
Numerical optimization of quantum
gates on IBMQ systems

Master thesis

Santana Apolonio Lujan
Matriculation Number 0059144

Conducted at the
German Space Operations Center (GSOC) of the German Aerospace Center (DLR)

Oberpfaffenhofen
and the

University of Applied Sciences Munich (HM)
Department of Computer Science and Mathematics

Supervisors:
Prof. Dr. S. Tornow (HM)

Dr. A. Spörl (DLR)
Dr. N. Pomplun (DLR)

Auditors:
Prof. Dr. S. Tornow

Prof. Dr. A. Zugenmaier

Fakultät fürInformatik
und Mathematik

Die folgende Erklärung ist in jedes Exemplar der Masterarbeit einzubinden und jeweils
persönlich zu unterschreiben.

(Familienname, Vorname) (Ort, Datum)

 / 20
(Geburtsdatum) (Studiengruppe / WS/SS)

Erklärung
Gemäß § 40 Abs. 1 i. V. m. § 31 Abs. 7 RaPO

Hiermit erkläre ich, dass ich die Masterarbeit selbständig verfasst, noch nicht anderweitig
für Prüfungszwecke vorgelegt, keine anderen als die angegebenen Quellen oder Hilfsmittel
benützt sowie wörtliche und sinngemäße Zitate als solche gekennzeichnet habe.

(Unterschrift)

Lujan, Santana Apolonio München, 30.01.2023

14.11.1991 IG WS 22

Abstract

As the number of qubits in modern quantum computers grows, the demand shifts to
high-fidelity quantum gates which complement the large number of qubits to enable deep
quantum circuits with low error rates. The prime goal of this thesis is to exploit the tools
provided by Optimal Control Theory (OCT) to numerically optimize single qubit quantum
gates for exemplary quantum backends based on superconducting qubits provided by
IBM Quantum. This was realized by designing and implementing a modular software
framework able to generate pulse level controls for a desired unitary evolution independent
of the target hardware or the optimization algorithm. A reference implementation
of the Gradient Ascent Pulse Engineering (GRAPE) algorithm in conjunction with
a self-implemented closed system simulator optimize piecewise constant amplitudes
for given gate durations. We interface the hardware with the implemented IBMQ-
Pulse-Adapter, which translate the optimization results to executable experiments.
The framework includes automated qubit spectroscopy experiments to characterize the
intrinsic parameters of the target qubits required for optimizing tailored pulse sequences.
Experiments with optimized pulse sequences of multiple durations are concluded for
the X-Gate and the H-Gate on 7–qubit IBM Quantum backends based on Transmon
technology. The experiment results are analyzed and compared with the default gates
provided by IBM Quantum, yielding comparable performances in terms of fidelity at the
cost of longer gate times.

Acknowledgements
I want to thank Prof. Dr. S. Tornow for supervising this thesis and for providing the
scientific problem statement, as well as the access to the IBM Quantum systems.

Great appreciation also goes to Dr. N. Pomplun and Dr. A. Spörl for supporting me
in both technical and general aspects concerning this thesis, as well as for introducing
me to the wonderful field of control theory.

Most importantly, I must thank my love Julia for supporting me on every single step
of this journey.

The project/research is part of the Munich Quantum Valley (K8), which is supported
by the Bavarian state government with funds from the Hightech Agenda Bayern Plus.

Contents
Acronyms 1

List of Figures 2

1. Motivation and overview 5

2. Fundamentals 7
2.1. Formalism . 7
2.2. Linear algebra . 9

2.2.1. Hilbert space . 9
2.2.2. Operators . 9
2.2.3. Superoperators . 11
2.2.4. Lie groups and algebra . 11

2.3. Quantum mechanics . 12
2.3.1. Mathematical tools for describing quantum systems 12
2.3.2. Quantum channels . 15

2.4. Superconducting quantum computers . 16
2.4.1. Transmon qubits . 17
2.4.2. Single Transmon Hamiltonian . 18
2.4.3. Multi Transmon Hamiltonian . 19

3. Quantum optimal control 21
3.1. Controllability . 21
3.2. Advantages . 21
3.3. GRAPE algorithm . 22

3.3.1. Choosing ϵ . 24
3.4. Evaluating the quality on real hardware 26

3.4.1. Quantum State Tomography . 27
3.4.2. Quantum Process Tomography 28

4. Software 30
4.1. Requirements . 30
4.2. Architecture . 31
4.3. GRAPE algorithm module . 31
4.4. Closed system simulator backend . 32
4.5. IBMQ Pulse Adapter . 32

4.5.1. OpenPulse . 33
4.5.2. Qiskit Pulse . 33

4.5.3. Translation of control amplitudes 36

5. Experiments 39
5.1. Qubit characterization . 39

5.1.1. Determining the qubit frequency 39
5.1.2. Calibrating a π-Pulse . 41
5.1.3. Correcting the qubit frequency value 42
5.1.4. Determining the Rabi frequency ΩR 43

5.2. Single Qubit Gates . 48

6. Conclusion 57
6.1. Summary . 57
6.2. Discussion and outlook . 57

7. References 59

Appendix 65
A. UML Diagrams . 66
B. Qubit drive amplitude duration relation diagrams 69

Acronyms
API Application Programming Interface. 33

AWG Arbitrary Waveform Generator. 33

cQED Circuit Quantum Electrodynamics. 18

DRAG Derivative Removal by Adiabatic Gate. 35, 36

GRAPE Gradient Ascent Pulse Engineering. 3, 5, 21–24, 30–32, 57

MLE Maximum Likelihood Estimation. 28

NISQ Noisy Intermediate Scale Quantum. 5, 16

NMR Nuclear Magnetic Resonance. 5, 18, 22, 31

OCT Optimal Control Theory. 3, 5, 57

QASM Quantum Assembly Language. 33

QPT Quantum Process Tomography. 27, 28, 48, 57, 58

QST Quantum State Tomography. 2, 27, 28, 57, 58

1

List of Figures
2.1. Overview on the main mathematical representations of completely positive

maps and how one can switch between them. From [17] 15
2.2. (a) LC-circuit for quantum harmonic oscillator (QHO) (b) Corresponding

energy diagram, energy spacings between the stationary states are all ℏωr.
(c) Circuit for quantum anharmonic oscillator with coil replaced by a
Josephson junction (d) The non-linear inductance reshapes the energy
diagram to have non-equidistant spacing between the states, enabling
isolation of the computational subspace (qubit). Image taken from [21] . 17

2.3. Schematic of a capacitive coupling between two Transmon qubits (left and
right) with a coupler in form of a linear resonator (center) [21]. 20

3.1. Schematic representation of a single set of control amplitudes. Each
amplitude uk(j) is applied for a fixed time ∆t = T

N
and each timestep

indexed by j. Arrows pointing in vertical directions visualize the gradient
δΦ

δuk(j) , the direction indicating how each amplitude should be modified in
the next iteration to increase the quality. Taken from [35] 23

3.2. Development of ϵ (red trace) and quality Φ (blue trace) during optimization
of a pulse sequence implementing a σX-Gate 26

3.3. Block diagram of a QST. Preparation of ρout 27

4.1. Schematic representation of the signal modulation. The envelope (left)
is multiplied with a carrier signal (center) resulting in modulated output
signal (right). Taken from [49] . 34

4.2. Summary of the measurement output levels [46] 35
4.3. Overview on the parametrized pulses provided by Qiskit Pulse. All pulses

shown have a duration of 300 dt and amplitude of 0.15. 35
4.4. Final control amplitudes for optimization of a Hadamard unitary with

a duration of T ≈ 100 ns. Control 0 corresponds to the u1-amplitudes
driving a σX-rotation, while Control 1 represents the u2-amplitudes for a
σY -rotation. 37

5.1. Result of a Frequency Sweep experiment executed on the backend ibm perth
for qubit 0 for different pulse shapes. 40

5.2. Rabi experiment . 41

2

5.3. Ramsey experiment sequence: (a) Initial state |0⟩ (b) State after appli-
cation of the π

2 –pulse (c) Free evolution with frequency ∆ = ωq − ωd for
some time tdelay (d) Final state |0⟩ after second application of π

2 –pulse for
the exemplary case a phase of φ = π

2 has been accumulated. (e) Pulse
schedule for a single Ramsey circuit . 42

5.4. Results of the Ramsey experiment for different detuning frequencies δ with
the precession time tdelay ranging from 0 ns to 1000 ns. The experiment
was concluded on qubit 0 of ibm perth. 43

5.5. Multiple Rabi experiments with varying pulse durations on qubit 0 of
ibmq guadalupe. Each experiment was conducted with a different amplitude
ranging from umin = 0.02 to umax = 1.0. 45

5.6. Results of the Rabi experiment with varying duration for amplitudes
0 ≤ u ≤ 3.1 executed on qubit 0 on ibmq guadalupe. Image (a) shows
an inverse linear relation between amplitude and pulse duration for a
2π–pulse. The corresponding frequency in (b) consequentially shows
an approximately linear relation. Figure (c) shows the calculated Rabi
frequency ΩR via (5.1). We utilize the median (dashed line) to eliminate
outliers. 46

5.7. Comparison of the performance of π–pulse sequences executed on qubit 0
on backend ibmq guadalupe and in the simulated unitary evolution. The
Gaussian experiments show two additional data points, as the extracted
pulse durations for these amplitudes are shorter than allowed. 47

5.8. Qubit arrangement and coupling on ibm perth and ibm lagos. 48
5.9. (a), (b) Optimized pulses sequences with different initial shapes for

implementing a X-Gate. We observe minimal deviations between the
optimized and initial shapes. (c) Provided X-Gate for qubit 3 on ibm perth. 51

5.10. Simulated evolution of the expectation value ⟨σZ⟩ for pulses of different
durations with initial constant shape implementing a X-Gate. 52

5.11. Simulated evolution of the expectation value ⟨σZ⟩ for pulses of different
durations with initial Gaussian shape implementing a X-Gate. 53

5.12. Comparison of the error (1 − Fpro) of the provided X-Gate (blue) with the
optimized pulse sequences of initial constant (orange) and Gaussian shaped
(green) samples. Simulation of the optimized pulses yielded error values
≤ 10−5 and are therefore not shown. The duration corresponding to the
pulse with the lowest error is shown on top of each bar. The experiments
were executed on ibm perth. 54

5.13. Simulated evolution of the expectation values σZ for H-Gate implemented
by the optimized pulse sequence of Figure 5.15a for initial states |0⟩ and
|1⟩. The amplitudes u1 and u2 drive rotations about the x- and the y-axis
respectively. 54

3

5.14. Comparison of the error (1 − Fpro) of the provided H-Gate (blue) with
the optimized pulse sequences with initial samples of constant amplitude
(orange). The duration corresponding to the pulse with the lowest error
is shown on top of each bar. Simulation of the optimized pulses yielded
error values ≤ 10−5. The experiments were executed on ibm lagos. 55

5.15. Optimized pulse sequence and provided H-Gate for qubit 2 on ibm lagos. 56

1. GRAPE flowchart . 66
2. Software Architecture . 67
3. Grape Algorithm Class Diagram . 68
4. Periods of sinus fits extracted from single Rabi experiments with varying

duration and constant amplitude per experiment. Each data point repre-
sents a single duration for which a drive of the given amplitude results in
a 2π rotation about the x-axis of the Bloch sphere. 69

5. Frequencies f2π = 1
t2π

calculated from data in Figure 4 70
6. Rabi frequency calculated from data in Figure 4 via (5.1) 71

4

1. Motivation and overview
The invention of binary computing machines during the 20th century [1] revolutionized the
way recurring arithmetic problems were solved. Empowered by a bi-yearly linear growth
of computational power predicted by Gordon Moore in 1964 [2], the most powerful
supercomputer in the present time is able to calculate over 1 million floating point
operations per second [3]. To achieve such a performance, these systems are composed
of multiple interconnected systems, each limited in terms of their computational power
by the size of their electrical components on the integrated circuits which eventually
cannot be further reduced. Even the strongest computers to date are not able to solve
problems involving larger number of particles in quantum systems due to the exponential
increase of the degrees of freedom for each additional particle. For this reason, Richard
Feynman pioneered the idea to utilize quantum systems to simulate quantum mechanical
behavior [4] in 1982. About 30 years later, Noisy Intermediate Scale Quantum (NISQ)-
computers are not only available to researchers in a laboratory, but also to the public [5]
over the cloud. The road to quantum supremacy is still far, as the currently available
quantum computers are prone to noise and errors from a variety of sources.

One source of errors are quantum operations, also known as quantum gates, which
every quantum algorithm is composed of. Depending on the algorithm, a quantum circuit
can be composed of hundreds of gates, each single one possibly causing errors which
propagate and multiply throughout the program flow. The individual error rate strongly
depends on the physical implementation of the qubits and operations as well as the
number of qubits it operates on. Common interaction techniques use pulse sequences, e.g.
radiofrequency pulses on spin-based qubits used in NMR [6], laser pulses on neutral atoms
in optical lattices [7] or microwave pulses on superconducting qubits [8]. One approach
to reduce the errors induced by these operations is the idea to utilize proven concepts
from the field of OCT and adapt the notions to the quantum realm. In the course of
this thesis we will investigate and utilize a number of these concepts with the goal to
generate and apply optimized piecewise constant pulse sequences to superconducting
qubits on systems provided by IBM Quantum.

The thesis introduces the fundamental concepts of linear algebra, quantum mechanics,
and superconducting qubits required for the subsequent chapters in Chapter 2. In
Chapter 3 we proceed to elaborate on the general ideas and requirements for utilizing
OCT on quantum systems, specifically the theoretical foundation of the implemented
GRAPE algorithm as well as techniques used to extract comparable results. Chapter 4
presents an overview on the implemented software framework and the Qiskit Pulse
library used to translate the pulse sequences into executable jobs. Next, we explore the
IBM Quantum systems in Chapter 5 demonstrating the automated qubit spectroscopy
experiments followed by experimentally comparing the performance of the optimized

5

pulse sequences for the X- and the H-Gate with the provided default gates on all qubits
of a 7–qubit backend. The thesis is concluded with a discussion on possible improvements
and ideas for further experiments and follow-up research topics in Chapter 6.

6

2. Fundamentals

2.1. Formalism
This section aims to give an overview on the formalism used in this thesis. As most of
the notations and mathematical formalism should be familiar to the experienced reader,
this chapter will only present a brief recap without going into much detail.

Dirac Notation

Dirac- or “bra-ket”-notation, is a notation which is often utilized for doing calculations
with quantum states. In its essence, it is just a simple way of representing column- and
row-vectors providing an elegant way of depicting common actions quantum mechanics.

Let v be a vector of the complex m-dimensional vector space, so v ∈ Cm. A column
vector is denoted by the ket symbol:

|v⟩ =




v0
v1
...

vm




, (2.1)

Row vectors are denoted by a bra:

⟨v| =
h
v∗

0 v∗
1 · · · v∗

m

i
(2.2)

Transforming a ket into a bra and vice versa is done by complex conjugating the entries
and transposing the vector (conjugate transpose):

|v⟩† =




v∗
0

v∗
1
...

v∗
m




T

=
h
v∗

0 v∗
1 · · · v∗

m

i
= ⟨v| (2.3)

These are just the basics rules, further progression into advanced topics of this thesis
will solidify the upsides of the notation.

Pauli operators and basis

A commonly used set of operators are the Pauli operators, which in this work will be
identified by a σi symbol with i ∈ {X, Y, Z} or sometimes also just the letter. They
correspond to the following matrices:

7

σX = X =
"
0 1
1 0

#
σY = Y =

"
0 −i
i 0

#
σZ = Z =

"
1 0
0 −1

#
(2.4)

Together with the identity matrix

σI = σ0 = I =
"
1 0
0 1

#
(2.5)

they form a complete operator basis P = {σI , σX , σY , σZ}. Allowing real coefficients,
the basis P spans the set of all C2×2 Hermitian matrices. This basis set can be easily
expanded to the n-qubit case:

Pn = {σI , σX , σY , σZ}⊗n, span(Pn) = C2n×2n (2.6)

The explicit formulation of the Pauli basis describing all operations on a two qubit
system therefore is:

P2 = {σIσI , σIσX , σIσY , σIσZ , σXσI , σXσX , . . . , σZσY , σZσZ} (2.7)

Ladder operators

For discussing quantum theories involving multiple particles or more than two stationary
states, a pair of operators have been introduced. The creation or raising operator

a† = σ+ =
"
0 0
1 0

#
= 1

2 (σX − iσY) (2.8)

and the annihilation or lowering operator

a = σ− =
"
0 1
0 0

#
= 1

2 (σX + iσY) , (2.9)

collectively known as the ladder operators, are used as an elegant mathematical description
of adding or reducing energy in a quantum system.

Product operators

When referring about operators acting on composite systems we make use of a shorthand
notation. Suppose we have a 3–qubit system, product operators are abbreviated similar
to the following example:

σ
(0)
Z ⊗ σ

(1)
X ⊗ σ

(2)
Y = σZσXσY = ZXY (2.10)

8

2.2. Linear algebra
2.2.1. Hilbert space
A vector space V over the complex numbers C is called a Hilbert Space, if it defines a
scalar product or inner product on two elements (·, ·) : V ×V → C which is complete with
respect to the norm || · || :=

q
(·, ·) [9]. We will only be dealing with finite dimensional

Hilbert Spaces, that is Hilbert Spaces of some fixed dimension n, therefore V ∈ Cn.
Given two vectors |v⟩ , |w⟩ ∈ V the inner product ⟨v|w⟩ quantifies a measure the overlap

of the two vectors. For a pair of orthogonal vectors the inner product consequentially
equals 0:

⟨0|1⟩ =
h
1 0

i "
0
1

#
= 0 · 1 + 1 · 0 = 0 (2.11)

The outer product of |v⟩ and |w⟩ is commonly called a projector and results in a matrix
with dimension m × m. An example of a projector is the σ+ operator:

|1⟩ ⟨0| =
"
0
1

h
1 0

i
= σ+ (2.12)

And finally the tensor product of v and w, also known as the Kronecker or outer product
:

|v⟩ ⊗ |w⟩ = |vw⟩ =




v0




w0
...

wn−1




v1




w0
...

wn−1




...

vn−1




w0
...

wn−1







=




v0w0
v0w1
v1w0
v1w1
. . .

vn−1wn−1




(2.13)

The outer product describes a composition of Hilbert spaces, combining the spaces of
the two factors, resulting in a Hilbert space of dimension dim(|v⟩) × dim(|w⟩).

2.2.2. Operators
Operators are linear transformations, mapping elements from one vector space V to
another vector space W . They are normally denoted with a hat on top ·̂, although the
hat is oftentimes omitted for simplicity. Even tough we will omit a vast majority, few
special types of operators are extensively used in the field of quantum mechanics and
quantum computing, justifying a review of their attributes.

9

Every operator can also be represented by a matrix M . Common matrix operations
such as the complex conjugation M 7→ M∗, the transposition M ∈ Ck×l 7→ MT ∈ Cl×k

and the adjoint M 7→ M † = (M∗)T can therefore be applied.
An operator Û is called unitary if its adjoint is also its inverse:

Û−1 = Û † Û Û † = 1 (2.14)

The eigenvalues of unitary operators are of the form eiθ, thus preserving the norm of
the vector it acts on. This property induces a geometrical interpretation of unitaries
in finite-dimensional Hilbert spaces, as they can be understood as rotations, leaving
the length of the vectors acted on unchanged. As we will see later, this property has
widespread implications for the application in quantum mechanics.

Hermitian operators are another type of essential operators in quantum mechanics.
An operator Â is labeled Hermitian if it is self-adjoint, that is:

Â = Â† (2.15)

After analyzing the eigenvalues of these operators, one finds them all to be real valued, a
fact that entails great physical relevance. Operators representing physically measurable
entities, such as momentum, energy or position must have real expectation values and
must therefore be Hermitian. Calculating the expectation value of some measurable
entity Â for some state |ψ⟩ is done by:

D
Â

E
= ⟨ψ| Â |ψ⟩

⟨ψ|ψ⟩ (2.16)

Operators are said to be skew-Hermitian or anti-Hermitian if:

Â† = −Â (2.17)

A frequently taken measure of a square operator Â ∈ Cn×n is the trace, a sum over
the diagonal entries:

tr(Â) =
nX

i=1
aii (2.18)

Using the trace, the Frobenius inner product can be calculated. This operation takes two
operators and returns a scalar:

D
Â|B̂

E
= tr

�
Â†B

�
(2.19)

The commutator of two operators Â, B̂ plays an important role in quantum mechanics
and is defined by: h

Â, B̂
i

= ÂB̂ − B̂Â (2.20)

In case
h
Â, B̂

i
= 0 ⇒ ÂB̂ = B̂Â we say that Â and B̂ commute, implying that the order

in which the operators are applied can be exchanged.

10

2.2.3. Superoperators
Superoperators are linear operators acting on a vector space of linear operators [10].
To represent superoperators, we first have to introduce the notion of vectorization of
a matrix. Vectorizing a matrix can be done by either row-stacking or column-stacking
the matrix columns or rows on top of each other. We will focus on the column-stacking
method which transforms a matrix of dimension m × n to a 1 × mn-vector [11], which we
will denote as the vec-operation. Given some operator M̂ with a matrix representation
M ∈ Cm×n with rows −−→

Mm and columns −→
Mn, the vectorization operation yields:

vec(M) =




−→
M0−→
M1
...−−−→

Mn−1




(2.21)

Instead of vec(M), the notations |M⟩ and ˆ̂
M [12] as well as |M⟩⟩[13] are commonly used

for specifying superoperators.

2.2.4. Lie groups and algebra
Group Theory is an important apparatus used all over mathematics studying the algebraic
structures known as groups. A group consists of a set of elements G = {G1, G2, · · · Gn} and
an operation Gj ◦Gk combining any two elements of the group to produce another element
of the group. In every group, there exists a single identity element I, leaving the element
Gn of the set unchanged Gn ◦ I = I ◦ Gn = Gn when the operation is applied. Groups
require that every element Gn has an element G−1

n such that Gn ◦ G−1
n = G−1

n ◦ Gn = I
called the inverse element. Lastly, a group requires associativity, that is for all elements
Gn, Gj, Gk ∈ G the following has to hold (GN ◦ GJ) ◦ GK = GN ◦ (GJ ◦ GK).

In the extent of this thesis we are only interested in a single type of groups, the Matrix
groups with regular matrix multiplication as the operation of choice. The proof that
group conditions hold for matrix groups will not be given here, but can be found in any
decent algebra textbook, such as [14].

A descriptive mathematical tool linking operators used in quantum mechanics to
geometrical interpretations are the Lie groups, a family of continuous matrix groups.
The most general group of linear n × n invertible matrices is denoted by GL(n,C) with
group elements G. Any continuous closed subgroup of the general linear group is a Lie
group [15], for example:

• the unitary subgroup: U(n,C) with G ∈ GL(n) and G† = G−1

• the special unitary subgroup: SU(n,C) with G ∈ U(n), G† = G−1 and det(G) = 1

The characteristic property of the elements in the unitary groups is the length preservation
when applied to a vector v ∈ Cn.

11

Every element U of a Lie group can be represented by a matrix exponential

U = eβx (2.22)

where β corresponds to some rotational angle and x is the generator of the group element.
The entirety of generators {xk} is called the Lie algebra and is used to determine the
operators needed to construct a desired unitary target operator. Lie algebras are named
according to their Lie group but with lowercase letters. All elements of the unitary
algebra x ∈ u(N) are skew-Hermitian x = −x†, elements of the special unitary x ∈ su(N)
algebra are additionally traceless tr(x) = 0.

2.3. Quantum mechanics
The behavior of systems at a sub-molecular level vastly differs from the classical intuition
we as humans gain by experiencing and exploring classical macroscopic phenomenons in
our day-to-day life. By continuously looking closer, increasing our insight on properties
of the microscopic world which defy our natural understanding, a new type of intuition
and appreciation for the small-scale events surrounding can be attained. Duality of
particles and waves can explain interference effects, which otherwise would be impossible
to understand. As a result of treating particles as waves, inherent properties of wave-like
systems such as the uncertainty relation between canonically conjugate variables, e.g.
position x and momentum p, have to be taken into consideration.

Open questions in the early decades of the last century, such as the reason to why
electrons do not fall into the nucleus, can be explained as a consequence of these particles
behaving like waves, leading to a quantization of properties ought to be continuous.

Quantum mechanics provides a set of postulates, a framework, allowing the formulation
of specific quantum theories solving specific problems in their fields. This section provides
a summary on the relevant postulates required for this thesis.

2.3.1. Mathematical tools for describing quantum systems
Descriptions of quantum mechanical systems can be divided into two types. Closed
quantum systems describe completely isolated systems with no environmental influence,
conserving their energy and therefore not losing any information as time goes on. They
represent noiseless, perfectly self-contained settings, thus removing the fragility of real
world quantum states and are a perfect starting point for grasping the basic rules of
quantum mechanics. Open quantum systems on the other hand describe real world
systems more closely as it is never possible to perfectly isolate a quantum system from
the outside. They characterize and specify effects such as dissipation, which lead to
information loss of the system to the surrounding environment.

A state, by definition, encodes all the information we have about a system under
observation, independently of the physical rules it obeys. These rules could be of classical
nature, such as Newtonian or Hamiltonian mechanics, but could also be quantum me-
chanical. Contrary to classical theories, in which the outcome of each single measurement

12

can be predicted with certainty, quantum theories and quantum states are of probabilistic
nature, consequently only predicting the probabilities of certain measurement outcomes.

Referring to a pure state implies precise knowledge, without any degree of uncertainty,
about the state itself. The most general form describing a pure state for a single two-level
system

|ψ⟩ = a |0⟩ + b |1⟩ (2.23)
is a linear combination of two basis states, in this case

|0⟩ =
"
1
0

#
|1⟩ =

"
0
1

#
(2.24)

with complex coefficients a, b ∈ C. Provided that the elements are orthonormal, we can
choose any set of vectors as a basis. A set of basis vectors that equivalently describes
the state in (2.23) could therefore be { 1√

2 (|0⟩ + |1⟩) , 1√
2 (|0⟩ − |1⟩)}. These coefficients

can be interpreted as probability amplitudes, resulting in the corresponding probability
densities after taking the modulus squared. The probability for the state in (2.23) to be
in either |0⟩ or |1⟩ is then:

P (|0⟩) = |⟨0|ψ⟩|2 = |a|2 P (|1⟩) = |⟨1|ψ⟩|2 = |b|2 (2.25)

Pure quantum states must comply with the normalization condition, meaning that all
probability densities must add up to 1:

|a|2 + |b|2 = 1 ⟨ψ|ψ⟩ = 1 (2.26)

An example of a commonly used, non-trivial quantum state is the equal superposition of
the basis states |ψ⟩ = 1√

2 (|0⟩ + |1⟩), where to probability of finding it in either of the
basis states is 0.5.

In real systems for example, we cannot be sure if the desired initial state can consistently
be prepared with complete confidence. This kind of state, an ensemble or statistical
mixture of multiple pure states, is called a mixed state and is described by a density
operator

ρ̂ =
X

i

pi |ψi⟩ ⟨ψi| (2.27)
X

i

pi = tr(ρ̂) = 1 (2.28)

It is important to keep in mind, the lack of knowledge leading to the formulation of
states as density operators is not due to any quantum mechanic traits, but is of plain
classical nature.

In general, measurement in quantum mechanics refers to the process of determining a
single numerical real value from a quantum state. We are mostly dealing with projective
measurements, which are a special case of quantum measurements with some practical
properties. More background on general measurements and other specialized measurement
techniques such as Positive Operator-Valued Measures (POVM) can be found in [16]. A
projective measurement is done by projecting a state |ψ⟩ on one of the eigenstates with

13

eigenvalue m of an observable M̂ , where M̂ is a Hermitian operator with orthogonal
projectors P̂m [16]:

M̂ =
X

m

eP̂m (2.29)

Recall that the Hermitian condition implies real eigenvalues of the operator, the measure-
ment result m is therefore a real scalar number. The probability of measuring a certain
value m can then be calculated by:

p(m) = ⟨ψ| P̂m |ψ⟩ (2.30)

Expectation values of Hermitian operators are calculated as shown in (2.16). The wording
“measuring in a certain basis” consequently refers to multiple projective measurements
using a specific set of observables.

The time evolution of a closed quantum system is governed by the Schrödinger
equation [16]:

iℏ
d

dt
|ψ⟩ = Ĥ |ψ⟩ (2.31)

where ℏ is Planck’s constant and the Hermitian operator Ĥ represents the Hamiltonian
of the system. The Hamiltonian is a special operator which describes the dynamics of a
closed system completely. A description of the operator propagating a quantum state for
a time t is then given as a solution to the Schrödinger equation with a time-independent
Hamiltonian Ĥ:

Û(t) = e−iĤt (2.32)
From this equation it is fairly obvious, that the dynamic of a quantum system is entirely
dependent on the Hamiltonian operator. This naturally results in a large interest for
finding Hamiltonians that properly describe the characteristics of systems of interest.
Assuming the Hamiltonian is a Hermitian operator, the time evolution propagator Û
is always unitary guaranteeing trace preservation and therefore reversibility. Given a
unitary operator Û , a pure state |ψ⟩ then evolves according to:

|ψ⟩ = Û |ψ0⟩ (2.33)
The time evolution of a mixed state is described by [16]:

ρ =
X

i

pi |ψi⟩ ⟨ψi| Û−→
X

i

piÛ |ψi⟩ ⟨ψi| Û † = ÛρÛ † (2.34)

As previously mentioned, propagation of a state by a unitary can always be reversed by
utilizing the fact that the inverse of an unitary operator is its adjoint U −1 = U †:

|ψ0⟩ = Û † |ψ⟩ ρ0 = Û †ρÛ (2.35)

14

Figure 2.1.: Overview on the main mathematical representations of completely positive
maps and how one can switch between them. From [17]

2.3.2. Quantum channels
For describing the complete evolution of a real quantum system, we require a more
general approach than the one described by unitary propagation. This motivates a more
abstract view, which includes the previous descriptions of state-to-state mappings but
also describes the actions of mapping operators to other operators.

Such a mapping is called a quantum channel E and is described by a completely
positive (CP) linear map, mapping one complex vector space to another. In this thesis
we are mainly concerned with quantum channels which map input density operators to
output density operators as seen in (2.34) [16]:

ρ = E(ρ0) (2.36)

The quantum channel is the most general operation which maps a density operator to
another density operator [17].

Completely positive maps and therefore quantum channels can be described by a
number of interchangeable mathematical representations, each highlighting different
aspects of the channel. The choice of the used formalism depends on the properties under
investigation, an overview of the existing representations can be found in Figure 2.1
One can elegantly move from one representation to another using tensor networks in
combination with a type of graphical calculus as shown in [13].

During the course of this thesis, our main motivation for using quantum channels is the
comparison of ideal channels with imperfect channels implemented by pulse sequences on
real quantum hardware. We make use of two of the representation types, the superoperator

15

and the Choi– or χ–Matrix representations. The former allows us to calculate a fidelity
measure between the ideal and the implemented channel, while the latter can be used to
visualize the effects of a quantum channel in terms of well-understood operators. We
continue with a derivation of the χ–matrix as well as a description on how to convert it to
the superoperator formalism which is used in Section 3.4.2. Although these calculations
are not carried out by hand, but with the help of the qiskit.quantum info library,
understanding the underlying concepts support the interpretation of the final results.

A quantum channel can be interpreted as a sum of operations Ei applied on a given
density operator ρ via (2.34):

E(ρ) =
X

i

EiρE†
i (2.37)

The applied operators Ei can be expressed in any arbitrary basis set Ẽi and can therefore
be written as a linear combination of the basis operators [16]:

Ei =
X

m

ei,mẼm (2.38)

with complex coefficients ei,m. After inserting this back into (2.37) we receive [16]:

E(ρ) =
X

m,n

χmnẼmρẼ†
n (2.39)

χmn ≡
X

i

eime∗
in (2.40)

The is often referred to as the process matrix or just χ–matrix and can be interpreted
as complex weights, controlling the individual contributions of the basis operators. For
intuitively interpretable results, it has prevailed to use the Pauli basis, consisting of
the three Pauli matrices in addition to the identity matrix. A quantum channel under
question can consequently be completely determined by the χ–matrix. Converting to
the superoperator formalism is done by applying the bipartite reshuffling operation [13],
which refers to the column stacking vec-operation from (2.21).

The interested reader can refer to [13] for a broader overview on quantum channels
and their representations.

2.4. Superconducting quantum computers
Quantum computers built from superconducting circuit elements experienced a tremen-
dous rise in popularity ever since the first introduction of qubit-like behavior of a
Cooper-pair box coupled with a Josephson junction in 1999 [18]. More than two decades
later, quantum processors based on superconducting technology have become popular
platforms for NISQ algorithms and experiments, while also sustaining development to
reach higher fault tolerance as well as a larger number of qubits. IBM has announced a
433-qubit device based on superconducting technology [19] and so called Transmon qubits,
a technology which is also employed by Google in their Sycamore quantum processor [20]

This section aims to give an overview on the main idea behind Transmon qubits, from
now on just referred to as Transmons, and how we can interact with them.

16

Figure 2.2.: (a) LC-circuit for quantum harmonic oscillator (QHO) (b) Corresponding
energy diagram, energy spacings between the stationary states are all ℏωr. (c)
Circuit for quantum anharmonic oscillator with coil replaced by a Josephson
junction (d) The non-linear inductance reshapes the energy diagram to
have non-equidistant spacing between the states, enabling isolation of the
computational subspace (qubit). Image taken from [21]

2.4.1. Transmon qubits
At heart, the Transmon can be understood as an anharmonic oscillator with energy levels
split by discrete, non-equidistant spacings. These energy levels En are the eigenvalues
of the Hamiltonian operator Ĥ of the system with the corresponding eigenstates |ψn⟩
which are referred to as stationary states.

Ĥ |ψn⟩ = En |ψn⟩ (2.41)

The term anharmonic oscillator itself can be split into two defining traits, where
oscillator pertains to the fact that the total energy in the system oscillates between
kinetic and potential energy. An analogue classical counterpart to this is a LC-Circuit,
fluctuating kinetic (electrical) energy stored in the capacitor to potential (magnetic)
energy stored in the inductor. Just like with classical oscillators, a characteristic frequency
ω that is dependent on the dimensions of the circuit elements is defined.

In fact, the Transmon is a quantized version of the LC-circuit replacing the coil with a
non-linear inductance component. This component, commonly known as a Josephson

17

junction, plays the key role to uniquely identify two states of the system enabling the
usage as a qubit. It introduces an anharmonicity in the spacings between the energy
levels of the stationary states, effectively reducing the chance of unwanted transitions to
non-qubit states. This effect is also known as state-leakage and reducing its occurrence is
one concern when trying to design high fidelity controls for quantum computing.

The circuit shown in Figure 2.2 depicts only a single realization type of possible
Transmon designs, namely the Fixed-frequency-Transmon. Other designs, for example
Flux-tunable qubits, empower the user to tune the transition frequencies ω during runtime
at the cost of more noise sensitivity.

In the course of this thesis we will only be concerned with Fixed-frequency-Transmons,
as these are the specific type deployed by IBM in their quantum computing hardware.
These type of qubits have a fixed transition frequency, determined at manufacturing
time by the choice of the circuit element dimensions. As we will see in Section 5.1, it is
important to design the single qubit circuits in a way that avoids qubits in proximity
to have similar transition frequencies. If one wants to learn more about this topic,
references [22] and [23] are a good starting point.

2.4.2. Single Transmon Hamiltonian
The climb of superconducting qubits was accompanied by the need for a theory predicting
the dynamics of such systems in response to excitation and perturbation. This theory,
known as Circuit Quantum Electrodynamics (cQED), provides effective Hamiltonian
models for light-matter interaction, enabling the capability to facilitate microwaves
accomplishing coherent quantum operations. From this point forward, hats on the
operators are omitted for simplicity. Additionally, we will set ℏ = 1 and absorb it into the
Hamiltonian by dividing by ℏ. The static Hamiltonian of a single Transmon in absence
of a drive is given by [21]

H0 = ωqa
†a + α

2 a†a†aa (2.42)

with α as the anharmonicity and a†, a as creation and annihilation operators. The
frequency wq = w0→1 multiplied with ℏ specifies the energy difference between the ground
and excited states, taking a similar role as the Larmor frequency in NMR. It is therefore
sometimes also called the qubit frequency.

If one takes only the two computational states into account, the Hamiltonian further
simplifies:

H0 = ωq

2 σZ (2.43)

Obviously, this simplification constitutes an approximation neglecting the effects of
possible state leakage. This fact should be kept in mind, especially when planning to
apply control techniques to real systems.

Driving the Transmon

We can manipulate the state of a Transmon by inducing controlled amounts of energy
to the system. Inducing energy can be done by applying radiation, where the extent

18

of energy is given by the frequency of the wave. The amount of energy needed for a
transition is given by the energy spacing (see Figure 2.2). Typical transition frequencies
for Transmons are around 5 GHz and are therefore considered as microwaves. Waves are
characterized by their frequency ωd, a phase offset ϕd and a time dependent amplitude
u(t) and can be described by the following drive Hamiltonian [23]:

Hd = u(t)
�
a†e−i(ωdt−ϕd) + aei(ωdt+ϕd)

�
(2.44)

Taking the static Hamiltonian H0 into account and applying the qubit approximation we
receive:

H = H0 + Hd = ωq

2 σZ + u(t)ΩR [cos(ωdt + ϕd)σX + sin(ωdt + ϕd)σY] (2.45)

Finally, entering a frame rotating at drive frequency ωd the Hamiltonian can be written
down in an incredibly descriptive form [23]:

H = ωq − ωd

2 σZ + u(t)ΩR

2 [cos(ϕd)σX + sin(ϕd)σY] (2.46)

It is easy to see from the first term, that for resonant drives at ωd = ωq the rotation
axis on the Bloch sphere is either X or Y depending only on the phase ϕd. A resonant
drive with phase ϕd = 0 therefore corresponds to a rotation around the X-axis, whereas a
phase ϕd = π

2 generates a rotation around the Y-axis. The rate of the generated rotation
is described by the Rabi frequency ΩR.

To summarize, the available knobs for controlling a Transmon qubit are the drive
amplitude u(t), the frequency ωd and the phase ϕd. Transition frequency ωq and Rabi
frequency ΩR are system defining parameters and have to be determined experimentally.
A description how this is done can be found in Section 5.1.

2.4.3. Multi Transmon Hamiltonian
Coupling multiple Transmons can be achieved in various ways. Again, we will be
focusing on the coupling used in IBM systems, which is of the type called capacity
coupling with a coupler [21]. Physically, this coupling is realized via resonator busses
with microwave cavities taking the role of resonators (Figure 2.3). A single Transmon
coupled to a resonator can be analytically described by the well-known Jaynes-Cummings
Hamiltonian [24]

H = ωra
†a + ωq

σZ

2 + g(aσ+ + a†σ−) (2.47)

with ωr as the resonator frequency, ωq as the qubit frequency and g as the coupling
strength. Without going further into detail, a properly detuned two qubit system using
the resonator as mediator of a J coupling can be described by [23]:

H = ωq0
σZI

2 + ωq1
IσZ

2 + J (σ+σ− + σ−σ+) 1 (2.48)

= ωq0
σZI

2 + ωq1
IσZ

2 + J

2 (σXσX + σY σY) (2.49)

19

Figure 2.3.: Schematic of a capacitive coupling between two Transmon qubits (left and
right) with a coupler in form of a linear resonator (center) [21].

Creating entanglement can be done with a technique known as cross-resonance [25].
The main idea of the cross-resonance interaction is to drive the control qubit at the
frequency of the target qubit. This introduces a σZσX interaction which is one component
necessary to create a CNOT-Gate. When defining qubit 0 as the control and qubit 1 as
the target, the effective cross-resonance Hamiltonian for the drive takes on the form [25]

Hd = u(t) cos(ω̃1t)
�

σXI − J

∆01
σZσX + m12IσX

�
(2.50)

with u(t) as the drive amplitude, ω̃1 = ω1 − J
∆01

as the dressed target qubit frequency,
∆01 as the qubit-qubit detuning and m01 representing a spurious crosstalk due to stray
electromagnetic coupling.

1Inserting (2.8) and (2.9) with (0),(1) referring to the qubit indices:

σ
(0)
+ σ

(1)
− + σ

(0)
− σ

(1)
+ = 1

4

�
σ

(0)
X − iσ

(0)
Y

� �
σ

(1)
X + iσ

(1)
Y

�
+ 1

4

�
σ

(0)
X + iσ

(0)
Y

� �
σ

(1)
X − iσ

(1)
Y

�

= 1
4

�
σ

(0)
X σ

(1)
X + iσ

(0)
X σ

(1)
Y − iσ

(0)
Y σ

(1)
X + σ0

Y σ1
Y + σ

(0)
X σ

(1)
X − iσ

(0)
X σ

(1)
Y + iσ

(0)
Y σ

(1)
X + σ

(0)
Y σ

(1)
Y

�

= 1
4

�
2σ

(0)
X σ

(1)
X + 2σ

(0)σ
(1)
Y

Y

�
= 1

2

�
σ

(0)
X σ

(1)
X + σ

(0)
Y σ

(1)
Y

�

20

3. Quantum optimal control
Initial applications of quantum theories gave insight on phenomenons on a microscopic
scale, leading to groundbreaking inventions such as the lasers and transistors, the latter
lighting the spark for designing digital calculating machines (now known as computers).
Many years after the initial introduction of quantum mechanics, innovative fabrication
techniques and other technological advances enable us to effectively isolate single quantum
systems. Controlling these systems, utilizing their quantum abilities for novel algorithms
and calculations is sometimes referred to as the Second Quantum Revolution[26].

This chapter briefly discusses quantum optimal control, its prerequisites and advantages.
Afterwards we describe a specific application of the theory, the GRAPE algorithm, which
is able to generate numerically optimized control sequences for, but not only, quantum
systems.

3.1. Controllability
Loosely speaking, full control of a quantum system refers to the ability to generate all
unitary propagators required to drive an initial unitary operator U = 1 to any unitary
target operator Utarget desired. This property is labeled fully operator controllable [27]
and can be efficiently formulated and validated with the help of Lie algebras.

A N-dimensional quantum system is operator controllable, if the drift and control
terms in its Hamiltonian span the complete Lie algebra su(N) after repeated commutator
constructions [12]. This criterion can be efficiently mathematically validated for small
systems, however with growing dimensionality other methods utilizing graph theory
should be considered [28].

A valid Lie algebra su(2), offering full operator controllability in the case of one qubit,
therefore generating the entirety of the SU(N) with N := 2n and n = 1, is the set of
Pauli matrices {σX , σY , σZ}.

3.2. Advantages
By utilizing optimal control, several system specific characteristics and constraints can
be modelled into the control protocol, effectively fitting the generated controls to the
target system. Additional advantages, leveraging the capabilities of optimal control are
listed below. It should be noted that this is by no means a complete list, since this
is a rapidly evolving area research ([29], [30], [31], [32]), many ideas and protocols are
currently under investigation.

21

• Time-optimal: Find the shortest pulse sequences implementing the target unitary

• Relaxation-optimal: Modelling relaxation effects into the equation of motion to
take dissipation into account

• Adding robustness against inhomogenities, for example discrepancies in the applied
frequencies of the control fields due to non-perfect hardware

• Taking into account restraints, such as power or amplitude limitations

• Counteract free evolution of the drift Hamiltonian or always-on coupling

3.3. GRAPE algorithm
Originally emerging from laser spectroscopy ([33], [34]), the Gradient Ascent Pulse
Engineering (GRAPE) algorithm has proven versatile at dealing with a wide variety of
problems. It has been successfully applied to generate NMR pulse sequences for optimal
control of coupled spin systems [35], but is not restricted to the quantum domain [36].
In the extent of this thesis, we will only be discussing the application of the algorithm
on quantum systems in the absence of relaxation using the Schrödinger equation as
the rule for time evolution. Nevertheless, one can consider adding dissipative effects by
exchanging the underlying equation of motion with the Lindbladian master equation [37].

The main objective of the GRAPE algorithm is to optimize fixed-step piecewise
constant control amplitudes u(t) from some initial values uinit(t) to an optimal solution
uoptimal(t), which will steer a system from the initial state at time t = 0 to the desired
state at t = T . In our case, time evolution of a quantum system is entirely described by
a unitary operator Utarget (see (2.33), (2.34)). The ultimate goal of the algorithm can
therefore be quantified as generating a unitary U(T) that matches the target as closely
as possible. One measure of closeness is the normalized overlap between the target and
the result further referred to as quality Φ

Φ = 1
d

Re ⟨Utarget|U(T)⟩ = 1
d

Re
n
tr

�
U †

targetU(T)
� o

(3.1)

with the dimension d of the unitaries as a normalization factor. This measure of closeness
is sensitive to differences in the global phases of target and therefore differentiate between
some unitary U = eiφUtarget and U = Utarget for φ > 0. A phase insensitive variant of the
quality calculation can be found in [35]. Optimizing this scalar up to a certain precision
threshold, in the ideal case Φ = 1, is the main objective of the GRAPE algorithm.

The overall unitary operator or propagator is generated from a sequence of N equidis-
tantly spaced timesteps j [12]:

U(T) = UN · · · Uj · · · U1U0 = e−iHN ∆t · · · e−iHj∆t · · · e−iH1∆t (3.2)

22

Figure 3.1.: Schematic representation of a single set of control amplitudes. Each ampli-
tude uk(j) is applied for a fixed time ∆t = T

N
and each timestep indexed

by j. Arrows pointing in vertical directions visualize the gradient δΦ
δuk(j) ,

the direction indicating how each amplitude should be modified in the next
iteration to increase the quality. Taken from [35]

Each individual unitary acts for a discrete duration ∆t = T
N

= tj − tj−1 and is generated
by inserting the piecewise constant Hamiltonian Hj at each step

Hj = H0|{z}
drift

+
X

k

uk(j)Hk

| {z }
controls

(3.3)

into (2.32). The drift or static term H0 is system specific, neither control- nor adaptable
and therefore has to be treated as a given. In contrast, the control terms Hk define
our influence on the system. Provided that the Hamiltonian enables full operator
controllability and given a minimal implementation time, the timestep dependent control
amplitudes uk(j) can be adjusted such that the system can be steered into the appropriate
direction. We therefore optimize over a total number of k × j parameters. An infinite
number of possible pulse sequences exist for implementing a certain target unitary, hence
the final solution found by the GRAPE algorithm is just one of potentially many solutions.
The specific solution that is found depends strongly on the chosen initial amplitudes [35].

Every iteration, each of the control amplitudes is corrected based on calculating
first-order gradients with respect to the quality(Figure 3.1), in turn pointing to a local
maximum of the optimization landscape.

For determining the impact of small perturbations to the control amplitudes, in effect
gaining knowledge of the “correct” direction (the direction in which the quality increases),
we first propagate the initial unitary U0 = 1 for every timestep j ≤ N and store the
results:

U(j) = Uj · · · U1U0 (3.4)

23

Next we propagate our target Utarget with the adjoint unitaries generated by the time
reserved control amplitudes, again storing the results which will now be denoted Pj:

Pj = U †
j+1 · · · U †

NUtarget (3.5)

The first-order gradient for every control amplitude is then calculated:
δΦ

δuk(j) = − Re
n
tr

h
P †

j (i∆tHkU(j))
io

(3.6)

To conclude the iteration, the control amplitudes uk(j) can now be updated in dependence
of some step size ϵ:

uk(j) → uk(j) + ϵ
δΦ

δuk(j) (3.7)

The basic procedure of the GRAPE algorithm is visualized in Figure 1 in form of a
flowchart.

After the desired quality Φ ≈ 1 has been attained, our final result is a set of k vectors,
one for every control term in the Hamiltonian, with j control amplitudes. In Section 5.2
we use this algorithm to optimize pulse sequences of differing durations for specific unitary
gates, which are then applied to real hardware.

3.3.1. Choosing ϵ

Choosing an elaborate ϵ increases the chances and speed of convergence to high quality
values. Three approaches have been implemented and asserted:
Constant Always use a fixed step size that is defined at configuration time. If the

updated control amplitudes do not lead to a quality increase, the algorithm is
finished and the previous highest quality is returned. The application of this method
leads to unsatisfying results for most of the non-trivial optimization tasks, either
caused by choosing a step size which is too large, in term causing the optimization
to terminate early as overshooting the target often leads to a decreased quality. On
the contrary, a very small step size reduces the chance of overshooting but can be
very computationally expensive as it increases the number of iterations required
to converge. The main drawback of this approach is not taking the optimization
landscape into account at all.

Linear Scaling The control amplitudes are updated with an initial step size defined in
the configuration. Afterwards the new propagator is calculated followed by a quality
measure. In case of a quality increase, the next iteration is started. Otherwise, the
step size is multiplied by a scaling factor in the range 0 < fscale < 1 with typical
values around fscale = 0.5. As we converge closer to the maximum, the distance
decreases and the step size therefore has to shrink as well. The main advantage of
this method is the robustness against early terminations, coming at the cost of a
higher number of quality calculations each iteration. Application of this method
leads to significantly better results, approaching the target quality more closely
and reducing the number of early terminations.

24

Parabola fit This method models the quality as a function of ϵ, so f(ϵ) = Φ. This
approach based on the assumption, that the quality function takes on a parabolic
shape near the optimum. Three points are needed to fit a parabola, we therefore
use the current quality value f(ϵ0 = 0) and two supplementary data points, gained
by evaluating f(ϵ1) and f(ϵ2) with ϵ0 < ϵ1 < ϵ2. The peak point with coordinates
(x = ϵpeak, y = f(ϵpeak)) of the fitted parabola function can be calculated, providing
another conformed assumption for a good ϵ value. Depending on the deviation
of the fitted peak quality from the actual calculated quality f(ϵpeak), this point is
either included in the comparison between the resulting quality values or discarded.
Again, if none of the evaluated step sizes result in a quality gain the initial ϵ is
scaled done by multiplying a configurable factor.

Figure 3.2 clearly shows, the desired quality values near one can only be achieved with
an adaptive choice of ϵ. Using the parabola fit method returns the best results at the
price of calculating three more propagations of the system which can become costly,
depending on its dimension. It should be noted that it is possible to parallelize each
of these propagations, negating this downside if enough computational resources are
available.

25

(a) Constant ϵ = 0.1 (b) Linear scaled ϵ

(c) ϵ from parabola fit

Figure 3.2.: Development of ϵ (red trace) and quality Φ (blue trace) during optimization
of a pulse sequence implementing a σX-Gate

3.4. Evaluating the quality on real hardware
The previous section discussed how we can optimize and evaluate the quality of piecewise
constant pulse sequences in a mathematical simulation of a quantum system. In Section 5.2
these sequences will be executed on real systems, requiring methods to calculate a quality
factor from measurement results. This section discloses a family of techniques to construct
comparable quality measures from the repeated application of the optimized sequences.

The application of a pulse sequence can be described as the actions of a quantum
channel E (Section 2.3.2) on some input state ρin, yielding an output state ρout. Our
optimization target defines the actions of the ideal desired quantum channel and therefore
acts as the baseline comparison for a quality measure. This comparison can only be
achieved if the quantum channel resulting from the applied pulse sequences is well
identified. Due to the projective nature of measurement, a complete characterization
of a quantum channel or state is not possible from a single measurement. A family of
tomography experiments can be used to fully reconstruct a quantum state or channel. As
the name suggests, the gist of these experiments is taking multiple images (measurements)

26

Figure 3.3.: Block diagram of a QST. Preparation of ρout

(green) is identical each time, whereas the post-rotation (red) changes with the choice of
measurement basis. Naturally the number of shots per circuit must be large enough

gather meaningful probability distributions, which are then used to reconstruct the state.
Adapted from [38]

from different angles (basis) and reconstructing a complete description of the channel
afterwards. The reconstructed quantum channel can then be compared against the ideal
target, resulting in a single scalar value which measures how well the applied pulse
sequences perform. As the tomography experiments require to measure the resulting
state from multiple angles, the ability to reliably apply the quantum channel under
question to the system is a hard requirement.

If one wishes to only reconstruct a resulting quantum state from a single input state
after the channel has been applied, the Quantum State Tomography (QST) experiment
is sufficient. In contrast, reconstructing the full quantum channel has to be done with
the Quantum Process Tomography (QPT). As the QPT is an extension of the Quantum
State Tomography to multiple input states, we will shortly introduce key aspects of the
QST below. Afterwards we will proceed to the QPT, which is the experiment that was
ultimately applied to gain the result data.

3.4.1. Quantum State Tomography
The concern of a QST is the reconstruction of an unknown density operator ρout from
repeated measurements and the resulting counts. As previously mentioned, a reliable
preparation of the unknown state required to execute the experiment. Generally, we
assume that the state needs to be prepared an infinite amount of times, tough in practice
it only has to be prepared n times, where n is the number of observables needed to fully
reconstruct the state.

The chosen set of observables P is arbitrary, barring the requirement of being to-
mographically complete [17]. This means that P needs to span an operator basis on
the Hilbert space the state lives in. In other words, the operators have to be able to
fully describe our unknown quantum state ρout. Hence, our set will contain at least
d2 elements where d is the dimension of the Hilbert space it has to span. The most
frequently used basis set, due to its well-known nature, is the Pauli basis (see Section 2.1).
Because measurements on IBM systems are always in the σZ basis, we have to apply
post-rotations depending on the observable that is to be measured. After preparing the
unknown state and applying the required post-rotation we acquire a single measurement

27

outcome. To extract a meaningful probability distribution, this process is run for 2048
shots. We repeat this for every observable, gathering one probability distributions for
each observable which are used to reconstruct the final state.

There are many techniques for performing the reconstruction, Maximum Likelihood
Estimation (MLE) being one of the most popular approach used in practice [17], [39].
For our use case it is sufficient to understand the main procedure of QST as well as the
inputs and outputs (Figure 3.3). If one urges a deeper understanding of the topic, the
references mentioned in this chapter are a good starting point.

We now determine the ideal target state ψideal via time evolution of the initial, assumedly
pure state, by the target unitary Utarget:

|ψideal⟩ = Utarget |0⟩ (3.8)

A measurement of closeness between the ideal and the output state, commonly known
as state fidelity, is calculated via [40]:

Fstate (ρout, |ψideal⟩ ⟨ψideal|) = ⟨ψideal| ρout |ψideal⟩ (3.9)

With this result, we can assess the quality of the applied quantum channel to a single
input state at the cost of |P | additional circuits. Striving for a more universal quality
metric, one has to consider preparing multiple different input states, leading us to the
QPT.

3.4.2. Quantum Process Tomography
The main goal of the QPT is to reconstruct a complete description of an arbitrary quantum
channel. Full characterization of some quantum channel E requires a tomographically
complete set of measurement operators P in addition to a tomographically complete set of
input states Q[17]. After preparation of an input state ρj ∈ Q through pre-rotations, it is
sent through the unknown quantum channel E . Each resulting state ρout,j = E(ρj) is then
analyzed in a QST experiment (Section 3.4.1) using P as the set of measurement operators.
After the acquisition of |Q| output states, the full quantum channel is reconstructed.
Details of the reconstruction, as well as alternative methods can be found in [39], [41],
[13]. The result of the reconstruction is a χ–matrix as described in (2.39). From this
result, we can calculate the process fidelity between a quantum channel E and a unitary
U [42], which is done with the help of the qiskit.quantum info.process fidelity
function:

Fpro (E , U) =
Tr

� ˆ̂
U † ˆ̂E

�

d2 (3.10)

ˆ̂
U † ˆ̂E are the superoperator version of the ideal unitary and the reconstructed quantum
channel with d as the dimension of the channel.

For performing a QPT, the total number of circuits that need to be prepared and
executed is given by the product of the number of input states |Q| and the number of
elements in the measurement basis |P |. The application of the QPT is not feasible for

28

large systems, as the required amount of input states and measurement operators to
satisfy the tomographical completeness each scale exponentially with the dimension of
the quantum system[13]. During the course of this thesis, we are only dealing with single
qubit systems and can therefore apply the tomography techniques without running into
resource limitations. For future applications or moving onto larger systems, alternative
approaches such as randomized benchmarking should be taking into consideration [43].

29

4. Software
One of the goals of this thesis is the design and implementation of a software architecture,
which allows the usage of different quantum optimal control algorithms on a multitude
of backends. This section first introduces the main ideas and design decisions in the
implemented software, proceeding to a description of the reference implementation for
the GRAPE algorithm and the closed system simulator backend. Lastly, the adapter
bridging the gap between optimization output and IBM hardware is illustrated.

4.1. Requirements
Software projects are always accompanied by a set of requirements, specifying the
boundaries and obligations. Main use case of the developed software is scientific research,
the formulation of the requirements is therefore not as stringent as one would expect
from commercial software projects which are shipped to customers. Nevertheless, key
aspects such as reusability and maintainability of the design and the resulting code are
always key properties a software developer should strive for.

Following we will use the term backend for describing a system on which an optimal
control algorithm can run on. This can either be a simulation, for example simulated
quantum system, or a real physical system. The framework must meet the following
requirements:

• Modular design, enabling easy extension by
– new optimal control algorithms
– new backends

• Integration of the existing software

• Reference implementation of a quantum control algorithm (GRAPE)

• Quantum closed system simulator backend which can be used for GRAPE

• Experimental setup enabling experiments on real IBM Quantum systems

The programming language chosen for implementing the proposed design is the Python
language. This choice is largely motivated by the availability of most popular quantum
computing libraries and interfaces, as well as the ease of usage and lack of compilation.

30

4.2. Architecture
A schematic overview on the implemented design can be found in Figure 2. The diagram
depicts a high-level view, emphasizing the key usage and aggregation relationships of the
modules, in turn leaving concrete implementation details open. Following is an overview
of the main design pieces and their responsibilities.

Algorithms Every algorithm that shall be integrated must provide at least a Backend-
Interface, specifying concrete methods to be implemented by the backends. Each
backend supporting this algorithm inherits from the interface and is therefore forced
to implement the required functionality. The backends can then be type checked
against the corresponding interface class to figure out if a certain algorithm is
supported.

Backends Specific implementations for the required functionality of the algorithms. Can
support a multitude of algorithms by inheriting its interface. Depending on the
type of backend, either simulation or hardware, additional functionality needs to
be supplied by the hardware adapters.

Hardware Adapter Provides the actual interface to the hardware. Depending on the
hardware this could mean for example interfacing a proprietary driver (NMR) or
establishing and maintaining connection with cloud bases services (IBM).

Experiments Entry points for multiple different experiments. Specific experiment con-
figuration parameters are parsed from the command line or configuration files.
These classes essentially build experimental pipelines, using the previously men-
tioned modules as building blocks, connecting the output of one module to another
modules input.

Common utilities Single thematically grouped functions useful in many circumstances,
not limited to any of the previously mentioned modules. Includes functionality for
fitting, plotting, math and more.

4.3. GRAPE algorithm module
The detailed sequence of the GRAPE algorithm is described in Section 3.3, leaving us
with the task of distilling the required functions into an abstract interface. Following is a
brief summary on the functions and parameters of the GrapeBackendInterface, as well
as a mention of the supplementary classes. A full overview of the class members and
interactions in the GRAPE module can be found in Figure 3.

The first main functionality any backend has to provide when implementing the
GRAPE algorithm is the calculation of the quality. The quality is the result of the
application of the current piecewise constant control amplitudes for a sampling time dt
and following comparison of the outcome with some target unitary matrix. Simulator
backends additionally require the definition of a Hamiltonian. The second required

31

function is the calculation of the gradients, which expects the same parameters as the
quality calculation.

The algorithm specific configuration values, such as the termination criteria or am-
plitude clipping values are grouped in a separate class GrapeConfig. A container for
storing current and previous parameters such as the control amplitudes or the gradients
is provided by the GrapeData class. The logical algorithm flow is then executed by the
GrapeRunner, independently of the underlying backend.

4.4. Closed system simulator backend
The closed system simulator backend acts as a reference implementation for the in-
terface defined in Section 4.3. Following from this, the simulation implements all the
mathematical equations described in the Section 3.3, in particular:

• Calculation of a single unitary propagator U(t) given a Hamiltonian and a duration
t (2.32)

• Forward propagation of the initial unitary (3.4)

• Backward propagation of the target unitary (3.5)

• Calculation of the quality Φ (3.1)

• Calculation of the gradients δΦ
δuk(j) (3.6)

The popular numpy [44] library is used for matrix representation and arithmetic, while
the matrix exponential is provided by the scipy library [45].

4.5. IBMQ Pulse Adapter
The IBMQ Pulse Adapter takes on the responsibility for infrastructural tasks such as
creating, maintaining and closing the connection to the IBM cloud services as well as
submitting the jobs and gathering the results.

In addition to the networking and administrative duties, it links the output of the
optimal control algorithms to executable jobs for the hardware. Quantum optimal control
algorithms, such as GRAPE, produce piecewise constant amplitudes weighting control
terms in the Hamiltonian on simulated quantum systems. The simulated systems do
not oblige any physical constraints, nor do they provide an interpretation of how these
abstract control terms can be mapped to real equipment which is able to exert the desired
actions.

With the help of the Qiskit Pulse library, which employs the OpenPulse specification,
the IBMQ Pulse Adapter translates the output control sequences of the algorithms into
the language of pulse schedules, which can be executed by the target hardware.

32

4.5.1. OpenPulse
In addition to the widespread and commonly used circuit-based paradigm to program
on quantum computers, an alternative approach was published with the OpenPulse
specification [46]. This specification proposes a common API for pulse-level programming
of quantum computers and is at least partly supported by a number of popular quantum
computing libraries, such as Qiskit (IBM) or Braket (Amazon). The pulse-level program-
ming model caters to experimentalists, motivating the exploration of the systems via
microwave pulses. Additional advanced readout capabilities, for example the acquisition
of raw unkerneled data points from measurements, further underline the exploration
aspect.

A counterpart to this is the QASM [47] programming model, which defines quantum
programs as circuits composed of unitary gates, therefore operating on a much higher
abstraction layer. The usage of the circuit model requires less knowledge about underlying
physics and focuses on the development of the algorithms themselves. OpenPulse on
the other hand grants additional degrees of freedom, allowing to move the focus on to
the smaller building blocks of the algorithms, enabling the application of sophisticated
and system-tailored optimization techniques. Both approaches aim at different target
audiences, each focusing the on different aspects and goals that they want to achieve.

Altogether, we can understand the pulse level programming model and its uniform
specification as an additional tool, empowering us to efficiently characterize, calibrate
and understand the dynamics of a system in a way that was not feasible before.

4.5.2. Qiskit Pulse
Qiskit Pulse is embedded in the Qiskit SDK [48] and implements the OpenPulse specifi-
cation. From here on out, the term backend will refer to a single quantum system that
is provided by IBM and can run the pulse programs. The library provides a number of
convenience functions and utilities to elegantly define microwave pulse schedules, which
can initially be done in a backend independent fashion.

Schedules are built of single pulses of arbitrary shape which are applied to channels.
A pulse is constructed of n complex-valued amplitudes di describing the envelope of
the drive signal. Each of these amplitudes or samples absolute value is limited between
[−1, 1]. The actual signal Di played from the AWGs to the quantum hardware is a
modulation of this envelope with a configurable carrier frequency ωd,i and phase offset
ϕd,i generated by a local oscillator (Figure 4.1):

Di = Re
n
die

iωd,idt+ϕd,i

o
(4.1)

Qiskit Pulse allows to set the modulation frequency of any given channel with the
SetFrequency function. The phase ϕd of the carrier can be either set to an absolute
value with the SetPhase or shifted by a value relative to the current phase with the
ShiftPhase function. As each sample is specified by a complex amplitude di ∈ C, the
phase can also be encoded into the amplitude as the imaginary component of the complex

33

Figure 4.1.: Schematic representation of the signal modulation. The envelope (left) is
multiplied with a carrier signal (center) resulting in modulated output signal
(right). Taken from [49]

value. This fact is used in Section 4.5.3 and Section 5.2 to simultaneously drive σX and
σY rotations.

Each sample is played for a certain duration, the sampling time dt, which is provided
by the backend configuration. The typical sampling time for all examined backends is
0.22 ns. Compliance to a number of timing constraints is necessary before executing a
schedule on a real backend:

• Minimum pulse duration of 64 dt ≈ 14.2 ns

• Granularity, total pulse duration must be a multiple of 16 dt ≈ 3.52 ns

This list is not complete, as it only mentions the constraints relevant to our experiments.
A process similar to the transpilation of a quantum circuit objects is provided, deter-

mining if these constraints are fulfilled. Once validated, the pulse schedule can then be
executed by the backend as a job similar to regular circuit-type jobs. For targeting a
qubit, the library provides different types of channels:

• Drive channels Di are typically used for driving qubit i at its qubit frequency ωq,i

• Control channels Ui are used for signals associated with arbitrary control terms in
the Hamiltonian

• Measure channels Mi for applying the measurement stimulus

• Acquire channels Ai connected to the readout components, capable of acquiring
data

In practice we are only interested in the first two types of channels, as they allow us to
apply our control techniques. We conclude the pulse schedules with measurements of
the driven qubits, which is done via the two latter channels. The data resulting from
a measurement can be extracted at different abstraction levels, each level representing
an additional processing step being applied to the raw data (Level 0). At the time of
writing, the systems provided by IBM do not allow access to the raw data, the lowest
supported measurement level is Level 1. An overview on the measurement levels is shown

34

Figure 4.2.: Summary of the measurement output levels [46]

Figure 4.3.: Overview on the parametrized pulses provided by Qiskit Pulse. All pulses
shown have a duration of 300 dt and amplitude of 0.15.

in Figure 4.2. Characterization experiments (Section 5.1) make use of measurement level
1, while for the execution of the optimized level 2 is used.

Qiskit Pulse also supplies a set of parametrized common pulse shapes (Figure 4.3),
removing the necessity of specifying every sample separately. The choice of the pulse
shape has an effect on the impulse response of the qubit it is applied to and will be
further discussed in Section 5.1. They can be grouped into two families:

Square shaped Pulses consisting of a horizontal plateau parametrized by an amplitude
and a duration in units of 1 dt. For the simplest one, the constant shape no
additional parameters are required. It consists only of an ordinary square pulse
with ideal vertical rise and fall.
The Gaussian Square pulse substitutes the constant edges with a Gaussian shaped
rise and fall. It is additionally parametrized by the width of the plateau and a
σ-factor characterizing the width of the rise and fall.

Gaussian shaped Pulses of this family can be described by a peak amplitude, a duration
and a σ-factor specifying the standard deviation. The regular Gaussian pulse
corresponds to the well-known shape of a normal distribution with a mean centered
at half of the duration and truncation at the sides.
A very similar looking pulse shape, known as the DRAG (Derivative Removal by
Adiabatic Gate) pulse [50] [51],extends the Gaussian pulse by an additional term

35

weighted by a parameter β. The DRAG pulse shape, originally introduced in 2009,
is designed to prevent leakage out of the computational subspace of anharmonic
oscillators and is now the underlying pulse shape for the default standard gate set
on IBM systems.

Parametrized pulses are extensively used during qubit characterization experiments in
Section 5.1, while for the experiments involving optimized pulse sequences in Section 5.2
we specify the samples individually.

4.5.3. Translation of control amplitudes
Based of the Transmon Hamiltonian (2.46) we can differentiate two control Hamiltonians
H1, H2

H1 = u1(t)
ΩR

2 cos(ϕ1)σX (4.2)

H2 = u2(t)
ΩR

2 sin(ϕ2)σY (4.3)

with real amplitudes u1(t), u2(t) ∈ R, Rabi frequency ΩR and phase ϕ1, ϕ2 ∈ [0, 2π]. We
know from Section 4.5.2, that the phase is freely configurable and can therefore assume
the ability to set ϕ1 = 0 and ϕ2 = π

2 , leaving us with

H1 = u1(t)
ΩR

2 σX (4.4)

H2 = u2(t)
ΩR

2 σY (4.5)

as the control Hamiltonians used in the numerical optimization. Inserting the combined
Hamiltonian into (2.32), assuming ωq = ωd and dt as the duration for a single propagation
step j, the generated unitary propagators take the form:

U(j) = e−i
ΩR

2 (u1(j)σX+u2(j)σY)dt (4.6)

The result of the optimization as shown in Figure 4.4 are two real amplitude vectors
u1, u2 with length j corresponding to σX and σY rotations. We have two possibilities for
translating these control amplitude vectors into Qiskit Pulse schedules. A straightforward
approach is based on the idea of creating a pulse schedule by concatenating the real
amplitudes u1(j) and u2(j), separated by a phase shift of π

2 (Figure 4.5a). The second idea
implicitly encodes the phase shift by calculating a complex amplitude c(j) = u1(j)+iu2(j)
which consequentially halves the duration of the required pulse schedules (Section 4.5.3).
As we are interested in time-optimal implementations of the target unitaries, the latter
approach is used to conclude the experiments in Section 5.2.

36

Figure 4.4.: Final control amplitudes for optimization of a Hadamard unitary with a
duration of T ≈ 100 ns. Control 0 corresponds to the u1-amplitudes driving a
σX-rotation, while Control 1 represents the u2-amplitudes for a σY -rotation.

37

(a) Sequential scheduling of u1(j) and u2(j) from Figure 4.4

(b) Complex amplitude scheduling as c(j) = u1(j)+ iu2(j) with amplitudes from Figure 4.4

38

5. Experiments
The previous chapters laid the theoretical foundation for carrying out experiments on
real systems. Building on this, the following section will introduce common experimental
setups and techniques for determining the required model parameters to numerically
optimize quantum gates for a particular system. These experiments have been fully
automated and can be executed on any IBMQ backend on any desired qubit.

Further we will use the acquired parameters in the optimization, resulting in pulse
sequences which implement single qubit gates for a specific qubit. The performance in
terms of the achieved process fidelity of the numerically optimized gates is then compared
with the process fidelity of the gates provided by IBM.

5.1. Qubit characterization
The application of quantum optimal control requires an adequate model of the system it
is applied to. We defined the structure of this model when discussing Transmon qubits in
Section 2.4.2, which resulted in the definition of the single qubit Hamiltonian (2.46). This
leaves us with the task of experimentally determining the characteristic qubit parameters,
namely its qubit frequency wq and the Rabi frequency ΩR. These sequence of these
experiments are sometimes also known as qubit spectroscopy.

5.1.1. Determining the qubit frequency
First objective and prerequisite for all following experiments is a rough determination of
the qubits transition frequency ωq. Long pulse durations in this experiment cause errors,
such as inhomogenities in control fields, to accumulate. These errors lead to an amount
of uncertainty in the frequency discovered from this experiment, yet it is precise enough
to enable follow-up experiments which will later give us the chance to correct the rough
value.

Recalling from Section 2.4.2, state transitions are driven by the application of an
electromagnetic field modulated at the resonance frequency ωq for a particular duration.
As Qiskit Pulse allows us to set the modulation frequency ωd of the driving signal, we
can set up an experiment known as a Frequency Sweep. In this experiment we create a
series of pulse schedules, each consisting of the same pulse modulated at slightly different
frequencies ωd. The exact amplitude and duration of the applied pulse are of secondary
importance, but should be sufficiently large to trigger a transition from the ground to
the first excited state. From previous experiments it can be concluded that an amplitude
of 0.05 and a duration of 50 ns is sufficient.

39

(a) Constant pulse (b) Gaussian pulse

Figure 5.1.: Result of a Frequency Sweep experiment executed on the backend ibm perth
for qubit 0 for different pulse shapes.

The data is acquired as a single complex value (Measurement level 1) and averaged for
every shot, yielding one data point for every frequency value in the sweep. It should be
emphasized at this point, that in this and the following experiments, we are not interested
in the actual scalar value of the measurements and will therefore treat the outputs as
arbitrary units. Most of the time, the received values have been scaled linearly to remove
powers of ten which do not have any influence on the spectated effects. Our interest
lies in the relation of the measured values as a function of some other quantity, in this
experiment the frequency. After plotting the real part of the measured signal, we search
for signs of absorption in the spectrum by fitting a Lorentzian shaped curve.

Carrying out this experiment with different pulse shapes reveals differences in the
responses depending on the type of pulse used (Figure 5.1). The fitted center frequency
fq = ωq

2π
for the pulse shapes differs by approximately 0.2 MHz, which is negligible

assuming we follow up with the Ramsey experiment described in Section 5.1.3. A much
more meaningful difference can be found in the general appearance of the responses.
The response of the constant pulse shows secondary peaks to both sides of the main
peak, reminiscent of the Fourier transform of a square pulse, whereas the response for
the Gaussian pulse remains flat before and after the center peak. This has implications
on the design of the quantum hardware, as the transition frequencies of neighboring
qubits have to be sufficiently detuned to avoid accidentally driving qubits on the same
transition line [23]. Experiments stimulating qubits via the sidebands, by high amplitude
square pulses on a neighboring qubit have been conducted but have not resulted in any
considerable correlation.

Another characteristic feature is the width of the aperture, appearing broader in the
case of stimulation with a Gaussian pulse. Again, this underlines the need for qubits on
the same transition lines to differ in their transition frequencies for at least the width of
this curve.

40

(a) Result of a Rabi experiment executed on backend
ibmq guadalupe for qubit 0. The interval between
the dashed vertical lines shows a π–amplitude of
0.0702.

(b) Trajectory of a π–pulse on the
Bloch sphere.

Figure 5.2.: Rabi experiment

5.1.2. Calibrating a π-Pulse
After finding the rough value for ωq, the next step in characterizing a qubit is to determine
a pair of amplitude and duration that will drive a qubit from the ground to the excited
state. Such a pulse is called a π–Pulse, corresponding to a rotation of 180◦ around the
x-axis on the Bloch sphere (Figure 5.2b).

A typical experiment for this task is the Rabi experiment. The setup is similar to
the previous one used in the Frequency Sweep, except in this occurrence the applied
drives are modulated at a constant frequency ωd = ωq and the amplitudes are swept.
For consistency with the previous experiment we chose the same pulse duration of 50 ns.
Again we configure the experiment to yield a single complex value for each amplitude.
Figure 5.2a shows the results of this experiment for amplitudes between umin = 0.0 and
umax = 0.3 with a spacing of ∆u = 0.0015 which translates to n = 200 data points. We
observe the function of the received signal against the amplitude to be of sinusoidal shape,
oscillating between ground and excited state. The inverse of the frequency resembles the
amplitude of a full oscillation, we can therefore extract the π–amplitude by applying a
factor of 0.5. For the specific example of qubit 0 on backend ibmq guadalupe the analysis
results in an amplitude of 0.0702. Experiments on a number of different backends and
qubits resulted in values between 0.05 and 0.25.

41

(a) (b) (c) (d)

(e)

Figure 5.3.: Ramsey experiment sequence: (a) Initial state |0⟩ (b) State after application
of the π

2 –pulse (c) Free evolution with frequency ∆ = ωq − ωd for some
time tdelay (d) Final state |0⟩ after second application of π

2 –pulse for the
exemplary case a phase of φ = π

2 has been accumulated. (e) Pulse schedule
for a single Ramsey circuit

5.1.3. Correcting the qubit frequency value
After finding the amplitude and duration needed for a π–pulse we can now carry out
an experiment to determine the qubit frequency acquired in Section 5.1.1 to a greater
precision. Following we will refer to the exact qubit frequency as ωq and to our earlier
estimation as ωq estimation. In contrast to the Frequency Sweep experiment, the main
interaction parts are notably shorter, thus leading to fewer errors and a more accurate
value of ωq. This experiment was originally introduced as the separated oscillatory field
method [52], but is nowadays known as the Ramsey interferometry. The experiment is
based on the idea of measuring the accumulated net phase caused by slightly off-resonant
drives.

To gain an intuition on the procedure of this experiment, it is helpful to visualize the
Bloch sphere with basis states |0⟩ or |1⟩ at the north and the south poles. Precession
is then given by a rotation around the z-axis, which does not affect the basis states as
they reside on this axis. The first step is therefore a rotation of π

2 about the x-axis to
the qubit, taking the qubit to a state that lies on the xy-plane. To accomplish this,
we use the π–pulse from Section 5.1.2 and scale the amplitude by a factor of 0.5. In
the next step, we let the system evolve freely for a configurable time tdelay in which it
picks up some phase value φ. After the delay period we follow up with another π

2 –pulse,
projecting the state back onto the z-axis. The final state is now dependent on the phase

42

(a) δ = 2 MHz (b) δdetune = 5 MHz

Figure 5.4.: Results of the Ramsey experiment for different detuning frequencies δ with
the precession time tdelay ranging from 0 ns to 1000 ns. The experiment was
concluded on qubit 0 of ibm perth.

φ that has been picked up during the free evolution time, which itself is a function of the
delay time tdelay and the speed of precession. Each experiment for a single delay duration
tdelay has to be repeated multiple times to extract a meaningful output value. Figure 5.3
visualizes a single exemplary Ramsey sequence on the Bloch sphere as well as a pulse
schedule implementing the setup.

As previously mentioned, the rate at which the phase φ is acquired depends on the net
speed of the rotation about the z-axis. By moving into a frame rotating at the frequency
of the applied drive ωd (2.46), this precession frequency ∆ can be interpreted as difference
between the exact qubit frequency ωq and the drive frequency ωd. As a consequence, we
can deliberately induce a small additional detuning by offsetting the drive modulation
by a known amount δ, resulting in the updated drive frequency ω′

d = ωd + δ.
Figure 5.4 shows the output signal values as a function of the delay time tdelay captured

from the experiment. After fitting a sinusoidal and extracting its frequency ωramsey, we
can subtract the ancillary detuning, leaving us with only the deviation to our estimation
of ωerror = ωramsey − δ. The estimation of the qubit transition frequency can then be
corrected with ωq = ωq estimate + ωerror.

5.1.4. Determining the Rabi frequency ΩR

In this section we investigate the relation between the duration t2π and the amplitude
u required to implement a 2π–pulse for different pulse shapes. After gathering the
durations, one per amplitude, we calculate the Rabi frequency ΩR as the inverse of the
duration scaled by the corresponding amplitude:

ΩR = 1
t2πu

(5.1)

43

This relation is based on the assumption that the Rabi frequency scales linearly with
the inverse of the amplitude, which we will show to be true up to some amplitude limit.
Based on the discovered range at which we can assume a linear relationship, we conduct
additional experiments within these limits, allowing us to calculate a mean ΩR to be
used in the Hamiltonian (2.46) for our optimal control algorithms.

The full setup comprises a number of single Rabi experiments similar to the ones
described in Section 5.1.2. Contrary to the previous Rabi procedure, we vary the duration
of the pulse and keep the amplitude constant. Consequentially, the extracted period t2π

describes the duration for which a pulse of the corresponding amplitude has to be applied
for to drive a full 2π–rotation around the x-axis of the Bloch sphere. The duration
interval ranges from the shortest allowed pulse duration tmin = 64 dt ≈ 14.22 ns up
to tmax = 1344 dt ≈ 295.1 ns. The step size of tstep = 16 dt ≈ 3.6 ns is limited by the
granularity constraint from Section 4.5.2, yielding a total number of 80 data points per
Rabi experiment. After each single experiment, the amplitude is increased and another
experiment is conducted.

Figure 5.5 compiles the results for a number of single runs with amplitudes between
umin = 0.02 and umax = 1.0 and a constant pulse shape. For amplitudes larger than
u = 0.3, fitting a proper sinusoidal shape becomes increasingly difficult as there are not
enough samples in between the oscillations. The granularity constraint defines the lower
bound on the increments of the duration steps, prohibiting the acquisition of more samples
during a given interval. Figure 4 depicts an overview of the extracted 2π–periods for all
tested pulse shapes encouraging the assumption of an inverse linear relationship between
amplitude and duration. Figure 5 reinforces this, as the corresponding frequencies
f2π = 1

t2π
appear in approximately a straight line. With rising amplitudes, the linear

relationship lessens and the curve flattens towards the end. The effect of this non-linearity
is even more obvious after calculating ΩR via (5.1), as can be seen in Figure 6. Provided
that the previous assumption holds true we expect a slope close to zero, which is clearly
not the case for larger amplitudes. As a result of this, we will only consider amplitudes
in the interval between 0.02 ≤ u ≤ 0.30 for determining the Rabi frequency ΩR.

By analyzing the diagrams shown in Appendix B with regard to the pulse shapes, we
find that pulse shapes of the same family (Section 4.5.2) yield largely similar results. As
our access to the computational resources is limited, we will therefore conduct further
experiments only with constant and Gaussian shaped pulses. Gaussian shaped pulses
require longer durations to achieve the same rotation angle than Square shaped pulses,
which can be attributed to the numerically lower area under pulse envelope. The extent
of this deviation depends on the σ parameter of the Gaussian pulse, as this parameter
significantly determines the width and thus the enclosed area below the curve. In the
next step, we execute the Rabi experiments in the amplitude range 0 ≤ u ≤ 3.1 with the
goal of finding a single ΩR to use in the optimization algorithm. Figure 5.6 illustrates
the results, again showing a difference by a factor of approximately 0.5 between the
constant and the Gaussian shaped pulses. To extract a single value per pulse shape we
apply the median and are left with two candidates for the Rabi frequency. We evaluate
the performance of both by constructing pulse sequences driving a π–rotation from the
gathered period amplitude pairs (dividing the period by two) and simulate them for each

44

Figure 5.5.: Multiple Rabi experiments with varying pulse durations on qubit 0 of
ibmq guadalupe. Each experiment was conducted with a different ampli-
tude ranging from umin = 0.02 to umax = 1.0.

candidate by unitary time evolution with a propagator (3.2) and Hamiltonian (2.46).
The propagator is then applied to the initial state |0⟩ via (2.33), resulting in a new state
from which we calculate the probability of being measured in |1⟩. We cross-validate the
pulse sequences by also executing them on the physical backend. Figure 5.7 shows that
the probability for the final state to end up in |1⟩ is mostly above 95% for both pulse
shapes in case of the execution on the real backend. The simulation based on the Rabi
frequency extracted from the Gaussian pulse shapes performs poorly, never reaching more
than 75%, whereas the probability using constant pulse shapes match the expectation of
≈ 100%. We will therefore use the constant pulse shape in our experiments determining
the Rabi frequency.

45

(a) Duration for a 2π–pulse (b) Inverse of the duration (frequency) for
a 2π-pulse

(c) Scaled frequency for a 2π–pulse

Figure 5.6.: Results of the Rabi experiment with varying duration for amplitudes 0 ≤
u ≤ 3.1 executed on qubit 0 on ibmq guadalupe. Image (a) shows an inverse
linear relation between amplitude and pulse duration for a 2π–pulse. The
corresponding frequency in (b) consequentially shows an approximately
linear relation. Figure (c) shows the calculated Rabi frequency ΩR via (5.1).
We utilize the median (dashed line) to eliminate outliers.

46

Figure 5.7.: Comparison of the performance of π–pulse sequences executed on qubit 0
on backend ibmq guadalupe and in the simulated unitary evolution. The
Gaussian experiments show two additional data points, as the extracted
pulse durations for these amplitudes are shorter than allowed.

47

5.2. Single Qubit Gates
We will now assemble the pieces from the previous chapters into a complete experimental
setup, aiming to analyze the performance of the optimized pulse sequences on real
backends. A single run of the experiment consists of:

1. Determination of the characteristic qubit parameters ωq and ΩR as shown in
Section 5.1

2. Optimization of control amplitudes u(t) that implement a desired unitary Section 3.3

3. Translation of the control amplitudes into pulse schedules Section 4.5.3

4. Creation of the quantum circuits for the QPT as described in Section 3.4.2

5. Execution of the jobs on the IBMQ quantum computers

6. Calculation of the process fidelity with the qiskit.quantum info library (Sec-
tion 3.4.2)

In addition to running the optimized pulse sequences, we also compose the analogous
circuit from the gate provided by the backends themselves and measure the process
fidelity for comparison. The first set of experiments where conducted on the 7-qubit

Figure 5.8.: Qubit arrangement and coupling on ibm perth and ibm lagos.

backend ibm perth (Figure 5.8), optimizing pulse sequences of rising durations for the
implementation of a X-Gate. We use σX with a global phase of −i to stay in the SU(2)
as our target unitary:

Utarget = −i

"
0 1
1 0

#
(5.2)

Since this gate only requires rotations about the x-axis, it is sufficient to use only the H1
control term as defined in (4.4). We assume ωq = ωd, canceling the impact of the σZ-term
in the drift Hamiltonian, leaving us with only the control term in the Hamiltonian
H = H1 used in the optimization. The sampling time extracted from the backend
configuration is dt ≈ 0.22 ns. Pulse sequences are optimized for durations ranging from
Tmin = 96 dt ≈ 21.3 ns up to Tmax = 896 dt ≈ 199.1 ns with initial amplitudes of both
constant shape u0 = 0.0005 and Gaussian shape u0 = 0.2, σ = 0.15T .

48

Figure 5.9 shows an example of the optimized pulse schedules for qubit 3 on ibm perth
with a duration of T ≈ 40 ns and the corresponding schedule provided by IBM for the
same qubit. We observe the final shapes of the optimized pulse sequences to be largely
similar than the shape of the initial pulse sequences.

A descriptive explanation for this behavior can be constructed from the choice of the
particular target unitary, as it only requires monotone rotation about a single axis, thus
leading to similar gradients for all control amplitudes. As mentioned in Section 4.5.2,
the provided default gate set always utilizes the DRAG shape for the underlying pulse
sequences to reduce the effects of state leakage. The second main difference, which is also
an effect of the differing pulse shapes, is the discrepancy in the amplitudes. This effect is
similar to the one observed in Section 5.1.4, caused by the proportionality between the
required area under the pulse and the angle of the desired rotation.

In Figure 5.10 we can observe the exchange in population during the simulated
application of two optimized pulses of constant initial shape with durations T ≈ 130 ns
and T ≈ 40 ns on the initial states |0⟩ and |1⟩. Applying a constant pulse can be viewed
as linearly increasing the rotational angle every timestep, reaching the equal superposition
at T

2 and the full population exchange after the full time T in both cases. The shorter
pulse (Figure 5.10b) requires a higher amplitude to drive the population exchange in a
shorter time, which seems to have a negative effect on the process fidelity achieved in
the experiment. This effect might be a consequence of the state leakage occurring for
higher amplitudes, a claim that should be studied more thoroughly in future work.

Figure 5.11 depicts the evolution of ⟨σZ⟩ for optimized pulse sequences with Gaussian
shaped initial amplitudes. For the longer pulse with a duration of T ≈ 130 ns (Fig-
ure 5.11a) we can see that the population exchanges multiple times, which may act as
a source of error due to the unnecessary long interaction. A shorter duration with the
same amplitude (Figure 5.11b) is therefore a better choice, combining the advantages of
a short duration and comparable Fpro, deviating only at the fourth decimal. Comparing
the performance of the short Gaussian pulse with the long constant shaped pulse reveals
a difference in Fpro by about 5 · 10−3 for the Gaussian shaped pulse. As the Gaussian
shaped pulse is more than three times shorter than the constant pulse, one might classify
the Gaussian pulse higher depending on the prioritization between duration and fidelity
of the specific use-case.

Figure 5.12 compares the best performing pulse sequences of either shapes for the
respective qubits against the provided gate. The x-axis shows the minimal error 1 − Fpro

achieved for all durations between Tmin and Tmax of pulse sequences. It can be seen that
our optimized pulse sequences outperform the default gates for all qubits in terms of the
minimal error. This comes at the cost of longer gate times, which is especially apparent
in the case of the constant amplitudes. Inspecting the arrangement of the qubits in
Figure 5.8 and the results in Figure 5.12, a correlation between the number of adjacent
qubits and the error values cannot be spotted. Qubit 1 and 5 both neighbor three other
qubits but do not show higher error values than for qubit 0 and 4 with only a single
neighbor. This result is rather unexpected, as one would anticipate the influence of local
couplings between adjacent qubits to negatively affect the achieved fidelities.

The second set of experiments was conducted on the 7-qubit backend ibm lagos,

49

optimizing pulses for the target

Utarget = i√
2

"
1 1
1 −1

#
(5.3)

which represents the unitary implementing the Hadamard-Gate with a global phase of i.
The control operations for the Hamiltonian employed in the optimization algorithm

consist of a σX and σY term as defined in (4.4) and (4.5). Again, cancellation of
the σZ term due to ωq = ωd is assumed. The sampling time dt ≈ 0.22 ns as well
as the qubit arrangement (Figure 5.8) are equal to the backend used in the previous
experiment. Pulse sequences are optimized for durations between Tmin = 96 dt ≈ 21.3 ns
and Tmax = 896 dt ≈ 199.1 ns with constant initial amplitudes u0 = u1 = 0.0005 for both
the σX- and σY -controls.

Figure 5.15b exposes the fact that the provided H-Gate does not actually implement
the assumed target unitary. The pulse schedule starts off with a relative phase shift of
ϕ = ϕ − π

2 , followed by a drive pulse of rotational angle π
2 concluding with another phase

shift of ϕ = ϕ − π
2 . In consequence, the pulse drives a rotation of −π

2 about the y-axis
leading to the same result as a H-Gate. The optimized pulse sequence (Figure 5.15a) in
contrast constructs the H-Gate by a combination of simultaneous σX- and σY -rotations,
which could potentially lead to a larger error due to the additional applied control fields.

This assumption does not always hold, as Figure 5.14 shows that the optimized
pulses outperform the provided gate in 4 out of 7 cases. Figure 5.13 depicts the
simulated evolution of ⟨σZ⟩ for the basis states |0⟩ and |1⟩, resulting in the desired equal
superposition of the basis states both with ⟨σZ⟩ = 0 at T ≈ 28 ns. We compare the errors
1 − Fpro between the provided H-Gate and the best performing pulse sequences per qubit
in Figure 5.14. The high error of the optimized pulses for qubit 1 immediately jumps
the eye, which cannot be explained after inspection of the generated control amplitudes,
as the shape and amplitudes look similar to the ones executed on the other qubits. We
therefore conclude this as an outlier which could have been caused due to unknown
environmental issues or issues with the control electronics. Again we observe that the
optimized pulse sequences outperform the provided gate on 4 out of 7 qubits.

50

(a) Constant initial amplitudes

(b) Gaussian shaped initial amplitudes

(c) Pulse schedule for default X-Gate

Figure 5.9.: (a), (b) Optimized pulses sequences with different initial shapes for imple-
menting a X-Gate. We observe minimal deviations between the optimized
and initial shapes. (c) Provided X-Gate for qubit 3 on ibm perth.

51

(a) Optimized pulse with T ≈ 130 ns and constant initial shape resulting in Fpro = 0.9892

(b) Optimized pulse with T ≈ 40 ns and constant initial shape resulting in Fpro = 0.9758

Figure 5.10.: Simulated evolution of the expectation value ⟨σZ⟩ for pulses of different
durations with initial constant shape implementing a X-Gate.

52

(a) Optimized pulse with T ≈ 130 ns and Gaussian shaped initial amplitudes resulting in
Fpro = 0.9832

(b) Optimized pulse with T ≈ 40 ns and Gaussian shaped initial amplitudes resulting in
Fpro = 0.9838

Figure 5.11.: Simulated evolution of the expectation value ⟨σZ⟩ for pulses of different
durations with initial Gaussian shape implementing a X-Gate.

53

Figure 5.12.: Comparison of the error (1 − Fpro) of the provided X-Gate (blue) with the
optimized pulse sequences of initial constant (orange) and Gaussian shaped
(green) samples. Simulation of the optimized pulses yielded error values
≤ 10−5 and are therefore not shown. The duration corresponding to the
pulse with the lowest error is shown on top of each bar. The experiments
were executed on ibm perth.

Figure 5.13.: Simulated evolution of the expectation values σZ for H-Gate implemented
by the optimized pulse sequence of Figure 5.15a for initial states |0⟩ and
|1⟩. The amplitudes u1 and u2 drive rotations about the x- and the y-axis
respectively.

54

Figure 5.14.: Comparison of the error (1 − Fpro) of the provided H-Gate (blue) with
the optimized pulse sequences with initial samples of constant amplitude
(orange). The duration corresponding to the pulse with the lowest error is
shown on top of each bar. Simulation of the optimized pulses yielded error
values ≤ 10−5. The experiments were executed on ibm lagos.

55

(a) Optimized pulse sequence for a H-Gate with a duration of T ≈ 28 ns achieving Fpro = 0.9844.

(b) Provided H-Gate with a duration of T ≈ 36 ns resulting in Fpro = 0.9785.

Figure 5.15.: Optimized pulse sequence and provided H-Gate for qubit 2 on ibm lagos.

56

6. Conclusion

6.1. Summary
During the course of this thesis, the theoretical foundation of OCT in conjunction
with quantum mechanics was studied and experimentally applied on superconducting
quantum computers provided by IBM Quantum. For this, a modular and extensible
framework including reference implementations of the GRAPE algorithm, as well as a
closed quantum system simulator was designed and implemented. The essential ideas
behind the GRAPE optimization algorithm, a method to numerically optimize piecewise
constant pulse sequences to achieve a target unitary evolution based on minimizing a
cost function, were highlighted. This cost function evaluates the fidelity of the unitary
propagation generated by the current pulse sequences against the desired target. The
closed system simulator computes the final unitary by utilizing the matrix exponential of
the time-independent Hamiltonian which describes the dynamics of the quantum system.

A mathematical formulation of the Hamiltonian for superconducting qubits was pro-
vided and justified from the circuitry and operating principles of quantum anharmonic
oscillator. For determining the qubit specific transition and Rabi frequencies appearing in
the Hamiltonian, fully automated qubit characterization experiments were implemented
and executed prior to the numerical optimization. The QST and QPT experiments
which enable us to assess the performance of an applied quantum channel are described.
Executing the QPT experiment results in a mathematical description of the applied
quantum channel, the χ–matrix, allowing us to extract a single scalar value known as
process fidelity from comparison with the ideal desired channel.

Finally, we conduct QPT experiments on all qubits on a IBM Quantum 7–qubit system
with numerically optimized pulse sequences implementing the single qubit X-Gate and
H-Gate for a range of pulse lengths. We compare the process fidelity achieved by the
optimized pulse sequences against the performance of the provided gates, demonstrating
lower error rates for the X-Gate on all 7 qubits and on 4 out of 7 for the H-Gate.

6.2. Discussion and outlook
Although we have experimentally proven that optimal control can provide a path to
high-fidelity quantum operations, there are still many possibilities for improving fidelities
and minimizing the gate durations even further. In our optimizations we use the qubit
abstraction of the Hamiltonian, which is a simplified model of the Transmon not taking
into account the possibility of transitions onto higher level states. One idea to suppress
these leakage effects is the addition of penalty to the cost function used in the optimization

57

algorithm, requiring a more realistic model of the Transmon. The analysis that led to
the invention of the DRAG pulse shape [51] can be used as a starting point to gain a
more thorough understanding of the possibilities to counteract such effects. Another idea
to prevent leakage could be a classical post-processing approach in which the optimized
amplitudes are Fourier transformed and frequency filtered before being applied to the
target qubit. This could negate the influence of undesired frequency stimulation as seen
in Section 5.1.1.

A second simplification that was taken in the system model is the omission of qubit-
qubit coupling effects. The effect of neighboring coupled qubits on the targeted qubits
need to be characterized and evaluated in regard to their influence on the achieved
fidelities. Adding additional spectroscopy experiments to quantify the coupling strength
between adjacent qubits and incorporating the results into the Hamiltonian prior to the
optimization could potentially improve the achieved results. Moving to open system
simulations modelling the dissipation and decoherence effects are also options to achieve
more realistic models of the target systems.

An obvious next step is the extension of the optimization to multi-qubit gates capable
of generating maximally entangled states. One possible approach might be the integration
of the Cross-Resonance Hamiltonian (2.50) into the optimization scheme, introducing
the required ZX interaction between two qubits. Alternative strategies utilizing the XX
and Y Y coupling of the Jaynes-Cummings Hamiltonian (2.47) to generate entanglement
could also result in the desired interactions.

Due to the exponential growth in complexity once the number of qubits in the
optimization rises, computational optimization schemes in the implemented system
simulator become inevitable. Propagations within a single iteration, for example during
the evaluation of the step size could be parallelized to significantly decrease the runtime
of the optimization algorithm. Other approaches include the usage of pre-compiled
functions or the utilization of the GPU for matrix multiplications. Another idea is to use
other already existing quantum simulation libraries, such as q-optimize or qutip, which
already provide heavily optimized simulators also supporting open system simulations.

The techniques to extract the process fidelities using QST and QPT rely on initial
state preparation which is done with the provided gate set. This induces consistency
problems, as we cannot assume the initial states to match our expectations perfectly.
These drawbacks with tomography experiments are covered in detail in [39] and [53],
which also propose adaptions to the existing tomography experiments which should be
considered in future work.

58

7. References
[1] Konrad Zuse and H. Wössner. The Computer - My Life. Berlin, Heidelberg: Springer

Berlin Heidelberg, 1993. isbn: 978-3-662-02931-2.
[2] Gordon E. Moore. “Cramming More Components onto Integrated Circuits, Reprinted

from Electronics, Volume 38, Number 8, April 19, 1965, Pp.114 Ff.” In: IEEE
Solid-State Circuits Society Newsletter 11.3 (Sept. 2006), pp. 33–35. issn: 1098-
4232. doi: 10.1109/N-SSC.2006.4785860. url: http://ieeexplore.ieee.org/
document/4785860/ (visited on 01/28/2023).

[3] Rechenleistung der leistungsstärksten Supercomputer weltweit im November 2022.
Statista. url: https://de-statista-com.ezproxy.bib.hm.edu/statistik/
daten/studie/193104/umfrage/rechenleistung-der-leistungsstaerksten-
supercomputer-weltweit/ (visited on 01/28/2023).

[4] Richard P. Feynman. “Simulating Physics with Computers.” In: International
Journal of Theoretical Physics 21.6-7 (June 1982), pp. 467–488. issn: 0020-7748,
1572-9575. doi: 10.1007/BF02650179. url: http://link.springer.com/10.
1007/BF02650179 (visited on 01/28/2023).

[5] IBM Quantum. IBM Quantum. url: https://quantum-computing.ibm.com/
(visited on 01/28/2023).

[6] J. A. Jones, R. H. Hansen, and M. Mosca. “Quantum Logic Gates and Nuclear
Magnetic Resonance Pulse Sequences.” In: Journal of Magnetic Resonance 135.2
(Dec. 1998), pp. 353–360. issn: 10907807. doi: 10.1006/jmre.1998.1606. arXiv:
quant-ph/9805070. url: http://arxiv.org/abs/quant-ph/9805070 (visited
on 01/28/2023).

[7] Gavin K. Brennen et al. “Quantum Logic Gates in Optical Lattices.” In: Physical
Review Letters 82.5 (Feb. 1, 1999), pp. 1060–1063. issn: 0031-9007, 1079-7114.
doi: 10.1103/PhysRevLett.82.1060. arXiv: quant-ph/9806021. url: http:
//arxiv.org/abs/quant-ph/9806021 (visited on 01/28/2023).

[8] Jerry M. Chow et al. “Complete Universal Quantum Gate Set Approaching Fault-
Tolerant Thresholds with Superconducting Qubits.” In: Physical Review Letters
109.6 (Aug. 9, 2012), p. 060501. issn: 0031-9007, 1079-7114. doi: 10 . 1103 /
PhysRevLett.109.060501. arXiv: 1202.5344 [cond-mat, physics:quant-ph].
url: http://arxiv.org/abs/1202.5344 (visited on 01/28/2023).

[9] Avner Friedman. Foundations of Modern Analysis. New York: Dover, 1982. 250 pp.
isbn: 978-0-486-64062-4.

59

[10] Richard R. Ernst, Geoffrey Bodenhausen, and Alexander Wokaun. Principles of
Nuclear Magnetic Resonance in One and Two Dimensions. Repr. The International
Series of Monographs on Chemistry 14. Oxford: Clarendon Press, 2004. 610 pp.
isbn: 978-0-19-855647-3.

[11] Roger A. Horn and Charles R. Johnson. Matrix Analysis. 2nd ed. Cambridge ; New
York: Cambridge University Press, 2012. 643 pp. isbn: 978-0-521-83940-2.

[12] Andreas Spörl. “Numerische Und Analytische Lösungen Für Quanteninformatisch-
relevante Probleme.” TU München. url: https://mediatum.ub.tum.de/doc/
651334/651334.pdf.

[13] Christopher J. Wood, Jacob D. Biamonte, and David G. Cory. Tensor Networks
and Graphical Calculus for Open Quantum Systems. May 7, 2015. arXiv: 1111.6950
[quant-ph]. url: http://arxiv.org/abs/1111.6950 (visited on 12/29/2022).

[14] William C. Waterhouse. “Algebraic Matrix Groups.” In: Introduction to Affine
Group Schemes. Red. by C. C. Moore. Vol. 66. Graduate Texts in Mathematics.
New York, NY: Springer New York, 1979, pp. 28–35. isbn: 978-1-4612-6219-0
978-1-4612-6217-6. doi: 10.1007/978-1-4612-6217-6_4. url: http://link.
springer.com/10.1007/978-1-4612-6217-6_4 (visited on 01/16/2023).

[15] G. G. A. Bäuerle, E. A. de Kerf, and A. P. E. ten Kroode. Lie Algebras: Finite
and Infinite Dimensional Lie Algebras and Applications in Physics. Studies in
Mathematical Physics v. 1, 7. Amsterdam, The Netherlands : New York, N.Y:
North-Holland ; Sole distributors for the U.S.A. and Canada, Elsevier Science Pub.
Co, 1990. 2 pp. isbn: 978-0-444-88776-4 978-0-444-82836-1.

[16] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. 10th anniversary ed. Cambridge ; New York: Cambridge University
Press, 2010. 676 pp. isbn: 978-1-107-00217-3.

[17] Christopher J. Wood. “Initialization and Characterization of Open Quantum
Systems.” UWSpace, 2015. url: http://hdl.handle.net/10012/9557.

[18] Y. Nakamura, Yu A. Pashkin, and J. S. Tsai. “Coherent Control of Macroscopic
Quantum States in a Single-Cooper-pair Box.” In: Nature 398.6730 (Apr. 1999),
pp. 786–788. issn: 0028-0836, 1476-4687. doi: 10.1038/19718. arXiv: cond-
mat/9904003. url: http://arxiv.org/abs/cond- mat/9904003 (visited on
01/03/2023).

[19] Quantum-Centric Supercomputing: The next Wave of Computing — IBM Research
Blog. url: https://research.ibm.com/blog/next-wave-quantum-centric-
supercomputing (visited on 01/03/2023).

[20] Quantum Hardware from Google. Google Quantum AI. url: https://quantumai.
google/hardware (visited on 01/18/2023).

60

[21] Philip Krantz et al. “A Quantum Engineer’s Guide to Superconducting Qubits.”
In: Applied Physics Reviews 6.2 (June 2019), p. 021318. issn: 1931-9401. doi: 10.
1063/1.5089550. arXiv: 1904.06560 [physics:physics, physics:quant-ph].
url: http://arxiv.org/abs/1904.06560 (visited on 09/07/2022).

[22] He-Liang Huang et al. Superconducting Quantum Computing: A Review. Nov. 2,
2020. arXiv: 2006.10433 [quant-ph]. url: http://arxiv.org/abs/2006.10433
(visited on 01/03/2023).

[23] Alexandre Blais et al. “Circuit Quantum Electrodynamics.” In: Reviews of Modern
Physics 93.2 (May 19, 2021), p. 025005. issn: 0034-6861, 1539-0756. doi: 10.1103/
RevModPhys.93.025005. arXiv: 2005.12667 [quant-ph]. url: http://arxiv.
org/abs/2005.12667 (visited on 11/07/2022).

[24] E.T. Jaynes and F.W. Cummings. “Comparison of Quantum and Semiclassical
Radiation Theories with Application to the Beam Maser.” In: Proceedings of
the IEEE 51.1 (1963), pp. 89–109. issn: 0018-9219. doi: 10.1109/PROC.1963.
1664. url: http:/ /ieeexplore.ieee. org/document/ 1443594/ (visited on
01/04/2023).

[25] Jerry M. Chow et al. “A Simple All-Microwave Entangling Gate for Fixed-Frequency
Superconducting Qubits.” In: Physical Review Letters 107.8 (Aug. 17, 2011),
p. 080502. issn: 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.107.080502.
arXiv: 1106.0553 [cond-mat, physics:quant-ph]. url: http://arxiv.org/
abs/1106.0553 (visited on 10/27/2022).

[26] Jonathan P. Dowling and Gerard J. Milburn. Quantum Technology: The Second
Quantum Revolution. June 13, 2002. arXiv: quant-ph/0206091. url: http://
arxiv.org/abs/quant-ph/0206091 (visited on 01/07/2023).

[27] F. Albertini and D. D’Alessandro. “Notions of Controllability for Bilinear Multilevel
Quantum Systems.” In: IEEE Transactions on Automatic Control 48.8 (Aug. 2003),
pp. 1399–1403. issn: 0018-9286. doi: 10.1109/TAC.2003.815027. url: http:
//ieeexplore.ieee.org/document/1220755/ (visited on 01/18/2023).

[28] Daoyi Dong and Ian R. Petersen. “Quantum Control Theory and Applications: A
Survey.” In: IET Control Theory & Applications 4.12 (Dec. 1, 2010), pp. 2651–2671.
issn: 1751-8644, 1751-8652. doi: 10.1049/iet-cta.2009.0508. arXiv: 0910.2350.
url: http://arxiv.org/abs/0910.2350 (visited on 03/25/2022).

[29] Garng M. Huang, T. J. Tarn, and John W. Clark. “On the Controllability of
Quantum-mechanical Systems.” In: Journal of Mathematical Physics 24.11 (Nov.
1983), pp. 2608–2618. issn: 0022-2488, 1089-7658. doi: 10.1063/1.525634. url:
http://aip.scitation.org/doi/10.1063/1.525634 (visited on 01/18/2023).

[30] W. S. Warren, H. Rabitz, and M. Dahleh. “Coherent Control of Quantum Dynamics:
The Dream Is Alive.” In: Science 259.5101 (Mar. 12, 1993), pp. 1581–1589. issn:
0036-8075, 1095-9203. doi: 10.1126/science.259.5101.1581. url: https:
//www.sciencemag.org/lookup/doi/10.1126/science.259.5101.1581 (visited
on 01/18/2023).

61

[31] Hideo Mabuchi and Navin Khaneja. “Principles and Applications of Control in
Quantum Systems.” In: International Journal of Robust and Nonlinear Control 15.15
(Oct. 2005), pp. 647–667. issn: 1049-8923, 1099-1239. doi: 10.1002/rnc.1016.
url: https://onlinelibrary.wiley.com/doi/10.1002/rnc.1016 (visited on
01/18/2023).

[32] Steffen J. Glaser et al. “Training Schrödinger’s Cat: Quantum Optimal Control:
Strategic Report on Current Status, Visions and Goals for Research in Europe.”
In: The European Physical Journal D 69.12 (Dec. 2015), p. 279. issn: 1434-6060,
1434-6079. doi: 10.1140/epjd/e2015-60464-1. url: http://link.springer.
com/10.1140/epjd/e2015-60464-1 (visited on 01/18/2023).

[33] David J. Tannor and Stuart A. Rice. “Control of Selectivity of Chemical Reaction
via Control of Wave Packet Evolution.” In: The Journal of Chemical Physics 83.10
(Nov. 15, 1985), pp. 5013–5018. issn: 0021-9606, 1089-7690. doi: 10.1063/1.
449767. url: http://aip.scitation.org/doi/10.1063/1.449767 (visited on
01/18/2023).

[34] Shenghua Shi and Herschel Rabitz. “Quantum Mechanical Optimal Control of
Physical Observables in Microsystems.” In: The Journal of Chemical Physics 92.1
(Jan. 1990), pp. 364–376. issn: 0021-9606, 1089-7690. doi: 10.1063/1.458438. url:
http://aip.scitation.org/doi/10.1063/1.458438 (visited on 01/18/2023).

[35] Navin Khaneja et al. “Optimal Control of Coupled Spin Dynamics: Design of
NMR Pulse Sequences by Gradient Ascent Algorithms.” In: Journal of Magnetic
Resonance 172.2 (Feb. 2005), pp. 296–305. issn: 10907807. doi: 10 . 1016 / j .
jmr.2004.11.004. url: https://linkinghub.elsevier.com/retrieve/pii/
S1090780704003696 (visited on 07/07/2022).

[36] Ingmar Immanuel Amadeus Landgraf. “Grape4Space - feasibility study for satel-
lite position control using a gradient ascent pulse engineering algorithm.” TUM
München, 2020.

[37] G. Lindblad. “On the Generators of Quantum Dynamical Semigroups.” In: Commu-
nications in Mathematical Physics 48.2 (June 1976), pp. 119–130. issn: 0010-3616,
1432-0916. doi: 10.1007/BF01608499. url: http://link.springer.com/10.
1007/BF01608499 (visited on 01/18/2023).

[38] Quantum Process Tomography — Forest-Benchmarking 0.6.0 Documentation. url:
https : / / forest - benchmarking . readthedocs . io / en / latest / examples /
tomography_process.html (visited on 12/30/2022).

[39] Daniel Greenbaum. Introduction to Quantum Gate Set Tomography. Sept. 9, 2015.
arXiv: 1509.02921 [quant-ph]. url: http://arxiv.org/abs/1509.02921
(visited on 12/30/2022).

[40] Yeong-Cherng Liang et al. “Quantum Fidelity Measures for Mixed States.” In:
Reports on Progress in Physics 82.7 (July 1, 2019), p. 076001. issn: 0034-4885,
1361-6633. doi: 10.1088/1361-6633/ab1ca4. arXiv: 1810.08034 [quant-ph].
url: http://arxiv.org/abs/1810.08034 (visited on 01/03/2023).

62

[41] Ramesh Bhandari and Nicholas A. Peters. On Single Qubit Quantum Process
Tomography for Trace-Preserving and Nontrace-Preserving Maps. Feb. 3, 2015.
arXiv: 1502.01016 [quant-ph]. url: http://arxiv.org/abs/1502.01016
(visited on 01/02/2023).

[42] Nathaniel Johnston and David W. Kribs. “Quantum Gate Fidelity in Terms of Choi
Matrices.” In: Journal of Physics A: Mathematical and Theoretical 44.49 (Dec. 9,
2011), p. 495303. issn: 1751-8113, 1751-8121. doi: 10.1088/1751-8113/44/49/
495303. arXiv: 1102.0948 [quant-ph]. url: http://arxiv.org/abs/1102.0948
(visited on 01/25/2023).

[43] Easwar Magesan, Jay M. Gambetta, and Joseph Emerson. “Characterizing Quan-
tum Gates via Randomized Benchmarking.” In: Physical Review A 85.4 (Apr. 11,
2012), p. 042311. issn: 1050-2947, 1094-1622. doi: 10.1103/PhysRevA.85.042311.
arXiv: 1109.6887 [quant-ph]. url: http://arxiv.org/abs/1109.6887 (visited
on 01/24/2023).

[44] Charles R. Harris et al. “Array Programming with NumPy.” In: Nature 585.7825
(Sept. 2020), pp. 357–362. doi: 10.1038/s41586- 020- 2649- 2. url: https:
//doi.org/10.1038/s41586-020-2649-2.

[45] Awad H. Al-Mohy and Nicholas J. Higham. “A New Scaling and Squaring Algorithm
for the Matrix Exponential.” In: SIAM Journal on Matrix Analysis and Applications
31.3 (Jan. 2010), pp. 970–989. issn: 0895-4798, 1095-7162. doi: 10.1137/09074721X.
url: http://epubs.siam.org/doi/10.1137/09074721X (visited on 01/23/2023).

[46] David C. McKay et al. Qiskit Backend Specifications for OpenQASM and OpenPulse
Experiments. Sept. 10, 2018. arXiv: 1809.03452 [quant-ph]. url: http://arxiv.
org/abs/1809.03452 (visited on 09/19/2022).

[47] Andrew W. Cross et al. “OpenQASM 3: A Broader and Deeper Quantum Assembly
Language.” In: ACM Transactions on Quantum Computing 3.3 (Sept. 30, 2022),
pp. 1–50. issn: 2643-6809, 2643-6817. doi: 10.1145/3505636. arXiv: 2104.14722
[quant-ph]. url: http://arxiv.org/abs/2104.14722 (visited on 01/23/2023).

[48] A-tA-v et al. Qiskit: An Open-Source Framework for Quantum Computing. 2021.
doi: 10.5281/zenodo.2573505.

[49] Building Pulse Schedules - Tutorial. url: https://qiskit.org/documentation/
tutorials/circuits_advanced/06_building_pulse_schedules.html (visited
on 01/13/2023).

[50] F. Motzoi et al. “Simple Pulses for Elimination of Leakage in Weakly Nonlinear
Qubits.” In: Physical Review Letters 103.11 (Sept. 8, 2009), p. 110501. issn: 0031-
9007, 1079-7114. doi: 10.1103/PhysRevLett.103.110501. arXiv: 0901.0534
[cond-mat, physics:quant-ph]. url: http : / / arxiv . org / abs / 0901 . 0534
(visited on 01/14/2023).

63

[51] J. M. Gambetta et al. “Analytic Control Methods for High Fidelity Unitary
Operations in a Weakly Nonlinear Oscillator.” In: Physical Review A 83.1 (Jan. 18,
2011), p. 012308. issn: 1050-2947, 1094-1622. doi: 10.1103/PhysRevA.83.012308.
arXiv: 1011.1949 [cond-mat, physics:quant-ph]. url: http://arxiv.org/
abs/1011.1949 (visited on 01/14/2023).

[52] Norman F. Ramsey. “A Molecular Beam Resonance Method with Separated Oscil-
lating Fields.” In: Physical Review 78.6 (June 1950), pp. 695–699. doi: 10.1103/
PhysRev.78.695. url: https://link.aps.org/doi/10.1103/PhysRev.78.695.

[53] Seth T. Merkel et al. “Self-Consistent Quantum Process Tomography.” In: Physical
Review A 87.6 (June 24, 2013), p. 062119. issn: 1050-2947, 1094-1622. doi: 10.
1103/PhysRevA.87.062119. arXiv: 1211.0322 [quant-ph]. url: http://arxiv.
org/abs/1211.0322 (visited on 12/30/2022).

64

Appendix

65

A. UML Diagrams

Figure 1.: GRAPE flowchart

66

Fi
gu

re
2.

:S
of

tw
ar

e
A

rc
hi

te
ct

ur
e

67

Fi
gu

re
3.

:G
ra

pe
A

lg
or

ith
m

C
la

ss
D

ia
gr

am

68

B. Qubit drive amplitude duration relation diagrams

Figure 4.: Periods of sinus fits extracted from single Rabi experiments with varying
duration and constant amplitude per experiment. Each data point represents
a single duration for which a drive of the given amplitude results in a 2π
rotation about the x-axis of the Bloch sphere.

69

Figure 5.: Frequencies f2π = 1
t2π

calculated from data in Figure 4

70

Figure 6.: Rabi frequency calculated from data in Figure 4 via (5.1)

71

