Economic implications for battery-electric aircraft concepts from a maintenance perspective

MRO Monday – Jan-Alexander Wolf & Ricardo Dauer

What will maintenance of new drive concepts cost?

1 Sources: R. Meissner et al. (2023) Towards climate-neutral aviation: Assessment of maintenance requirements for airborne hydrogen storage and distribution systems. DOI: <u>10.1016/j.ijhydene.2023.04.058</u> T. Hoff et al. (2023) Implementation of Fuel Cells in Aviation from a Maintenance, Repair and Overhaul Perspective. DOI: <u>10.3390/aerospace10010023</u>

The approach – A reliability-based maintenance analysis

2

How would the material cost change for a battery-powered propulsion system?

The impact – Material scope

Comparison of material cost for a battery-powered A320 equivalent drive train

Expected impact

Increase in material cost of 163% for all-electric and 26% for hybrid-electric configurations

Material cost for the hybrid-electric drive system. Averaged values per flight hour and aircraft, including all installed units.

System	Drive train	Component	Cost	Unit	Share
	Conventional	-	_	-	-
Storage	Electric	Battery cells	96.91	\$/FH	30.4%
		BCS	1.66	\$/FH	0.5%
		BMS	0.08	\$/FH	0.03%
	Sub-total		98.65	\$/FH	30.9 %
Distribution	Conventional	FQIC	0.83	\$/FH	0.3%
		Miscellaneous	0.65	\$/FH	0.2%
	Electric	Circuit breakers	0.62	\$/FH	0.2%
		Inverters	0.36	\$/FH	0.1%
		Converters	0.26	\$/FH	0.1%
	Sub-total		2.72	\$/FH	0.9%
Propulsion	Conventional	Main engines	204.91	\$/FH	64.3%
		ECU	4.08	\$/FH	1.3%
		TRU	3.08	\$/FH	1.0%
		Miscellaneous	3.79	\$/FH	1.2%
	Electric	MCS	1.11	\$/FH	0.3%
		Electric motors	0.34	\$/FH	0.1%
		Gearboxes	0.15	\$/FH	0.05%
	Sub-total		217.46	\$/FH	68.2%
Total			318.83	\$/FH	100%

How would the labor scope change for an allelectric propulsion system?

The impact – Labor scope

Task description	Task Code	Interval	Units	MMH per unit	MMH total
Perform Fault Diagnosis for BMS sensors via BITE	OPC	1000 FH	3	0.3	0.9
Perform Operational Check of BMS via BITE	OPC	350 FH	3	0.3	0.9
Remove Battery (BAT) pack for In- Shop Restoration (RST) of Cells and Cooling	RST	4000 FC OR 180 MO	3	24.0	72.0
	- Co	ntinuing -			

Expected impact

Decreasing maintenance costs in terms of labor

... but specialized equipment needed

... but higher qualification standards

Our roadmap & vision

Defining maintenance scopes and assessing maintenance needs for novel aircraft systems in early design stages

We know	the correlations between design specifications, operating conditions, and resulting maintenance implications.
We perform	holistic maintenance assessments of novel systems and improve established evaluation methods.
We support	technology experts in the development of viable and cost- efficient designs from a maintenance perspective.

Publications

Assessing the Feasibility of Hydrogen-Powered Aircraft: A Comparative Economic and Environmental Analysis		
Jennifer Ramm,* © Antonia Rahn,* Daniel Silberhorn, [†] Kai Wicke, [‡] and Gerko Wende [§] German Aerospace Center, 21129 Hamburg, Germany		
Hydrogen-based aircraft auxiliary power	r	
generation: Economic and ecological		
comparative assessment of preventive		
maintenance implications \star		
Robert Meissner [*] Antonia Rahn [*] Anne Oestreicher [*] Kai Wicke [*] Gerko Wende [*]		
maintenance requirements for airborne hydrog storage and distribution systems Robert Meissner ^{a,*} , Patrick Sieb ^a , Eric Wollenhaupt ^b , Stefan Habert Kai Wicke ^a , Gerko Wende ^a	gen zorn ^c ,	
Life Cycle Assessment of Aircraft Maintenance: Environn Implications of Battery Electric Propulsion Systems	nental	
Antonia Rahn, Jan-Alexander Wolf, Ricardo Dauer, Robert Meissner, Ahmad Ali Pohya, Gerko Wei	nde	
Flying electric: A comparative analysis of spare and material cost for all-electric, hybrid-e and conventional aircraft propulsion sys	part dema lectric, tems	nds
Jan-Alexander Wolf ^{1,*} , Robert Meissner ¹ , Ahmad Ali Pohya ¹ , C	Gerko Wende ¹	

And many more...

Imprint

Topic:Economic implications for battery-electric aircraft conceptsfrom a maintenance perspective

Date: 2025-05-13

Authors: Jan-Alexander Wolf, Ricardo Dauer

Institute: Institute of Maintenance, Repair and Overhaul, Hamburg, Germany

Image sources: All images "DLR (CC BY-NC-ND 3.0)" unless otherwise stated