Tuesday, 06. May 2025 SAF intelligence & Masterclass day Getting SAF to Market

SUSTAINABLE AVIATION FUTURES

CONGRESS

6 - 8 May 2025 Beurs van Berlage Amsterdam

The World's Largest SAF & Aviation Decarbonisation Event

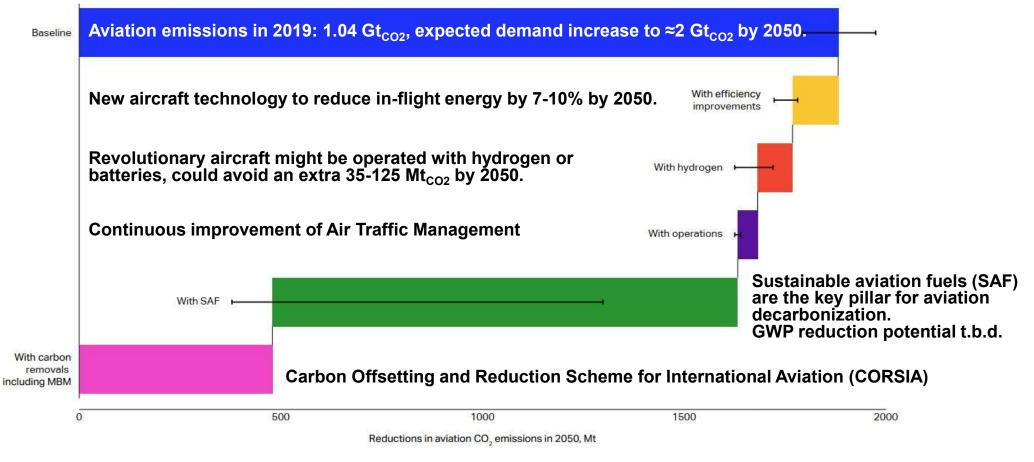
DECARBONISING EUROPE'S AVIATION SECTOR AT SCALE

Techno Economic and Environmental Assessment of SAF production

<u>Ralph-Uwe Dietrich</u>, Rahnuma Bhuiyan Evon, Felix Habermeyer, Simon Maier, Moritz Raab, Julia Weyand (DLR e.V., www.DLR.de/tt)

Decarbonising Europe's Aviation Agenda

- 1. Motivation and goals
- 2. Techno economic and environmental assessment
 - 1. Technical
 - 2. Economic
 - 3. Environmental
- 3. Feedstock supply
- 4. Technological readiness
- 5. European SAF roadmap
- 6. Conclusion and outlook

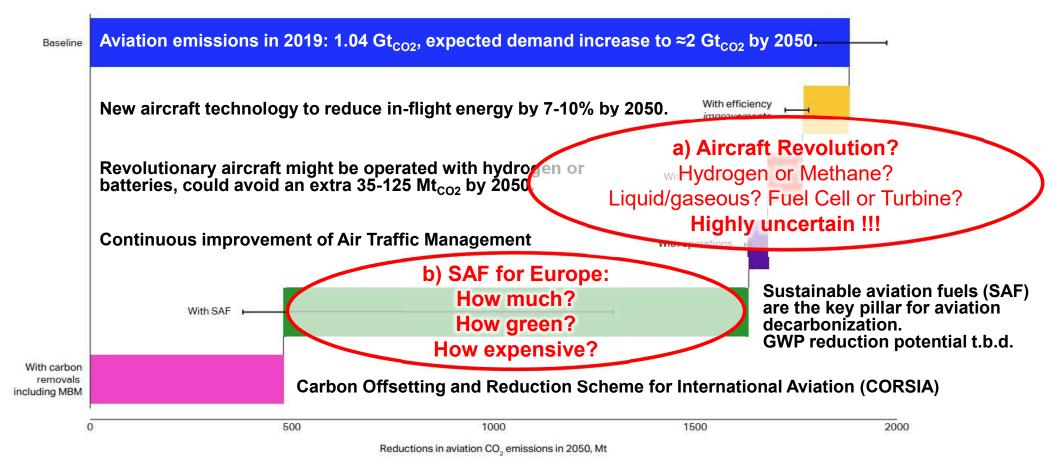

IATA Net Zero Roadmaps^[1] International Aviation Contribution

 SUSTAINABLE
 6 - 8 May 2025

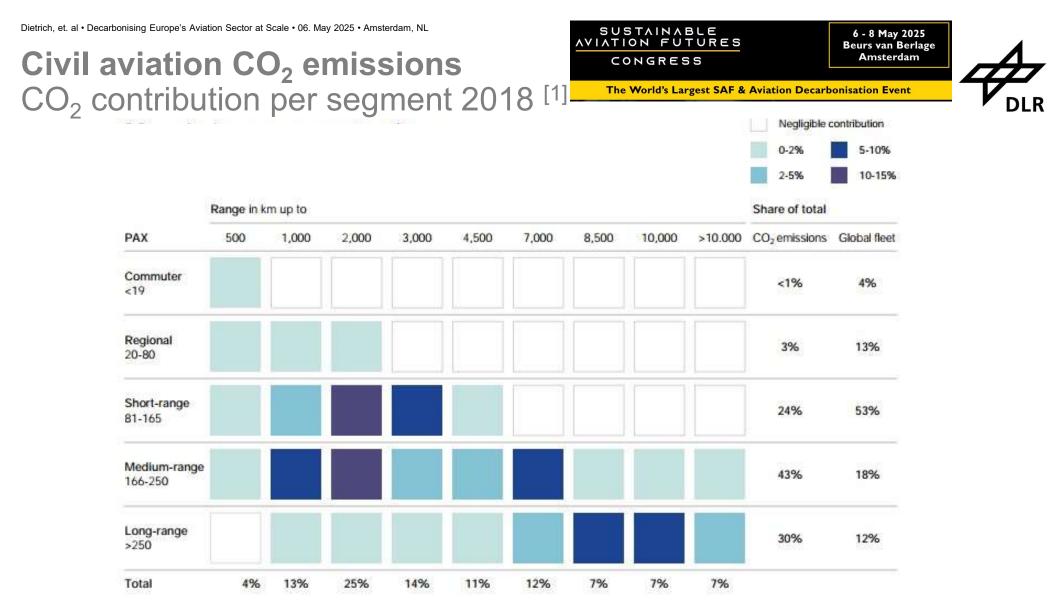
 AVIATION FUTURES
 Beurs van Berlage

 CONGRESS
 Amsterdam

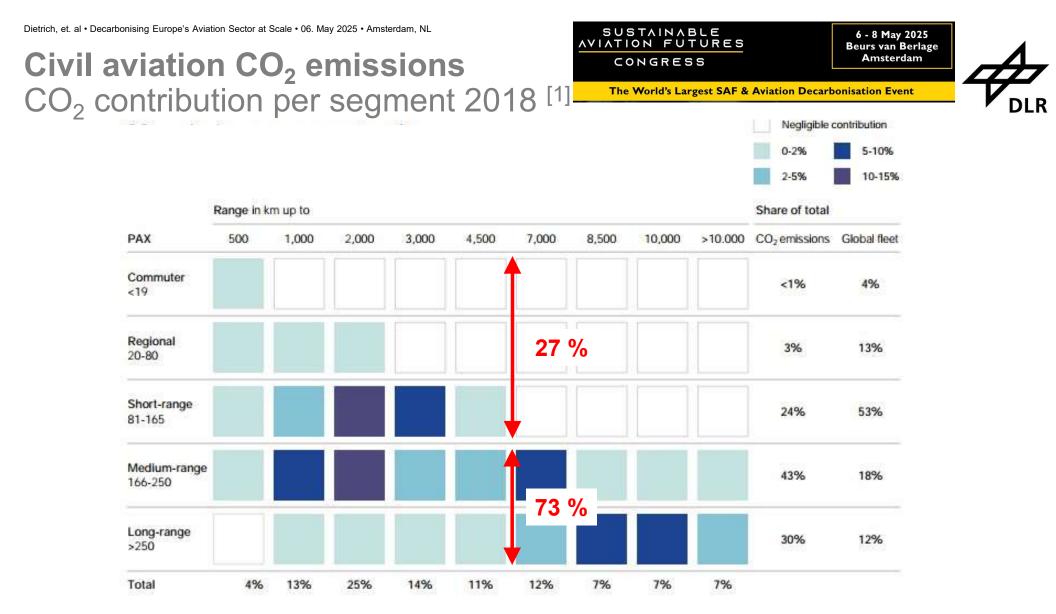
 The World's Largest SAF & Aviation Decarbonisation Event
 Image: Constant of the second secon

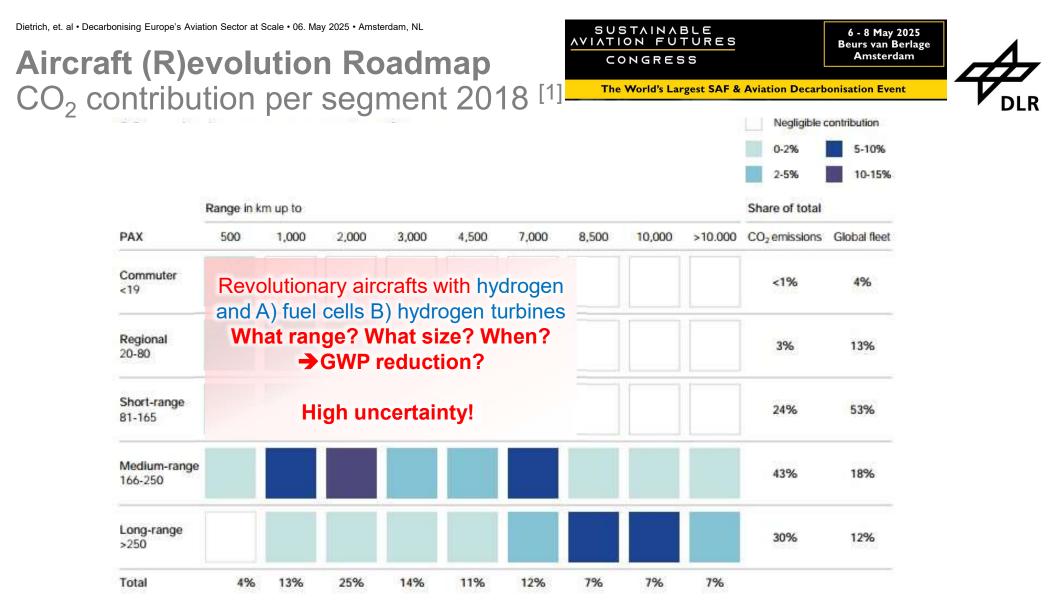

[1] IATA's Net Zero roadmaps, https://www.iata.org/en/programs/sustainability/roadmaps/

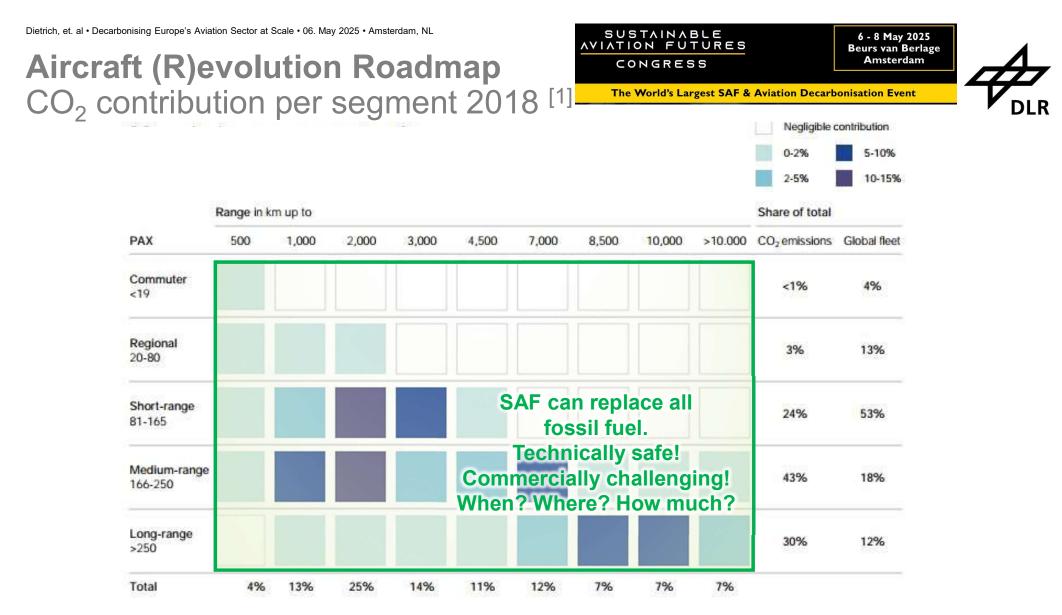
IATA Net Zero Roadmaps^[1] International Aviation Contribution

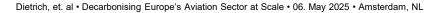

 SUSTAINABLE
 6 - 8 May 2025

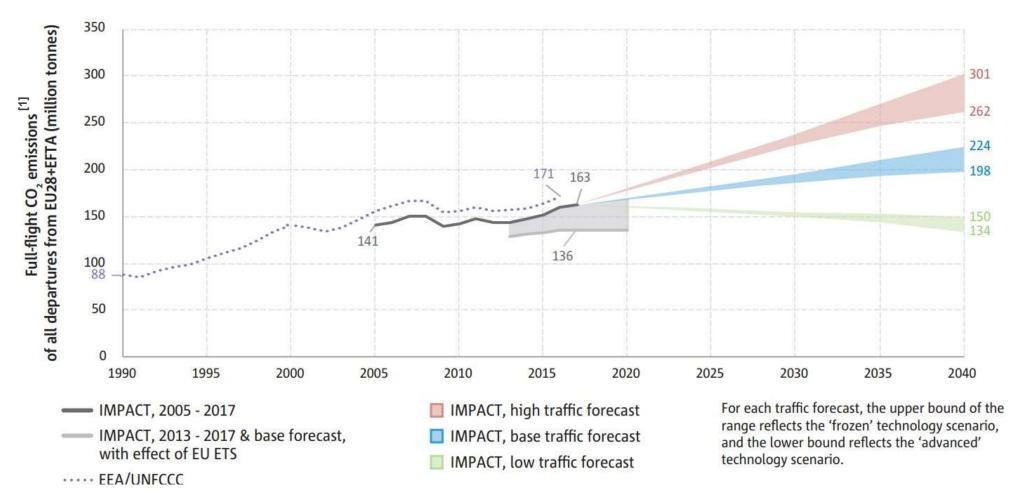
 AVIATION FUTURES
 Beurs van Berlage


 CONGRESS
 Amsterdam


[1] IATA's Net Zero roadmaps, https://www.iata.org/en/programs/sustainability/roadmaps/


[1] FCH-JU (2020) Hydrogen-powered aviation: a fact-based study of hydrogen technology, economics, and climate impact by 2050. DOI: 10.2843/471510

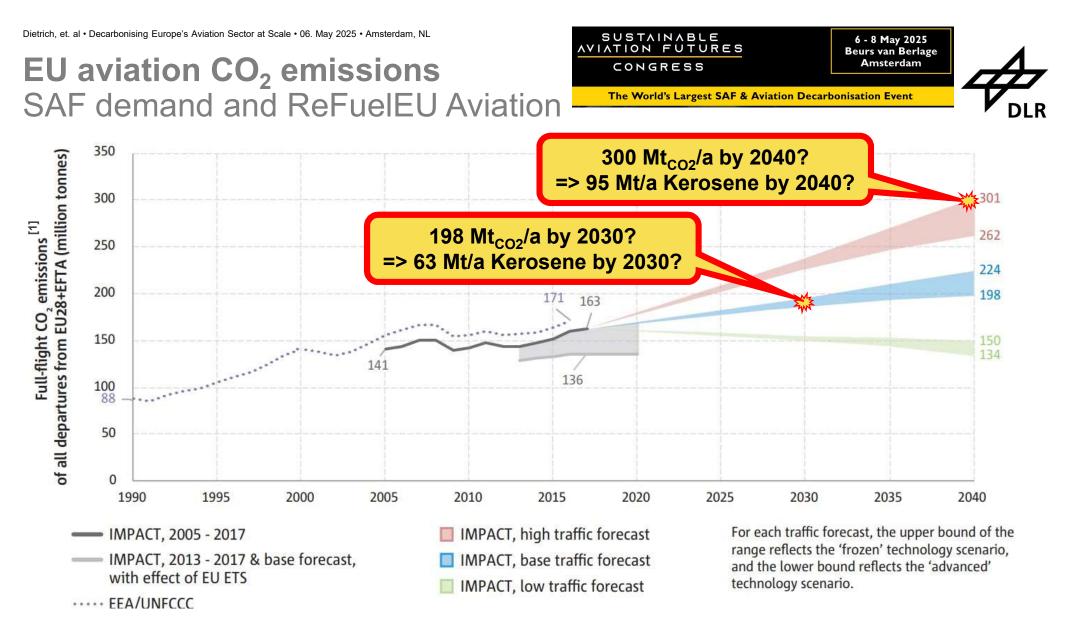

[1] FCH-JU (2020) Hydrogen-powered aviation: a fact-based study of hydrogen technology, economics, and climate impact by 2050. DOI: 10.2843/471510


[1] FCH-JU (2020) Hydrogen-powered aviation: a fact-based study of hydrogen technology, economics, and climate impact by 2050. DOI: 10.2843/471510

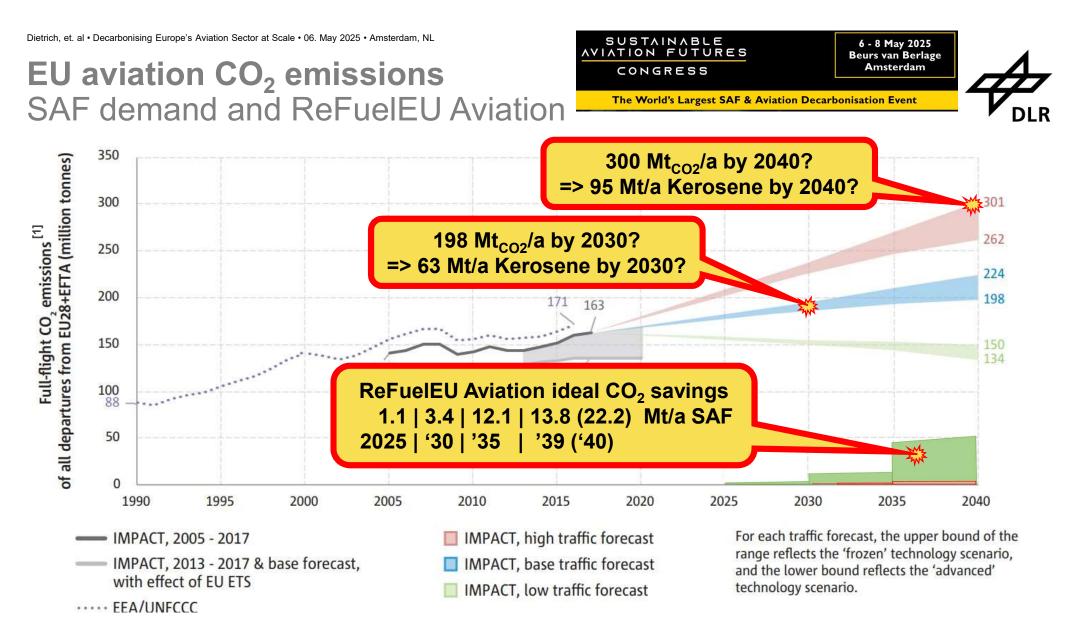
[1] FCH-JU (2020) Hydrogen-powered aviation: a fact-based study of hydrogen technology, economics, and climate impact by 2050. DOI: 10.2843/471510

EU aviation CO₂ emissions SAF demand and ReFuelEU Aviation

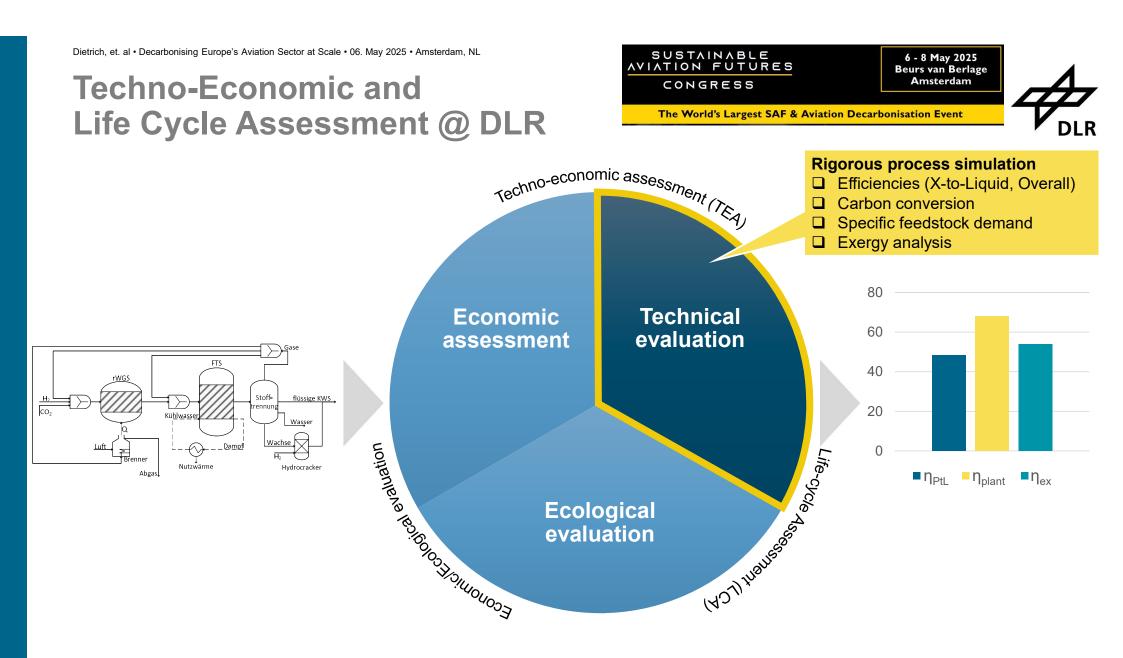
[1] European Aviation Environmental Report 2019, https://www.easa.europa.eu/eaer/system/files/usr_uploaded/219473_EASA_EAER_2019_WEB_LOW-RES.pdf


SUSTAINABLE AVIATION FUTURES

CONGRESS

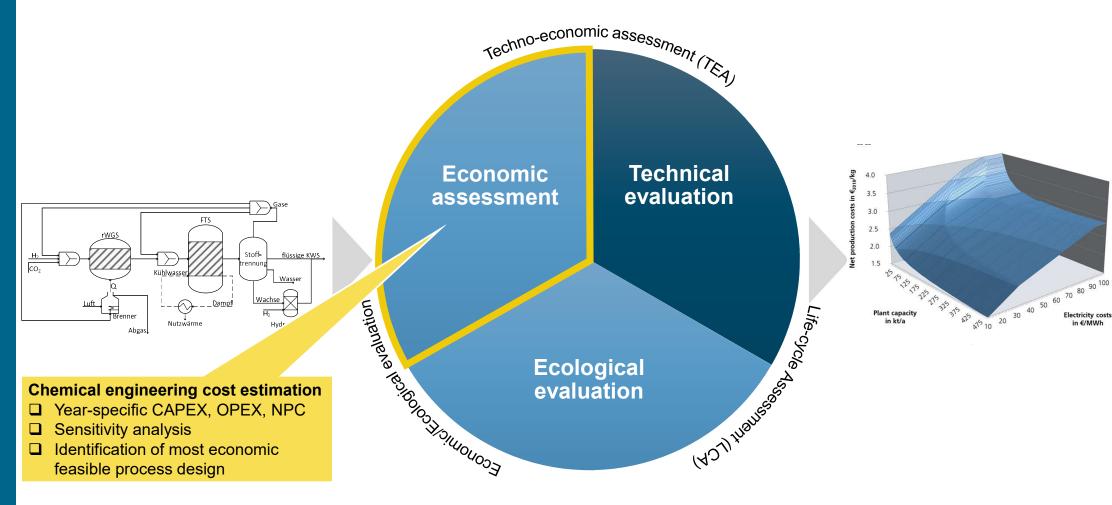

The World's Largest SAF & Aviation Decarbonisation Event

6 - 8 May 2025 Beurs van <u>Berlage</u>


Amsterdam

[1] European Aviation Environmental Report 2019, https://www.easa.europa.eu/eaer/system/files/usr_uploaded/219473_EASA_EAER_2019_WEB_LOW-RES.pdf

[1] European Aviation Environmental Report 2019, https://www.easa.europa.eu/eaer/system/files/usr_uploaded/219473_EASA_EAER_2019_WEB_LOW-RES.pdf

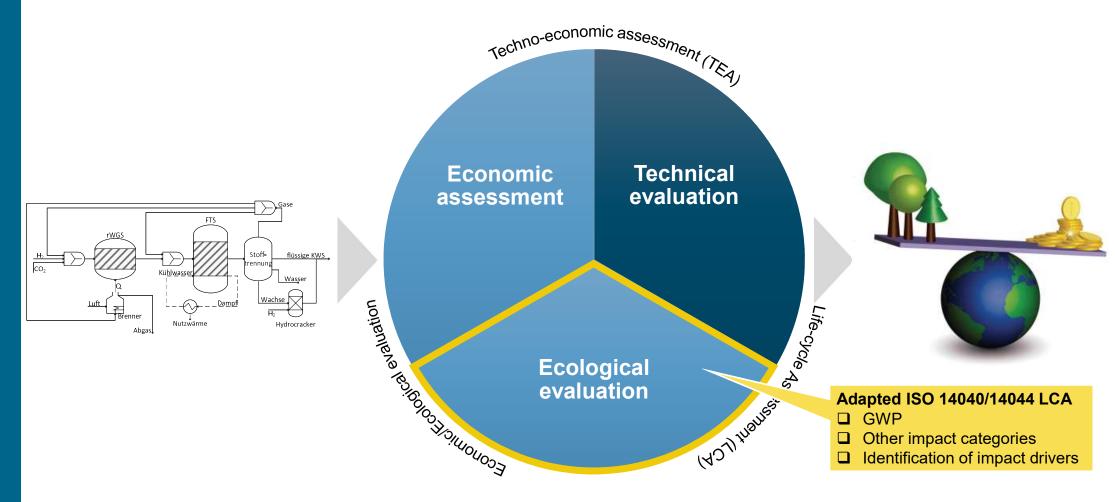


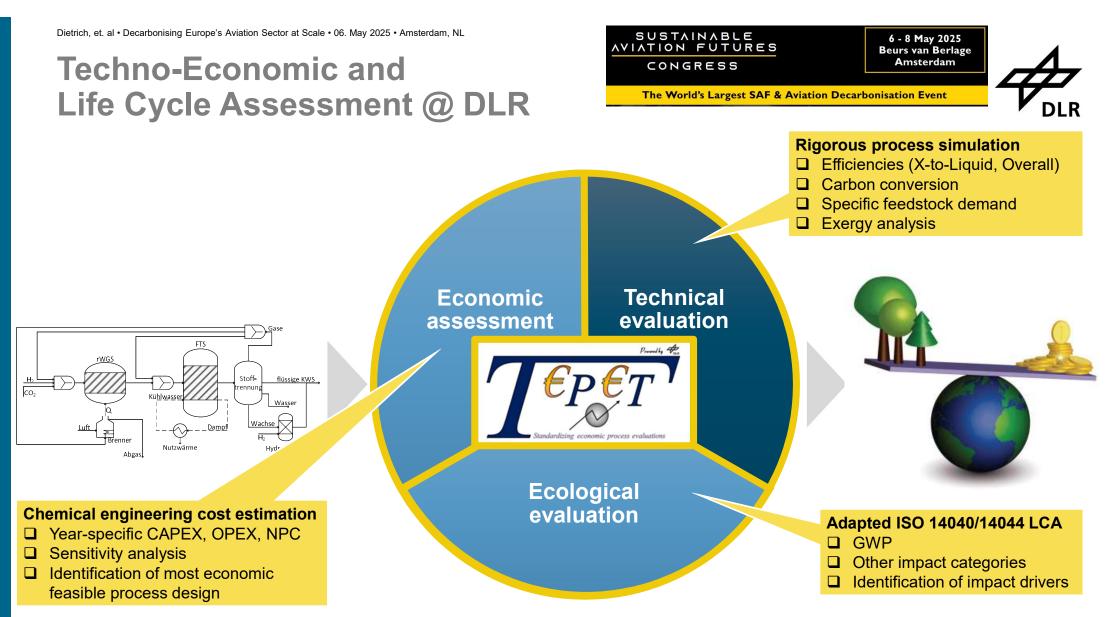
Techno-Economic and Life Cycle Assessment @ DLR

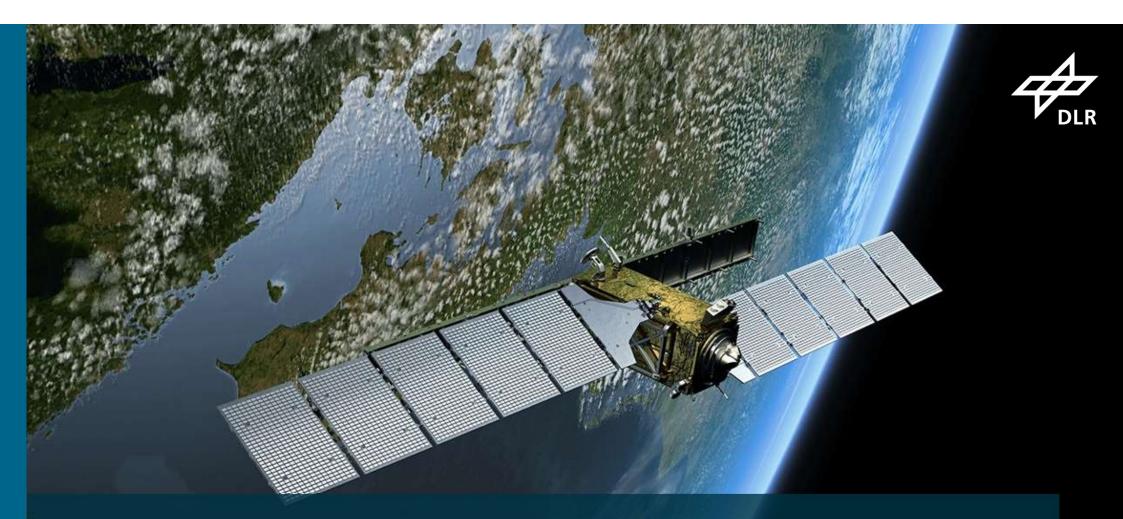
 SUSTAINABLE
 6 - 8 May 2025

 AVIATION FUTURES
 Beurs van Berlage

 CONGRESS
 Amsterdam




Techno-Economic and Life Cycle Assessment @ DLR


 SUSTAINABLE
 6 - 8 May 2025

 AVIATION FUTURES
 Beurs van Berlage

 CONGRESS
 Amsterdam

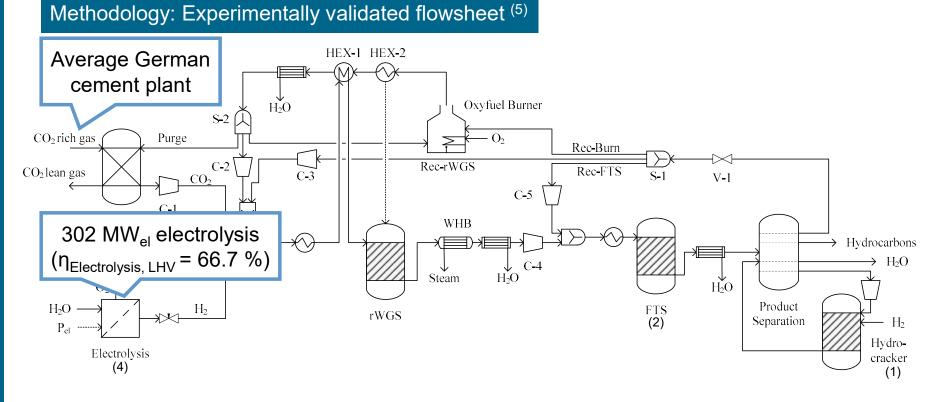
TECHNICAL ASSESSMENT OF SAF CONCEPTS

Technical Assessment Methodology

Definition of KPIs such as:

 $\eta_{\rm C} = \frac{\dot{n}_{\rm C,C5+}}{\dot{n}_{\rm C,feedstock}} \qquad \qquad \eta_{\rm H} = \frac{\dot{n}_{\rm H,C5+}}{\dot{n}_{\rm H,elektrolysis}} \qquad \qquad \eta_{\rm PtL} = \frac{\dot{m}_{\rm C5+}LHV_{\rm C5+}}{P_{\rm elektrolysis} + P_{\rm MEA} + P_{\rm compressor}}$

- Rigorous steady-state process simulation + validation
 - Validated process models of most processes from research projects available
 - Adaptable to any new configuration / feedstock / ...
- Automated parameter variation and grid search via DLR in-house tools
 - Sensitivity of each process parameter on each KPI
 - Automated heat integration flexibility towards configuration changes


Technical Assessment Example Power-to-Liquid process simulation

 SUSTAINABLE
 6 - 8 May 2025

 AVIATION FUTURES
 Beurs van Berlage

 CONGRESS
 Amsterdam

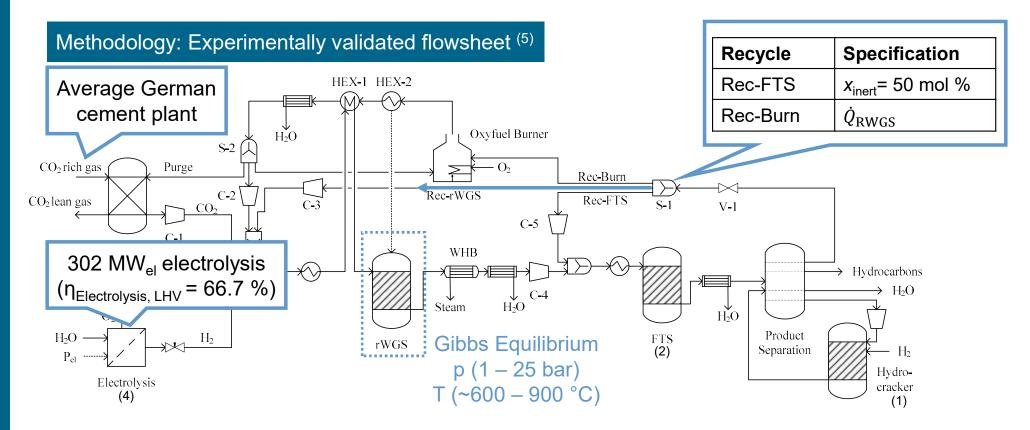
 The World's Largest SAF & Aviation Decarbonisation Event
 Viation Participation Event

(1) D. Leckel, M. Liwanga-Ehumbu (2006): Diesel-Selective Hydrocracking of an Iron-Based Fischer–Tropsch Wax Fraction (C 15 – C 45) Using a MoO 3 -Modified Noble Metal Catalyst (2) D. Vervloet et al. (2012): Fischer–Tropsch reaction–diffusion in a cobalt catalyst particle: aspects of activity and selectivity for a variable chain growth probability

(3) Roussanaly et al. (2017): Techno-economic analysis of MEA CO2 capture from a cement kiln- impact of steam supply scenario

(4) Schmidt et al. (2017): Future cost and performance of water electrolysis:: An expert elicitation study

(5) Adelung and Dietrich, R.-U. (2022). Impact of the reverse water-gas shift operating conditions on the Power-to-Liquid process efficiency


Technical Assessment Example Power-to-Liquid process simulation

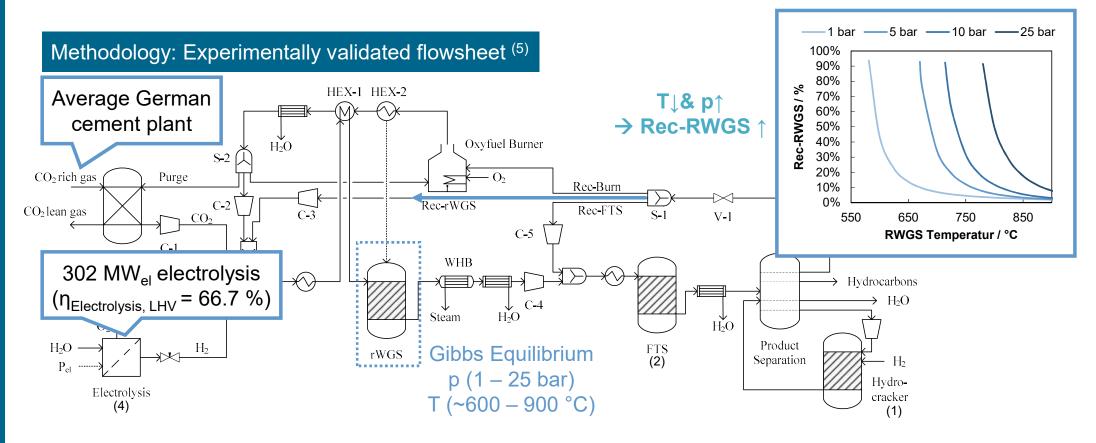
SUSTAINABLE AVIATION FUTURES CONGRESS

The World's Largest SAF & Aviation Decarbonisation Event

(1) D. Leckel, M. Liwanga-Ehumbu (2006): Diesel-Selective Hydrocracking of an Iron-Based Fischer–Tropsch Wax Fraction (C 15 – C 45) Using a MoO 3 -Modified Noble Metal Catalyst (2) D. Vervloet et al. (2012): Fischer–Tropsch reaction–diffusion in a cobalt catalyst particle: aspects of activity and selectivity for a variable chain growth probability

(3) Roussanaly et al. (2017): Techno-economic analysis of MEA CO2 capture from a cement kiln- impact of steam supply scenario

(4) Schmidt et al. (2017): Future cost and performance of water electrolysis:: An expert elicitation study


(5) Adelung and Dietrich, R.-U. (2022). Impact of the reverse water-gas shift operating conditions on the Power-to-Liquid process efficiency

Technical Assessment Example Power-to-Liquid process simulation

 SUSTAINABLE
 6 - 8 May 2025

 AVIATION FUTURES
 Beurs van Berlage

 CONGRESS
 Amsterdam

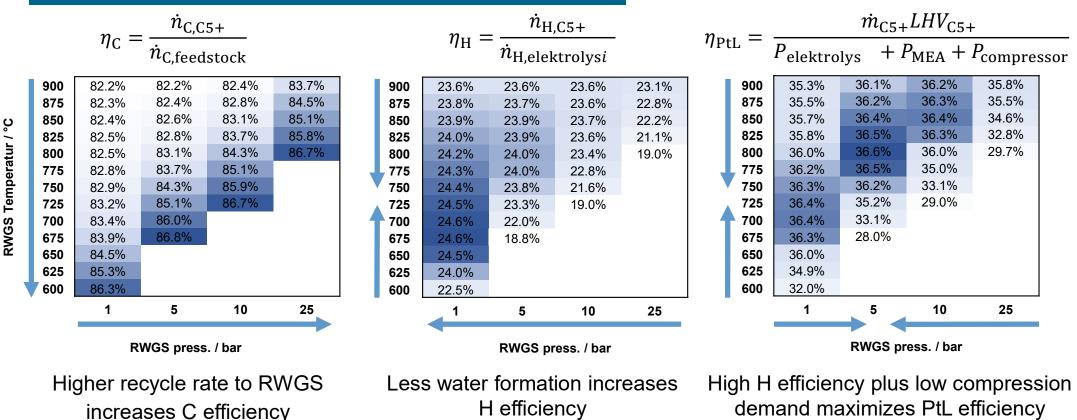
(1) D. Leckel, M. Liwanga-Ehumbu (2006): Diesel-Selective Hydrocracking of an Iron-Based Fischer–Tropsch Wax Fraction (C 15 – C 45) Using a MoO 3 -Modified Noble Metal Catalyst (2) D. Vervloet et al. (2012): Fischer–Tropsch reaction–diffusion in a cobalt catalyst particle: aspects of activity and selectivity for a variable chain growth probability

(3) Roussanaly et al. (2017): Techno-economic analysis of MEA CO2 capture from a cement kiln- impact of steam supply scenario

(4) Schmidt et al. (2017): Future cost and performance of water electrolysis:: An expert elicitation study

(5) Adelung and Dietrich, R.-U. (2022). Impact of the reverse water-gas shift operating conditions on the Power-to-Liquid process efficiency

Technical Assessment Example Power-to-Liquid efficiency


 SUSTAINABLE
 6 - 8 May 2025

 AVIATION FUTURES
 Beurs van Berlage

 CONGRESS
 Amsterdam

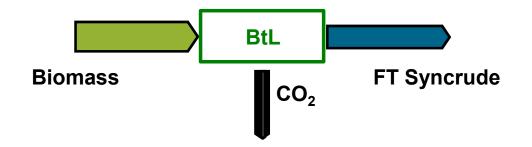
= Highest efficiency

Process Parameter dependent Material / Energy Efficiency ⁽⁵⁾

[1] Adelung, S. and Dietrich, R.-U. (2022). Impact of the reverse water-gas shift operating conditions on the Power-to-Liquid fuel production cost. Fuel. Vol. 317, 2022, 123440, doi: 10.1016/j.fuel.2022.123440

FT-based Biomass-to-Liquid and Power&Biomass-to-Liquid SAF^[1]

 SUSTAINABLE
 6 - 8 May 2025


 AVIATION FUTURES
 Beurs van Berlage

 CONGRESS
 Amsterdam

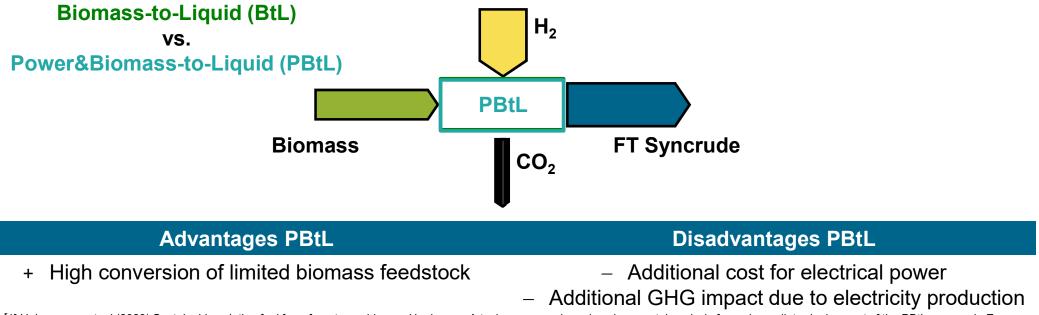
 The World's Largest SAF & Aviation Decarbonisation Event
 DL

Utilizing European waste wood: Cheap green, easy to harvest carbon!

Biomass-to-Liquid (BtL)

[1] Habermeyer et. al (2023) Sustainable aviation fuel from forestry residue and hydrogen. A techno-economic and environmental analysis for an immediate deployment of the PBtL process in Europe. Sustainable Energy and Fuels, 7, p. 4229-4246. doi: 10.1039/d3se00358b.

FT-based Biomass-to-Liquid and Power&Biomass-to-Liquid SAF^[1]

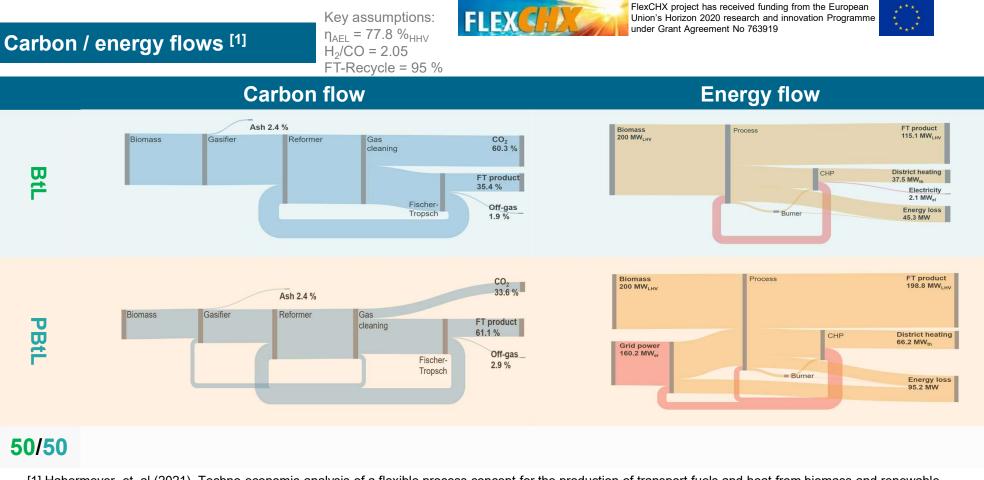

 SUSTAINABLE
 6 - 8 May 2025

 AVIATION FUTURES
 Beurs van Berlage

 CONGRESS
 Amsterdam

 The World's Largest SAF & Aviation Decarbonisation Event
 DL

Utilizing European waste wood: Cheap green, easy to harvest carbon!

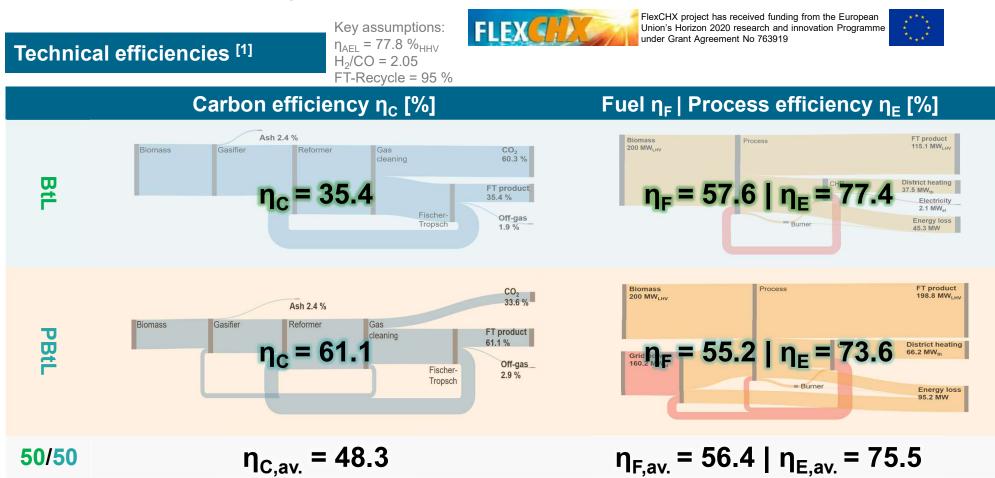

[1] Habermeyer et. al (2023) Sustainable aviation fuel from forestry residue and hydrogen. A techno-economic and environmental analysis for an immediate deployment of the PBtL process in Europe. Sustainable Energy and Fuels, 7, p. 4229-4246. doi: 10.1039/d3se00358b.

Assessment of BtL and PBtL SAF

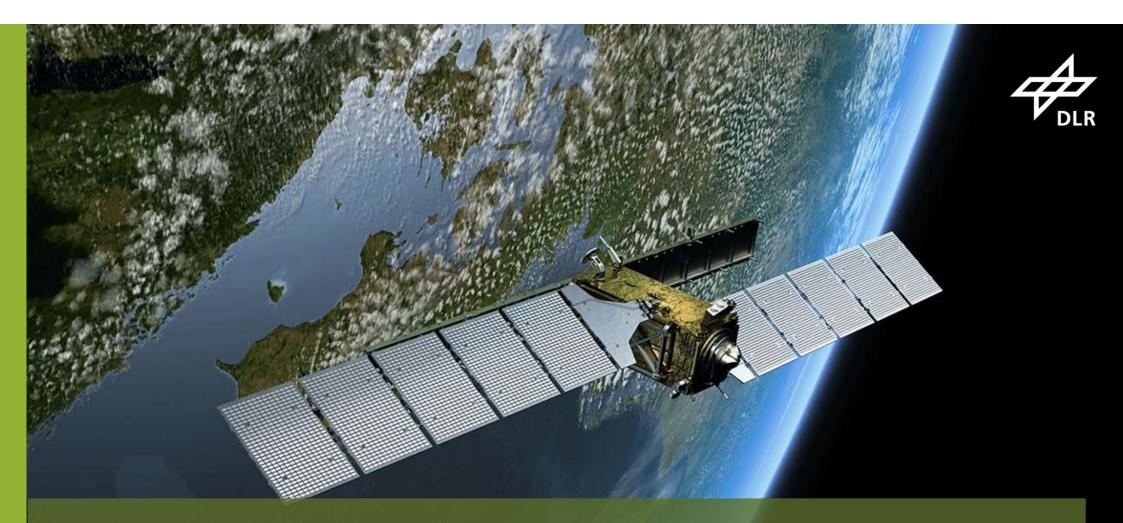
SUSTAINABLE AVIATION FUTURES CONGRESS

The World's Largest SAF & Aviation Decarbonisation Event

6 - 8 May 2025 Beurs van Berlage Amsterdam


[1] Habermeyer, et. al (2021). Techno-economic analysis of a flexible process concept for the production of transport fuels and heat from biomass and renewable electricity. Front. Energy Res., Nov. 2021 | Volume 9 | Article 723774

Technical Assessment Example BtL / PBtL efficiency


SUSTAINABLE AVIATION FUTURES CONGRESS

The World's Largest SAF & Aviation Decarbonisation Event

6 - 8 May 2025 Beurs van Berlage Amsterdam

[1] Habermeyer, et. al (2021). Techno-economic analysis of a flexible process concept for the production of transport fuels and heat from biomass and renewable electricity. Front. Energy Res., Nov. 2021 | Volume 9 | Article 723774

ECONOMICAL ASSESSMENT OF SAF CONCEPTS

Economic Assessment Methodology

- All cost are highly dependent on multiple factors (location, year, feedstock, ...)
- Standard chemical cost estimation are based on validated basic design
 - All chemical standard equipment cost available
 - New equipment via analogies, exchange with technology suppliers
 - Summarizing annualized CAPEX and OPEX in the following Equation:

$$\operatorname{NPC}\left(\frac{\mathbb{E}/\$}{\operatorname{kg}_{\operatorname{fuel}}}\right) = \frac{ACC + \sum OPEX_{\operatorname{dir}} + \sum OPEX_{\operatorname{ind}} + (h_{\operatorname{labor}} \cdot c_{\operatorname{labor}})}{\dot{m}_{\operatorname{fuel}}}$$

Fully automated economic cost estimation using DLR in-house tools

Economic Assessment Example Power-to-Liquid cost & sensitivity

 SUSTAINABLE
 6 - 8 May 2025

 AVIATION FUTURES
 Beurs van Berlage

 CONGRESS
 Amsterdam

 The World's Largest SAF & Aviation Decarbonisation Event
 D

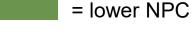
RWGS Temperature / °C

Process Parameter dependent Net Production Costs ^[1] / NPC in €₂₀₁₉/kg_{C5+}

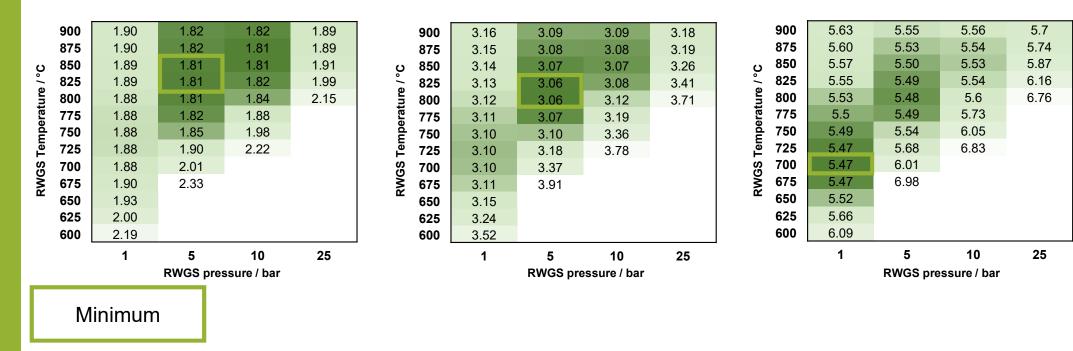
	900	3.16	3.09	3.09	3.18
RWGS Temperature / °C	875	3.15	3.08	3.08	3.19
	850	3.14	3.07	3.07	3.26
	825	3.13	3.06	3.08	3.41
	800	3.12	3.06	3.12	3.71
	775	3.11	3.07	3.19	
ď	750	3.10	3.10	3.36	
Tei	725	3.10	3.18	3.78	
9 S	700	3.10	3.37		
RW	675	3.11	3.91		
	650	3.15			
	625	3.24			
	600	3.52			
		1	5	10	25
		RWGS pressure / bar			

H₂-Input: 4.1 €/kg_{H2}

Minimum


[1] Adelung, S. and Dietrich, R.-U. (2022). Impact of the reverse water-gas shift operating conditions on the Power-to-Liquid fuel production cost. Fuel. Vol. 317, 2022, 123440, doi: 10.1016/j.fuel.2022.123440

H₂-Input: 2.3 €/kg_{H2}


Economic Assessment Example Power-to-Liquid cost & sensitivity

SUSTAINABLE AVIATION FUTURES 6 - 8 May 2025 Beurs van Berlage Amsterdam CONGRESS The World's Largest SAF & Aviation Decarbonisation Event

Process Parameter dependent Net Production Costs ^[1] / NPC in €₂₀₁₉/kg_{C5+}

H₂-Input: 7.6 €/kg_{H2}

H₂-Input: 4.1 €/kg_{H2}

[1] Adelung, S. and Dietrich, R.-U. (2022). Impact of the reverse water-gas shift operating conditions on the Power-to-Liquid fuel production cost. Fuel. Vol. 317, 2022, 123440, doi: 10.1016/j.fuel.2022.123440

1.82

1.81

H₂-Input: 2.3 €/kg_{H2}

1.82

1.82

1.90

1.90

900

875

RWGS Temperature / °C

Economic Assessment Example Power-to-Liquid cost & sensitivity

1.89

1.89

SUSTAINABLE AVIATION FUTURES **Beurs van Berlage** Amsterdam CONGRESS The World's Largest SAF & Aviation Decarbonisation Event

900

875

5.63

5.60

Process Parameter dependent Net Production Costs [1] / NPC in €2019/kgC5+

900

875

5.55

5.53

850 5.57 5.50 5.53 5.87 1.89 1.81 1.81 1.91 850 850 3.14 3.07 3.07 3.26 Temperature / °C Temperature / °C 825 5.55 5.49 5.54 6.16 825 1.89 1.81 1.82 1.99 825 3.13 3.06 3.08 3.41 800 5.53 800 1.88 1.81 1.84 2.15 5.48 5.6 6.76 800 3.12 3.06 3.12 3.71 775 5.5 5.49 5.73 775 1.88 1.82 1.88 775 3.11 3.07 3.19 750 5.49 5.54 6.05 750 1.88 1.85 1.98 750 3.10 3.36 3.10 725 1.90 2.22 725 5.47 5.68 6.83 1.88 725 3.10 3.18 3.78 RWGS RWGS . 700 5.47 6.01 700 2.01 1.88 700 3.10 3.37 675 5.47 6.98 675 1.90 2.33 675 3.11 3.91 650 5.52 650 1.93 3.15 650 5.66 625 2.00 625 625 3.24 2.19 600 6.09 600 600 3.52 1 1 5 10 25 5 10 25 1 5 10 25 **RWGS** pressure / bar **RWGS** pressure / bar RWGS pressure / bar 5 bar and 800 °C: low cost, robust NPC optimum for all H₂ feedstock costs Minimum

3.09

3.08

3.09

3.08

3.18

3.19

H₂-Input: 4.1€/kg_{H2}

3.16

3.15

30

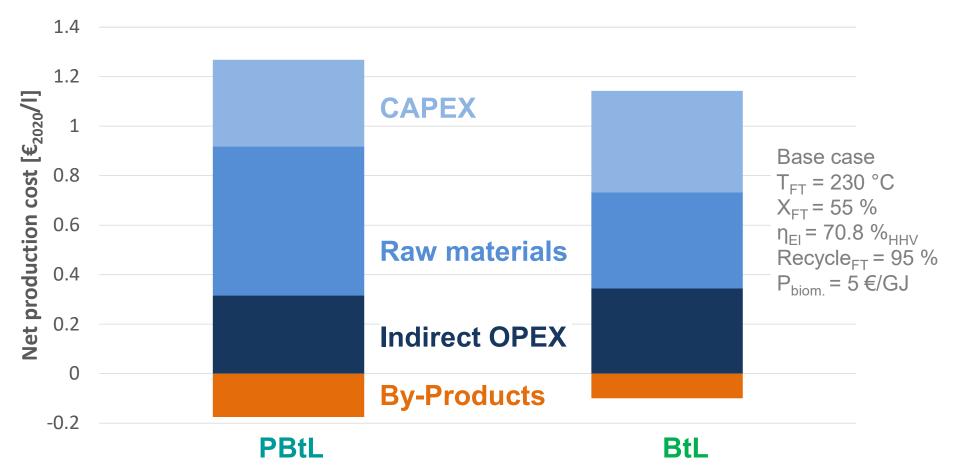
[1] Adelung, S. and Dietrich, R.-U. (2022). Impact of the reverse water-gas shift operating conditions on the Power-to-Liquid fuel production cost. Fuel. Vol. 317, 2022, 123440, doi: 10.1016/j.fuel.2022.123440

= lower NPC

5.56

5.54

5.7

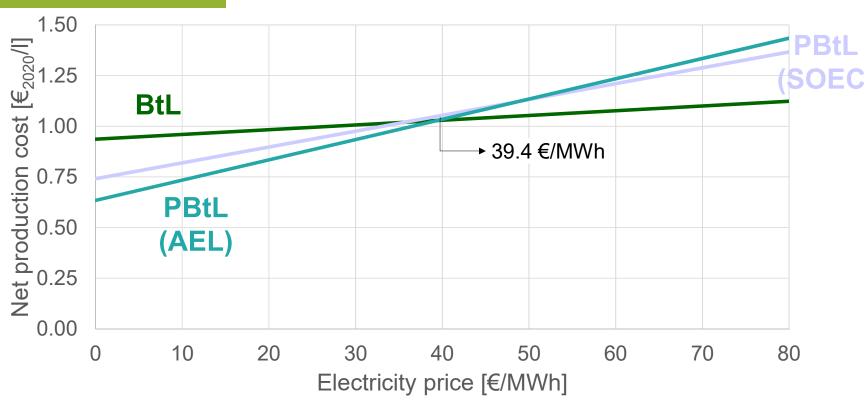

5.74

Economic Assessment Example BtL / PBtL cost ^[1]

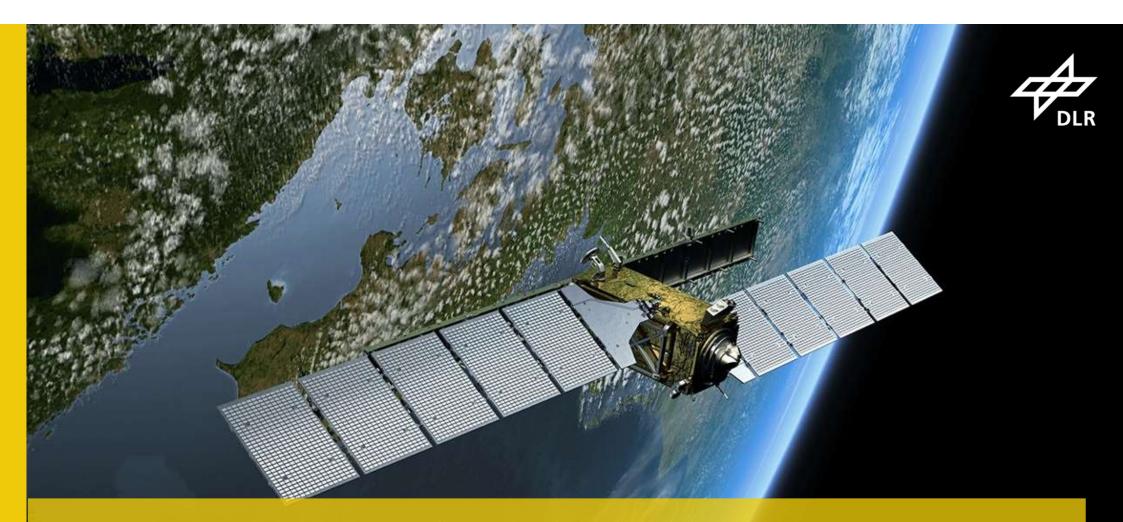
 SUSTAINABLE
 6 - 8 May 2025

 AVIATION FUTURES
 Beurs van Berlage

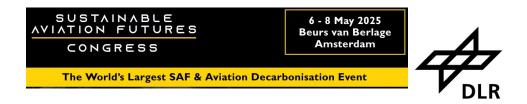
 CONGRESS
 Amsterdam



[1] Habermeyer, et. al (2023) Power Biomass to Liquid — an option for Europe's sustainable and independent aviation fuel production. Biomass Conversion and Biorefinery. Springer Nature. doi: 10.1007/s13399-022-03671-y. 723774


Economic Assessment Example BtL / PBtL cost sensitivity ^[1]

Net production cost sensitivity ^[1]:



[1] Habermeyer, et. al (2023) Power Biomass to Liquid — an option for Europe's sustainable and independent aviation fuel production. Biomass Conversion and Biorefinery. Springer Nature. doi: 10.1007/s13399-022-03671-y. 723774

ENVIRON. ASSESSMENT OF SAF CONCEPTS

Environmental Assessment Methodology

- KPI's of LCA → more than only climate change
 - Water use versus water scarcity
 - Land use competition?
 - High minerals and metals resource depletion in SAF process chain (compared to crude oil)
- Comply with regulation: Renewable Energy Directive (RED III)
 - → 65(70)% climate change reduction due to change: RED IV, V, VI?
 - No consideration of impacts from cultivation phase
 - Full feedstock sustainability questionable (carbon harvested = carbon regrowth)
 - No credit for higher climate change reduction potential above 70%
 - > No incentive for minimising climate change below threshold

Environmental Assessment Methodology

 SUSTAINABLE
 6-8 May 2025

 AVIATION FUTURES
 Beurs van Berlage

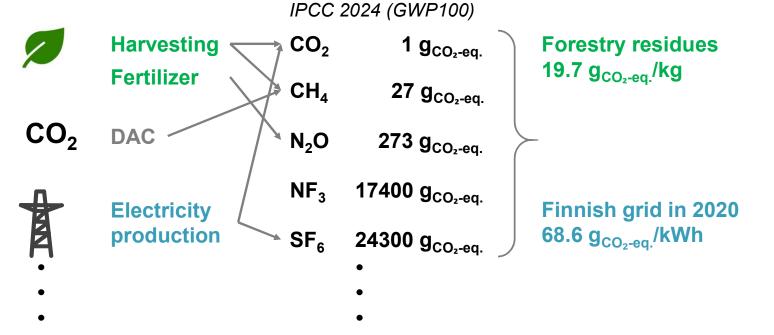
 CONGRESS
 Amsterdam

 The World's Largest SAF & Aviation Decarbonisation Event
 DL

- ISO 14040/14044 for standard life cycle assessment (LCA) procedure
- Simplified PBtL climate change calculation example:

Fully automated environmental impact estimation using DLR in-house tools

Environmental Assessment Methodology


 SUSTAINABLE
 6 - 8 May 2025

 AVIATION FUTURES
 Beurs van Berlage

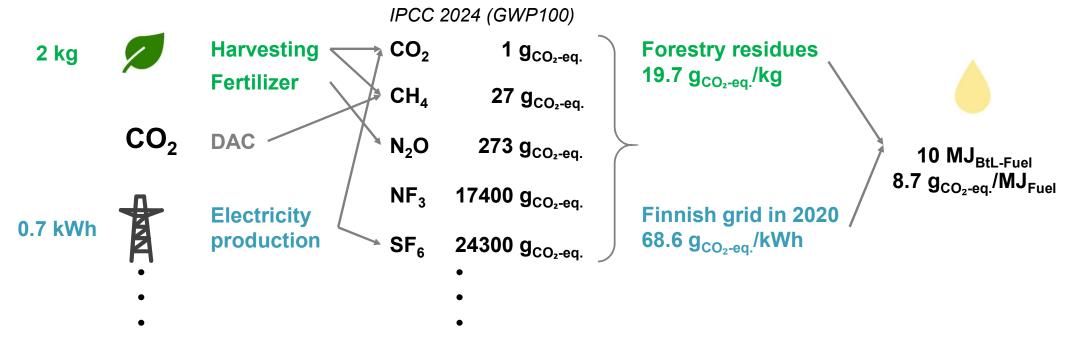
 CONGRESS
 Amsterdam

 The World's Largest SAF & Aviation Decarbonisation Event
 Image: Constant Sector Secto

- ISO 14040/14044 for standard life cycle assessment (LCA) procedure
- Simplified PBtL climate change calculation example:

Fully automated environmental impact estimation using DLR in-house tools

Environmental Assessment Methodology


 SUSTAINABLE
 6 - 8 May 2025

 AVIATION FUTURES
 Beurs van Berlage

 CONGRESS
 Amsterdam

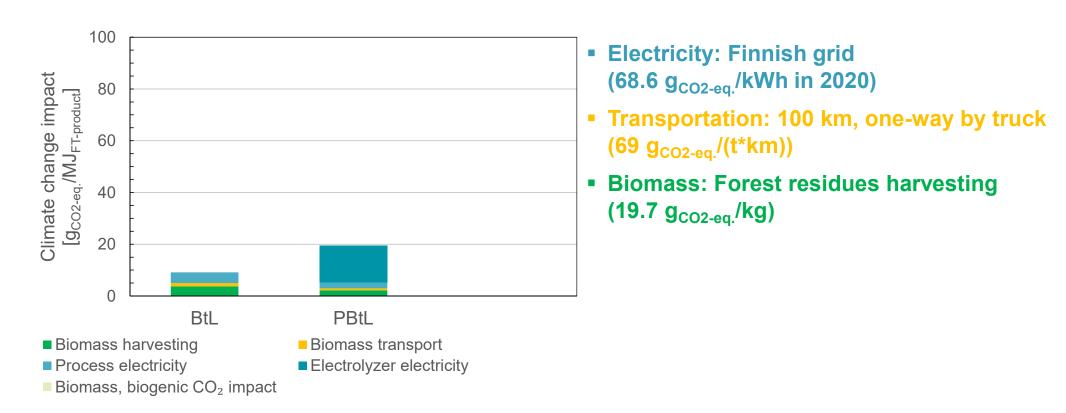
 The World's Largest SAF & Aviation Decarbonisation Event
 Viation Point

- ISO 14040/14044 for standard life cycle assessment (LCA) procedure
- Simplified PBtL climate change calculation example:

Fully automated environmental impact estimation using DLR in-house tools

Economic Assessment Example BtL / PBtL comparison ^[1]

SUSTAINABLE AVIATION FUTURES CONGRESS


6 - 8 May 2025 Beurs van Berlage Amsterdam

FlexCHX project has received funding from the European Union's Horizon 2020 research and innovation Programme under Grant Agreement No 763919

The World's Largest SAF & Aviation Decarbonisation Event

[1] Habermeyer et. al (2023) Sustainable aviation fuel from forestry residue and hydrogen. A techno-economic and environmental analysis for an immediate deployment of the PBtL process in Europe. Sustainable Energy and Fuels, 7, p. 4229-4246. doi: 10.1039/d3se00358b.

[2] European Union (2018) "Directive 2018/2001 of the European Parliament ...on the promotion of the use of energy from renewable sources (recast)", Official Journal of the European Union [3] Cherubini et al. (2011). CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming

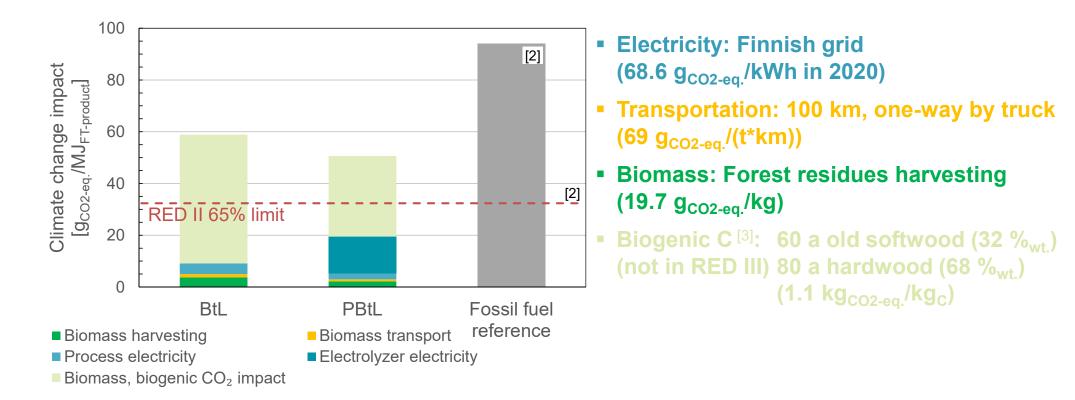
Economic Assessment Example BtL / PBtL comparison ^[1]

FlexCHX project has received funding from the European Union's Horizon 2020 research and innovation Programme under Grant Agreement No 763919

[1] Habermeyer et. al (2023) Sustainable aviation fuel from forestry residue and hydrogen. A techno-economic and environmental analysis for an immediate deployment of the PBtL process in Europe. Sustainable Energy and Fuels, 7, p. 4229-4246. doi: 10.1039/d3se00358b.

[2] European Union (2018) "Directive 2018/2001 of the European Parliament ...on the promotion of the use of energy from renewable sources (recast)", Official Journal of the European Union [3] Cherubini et al. (2011). CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming

Economic Assessment Example BtL / PBtL comparison ^[1]

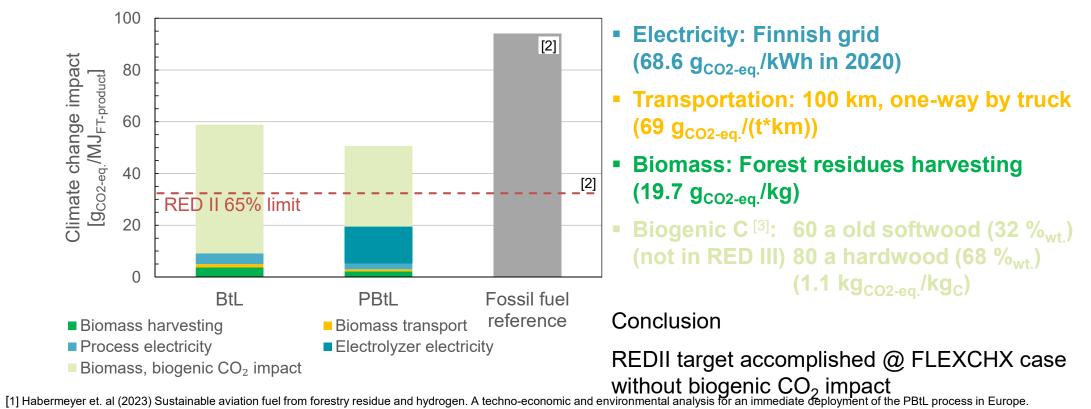


FlexCHX project has received funding from the European Union's Horizon 2020 research and innovation Programme under Grant Agreement No 763919

[1] Habermeyer et. al (2023) Sustainable aviation fuel from forestry residue and hydrogen. A techno-economic and environmental analysis for an immediate deployment of the PBtL process in Europe. Sustainable Energy and Fuels, 7, p. 4229-4246. doi: 10.1039/d3se00358b.

[2] European Union (2018) "Directive 2018/2001 of the European Parliament ...on the promotion of the use of energy from renewable sources (recast)", Official Journal of the European Union [3] Cherubini et al. (2011). CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming

Economic Assessment Example BtL / PBtL comparison^[1]


SUSTAINABLE AVIATION FUTURES 6 - 8 May 2025 Beurs van Berlage Amsterdam CONGRESS The World's Largest SAF & Aviation Decarbonisation Event

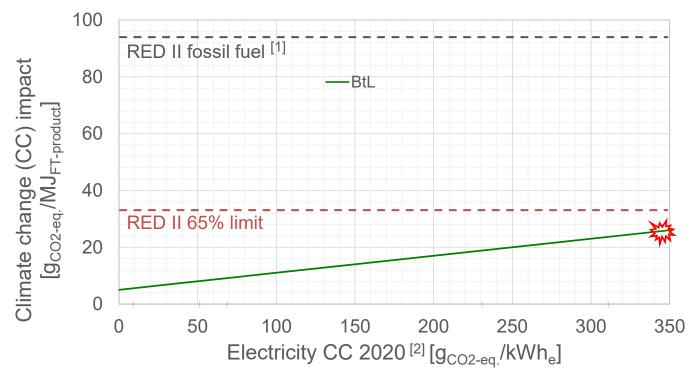
FlexCHX project has received funding from the European Union's Horizon 2020 research and innovation Programme under Grant Agreement No 763919

Sustainable Energy and Fuels, 7, p. 4229-4246. doi: 10.1039/d3se00358b.

[2] European Union (2018) "Directive 2018/2001 of the European Parliament ... on the promotion of the use of energy from renewable sources (recast)", Official Journal of the European Union [3] Cherubini et al. (2011). CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming

Climate change sensitivity BtL / PBtL based on power source

FlexCHX project has received funding from the European

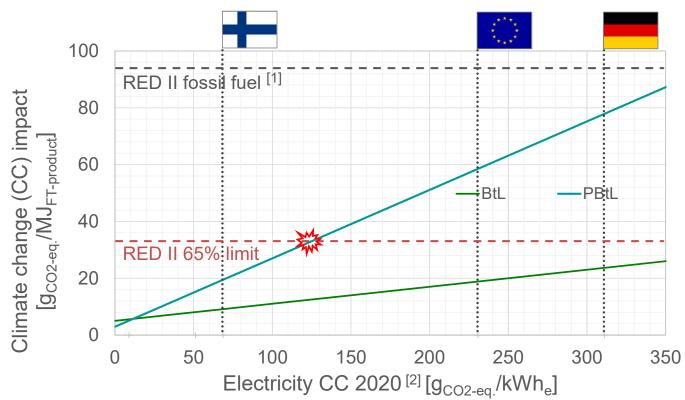

under Grant Agreement No 763919

Union's Horizon 2020 research and innovation Programme

REDII 65 % limit can be reached for all depicted electricity grid mixes for BtL

[1] European Union (2018) "Directive 2018/2001 of the European Parliament ... on the promotion of the use of energy from renewable sources (recast)", Official Journal of the European Union [2] https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-9/#tab-googlechartid_googlechartid_googlechartid_chart_1111

Climate change sensitivity BtL / PBtL based on power source

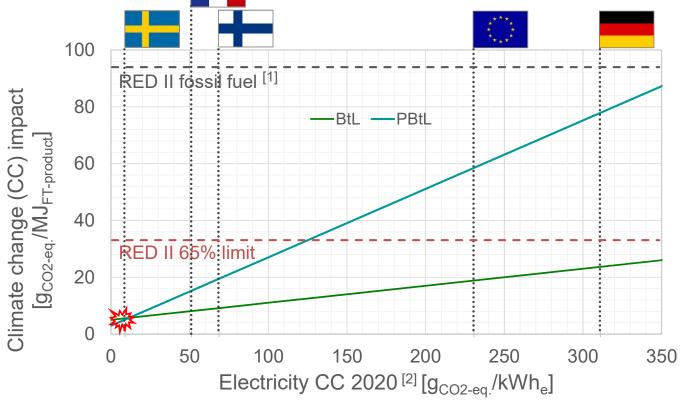


FlexCHX project has received funding from the European Union's Horizon 2020 research and innovation Programme under Grant Agreement No 763919

REDII 65 % limit can be reached for all depicted electricity grid mixes for BtL

PBtL requires electricity with CC impact <120 g_{CO2-eq}/kWh_e to reach REDII 65 % limit

[1] European Union (2018) "Directive 2018/2001 of the European Parliament ... on the promotion of the use of energy from renewable sources (recast)", Official Journal of the European Union [2] https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-9/#tab-googlechartid_googlechartid_googlechartid_chart_1111


FLEX

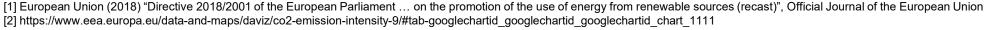
Climate change sensitivity BtL / PBtL based on power source

- REDII 65 % limit can be reached for all depicted electricity grid mixes for BtL
- PBtL requires electricity with CC impact <120 g_{CO2-eq}/kWh_e to reach REDII 65 % limit
- PBtL could have lower CC impact than BtL with Swedish grid mix

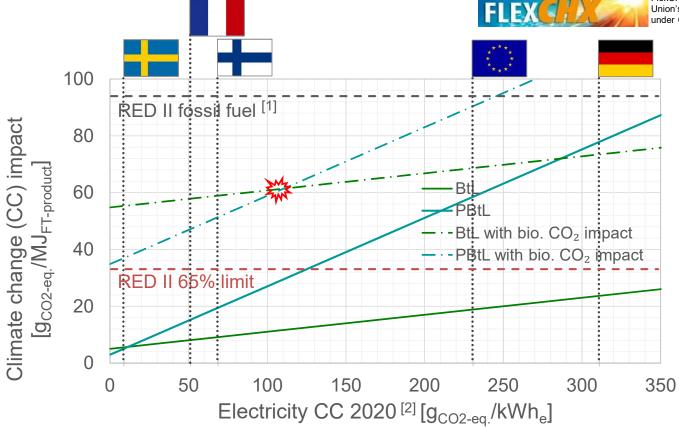
[1] European Union (2018) "Directive 2018/2001 of the European Parliament ... on the promotion of the use of energy from renewable sources (recast)", Official Journal of the European Union [2] https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-9/#tab-googlechartid_googlechartid_chart_1111

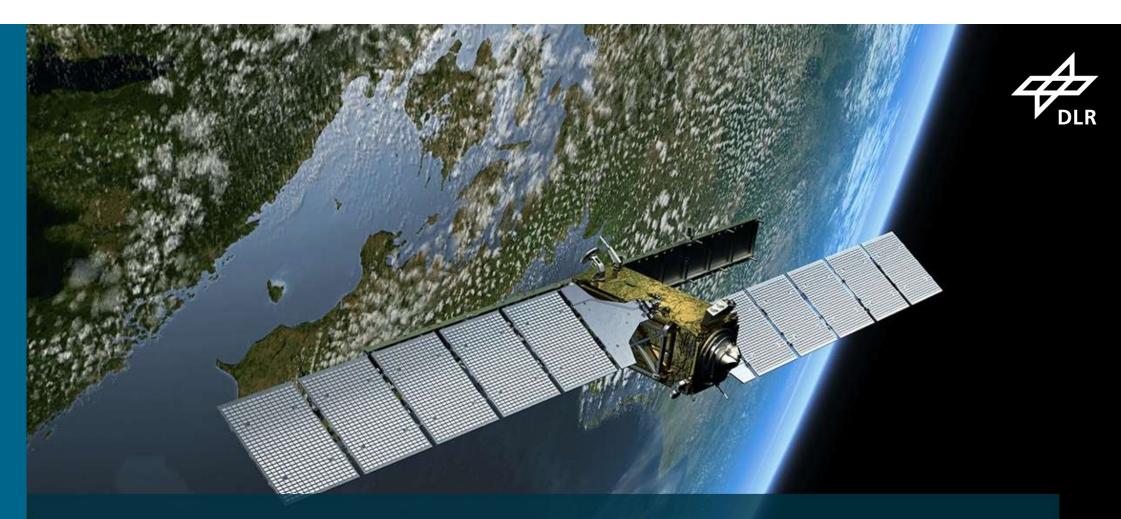
FLEX

Climate change sensitivity BtL / PBtL based on power source


 SUSTAINABLE
 6 - 8 May 2025

 AVIATION FUTURES
 Beurs van Berlage


 CONGRESS
 Amsterdam



- REDII 65 % limit can be reached for all depicted electricity grid mixes for BtL
- PBtL requires electricity with CC impact <120 g_{CO2-eq}/kWh_e to reach REDII 65 % limit
- PBtL could have lower CC impact than BtL with Swedish grid mix
- With biogenic CO₂ impact PBtL could reach lower CC impact than BtL if electricity CC impact <115 g_{CO2-eq}/kWh_e

5 l²

EUROPEAN SAF FEEDSTOCK SUPPLY

Certified Alternative Jet Fuels ASTM D7566 – 21 ^[1]

 SUSTAINABLE
 6 - 8 May 2025

 AVIATION
 FUTURES

 CONGRESS
 Beurs van Berlage

 Amsterdam
 Amsterdam

Feedstock	Synthesis technology	Fuel
Coal, natural gas , biomass, CO ₂ & H ₂	Fischer-Tropsch (FT) synthesis using Fe or Co catalyst,	Synthetic paraffinic kerosene (FT-SPK)
Non-petroleum derived light aromatics (primarily benzene)	Blend aromatics produced by alkylation to FT-SPK	FT-SPK plus Aromatics (SPK/A)
Biogenic lipids (e.g. algae, soya, palm oil, jatropha)	Hydrogenation and deoxygenation of fatty acids and esters (HEFA) + subsequent hydrocracking, hydroisomerization, isomerization,	Synthetic paraffinic kerosene (HEFA-SPK)
Additional algae produced oil containing a high percentage of unsaturated hydrocarbons known as botryococcenes,	Blend botryococcenes hydrocarbons prior to hydroprocessing Esters and Fatty Acids (HC- HEFA)	SPK from Hydroprocessed Hydrocarbons, Esters and Fatty Acids (HC-HEFA)
Biogenic lipids (e.g. algae, soya, palm oil, jatropha)	Catalytic hydrothermal conversion of fatty acids and esters	Catalytic hydrothermolysis Jet (CHJ)
Sugar from Biomass	Direct Sugars to Hydrocarbons (DSHC)	Synthetic iso-paraffins (SIP) / Farnesane
Bio-isobutanol (-methanol, -ethanol, -propanol, …)	dehydration+oligomerization+hydration (Alcohol-to-Jet, AtJ)	AD-SPK
Any C2-C5 alcohols (individually or combined)	Dehydration+oligomerization+hydrogenation Aromatic / nonaromatic components produced separately	Alcohol to Jet with Aromatics (ATJ-SKA)

[1] ASTM International, "ASTM D7566-21 Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons", 2021

Certified Alternative Jet Fuels ASTM D7566 – 21 ^[1]

 SUSTAINABLE
 6 - 8 May 2025

 AVIATION FUTURES
 Beurs van Berlage

 CONGRESS
 Amsterdam

Feedstock	Synthesis technology	Fuel
Coal, natural gas , biomass, CO ₂ & H ₂	Fischer-Tropsch (FT) synthesis using Fe or Co catalyst,	Synthetic paraffinic kerosene (FT-SPK)
Non-petroleum derived light aromatics (primarily benzene)	Blend aromatics produced by alkylation to FT-SPK	FT-SPK plus Aromatics (SPK/A)
Biogenic lipids (e.g. algae, soya, palm oil, jatropha)	Hydrogenation and deoxygenation of fatty acids and esters (HEFA) + subsequent hydrocracking, hydroisomerization, isomerization, …	Synthetic paraffinic kerosene (HEFA-SPK)
Additional algae produced oil containing a high percentage of unsaturated hydrocarbons known as botryococcenes,	Blend botryococcenes hydrocarbons prior to hydroprocessing Esters and Fatty Acids (HC- HEFA)	SPK from Hydroprocessed Hydrocarbons, Esters and Fatty Acids (HC-HEFA)
Biogenic lipids (e.g. algae, soya, palm oil, jatropha)	Catalytic hydrothermal conversion of fatty acids and esters	Catalytic hydrothermolysis Jet (CHJ)
Sugar from Biomass	Direct Sugars to Hydrocarbons (DSHC)	Synthetic iso-paraffins (SIP) / Farnesane
Bio-isobutanol (-methanol, -ethanol, -propanol,)	dehydration+oligomerization+hydration (Alcohol-to-Jet, AtJ)	AD-SPK

[1] ASTM International, "ASTM D7566-21 Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons", 2021

Certified Alternative Jet Fuels ASTM D7566 – 21 ^[1]

 SUSTAINABLE
 6 - 8 May 2025

 AVIATION FUTURES
 Beurs van Berlage

 CONGRESS
 Amsterdam

Feedstock	Synthesis technology	Fuel
Coal, natural gas , biomass, CO ₂ & H ₂	Fischer-Tropsch (FT) synthesis using Fe or Co catalyst,	Synthetic paraffinic kerosene (FT-SPK)
Non-petroleum derived light aromatics (primarily benzene)	Blend aromatics produced by alkylation to FT-SPK	FT-SPK plus Aromatics (SPK/A)
Biogenic lipids (e.g. algae, soya, palm oil, jatropha) Hydrogenation and deoxygenation of fatty acids and esters (HEFA) + subsequent hydrocracking, hydroisomerization, isomerization, …	Synthetic paraffinic kerosene (HEFA-SPK)
Additional alg	on jet fuels within the aviation sector q	
botryococcer	-	,
botryococcer - D Biogenic lipic - Lo	irect competition with food markets w area-related energy yields and limited o	cultivation area
botryococcer - D Biogenic lipid - Lo Sugar from E - Lo	irect competition with food markets	cultivation area

[1] ASTM International, "ASTM D7566-21 Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons", 2021

Assessment of SAF options / configurations / locations / ...

Feedstock availability towards 63 Mt/a

Feedstock	Synthesis technology	Fuel
Coal, natural gas , biomass, CO ₂ & H ₂	Fischer-Tropsch (FT) synthesis using Fe or Co catalyst,	Synthetic paraffinic kerosene (FT-SPK)

Feedstock

- Synthesis gas available from almost any carbon and hydrogen source → Sustainability?
 - European wind power potential^[1] for sustainable H: 12,200 – 30,400 TWh_e ≈ 10 - 20 times of SAF demand!
 - Annual sequestration of carbon in European forest biomass^[2] for sustainable C: 155 Mt/a ≈ 3 times of SAF demand!

FT synthesis

- Large scale, commercial technology
 - Secunda CTL (Sasol): ca. 7 Mio.t/a since 1980/1984
 - Pearl GTL (Qatar Petroleum + Shell): ca. 6 Mio.t/a since 2011
- Fuel
 - Fully synthetic kerosene achievable ^[3]

[1] European Environment Agency, "Europe's onshore and offshore wind energy potential," 2009

[2] FOREST EUROPE, 2020: State of Europe's Forests 2020

[3] UK Ministry of Defense, "DEF STAN 91-91: Turbine Fuel, Kerosene Type, Jet A-1", UK Defense Standardization, 2011

Drying

Assessment of SAF options HEFA certified ASTM D7566 – 24d^[1]

SUSTAINABLE AVIATION FUTURES CONGRESS

Amsterdam

The World's Largest SAF & Aviation Decarbonisation Event

Feedstock	Synthesis technology	Fuel
Biogenic lipids (e.g. algae, soya, palm oil, jatropha)	Hydrogenation and deoxygenation of fatty acids and esters (HEFA) + subsequent hydrocracking, hydroisomerization, isomerization, …	Synthetic paraffinic kerosene (HEFA-SPK)
Additional algae produced oil containing a high percentage of unsaturated hydrocarbons known as botryococcenes,	Blend botryococcenes hydrocarbons prior to hydroprocessing Esters and Fatty Acids (HC-HEFA)	SPK from Hydroprocessed Hydrocarbons, Esters and Fatty Acids (HC-HEFA)
FEEDSTOCK Renewable Lipids	 HYDROPROCESSING Hydrodeoxygenation Hydrocracking 	T SEPARATION

[1] ASTM International, "ASTM D7566-24d Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons", 2024

 Despite a long feedstock list: product quality, reliability, availability, sustainability, ..., → questionable

Category	Feedstock	Source	Common Fatty Acids
	Soybean Oil	Soybean plant	Linoleic acid, Oleic acid
	Rapeseed (Canola Oil)	Canola plant	Oleic acid, Linoleic acid, Erucic acid
Vegetable Oils	Camelina Oil	Camelina plant	Linoleic acid, Oleic acid
	Palm Oil	Palm tree	Palmitic acid, Oleic acid
	Jatropha Oil	Jatropha plant	Oleic acid, Linoleic acid
Tallow (Beef/Pork) Cattle/Pigs		Cattle/Pigs,	Palmitic acid, Stearic acid
Animal Fats	Animal FatsPoultry FatPoultry (chickens, turkeys)LardPigs		Palmitic acid, Oleic acid
			Palmitic acid, Stearic acid
Used Cooking Oils (UCO)	Used Cooking Oils	Waste oils from restaurants, food processing	Linoleic acid, Oleic acid
Algal Oils	Algae Oils	Algae species (Eg.Chlorella ,Nannochlropsis etc.)	Omega-3 fatty acids (EPA/DHA), Oleic acid

[1] ASTM International, "ASTM D7566-24d Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons", 2024

SUSTAINABLE AVIATION FUTURES

CONGRESS

The World's Largest SAF & Aviation Decarbonisation Event

6 - 8 May 2025 Beurs van Berlage

Amsterdam

HEFA feedstock assessment Multiple sources – multiple issues

1. European rapeseed oil: Despite a long feedstock list: Germany > France > Poland > Romania > Bulgaria product quality, reliability, availal **PROS:** High oil yield per hectare Category Feedstock Low free fatty acid content suitable for Hydro-processing. Rich in Oleic acid Soybean Oil CONS: Rapeseed Competing with food / road transport (biodiesel) (Canola Oil) • Under **RED II** but needs to scrutinized due intensive land use. **Vegetable Oils** Camelina Oil Requires hydrogen and catalysts in refining \rightarrow energy intensive. Palm Oil Lower GHG savings. Jatropha Oil **јапорна ріан**т Oleic aciu, Linoleic aciu Tallow (Beef/Pork) Cattle/Pigs. Palmitic acid, Stearic acid **Animal Fats** Poultry Fat Poultry (chickens, turkeys) Palmitic acid, Oleic acid Palmitic acid, Stearic acid Pigs Lard **Used Cooking Oils** Waste oils from restaurants, food **Used Cooking Oils** Linoleic acid, Oleic acid (UCO) processing Algae species Omega-3 fatty acids (EPA/DHA), **Algal Oils** Algae Oils (Eg.Chlorella,Nannochlropsis etc.) Oleic acid

[1] ASTM International, "ASTM D7566-24d Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons", 2024

SUSTAINABLE

AVIATION FUTURES

CONGRESS

The World's Largest SAF & Aviation Decarbonisation Event

6 - 8 May 2025

Beurs van Berlage Amsterdam

 Despite a long feedstock list: product quality, reliability, availability.
 Category Feedstock Soybean Oil
 Soybean Oil
 PROS: • High lipid content (~35–40%)

Rapeseed Good proportion of C16 and C18 fatty acids – ideal for jet/diesel (Canola Oil) fuel chains **Vegetable Oils** Camelina Oil Low sulfur and aromatic content – cleaner burn • **Non-edible** – avoids food supply conflicts Palm Oil Supports RED II Jatropha Oil • Drought resistant and sustainable as it aids in crop rotation. Tallow (Beef/Pork) CONS: **Animal Fats** Poultry Fat Scale: Limited global production of Camelina Hydrogen requirement: HEFA needs high hydrogen input Lard Land Use: Competes with other low-input crops for marginal lands **Used Cooking Oils Used Cooking Oils** (UCO) Algae species Omega-3 fatty acids (EPA/DHA), **Algal Oils** Algae Oils (Eg.Chlorella,Nannochlropsis etc.) Oleic acid

[1] ASTM International, "ASTM D7566-24d Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons", 2024

SUSTAINABLE

AVIATION FUTURES

CONGRESS

The World's Largest SAF & Aviation Decarbonisation Event

6 - 8 May 2025

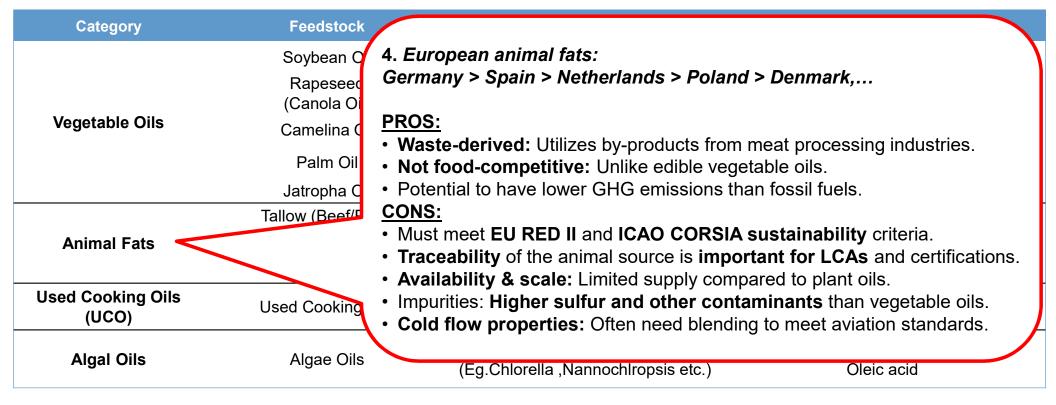
Beurs van Berlage Amsterdam

 Despite a long feedstock list: product quality, reliability, availability, sustainability, ..., → questionable

Category	Feedstock			
Vegetable Oils	Soybean Oil Rapeseed (Canola Oil) Camelina Oil	 3. European soybean oil : Netherlands > Spain > Germany <u>PROS:</u> • Abundant and renewable: Widely cultivated and processed global 		
	Palm Oil	 Abundant and renewable: Widely cultivated and processed globa Lipid content ≈20%: suitable for conversion into hydrocarbon fue 		
	Jatropha Oil	Up to 80% GHG reduction compare Diadagradable and non-toxic	red to conventional jet fuel.	
	Tallow (Beef/Pork)			
Animal Fats	Poultry Fat			
	Lard	 Food vs Fuel Debate hence limited scalability. 		
Used Cooking Oils (UCO)	Used Cooking Oils	Large amount of hydrogen needed	for processing.	
Algal Oils	Algae Oils	Algae species (Eg.Chlorella ,Nannochlropsis etc.)	Omega-3 fatty acids (EPA/DHA), Oleic acid	

[1] ASTM International, "ASTM D7566-24d Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons", 2024

SUSTAINABLE AVIATION FUTURES


CONGRESS

The World's Largest SAF & Aviation Decarbonisation Event

6 - 8 May 2025 Beurs van Berlage

Amsterdam

 Despite a long feedstock list: product quality, reliability, availability, sustainability, ..., → questionable

[1] ASTM International, "ASTM D7566-24d Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons", 2024

SUSTAINABLE

AVIATION FUTURES

CONGRESS

The World's Largest SAF & Aviation Decarbonisation Event

6 - 8 May 2025

Beurs van Berlage Amsterdam

 Despite a long feedstock list: product quality, reliability, availability, sustainability, ..., → questionable

Category	Feedstock	Source	Common Fatty Acids
Vegetable Oils		Sovboan plant ean Used Cooking Oil (UCO): etherlands > Germany > Spain	France > Ireland > Portugal
Animal Fats	Tallow (Beet • Drop-ir	Table: Uses waste oil HG , 60-90% lower than fossil fue fuel compatibility. r economy	els
Used Cooking Oils <(UCO)		Supply: UCO availability is fini ion Logistics: Requires efficien	•
Algal Oils		ock Quality: Variability in UCO	quality affects processing efficiency.

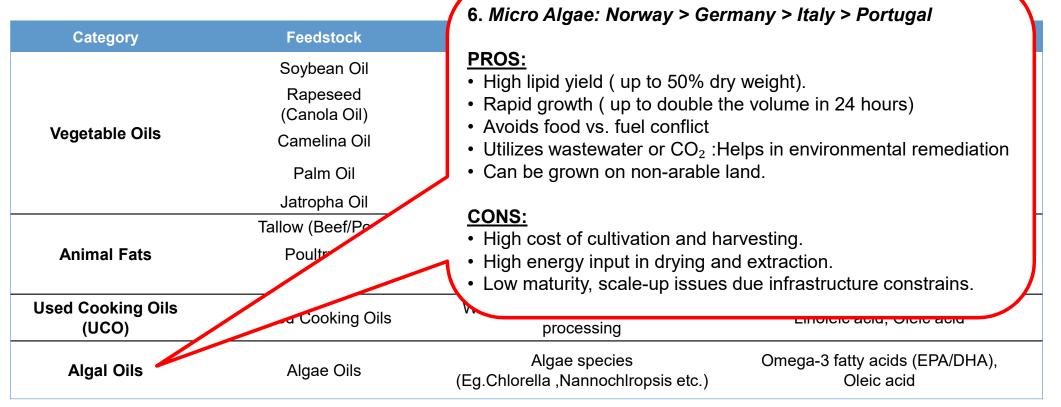
 SUSTAINABLE
 6 - 8 May 2025

 AVIATION FUTURES
 Beurs van Berlage

 CONGRESS
 Amsterdam

 The World's Largest SAF & Aviation Decarbonisation Event
 DIR

 Despite a long feedstock list: product quality, reliability, availability


 SUSTAINABLE
 6 - 8 May 2025

 AVIATION FUTURES
 Beurs van Berlage

 CONGRESS
 Amsterdam

 The World's Largest SAF & Aviation Decarbonisation Event

[1] ASTM International, "ASTM D7566-24d Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons", 2024

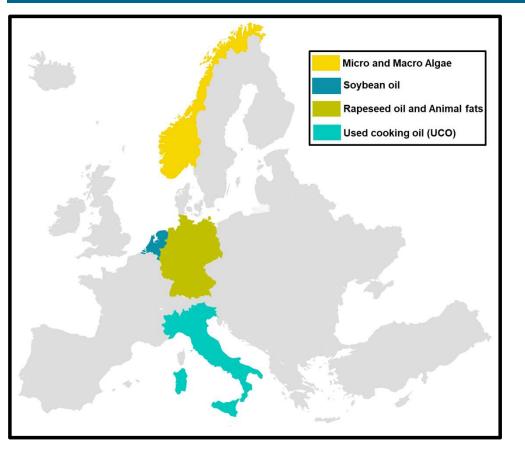
 Despite a long feedstock list: product quality, reliability, availability, sustainability, ..., → questionable

Category	Feedstock	Source	Common Fatty Acids		
	Soybean Oil	Soybean plant	Linoleic acid, Oleic acid		
	Rapeseed (Canola Oil)	Canola plant	Oleic acid, Linoleic acid, Erucic acid		
Vegetable Oils	Camelin				
	Palm 7. Macro	Algae: Norway > France > Irela	and > Spain > Portugal		
	Jatrop PROS:	PROS			
		 High lipid content yields high quality SAFs. 			
Animal Fats	Poultr • Non-foo				
Used Cooking Oils (UCO)	Benefic				
(000)	CONS:	CONS:			
Algal Oils	/ ""	 Needs efficient oil extarction in terms of harvest, cost and scalability Lower yield than terrestial feedstocks 			
	[1] AS				

SUSTAINABLE AVIATION FUTURES

CONGRESS

The World's Largest SAF & Aviation Decarbonisation Event


6 - 8 May 2025 Beurs van Berlage

Amsterdam

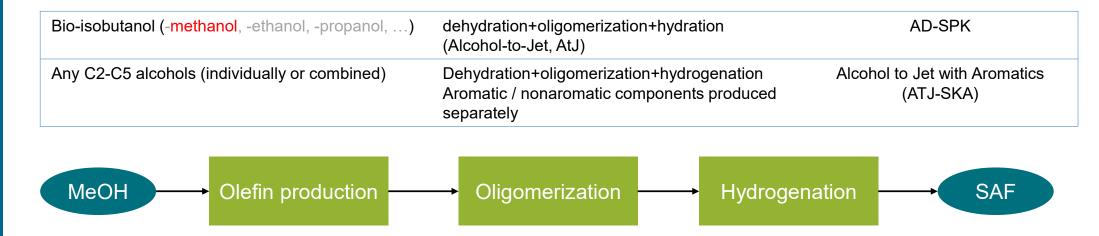
HEFA Feedstock assessment - not completed jet -

SUSTAINABLE AVIATION FUTURES CONGRESS	6 - 8 May 2025 Beurs van Berlage Amsterdam	
The World's Largest SAF & Aviation	n Decarbonisation Event	1

Status quo:

- HEFA is a promising SAF
 - Low conversion costs
 - Inexpensive feedstocks

Open socio-economical questions:


- Food vs. fuel vs. road transport
- Reliability / sustainability of import
- Cost vs. environmental impact
- EU-wide feedstock collection mechanism?

Alcohol-to-Jet Using MeOH under development

 SUSTAINABLE
 6 - 8 May 2025

 AVIATION FUTURES
 Beurs van Berlage

 CONGRESS
 Amsterdam

- Methanol as educt with versatile use cases
 - \rightarrow Lower investment risk
- Process configuration allows jet fuel-like product composition (aromatics)
- High product efficiency (> 70% SAF from MeOH)
- New MeOH-to-SAF certification procedure in progress

European SAF Feedstock Supply Renewable electricity

 SUSTAINABLE
 6 - 8 May 2025

 AVIATION FUTURES
 Beurs van Berlage

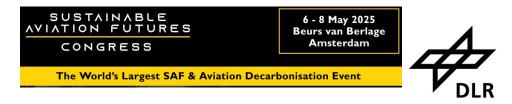
 CONGRESS
 Amsterdam

 The World's Largest SAF & Aviation Decarbonisation Event

- Renewable electricity (RE) generation in Europe in 2024: 1160 TWh ^[1] (≙ 60 Mt/a PBtL)
- LCOE of RE in Europe: ~ 71 €₂₀₂₃/MWh
- Climate change impact of RE in Europe: ~ 33 g_{CO2}-eq./kWh

Energy Source	Estimated Output 2024 (TWh) ^[2]	Levelized Cost of Electricity 2023 (€/MWh) ^[3]	Climate change impact (g _{CO2} -eq./kWh) ^[4,5]
Wind	39.1% (~450)	30-100	7-56
Hydropower	29.9% (~350)	25-250	1-2200
Solar	22.4% (~260)	40-150	7–180
Bioenergy	8.1% (~94)	50-215	0-420
Geothermal	0.5% (~6)	50-85	6–79

[1] https://solida.com.es/en/47-of-europes-electricity-was-generated-from-renewables-in-2024/


[2] https://ec.europa.eu/eurostat/web/products-eurostat-news/w/ddn-20250319-1

[3] https://www.irena.org/Publications/2024/Sep/Renewable-Power-Generation-Costs-in-2023

[4] https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_annex-iii.pdf#page=7

[5] https://www.nrel.gov/docs/fy21osti/80580.pdf

European SAF Feedstock Supply Forestry residues

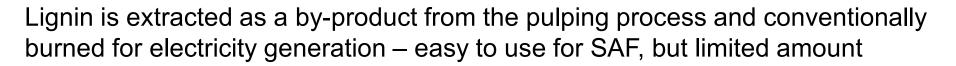
Forestry residues are the **leftover materials generated during forest management activities**, such as logging, thinning, and pruning:

- Tree tops and branches
- Bark
- Stumps and roots
- Sawdust and woodchips

Availability (PJ) ^[1]	Price (€ ₂₀₁₀ /GJ) ^[1]	Climate change impact (g _{CO2} -eq./kg) [2]
5601	0–12.7 (Ø 3.3)	8-60

Constraints:

- Soil health degradation
- Biodiversity impact
- Erosion risk
- Competing uses


European SAF Feedstock Supply Lignin from pulp mill

 SUSTAINABLE
 6 - 8 May 2025

 AVIATION FUTURES
 Beurs van Berlage

 CONGRESS
 Amsterdam

 The World's Largest SAF & Aviation Decarbonisation Event
 D

Availability (Mt/a) ^[1]	Price (€ ₂₀₁₅ /t) ^[2]	Climate change impact (g _{CO2} -eq./kg) [3]
1.7-2.8	50-750	0-400

- Price strongly depends on required lignin purity
- Allocation method for pulp mill process is crucial factor for determining lignin's climate change impact

Constraints:

- Depolymerisation challenging due to lignin's high natural complexity
- Loss in electricity generation at pulp mill

Adelung et al. (2022): Deliverable 2.11: Public report on the marketability of the ABC-SALT middle distillates biofuels
 L'udmila et. al (2015): Lignin, potential products and their market value (<u>http://www.woodresearch.sk/wr/201506/13.pdf</u>)
 Hermannson et al. (2020): Allocation in life cycle assessment of lignin. https://doi.org/10.1016/j.jcis.2004.08.101

European SAF Feedstock Supply Agricultural residues

 SUSTAINABLE
 6 - 8 May 2025

 AVIATION FUTURES
 Beurs van Berlage

 CONGRESS
 Amsterdam

 The World's Largest SAF & Aviation Decarbonisation Event
 DLR

- Field residues Left in the field after harvesting, such as stalks, straw, leaves, and husks.
- Processing residues Generated during the processing of crops, such as husks, shells, pulp, and bagasse.

Availability (PJ) ^[1]	Price (€ ₂₀₁₀ /GJ) ^[1]	Climate change impact (g _{CO2} -eq./kg) [2]
2637	0–13.7 (Ø 3.4)	14.7–123

Constraints:

- Soil health degradation
- Competing uses
- Seasonal production

European SAF Feedstock Supply Industrial CO₂ & DAC

 SUSTAINABLE
 6 - 8 May 2025

 AVIATION FUTURES
 Beurs van Berlage

 CONGRESS
 Amsterdam

 The World's Largest SAF & Aviation Decarbonisation Event
 D

Industrial CO₂

Availability (Mt/a) ^[1]	Cost (€ ₂₀₁₉ /t) ^[2]	Climate change impact (g _{CO2} -eq./kg)
663	28-45	2.3-21.8* 0.07-0.66 kWh/kg _{CO2} ^[4]

Constraints:

66

Industrial CO₂ is about to decrease in the future with the EU's goals for decarbonisation

Atmospheric CO₂ (DAC)

Availability (Mt/a)	Cost (€ ₂₀₂₁ /t) ^[3]	Climate change impact (g _{CO2-eq.} /kg)
unlimited	350-600	10-28* 0.3-0.85 kWh/kg _{CO2} ^[5]

[1] Eurostat: https://ec.europa.eu/eurostat/databrowser/view/env_ac_ainah_r2/default/table?lang=en

[2] IEAGHG (2019): https://ieaghg.org/publications/co2stcap-cutting-cost-of-co2-capture-in-process-industry/

[3] IEAGHG (2021): https://ieaghg.org/publications/global-assessment-of-direct-air-capture-costs/

[4] IEAGHG (2010): https://ieaghg.org/publications/environmental-evaluation-of-ccs-using-life-cycle-assessment-lca/

[5] IEA (2022): https://www.iea.org/reports/direct-air-capture-2022

* With RE CC impact from previous slide

European SAF Feedstock Supply Water for electrolysis

SUSTAINABLE 6 - 8 May 2025 AVIATION FUTURES Beurs van Berlage Amsterdam CONGRESS The World's Largest SAF & Aviation Decarbonisation Event

 $2H_2O(l) \rightarrow 2H_2(g) + O_2(g), \qquad 8kg_{H_2O}/kg_{H_2O}$

EU renewable hydrogen target (by 2030) ^[1]: 10 Mt H_2

 \geq ~90 million m³/a deionized water

Availability (billion m ³ /a) in 2020 ^[2]	Price (€/m³) ^[3]	Climate change impact (g _{CO2} -eq./m ³)
2000 (freshwater)	0.005-0.7 (freshwater)	6.6–13.2* (freshwater) 82.5–221* (seawater) 0.2–0.4 kWh/m ^{3 [4]} (freshwater) 2.5–6.7 kWh/m ^{3 [4]} (seawater)

Constraints:

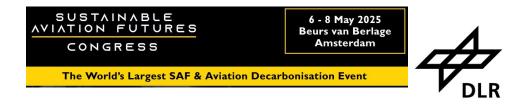
67

- Competing uses
- Regional scarcity (e.g. high water stress in Southern Europe)

[1] https://observatory.clean-hydrogen.europa.eu/eu-policy/repowereu

[3] EEA(2013): https://op.europa.eu/en/publication-detail/-/publication/915da975-1452-427a-9949-ef09348c6b41/language-en

[4] Kim et al. (2019): https://doi.org/10.1016/j.apenergy.2019.113652

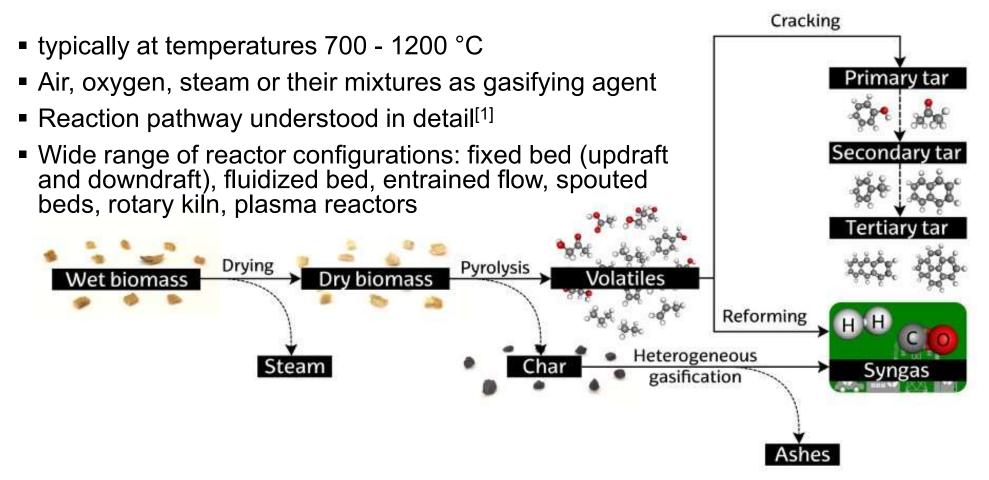

* With RE CC impact from previous slide

^[2] https://water.europa.eu/freshwater/europe-freshwater/freshwater-themes/water-resources-europe?utm source=chatgpt.com

LARGE SCALE SAF PRODUCTION TRL

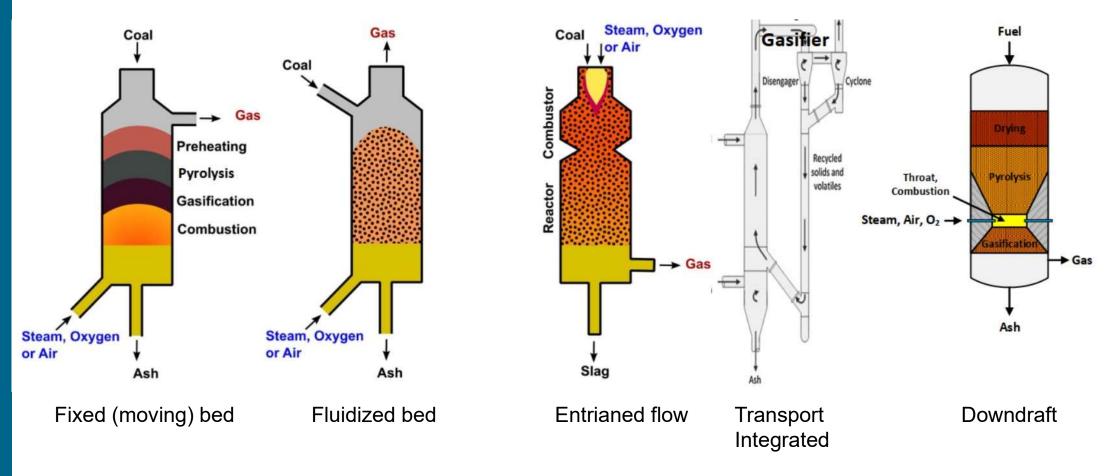
Biomass gasification TRL?

- typically at temperatures 700 1200 °C
- Air, oxygen, steam or their mixtures as gasifying agent
- Reaction pathway understood in detail^[1]


69

 Wide range of reactor configurations: fixed bed (updraft and downdraft), fluidized bed, entrained flow, spouted beds, rotary kiln, plasma reactors

[1] Biomass steam gasification reactions and steps involved. From Arregi et al., *Evaluation of thermochemical routes for hydrogen production from biomass: A review*, Energy Conversion and Management, 2018 (v.165), doi.org/10.1016/j.enconman.2018.03.089


Biomass gasification TRL?

[1] Biomass steam gasification reactions and steps involved. From Arregi et al., *Evaluation of thermochemical routes for hydrogen production from biomass: A review*, Energy Conversion and Management, 2018 (v.165), doi.org/10.1016/j.enconman.2018.03.089

Gasifier TRL? State-of-the-art coal technology

SUSTAINABLE AVIATION FUTURES

CONGRESS

The World's Largest SAF & Aviation Decarbonisation Event

6 - 8 May 2025 Beurs van Berlage

Amsterdam

DLR

Gasifier TRL? Multiple installations (incl. biomass)

Over 100 Gasifiers designed, built and put into successful operation by Uhde since 1941 ^[1]

[1] Dr. Alexander Schulz, Green methanol, part of Uhde's green technologies, Aachen, 13.09.2022

Electrolyser TRL? Ready despite ongoing research

Table 2. Summary of parameters of state-of-the-art water electrolysis.

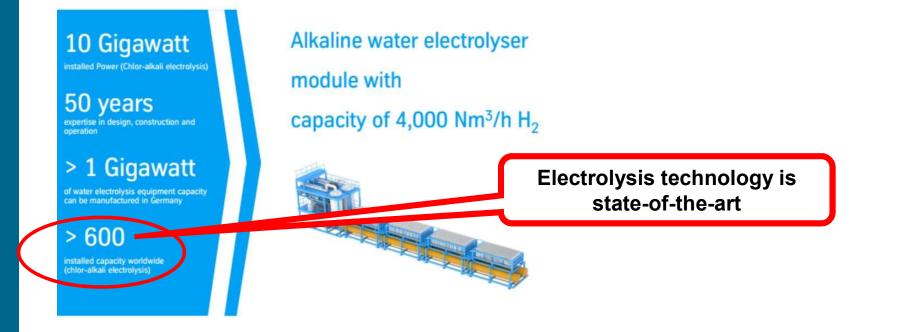
SUSTAINABLE AVIATION FUTURES

CONGRESS

Amsterdam

The World's Largest SAF & Aviation Decarbonisation Event

Technology	AEL	PEM	SOEC
Electrolyte	20-40 wt % KOH	water	steam
Operating temperature [°C]	60-90	50-80	700-900
Typical operating pressure [bar]	10-30	20-50	1-15
Current density [A cm ⁻²]	0.2-0.4 / 1.2 ^{b)}	0.6-2.0	0.3-2.0
Cell area [m ²]	<4	<0.3	<0.01
Specific energy consumption (stack) [kWh _{el} Nm ⁻³ H ₂]	4.2-4.8	4.4-5.0	>3.0
Specific energy consumption (system) $[kWh_{el} Nm^{-3} H_2]$	5.0-5.9	5.0-6.5	$3.7-3.9 (4.7 \mathrm{kWh}\mathrm{Nm}^{-3}\mathrm{H}_2)$
Lower dynamic range [%] ^{a)}	10–40 / <10 ^{c)}	0-10	>30
Gas purity [%]	> 99.5 / > 99.95 ^b)	99.99	99.90
System response	seconds	milliseconds	seconds
Cold time start [min]	<60 / <1-50 % ^{b)}	<20	<60
Stack lifetime [h]	60 000-90 000	20 000-60 000	<10 000
Maturity	mature	commercial	demonstration
Investments costs [€ kW ⁻¹]	800-1500	1400-2100	>2000


a) Minimum operable hydrogen production rate relative to maximum specified production rate; b) thyssenkrupp system installed at Carbon2Chem[®]; c) Lüke and Zschocke [14].

[1] Tenhumberg, Ecological and Economic Evaluation of Hydrogen Production by Different Water Electrolysis Technologies, Chem. Ing. Tech. 2020, 92, No. 10, 1586–1595

Electrolyser TRL? State-of-the-art / GW installations

thyssenkrupp is No.1 electrolysis supplier for industr

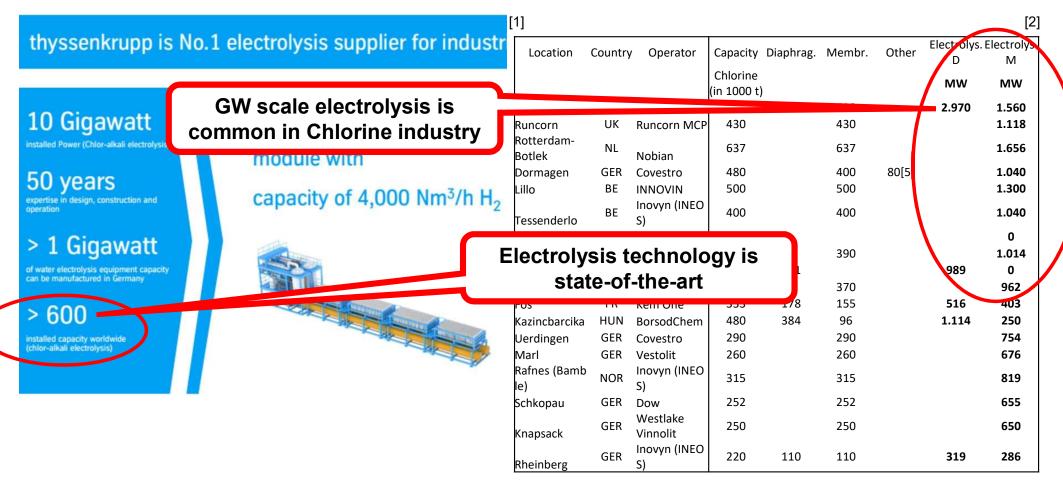
[1]

Electrolyser TRL? State-of-the-art / GW installations

 SUSTAINABLE
 6 - 8 May 2025

 AVIATION FUTURES
 Beurs van Berlage

 CONGRESS
 Amsterdam


[2] Eurochlor: Chlorine Industry Review 2021-2022, www.chlorineindustryreview.com

Electrolyser TRL? State-of-the-art / GW installations

 SUSTAINABLE
 6 - 8 May 2025

 AVIATION FUTURES
 Beurs van Berlage

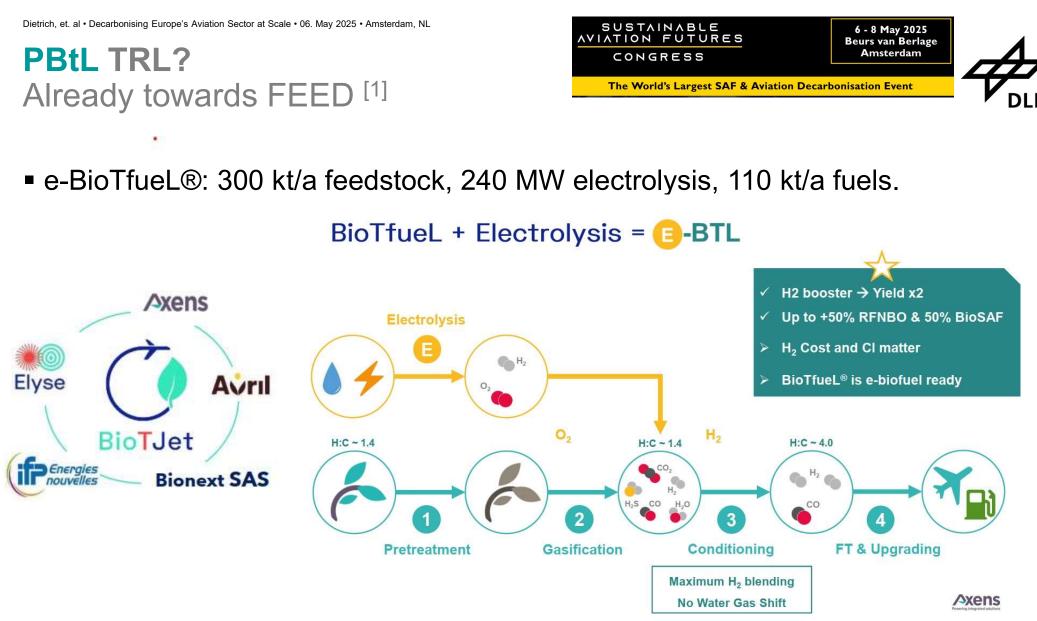
 CONGRESS
 Amsterdam

76

[2] Eurochlor: Chlorine Industry Review 2021-2022, www.chlorineindustryreview.com

Fischer-Tropsch TRL? State-of-the-art / refinery size proven

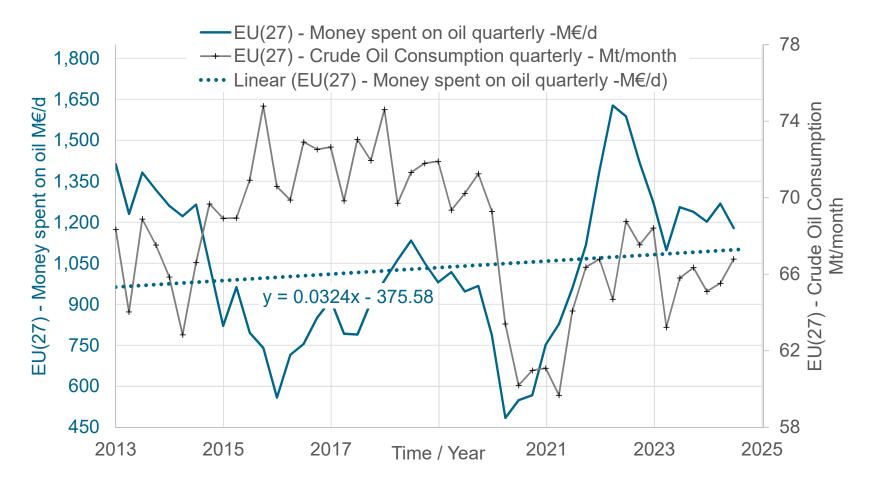
SUSTAINABLE AVIATION FUTURES CONGRESS


The World's Largest SAF & Aviation Decarbonisation Event

6 - 8 May 2025 Beurs van Berlage Amsterdam

[1] https://alfin2300.blogspot.com/2011/11/gas-to-liquids-carbon-sciences-provides.html

[1] F. DURAN MARTINEZ (2025) BioT Jet project - The first-of-a-kind industrial e-BtL plant. Towards Sustainable Aviation Summit - TSAS2025, Toulouse, France


 SUSTAINABLE
 6 - 8 May 2025

 AVIATION FUTURES
 Beurs van Berlage

 CONGRESS
 Amsterdam

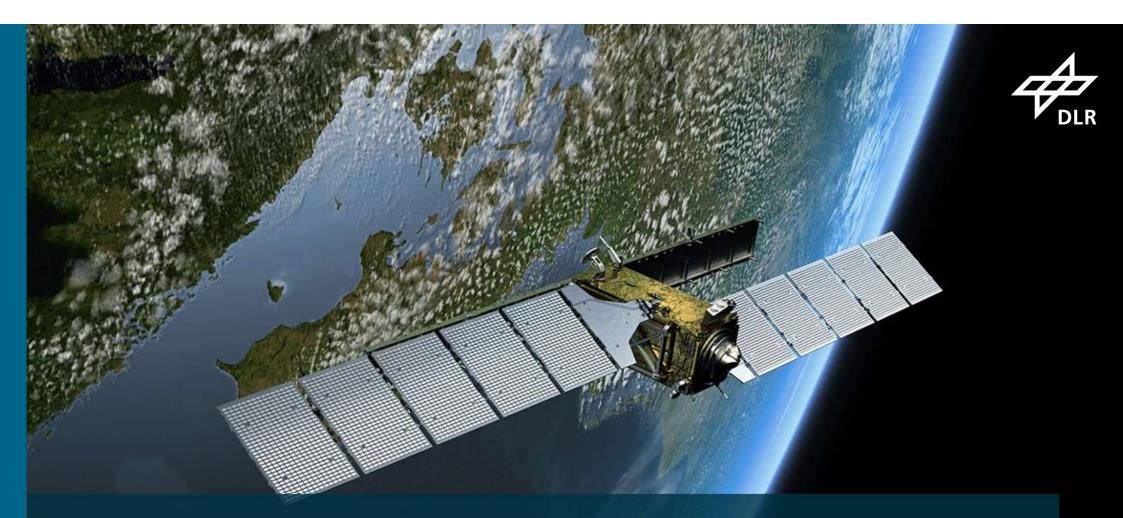
 The World's Largest SAF & Aviation Decarbonisation Event

Aviation: part of fossil oil business Replacing 1.000 M€/d business?

[1] Eurostat. Imports of oil and petroleum products by partner country - monthly data [nrg_ti_oilm_custom_15511616], https://ec.europa.eu/eurostat/databrowser/view/NRG_TI_OIL/default/table?lang=en

Process De-Risking?

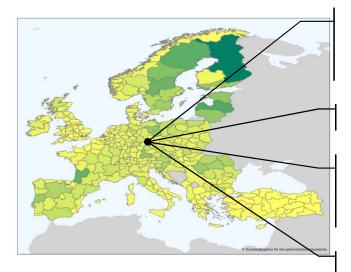
- All necessary units are state-of-the-art (except DAC, but not relevant)
- Chemical engineering can build ANY optimal process for ANY purpose
 - Entire refineries have been built on valid process simulation
 - Clever process engineering / procurement required failures happen



Process De-Risking?

- All necessary units are state-of-the-art (except DAC, but not relevant)
- Chemical engineering can build ANY optimal process for ANY purpose
 - Entire refineries have been built on valid process simulation
 - Clever process engineering / procurement required failures happen

Business Case Constraints?


- Separate refinery business from oil exploration business
 - Take oil margin for SAF investment?
- Demand risk: Penalty for airlines acceptable? 30 % of flight prices from fuels

TOWARDS A EUROPEAN PBTL SAF ROADMAP

Local PBtL production potential ^[1] TEPET linked to Aspen Plus

For feedstock potential: TEEA for 300 NUTS2 regions

Key economic assumptions: see ^[1]

Biomass density^[2]: (<u>1⁄₃ of primary forest residue^{*})</u> +Transport distance

SUSTAINABLE

AVIATION FUTURES

CONGRESS

Local labour cost^[3]

National grid:

- Price^[4]
- GHG footprint^[5]

Biomass price^[2]

*Only primary forest residue considered

The World's Largest SAF & Aviation Decarbonisation Event

6 - 8 May 2025

Beurs van Berlage Amsterdam

- branches, tops, other parts of trees not used for timber or pulp MINBIOFSR1(2030)ENS_LOW^[2]: 990 PJ (62 Mt/a)
- residues from landscape care, to be sustainably collected without adversely affecting soil quality, biodiversity, other ecological functions MINBIOFSR1a(2030)ENS_LOW^[2]: 157 PJ (10 Mt/a)
- **secondary residues excludes**, e.g. from the wood processing industry

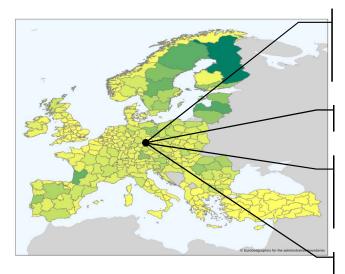
Habermeyer et. Al (2023) Sustainable aviation fuel from forestry residue and hydrogen. A techno-economic and environmental analysis for an immediate deployment of the PBtL process in Europe. Sustainable Energy and Fuels, doi: 10.1039/d3se00358b.
 dataset codes MINBIOFSR1 and MINBIOFSR1a, excluding secondary residues from: Ruiz, P., et al. (2019). ENSPRESO - an open, EU-28 wide, transparent and coherent database of wind, solar and biomass energy potentials Energy Strategy Reviews, 26, 100379.

[3] Eurostat. (2021). Labour cost levels by NACE Rev. 2 activity (Online) https://ec.europa.eu/eurostat/databrowser/product/page/LC_LCI_LEV\$DEFAULTVIEW [Accessed 19.01.2022]

[4] Eurostat. (2021). Electricity prices for non-household consumers - bi-annual data (Online) http://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do [Accessed 19.01.2022]

[5] European Energy Agency, Greenhouse gas emission intensity of electricity generation by country 2022 [cited 2022 31.1];

Available from: https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-9/#tabgooglechartid_googlechartid_chart_1111.


Local PBtL production potential ^[1] TEPET linked to Aspen Plus

 SUSTAINABLE
 6 - 8 May 2025

 AVIATION FUTURES
 Beurs van Berlage

 CONGRESS
 Amsterdam

For feedstock potential: TEEA for 300 NUTS2 regions

Key economic assumptions: see ^[1]

Biomass density^[2]: $(1/3 \text{ of primary forest residue}^*)$ +Transport distance -

Local labour cost^[3]

National grid:

- Price^[4]
- GHG footprint^[5]

Biomass price^[2]

NUTS2 regions specific results:

Local fuel production cost

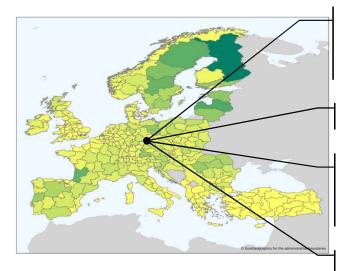
Habermeyer et. Al (2023) Sustainable aviation fuel from forestry residue and hydrogen. A techno-economic and environmental analysis for an immediate deployment of the PBtL process in Europe. Sustainable Energy and Fuels, doi: 10.1039/d3se00358b. dataset codes MINBIOFSR1 and MINBIOFSR1a, excluding secondary residues from: Ruiz, P., et al. (2019). ENSPRESO - an open, EU-28 wide, transparent and coherent database of wind, solar and biomass energy potentials Energy Strategy Reviews, 26, 100379.

[3] Eurostat. (2021). Labour cost levels by NACE Rev. 2 activity (Online) https://ec.europa.eu/eurostat/databrowser/product/page/LC_LCI_LEV\$DEFAULTVIEW [Accessed 19.01.2022]

[4] Eurostat. (2021). Electricity prices for non-household consumers - bi-annual data (Online) http://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do [Accessed 19.01.2022]

[5] European Energy Agency, Greenhouse gas emission intensity of electricity generation by country 2022 [cited 2022 31.1];

Available from: https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-9/#tabgooglechartid_googlechartid_chart_1111.


Local PBtL production potential ^[1] TEPET linked to Aspen Plus

 SUSTAINABLE
 6 - 8 May 2025

 AVIATION FUTURES
 Beurs van Berlage

 CONGRESS
 Amsterdam

Biomass density^[2]: (¹/₃ of primary forest residue^{*}) +Transport distance

Local labour cost^[3]

National grid:

- Price^[4]
- GHG footprint^[5]

Biomass price^[2]

NUTS2 regions specific results:

Local fuel production cost

Local fuel production GWP

Key economic assumptions: see ^[1]

85

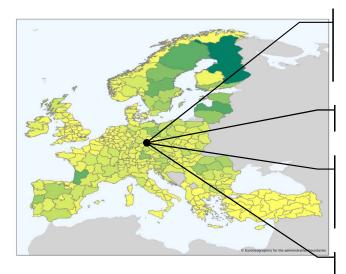
Habermeyer et. Al (2023) Sustainable aviation fuel from forestry residue and hydrogen. A techno-economic and environmental analysis for an immediate deployment of the PBtL process in Europe. Sustainable Energy and Fuels, doi: 10.1039/d3se00358b.
 dataset codes MINBIOFSR1 and MINBIOFSR1a, excluding secondary residues from: Ruiz, P., et al. (2019). ENSPRESO - an open, EU-28 wide, transparent and coherent database of wind, solar and biomass energy potentials Energy Strategy Reviews, 26, 100379.

[3] Eurostat. (2021). Labour cost levels by NACE Rev. 2 activity (Online) https://ec.europa.eu/eurostat/databrowser/product/page/LC_LCI_LEV\$DEFAULTVIEW [Accessed 19.01.2022]

[4] Eurostat. (2021). Electricity prices for non-household consumers - bi-annual data (Online) http://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do [Accessed 19.01.2022]

[5] European Energy Agency, Greenhouse gas emission intensity of electricity generation by country 2022 [cited 2022 31.1];

Available from: https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-9/#tabgooglechartid_googlechartid_chart_1111.


Local PBtL production potential ^[1] TEPET linked to Aspen Plus

 SUSTAINABLE
 6 - 8 May 2025

 AVIATION FUTURES
 Beurs van Berlage

 CONGRESS
 Amsterdam

For feedstock potential: TEEA for 300 NUTS2 regions

Biomass density^[2]: (¹/₃ of primary forest residue^{*}) +Transport distance

Local labour cost^[3]

National grid:

- Price^[4]
- GHG footprint^[5]

Biomass price^[2]

<u>NUTS2 regions specific results:</u>

Local fuel production cost

Local fuel production GWP

Local fuel potential

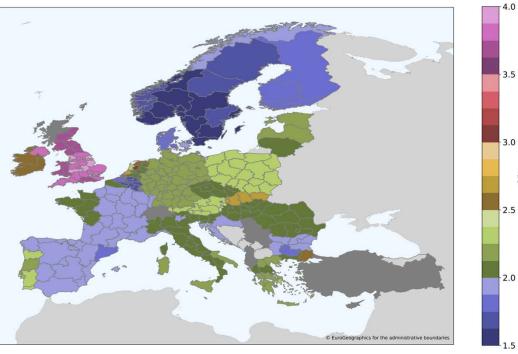
Key economic assumptions: see ^[1]

86

Habermeyer et. Al (2023) Sustainable aviation fuel from forestry residue and hydrogen. A techno-economic and environmental analysis for an immediate deployment of the PBtL process in Europe. Sustainable Energy and Fuels, doi: 10.1039/d3se00358b.
 dataset codes MINBIOFSR1 and MINBIOFSR1a, excluding secondary residues from: Ruiz, P., et al. (2019). ENSPRESO - an open, EU-28 wide, transparent and coherent database of wind, solar and biomass energy potentials Energy Strategy Reviews, 26, 100379.

[3] Eurostat. (2021). Labour cost levels by NACE Rev. 2 activity (Online) https://ec.europa.eu/eurostat/databrowser/product/page/LC_LCI_LEV\$DEFAULTVIEW [Accessed 19.01.2022]

[4] Eurostat. (2021). Electricity prices for non-household consumers - bi-annual data (Online) http://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do [Accessed 19.01.2022]


[5] European Energy Agency, Greenhouse gas emission intensity of electricity generation by country 2022 [cited 2022 31.1];

Available from: https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-9/#tabgooglechartid_googlechartid_chart_1111.

PBtL potential for Europe^[1] Grid based PBtL: Northern Europe

Net production cost [€₂₀₂₀/kg_{C5+}]:

ε/kg

Net Production cost

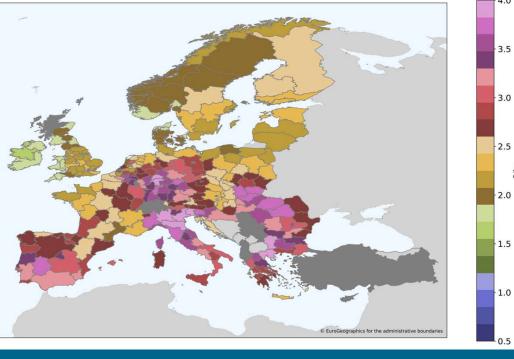
+ Abundant cheap woody biomass and low carbon electricity in Scandinavia

PBtL potential for Europe^[1] Grid based PBtL: Northern Europe

Net production cost [€₂₀₂₀/kg_{C5+}]: Fuel GWP 2020 [g_{CO2,eq}/MJ]: RED II 65% limit 30 3.5 25 ₹20 [W]^{bə} 3.0 c/ka 15 O 2.5 10 2.0 -5 D EuroGeographics for the administrative b D EuroGeographics for the adm

Net Production cost

 Abundant cheap woody biomass and low carbon electricity in Scandinavia


Greenhouse Gas Abatement

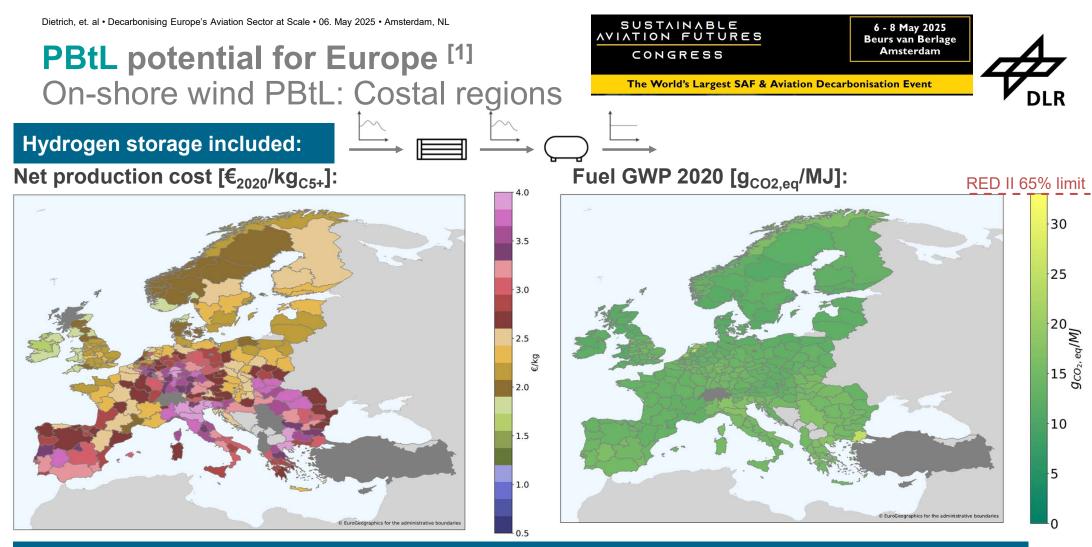
 High carbon footprint of electricity prevents powerbased SAF production in most European countries

PBtL potential for Europe^[1] On-shore wind PBtL: Costal regions

Hydrogen storage included:

Net production cost [€₂₀₂₀/kg_{C5+}]:

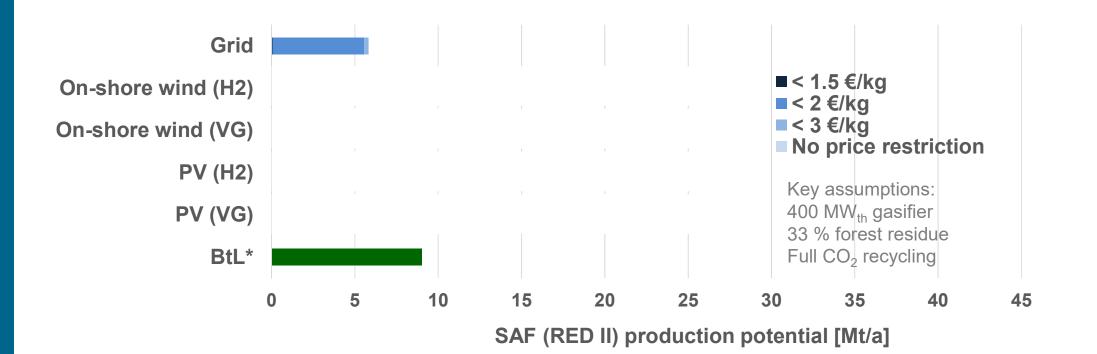
E/kg


Net Production cost

+ High full load hours of wind power required

SUSTAINABLE
AVIATION FUTURES6 - 8 May 2025
Beurs van Berlage
AmsterdamCONGRESSAmsterdam

The World's Largest SAF & Aviation Decarbonisation Event


Net Production cost

+ High full load hours of wind power required

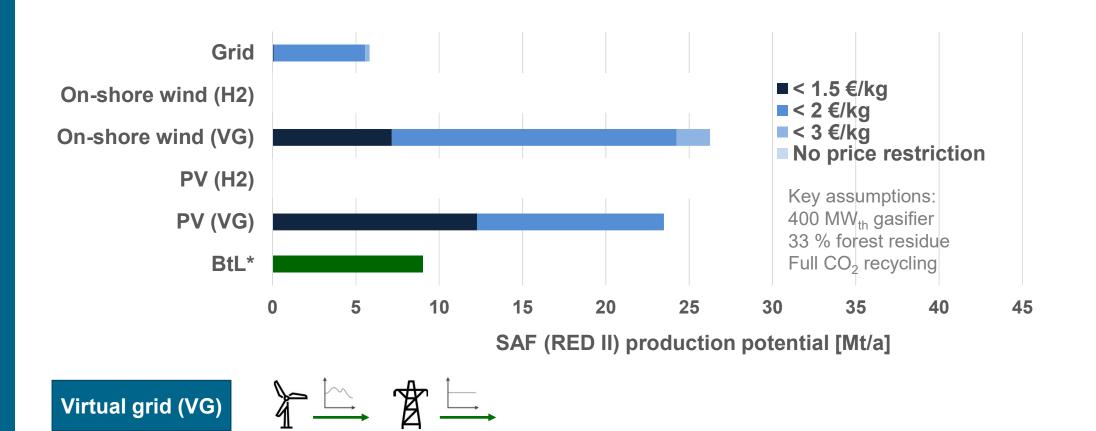
Greenhouse Gas Abatement

- No Net Zero SAF anywhere
- + Wind power based SAF well within RED II

PBtL potential for Europe Aggregated SAF potential

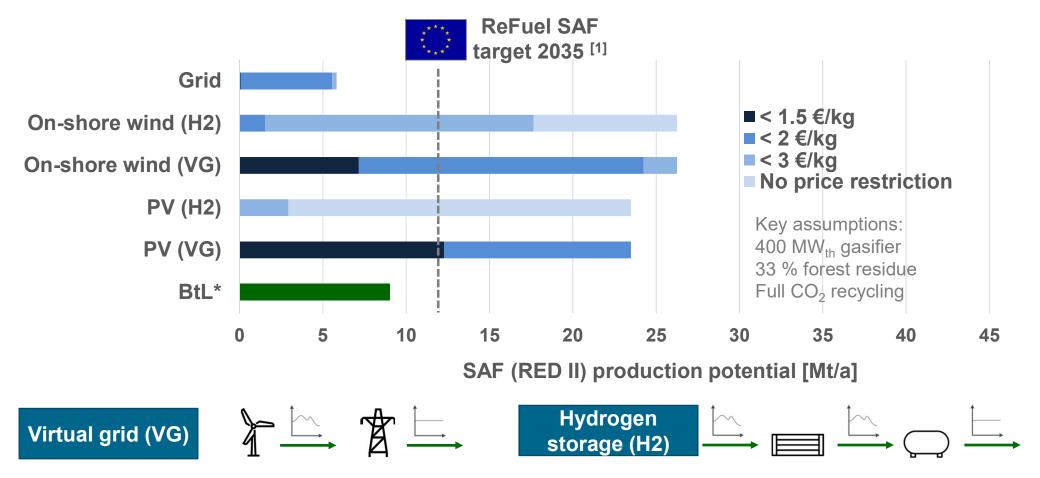
SUSTAINABLE AVIATION FUTURES

CONGRESS


The World's Largest SAF & Aviation Decarbonisation Event

6 - 8 May 2025 Beurs van Berlage

Amsterdam


PBtL potential for Europe Aggregated SAF potential

PBtL analysis for Europe Aggregated SAF potential

[1] ReFuelEU Aviation. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32023R2405&qid=1740131530166. From 1 January 2035, a minimum share of 20 % of SAF, of which a minimum share of 5 % of synthetic aviation fuels;

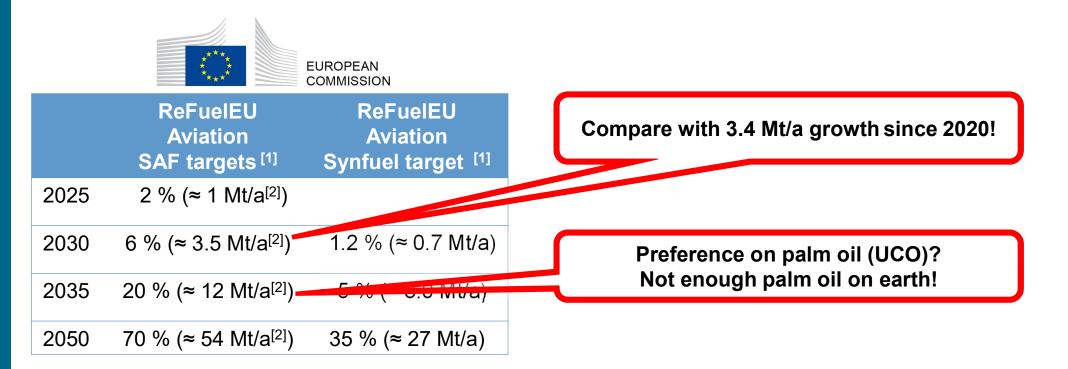
SAF deployment plan for Europe ReFuelEU Aviation: too little too late


	ReFuelEU Aviation SAF targets ^[1]	ReFuelEU Aviation Synfuel target ^[1]
2025	2 % (≈ 1 Mt/a ^[2])	
2030	6 % (≈ 3.5 Mt/a ^[2])	1.2 % (≈ 0.7 Mt/a)
2035	20 % (≈ 12 Mt/a ^[2])	5 % (≈ 3.0 Mt/a)
2050	70 % (≈ 54 Mt/a ^[2])	35 % (≈ 27 Mt/a)

[1] https://www.consilium.europa.eu/en/press/press-releases/2023/10/09/refueleu-aviation-initiative-council-adopts-new-law-to-decarbonise-the-aviation-sector/

[2] growth assumption aviation market 1.5% per annum (according to the International Civil Aviation Organization, ICAO, medium scenario)

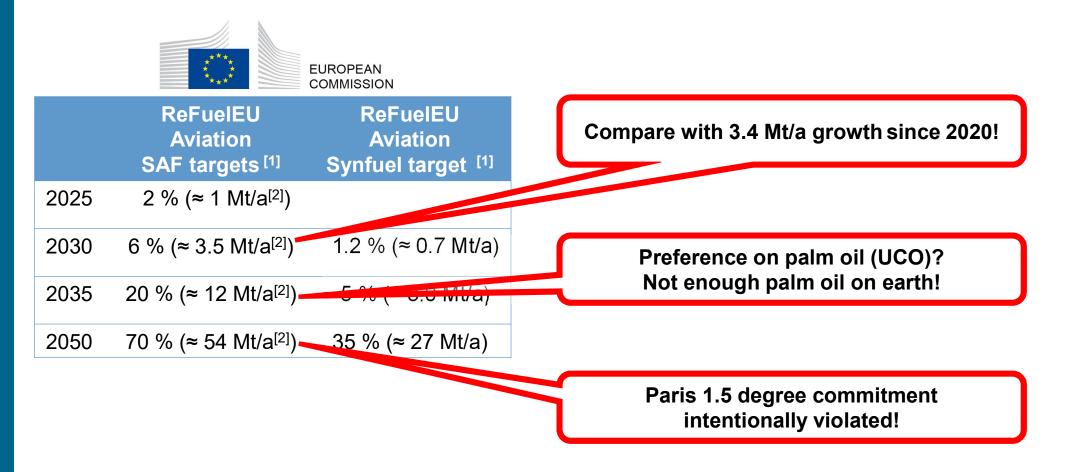
SAF deployment plan for Europe ReFuelEU Aviation: too little too late



[1] https://www.consilium.europa.eu/en/press/press-releases/2023/10/09/refueleu-aviation-initiative-council-adopts-new-law-to-decarbonise-the-aviation-sector/

[2] growth assumption aviation market 1.5% per annum (according to the International Civil Aviation Organization, ICAO, medium scenario)

SAF deployment plan for Europe ReFuelEU Aviation: too little too late



[1] https://www.consilium.europa.eu/en/press/press-releases/2023/10/09/refueleu-aviation-initiative-council-adopts-new-law-to-decarbonise-the-aviation-sector/

[2] growth assumption aviation market 1.5% per annum (according to the International Civil Aviation Organization, ICAO, medium scenario)

SAF deployment plan for Europe ReFuelEU Aviation: too little too late

[1] https://www.consilium.europa.eu/en/press/press-releases/2023/10/09/refueleu-aviation-initiative-council-adopts-new-law-to-decarbonise-the-aviation-sector/

[2] growth assumption aviation market 1.5% per annum (according to the International Civil Aviation Organization, ICAO, medium scenario)

SAF deployment plan for Europe Optimistic way forward (personal view)

EUROPEAN

SUSTAINABLE AVIATION FUTURES CONGRESS

The World's Largest SAF & Aviation Decarbonisation Event

6 - 8 May 2025 Beurs van Berlage Amsterdam

	ReFuelEU Aviation SAF targets ^[1]	ReFuelEU Aviation Synfuel target ^[1]	Ambitious, but realistic, just PBtL SAF
2025	2 % (≈ 1 Mt/a ^[2])		
2030	6 % (≈ 3.5 Mt/a ^[2])	1.2 % (≈ 0.7 Mt/a)	10 Mt/a
2035	20 % (≈ 12 Mt/a ^[2])	5 % (≈ 3.0 Mt/a)	30 Mt/a
2050	70 % (≈ 54 Mt/a ^[2])	35 % (≈ 27 Mt/a)	75+ Mt/a = 100 %! (2045?)

[1] https://www.consilium.europa.eu/en/press/press-releases/2023/10/09/refueleu-aviation-initiative-council-adopts-new-law-to-decarbonise-the-aviation-sector/

[2] growth assumption aviation market 1.5% per annum (according to the International Civil Aviation Organization, ICAO, medium scenario)

SAF deployment plan for Europe Optimistic way forward (personal view)

EUROPEAN COMMISSION SUSTAINABLE AVIATION FUTURES CONGRESS

The World's Largest SAF & Aviation Decarbonisation Event

6 - 8 May 2025 Beurs van Berlage Amsterdam

	CON THE DEPARTMENT OF ADDRESS DEPARTMENT OF		
Ambitious, but realistic, just PBtL SAF	ReFuelEU Aviation Synfuel target ^[1]	ReFuelEU Aviation SAF targets ^[1]	
		2 % (≈ 1 Mt/a ^[2])	2025
10 Mt/s	1.2 % (≈ 0.7 Mt/a)	6 % (≈ 3.5 Mt/a ^[2])	2030
30 Mt/a	5 % (≈ 3.0 Mt/a)	20 % (≈ 12 Mt/a ^[2])	2035
75+ Mt/a = 100 %! (2045?)	35 % (≈ 27 Mt/a)	70 % (≈ 54 Mt/a ^[2])	2050

25 plants across Europe á

- 3.3 GW Wind (5.0 b€) or
 6.3 GW PV (5.0 b€) each
- FT plant 400 kt_{SAF}/a (1.5 b€) incl. 0.9 GW Electrolyzer
- Construction period: 2025 – 2028
- Full operation before 2030

Total Investment?

- less than 6 months of Europe's crude oil spending
- OPEX → CAPEX

[1] https://www.consilium.europa.eu/en/press/press-releases/2023/10/09/refueleu-aviation-initiative-council-adopts-new-law-to-decarbonise-the-aviation-sector/

[2] growth assumption aviation market 1.5% per annum (according to the International Civil Aviation Organization, ICAO, medium scenario)

SAF deployment plan for Europe Optimistic way forward (personal view)

CONGRESS Amsterdam

SUSTAINABLE AVIATION FUTURES

6 - 8 May 2025 Beurs van Berlage

	* *	EUROPEAN COMMISSION		
	ReFuelEU Aviation SAF targets ^[1]	ReFuelEU Aviation Synfuel target ^[1]	Ambitious, but realistic, just PBtL SAF	
2025	2 % (≈ 1 Mt/a ^[2])			
2030	6 % (≈ 3.5 Mt/a ^[2])	1.2 % (≈ 0.7 Mt/a)	10 Mt/a	
2035	20 % (≈ 12 Mt/a ^[2])	5 % (≈ 3.0 Mt/a)	30 Mt/a	About 50 % SAF blending rate achievable with learning curve
2050	70 % (≈ 54 Mt/a ^[2])	35 % (≈ 27 Mt/a)	75+ Mt/a = 100 %! (2045?)	 100 % SAF certification required for further growth

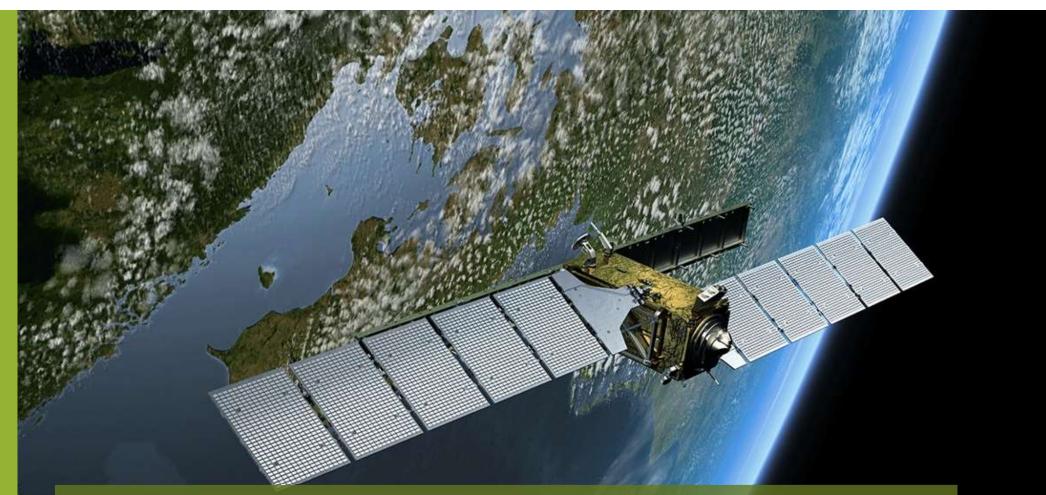
[1] https://www.consilium.europa.eu/en/press/press-releases/2023/10/09/refueleu-aviation-initiative-council-adopts-new-law-to-decarbonise-the-aviation-sector/

[2] growth assumption aviation market 1.5% per annum (according to the International Civil Aviation Organization, ICAO, medium scenario)

SAF deployment plan for Europe Optimistic way forward (personal view)

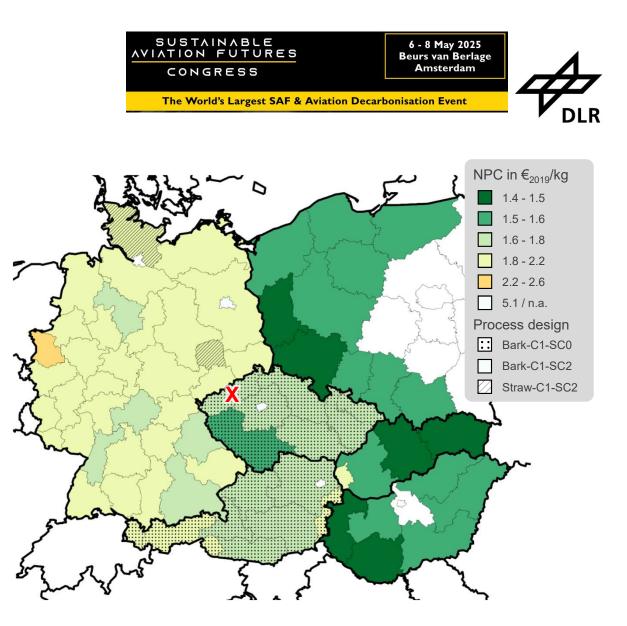
 SUSTAINABLE
 6 - 8 May 2025

 AVIATION FUTURES
 Beurs van Berlage

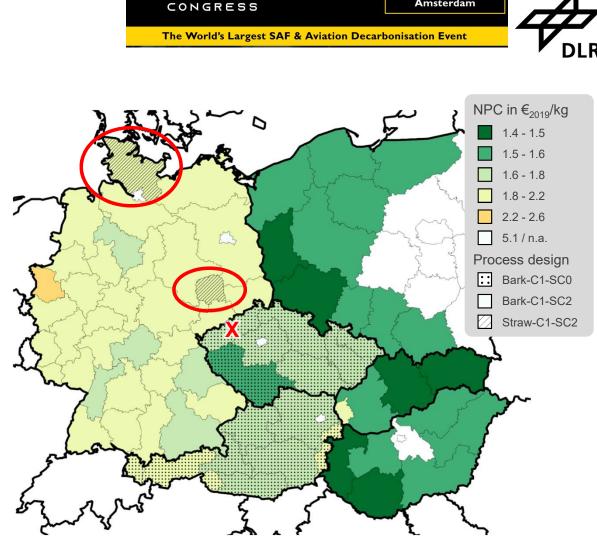

 CONGRESS
 Amsterdam

	*	EUROPEAN COMMISSION		
	ReFuelEU Aviation SAF targets ^[1]	ReFuelEU Aviation Synfuel target ^[1]	Ambitious, but realistic, just PBtL SAF	
2025	2 % (≈ 1 Mt/a ^[2])			
2030	6 % (≈ 3.5 Mt/a ^[2])	1.2 % (≈ 0.7 Mt/a)	10 Mt/a	
2035	20 % (≈ 12 Mt/a ^[2])	5 % (≈ 3.0 Mt/a)	30 Mt/a	• Backup, if H_2 aviation won
2050 70	70 % (≈ 54 Mt/a ^[2])	35 % (≈ 27 Mt/a)	75+ Mt/a = 100 % (2045?)	 additional SAF routes / feedstocks from 2035 onwards?
				 Or → Less air traffic? How about climate neutral by 2045?

[1] https://www.consilium.europa.eu/en/press/press-releases/2023/10/09/refueleu-aviation-initiative-council-adopts-new-law-to-decarbonise-the-aviation-sector/


[2] growth assumption aviation market 1.5% per annum (according to the International Civil Aviation Organization, ICAO, medium scenario)

SAF QUICKSTART: EXPLORE THE BIOMASS FROM YOUR NEIGHBORHOOD


BtL from Central Europe^[1] 200 MW_{th} DFB Gasifier

- Assumptions:
 - Bark & straw as biomass feedstock
 - 20 years of plant lifetime
 - 8260 h/a operation
 - 10 persons per shift
 - 10% interest rate
 - Product refining at ORLEN UniPetrol Litvínov – Záluží refinery (X)

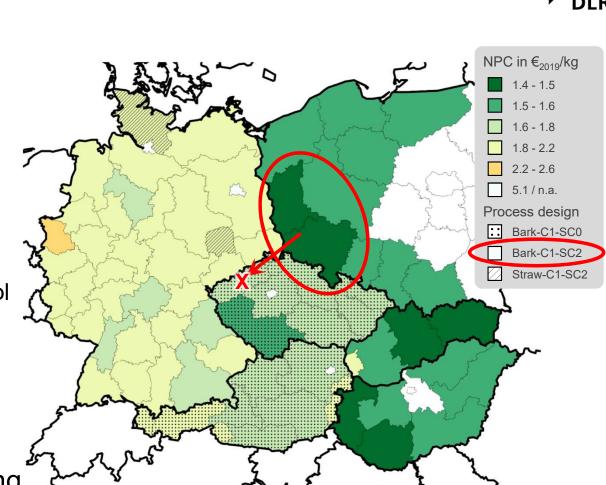
BtL from Central Europe^[1] 200 MW_{th} DFB Gasifier

- Assumptions:
 - Bark & straw as biomass feedstock
 - 20 years of plant lifetime
 - 8260 h/a operation
 - 10 persons per shift
 - 10% interest rate
 - Product refining at ORLEN UniPetrol Litvínov – Záluží refinery (X)

6 - 8 May 2025 Beurs van Berlage

Amsterdam

SUSTAINABLE AVIATION FUTURES


[1] Maier et al. (2021), Techno-economically-driven identification of ideal plant configurations for a new biomass-to-liquid process – A case study for Central-Europe

BtL from Central Europe^[1] 200 MW_{th} DFB Gasifier

- Assumptions:
 - Bark & straw as biomass feedstock
 - 20 years of plant lifetime
 - 8260 h/a operation
 - 10 persons per shift
 - 10% interest rate
 - Product refining at ORLEN UniPetrol Litvínov – Záluží refinery (X)

Preferred:

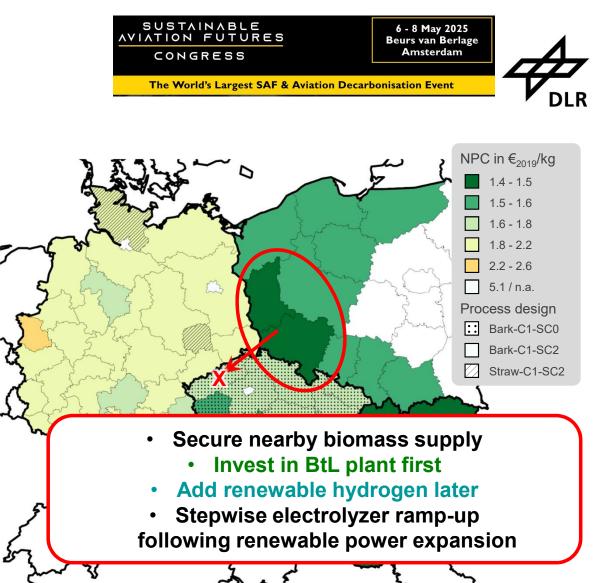
- West Poland bark
- C1: process configuration "basic"
- SC2: steam cycle & district heating

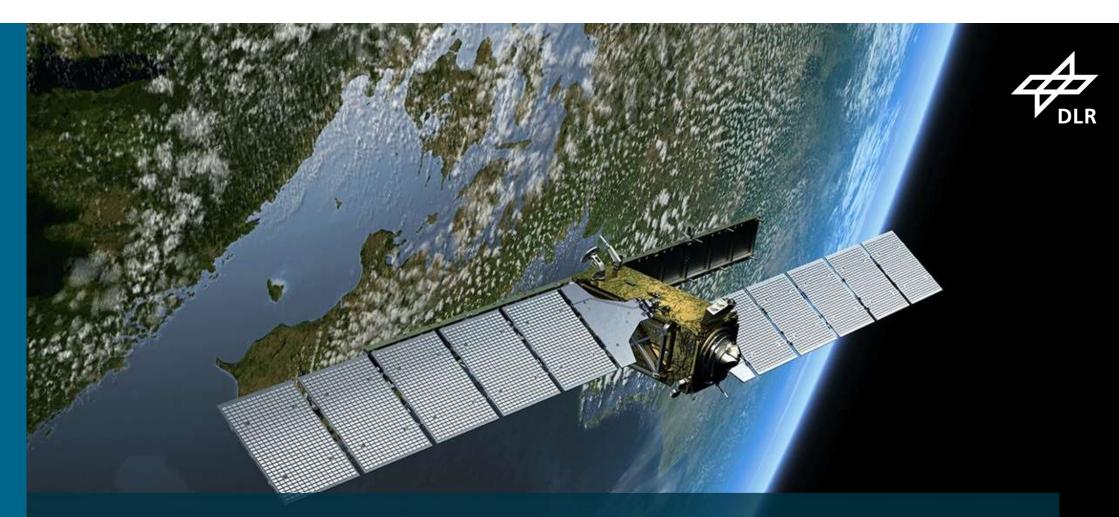
The World's Largest SAF & Aviation Decarbonisation Event

6 - 8 May 2025 **Beurs van Berlage**

Amsterdam

SUSTAINABLE AVIATION FUTURES


CONGRESS


BtL from Central Europe^[1] 200 MW_{th} DFB Gasifier

- Assumptions:
 - Bark & straw as biomass feedstock
 - 20 years of plant lifetime
 - 8260 h/a operation
 - 10 persons per shift
 - 10% interest rate
 - Product refining at ORLEN UniPetrol Litvínov – Záluží refinery (X)

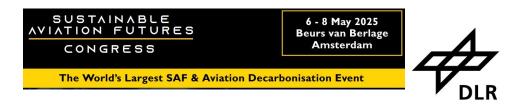
Preferred:

- West Poland bark
- C1: process configuration "basic"
- SC2: steam cycle & district heating

CONCLUSION & OUTLOOK

Toward Sustainable Aviation in Europe

 SUSTAINABLE
 6 - 8 May 2025


 AVIATION FUTURES
 Beurs van Berlage

 CONGRESS
 Amsterdam

 The World's Largest SAF & Aviation Decarbonisation Event
 DLR

- European SAF regulation should reflect real climate protection demand
 - 2050 climate neutrality currently out of reach
 - True accounting for aviation climate impact and mitigation measures required

Toward Sustainable Aviation in Europe

- European SAF regulation should reflect real climate protection demand
- Large-scale decarbonization of aviation using RE-supported SAF is technically feasible, economically challenging, ready to go
 - Massive rollout of European renewable energy (RE) production is mandatory
 - New SAF industry to be established competing with fossil kerosene supply

Toward Sustainable Aviation in Europe

- European SAF regulation should reflect real climate protection demand
- Large-scale decarbonization of aviation using RE-supported SAF is technically feasible, economically challenging, ready to go
 - Massive rollout of European renewable energy (RE) production is mandatory
 - New SAF industry to be established competing with fossil kerosene supply
- Actual environmental impact of SAF deployment not ensured
 - True GWP abatement poorly included in current ReFuelEU Aviation regulation
 - Differentiation SAF / Synfuels misleading

Toward Sustainable Aviation in Europe

- European SAF regulation should reflect real climate protection demand
- Large-scale decarbonization of aviation using RE-supported SAF is technically feasible, economically challenging, ready to go
 - Massive rollout of European renewable energy (RE) production is mandatory
 - New SAF industry to be established competing with fossil kerosene supply
- Actual environmental impact of SAF deployment not ensured
 - True GWP abatement poorly included in current ReFuelEU Aviation regulation
 - Differentiation SAF / Synfuels misleading
- DLR provides standardized assessment for any SAF supply technology, feedstock, location, regulation, … !

Outlook

- Further stimulate SAF deployment with sticks <u>AND</u> carrots
 - Donate potential SAF overproduction
 - Book&claim mechanism to allow SAF production where economic most viable

Outlook

- Further stimulate SAF deployment with sticks <u>AND</u> carrots
 - Donate potential SAF overproduction
 - Book&claim mechanism to allow SAF production where economic most viable
- Update RefuelEU Aviation towards true GWP abatement
 - Include actual ILUC of crop based feedstocks, sustainability without fraud
 - Ensure equilibrium between carbon uptake and carbon harvesting
 - Prohibit escape routing fairness to all airlines/airports
 - Include non-CO₂ effects of aviation (soot, PM, NO_x, contrails, ...)

Outlook

- Further stimulate SAF deployment with sticks <u>AND</u> carrots
 - Donate potential SAF overproduction
 - Book&claim mechanism to allow SAF production where economic most viable
- Update RefuelEU Aviation towards true GWP abatement
 - Include actual ILUC of crop based feedstocks, sustainability without fraud
 - Ensure equilibrium between carbon uptake and carbon harvesting
 - Prohibit escape routing fairness to all airlines/airports
 - Include non-CO₂ effects of aviation (soot, PM, NO_x, contrails, …)
- Ease SAF certification procedure
 - Chemical fuel analysis provides all necessary information for safe usage

Tuesday, 06. May 2025 SAF intelligence & Masterclass day Getting SAF to Market

SUSTAINABLE AVIATION FUTURES

CONGRESS

The World's Largest SAF & Aviation Decarbonisation Event

THANKS TO THE TEAM! FOR YOUR KIND ATTENTION! QUESTIONS?

Techno Economic and Environmental Assessment of SAF production

<u>Ralph-Uwe Dietrich</u>, Rahnuma Bhuiyan Evon, Felix Habermeyer, Simon Maier, Moritz Raab, Julia Weyand (DLR e.V., www.DLR.de/tt)

6 - 8 May 2025

Beurs van Berlage Amsterdam