Satellite [7]
for creating and transforming the state-machine models. This
implementation could be fully integrated into the tool or also
integrated into other design tools, which would enable a more
streamlined integration into the design process.
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