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 A B S T R A C T

The decarbonization of industrial process heating will require widespread adoption of high-temperature heat 
pumps. Brayton cycle heat pumps are capable of providing heat at temperatures that currently cannot be 
achieved by conventional vapor-compression cycle heat pumps. However, significant challenges remain in 
adapting these systems to industrial applications, particularly with regard to operational safety, control 
strategies, and flexibility in response to varying operational conditions. This study presents a dynamic model 
of a closed-loop Brayton cycle heat pump capable of producing temperatures of 250 ◦C and higher, validated 
using experimental data. The physics-based model implemented in Modelica captures key thermodynamic 
processes and system dynamics, including thermal inertia and volume dynamics. An optimization-based method 
is used to calibrate model parameters, minimizing the error between measured and simulated data. Given 
the significant impact of the compressor on overall heat pump performance, a novel calibration method is 
introduced to adjust an existing compressor map using limited measurement data. This approach ensures that 
the compressor behavior is represented with sufficient accuracy, smoothness, and numerical robustness. The 
calibrated model achieves mean-normalized root mean squared errors (NRMSE) ranging from 0.12% to 1.46%
for temperatures, pressures, and mass flow rates. The model is applied to examine the system’s start-up and 
deceleration sequences, offering insights into compressor stability and heat exchanger temperature profiles. 
These results demonstrate the model’s utility for control design, performance evaluation, and stability analysis.
1. Introduction

Greenhouse gas (GHG) emissions have driven global warming, rais-
ing global surface temperatures by 1.1 ◦C compared to pre-industrial 
levels, with the energy sector and industry being responsible for the ma-
jority (58%) of GHG emissions worldwide [1]. In the EU-28 countries, 
a significant portion (51%) of final energy demand is used for heating 
and cooling, of which 26% are attributed to space heating and 15% to 
industrial process heat. Fossil fuels remain the primary energy source 
for heating, particularly for high-temperature industrial processes [2]. 
Heat pumps are widely recognized as a key technology for achieving 
net-zero GHG emission goals, as their ability to replace fossil fuel-based 
heating with electrified heating makes them critical to this effort [3].

1.1. High-temperature heat pumps

Heat pumps are typically classified based on temperature level, 
thermodynamic cycle, and compression method.

In recent years, remarkable progress has been made in extending 
the temperature range of heat pumps: While Arpagaus et al. [4] re-
ported maximum supply temperatures of 90 ◦C to 165 ◦C in their heat 
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pump data compilation published in 2018, the IEA HPT Annex 58 [5] 
presented data on heat pump applications with temperatures ranging 
from 115 ◦C to 280 ◦C in 2023. The investigated heat pumps range in 
Technology Readiness Level (TRL) from 4 to 9, with specific investment 
costs of 200 to 1200e∕kW. This suggests that high-temperature heat 
pump technology is well-proven and nearing commercialization.

Most heat pumps are based on the vapor compression cycle, using 
screw, reciprocating, and turbo compressors, as noted by Arpagaus 
et al. [4] and Annex 58 [5]. Vapor-compression heat pumps are particu-
larly effective for supplying latent heat demand (e.g. steam generation). 
This is supported by a study conducted by Ma et al. [6], who reviewed 
recent advancements and technologies of steam-generating heat pumps. 
For providing sensible heating with very high supply temperatures, 
gas compression heat pumps based on the Brayton or Stirling cycles 
become viable options. The reverse Brayton cycle has several advan-
tages: unlike vapor compression, it does not involve phase changes, 
so process temperatures are mainly constrained by material limitations 
and compressor pressure ratio. This flexibility in design and operation, 
combined with the use of dried air as a working medium (safe, cheap,
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Nomenclature

𝑎 𝛽 function coefficient
𝐴𝑣 Valve flow coefficient
𝑏 𝛽 function coefficient
𝐶 Map correction matrix
𝑐 Map correction matrix coefficient
𝐷 Map correction matrix
𝑑 Map correction matrix coefficient
𝑑𝑖 Inner tube diameter
𝐹 Turbomachinery map matrix
𝑓 Differential equation function
𝑓 Turbomachinery map function
𝑓 Differential equation function, ODE form
𝑔 Algebraic equation function
ℎ Specific enthalpy
𝑘 Scaling factor
𝐿 Characteristic length
�̇� Mass flow rate
𝑚 Mass
𝑁 Shaft speed
𝑛𝛽 Number of 𝛽-lines
𝑛𝑁 Number of speedlines
Nu Nusselt number
𝑝 Total pressure
Pr Prandtl number
Re Reynolds number
𝑇 Temperature
𝑡 Time
𝑉 Volume
𝑥 State variable
�̇� State variable derivative
�̄� Mean value of signal
�̂� Simulated signal
𝑦 Algebraic variable
𝑦 Measured signal
Greek symbols
𝛼 Heat transfer coefficient
𝛽 Compressor map auxiliary coordinate
𝜂 Isentropic efficiency
𝜂𝑚 Mechanical efficiency
𝜆 Thermal conductivity
𝛷 Valve characteristic
𝛱 Pressure ratio
𝜌 Density
𝜏 Torque
𝛩 Valve opening
Subscripts

3W Three-way valve
Amb Ambient
B Bypass valve
C1 Compressor 1
C2 Compressor 2
𝑐 Corrected (flow, speed)
𝜂 Efficiency
𝑓 Flow
G Generator
2 
h Heat transfer
HP High-pressure
in Inflowing
init Initial
is Isentropic
lin Linear
M Motor
out Outflowing
𝑝 Pressure
quad Quadratic
std Reference conditions
T Turbine

Abbreviations

DAE Differential–algebraic system of equations
GHG Greenhouse gas
HTHX High-temperature heat exchanger
LTHX Low-temperature heat exchanger
NRMSE Normalized root mean square error
ODE Ordinary differential equation
OP Operating point
PI Proportional–integral
PTES Pumped thermal electricity storage
RL Reinforcement learning
RMSE Root mean square error
SL Surge line
SLSQP Sequential Least Squares Programming
SM Surge margin
SP Set-point
TRL Technology Readiness Level

and low global warming potential), makes Brayton cycle heat pumps 
attractive. White [7] conducted thermodynamic assessments of Brayton 
heat pump cycles, concluding that worthwhile performance can be 
obtained if high turbomachinery efficiencies and low pressure losses 
are achieved. Economic feasibility has shown to be a major challenge 
for adoption of heat pumps: Zühlsdorf et al. [8] concluded that Brayton 
heat pumps are technically feasible for supply temperatures of up to 
300 to 400 ◦C and presented economically feasible scenarios for tem-
peratures of 280 ◦C. Schlosser et al. [9] reviewed 155 heat pump case 
studies to identify factors influencing their implementation in industrial 
processes, focusing on suitable applications, performance models, and 
economic considerations that may address barriers to wider adoption.

1.2. Dynamic thermo-fluid simulation

Dynamic simulation has become an essential tool for the devel-
opment, analysis, and optimization of heat pump systems. Various 
commercial and open-source simulation platforms, including AMESim, 
Matlab/Simulink, Modelica, and TRNSYS, are commonly used for this 
purpose. The importance of dynamic heat pump simulation has been 
highlighted in recent research. For example, Du et al. [10] use a 
dynamic model of an R290 (propane) heat pump to examine its start-up 
behavior, while Jiang et al. [11] develop and validate a dynamic model 
of a two-stage compression heat pump to improve control strategies. 
Among the available platforms, Modelica has proven to be a suitable 
framework for thermo-fluid simulations, owing to its flexibility and 
support for dynamic system modeling. Heat pump simulations benefit 
from the development of libraries for thermo-fluid simulation. No-
table examples for thermo-fluid libraries are the Buildings library [12], 
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the ThermoPower library [13], TIL Suite [14] and the Modelon Li-
braries [15]. Several studies have demonstrated the effectiveness of 
Modelica in heat pump modeling: for example, Poulsen et al. [16] 
and Meesenburg et al. [17] optimized the operation of cascade heat 
pump systems, while Wolscht et al. [18] explored the use of trans-
critical CO2 heat pumps for power grid load balancing. Furthermore, 
Modelica-based heat pump models are increasingly integrated into 
optimal control frameworks, as shown by Aguilera et al. [19]. Brayton-
cycle heat pumps have also been studied in the context of pumped 
thermal electricity storage (PTES). Notably, Yang et al. [20,21] and 
Frate et al. [22] have developed thermodynamic models and evaluated 
control strategies for Brayton-based PTES systems.

Dynamic simulation benefits from novelties in modeling and cali-
bration methods. Zhao et al. [23] propose a numerically efficient and 
accurate heat exchanger model based on frequency domain analysis 
that can be integrated into dynamic simulation models. Wang et al. [24] 
present a method for calibrating compressor maps using adaptation 
factor surfaces, allowing transformations of map data based on both 
shaft speed and the 𝛽 value.

The present work builds on the studies by Oehler et al. [25], which 
investigated the start-up procedure of a Brayton-cycle heat pump (de-
scribed in Section 2) using a dynamic model, and Pettinari et al. [26], 
who designed and analyzed a control system capable of controlling the 
same heat pump under varying boundary conditions.

1.3. Our contributions

High-temperature Brayton-cycle heat pumps are a key technology 
for industrial processes requiring temperatures of 250 ◦C and above. 
However, their development is challenged by the need for accurate 
dynamic modeling, effective calibration methods, and a deeper under-
standing of system performance during transient operation. This paper 
addresses these challenges by tackling the following research questions:

• How can a dynamic model of a high-temperature Brayton-cycle 
heat pump be developed and validated to accurately represent 
transient thermodynamic behaviors and system dynamics?

• What methods can be employed to calibrate compressor perfor-
mance maps effectively, particularly when measurement data are 
limited, to ensure accurate and robust model predictions?

• How do transient operating conditions, such as start-up and de-
celeration, impact system performance, including compressor sta-
bility and thermal stresses within heat exchangers?

For this purpose, this paper presents a dynamic model of a Brayton-
cycle high-temperature heat pump that can produce temperatures of 
250 ◦C and higher, surpassing the limits of conventional heat pump 
technologies. The first-principles model accounts for key thermody-
namic processes and system dynamics such as thermal inertia and 
volume dynamics. By relying on a physics-based modeling approach, 
the model enables reliable extrapolation beyond the experimentally 
validated operating range. A significant contribution of this work lies 
in the development of novel model calibration methods for dynamic 
heat pump models. Compressor performance maps are calibrated us-
ing a novel optimization-based approach that integrates limited mea-
surement data with manufacturer-provided maps, ensuring accuracy, 
robustness, and smooth transitions. This method enhances the accu-
racy and robustness of the overall Brayton-cycle heat pump model, 
representing a notable advancement in calibration precision over pre-
vious works. Model parameters are calibrated by minimizing the errors 
between simulated and measured signals for temperature, pressure, 
and mass flow rates using numerical optimization techniques. The 
validated model is applied to study transient operations, including 
start-up and deceleration, providing insights into compressor stability 
and thermal stresses within the heat exchanger. These findings advance 
the understanding of system dynamics and support the operation and 
control of high-temperature Brayton-cycle heat pumps.
3 
2. System and test rig description

This work studies a closed-loop Brayton-cycle heat pump using air 
as working fluid. Fig.  1 is a photo of the heat pump in the test facility 
in Cottbus, Germany. The following subsections outline the heat pump 
layout and its components.

2.1. Layout

A schematic diagram of the heat pump is provided in Fig.  2. The 
system comprises the following key components:

• Compression System (A): The two-stage compression system 
consists of two radial compressors arranged in series. These are 
driven by an electric motor via belt drives.

• High-Temperature Heat Exchanger (B): Heat is extracted from 
the fluid downstream of the compressors in this heat exchanger.

• Three-Way Valve (C): This valve controls the flow through the 
recuperator (G), which uses the temperature difference between 
states 2 and 5 to preheat the fluid at state 0.

• Turbine (D): The turbine expands the fluid, recovering power 
through a generator and cooling the fluid further.

• Turbine Bypass Valve (E): This valve adjusts the resistance 
within the loop, allowing control over the operating points of the 
compressors.

• Low-Temperature Heat Exchanger (F): This heat exchanger 
enables the fluid to absorb residual heat from a heat source or 
provide process cooling.

• Recuperator (G): After flowing through the low-temperature 
heat exchanger, the fluid passes through the recuperator, where 
its temperature is raised before returning to the compressor inlet.

All heat exchangers of the heat pump are shell-and-tube heat ex-
changers, with the working fluid routed through the tube side to 
minimize pressure losses within the primary loop. In the recuperator, 
the low-pressure flow moves through the tube side. The shell-side 
flow generally follows a counterflow configuration, but the baffles 
direct it in a crossflow pattern across the tube bundles. For industrial 
applications, the shell sides of the low- and high-temperature heat 
exchangers are connected to the heat source and heat sink, respectively. 
In the test facility, however, the heat source is emulated by a loop 
system where dried air is continuously circulated and reheated to a 
specified temperature. Ambient air serves as the heat sink. To examine 
the effects of varying compressor inlet temperatures, an electric heater 
is installed upstream of the compressors. However, since the heater was 
not employed in the present study, it has been excluded from the flow 
schematic for clarity.

The fluid inventory (total mass of working fluid) in the heat pump 
can be regulated through the use of a pair of inlet and relief valves. 
The inlet valve connects a high-pressure buffer tank to the low-pressure 
section of the heat pump, enabling an increase in the fluid inventory. 
In contrast, the relief valve, positioned in the high-pressure section, 
allows for the release of air to the ambient, thereby reducing the fluid 
inventory. This system enables adjustment of the heat pump’s thermal 
output, while keeping the aerodynamic operating conditions of the 
turbomachinery unchanged.

2.2. Test rigs

The heat pump was commissioned gradually, with components 
added and tested one-by-one in the loop to ensure proper functional-
ity and collect performance data. Five configurations were tested, as 
outlined below:

• Single compressor test rig: Compressor 1 connected to a throttle 
valve.
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Fig. 1. Photo of the CoBra heat pump test facility.
Fig. 2. Flow schematic of the CoBra heat pump. (A) Two-stage compression system, (B) high-temperature heat exchanger, (C) three-way valve, (D) turbine, (E) turbine bypass 
valve, (F) low-temperature heat exchanger, (G) recuperator, MFM: Coriolis mass flow meter.
• Dual compressor test rig: Compressor 1 connected to Compres-
sor 2 and a throttle valve.

• Compressor with HX: Compressor 1 and Compressor 2 followed 
by a heat exchanger and a throttle valve.

• Open-loop heat pump: Compressor 1 and Compressor 2 con-
nected to a heat exchanger, followed by a turbine and a bypass 
valve in parallel, venting air to ambient.

• Closed-loop heat pump: Closed cycle heat pump as shown in Fig. 
2.

This stepwise commissioning allowed the evaluation of individual com-
ponents and provided data for system modeling and validation.

3. Dynamic modeling

The heat pump model, implemented in Modelica using the Dymola 
development environment, captures the main system dynamics, such 
as thermal inertia and volume dynamics. Existing models from the 
ThermoPower library [13] and the Buildings library [12] are reused, 
adapted, and extended to fit the requirements of the system. As a 
4 
first-principles model, each component model incorporates mass and 
energy balances to ensure physical consistency. The model is initialized 
with a preliminary set of parameters, which are subsequently calibrated 
against test data (see Section 4).

3.1. Turbomachinery

The turbomachinery models are based on the map-based compressor 
and turbine models from the ThermoPower library [13]. Due to their 
relatively small size compared to other system components, turboma-
chinery is represented as steady-state models without inherent volume 
or thermal dynamics. The equations for mass balance Eq. (1) and 
enthalpy change Eq. (2) are formulated as follows:
�̇�in + �̇�out = 0 (1)

ℎout − ℎin = 𝛥ℎ (2)

Here, �̇�in and �̇�out represent the mass flow rates at the inlet and outlet, 
ℎin and ℎout denote the specific enthalpies of the in- and outflowing 
streams, and 𝛥ℎ the enthalpy change induced by the turbocomponent. 
The enthalpy change 𝛥ℎ is determined using the isentropic efficiency 𝜂
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defined in Eq. (3), where ℎout,is denotes the specific outlet enthalpy for 
an isentropic compression or expansion: 

𝛥ℎ =

{ 1
𝜂 ⋅

(

ℎout,is − ℎin
)

for compressors
𝜂 ⋅

(

ℎout,is − ℎin
)

for turbines
(3)

The change of fluid enthalpy is balanced by the torque applied by or to 
the rotational mechanical system, as expressed in the energy balance 
in Eq. (4) with 𝜂m denoting the mechanical efficiency, 𝜏 the torque and 
𝑁 the mechanical shaft speed: 
�̇�in ⋅ 𝛥ℎ = 𝜂m ⋅ 𝜏 ⋅𝑁 (4)

The turbomachinery models feature a connection port to rotational 
mechanical models from the Modelica Mechanics package. This enables 
the modeling of the motor and generator systems, allowing for simu-
lation of their rotational dynamics, including rotor inertia, gear ratios, 
and slip, among others.

Flow and rotational speeds are expressed as corrected mass flow 
rate �̇�𝑐 Eq. (5) and corrected speed 𝑁𝑐 Eq. (6), based on Mach number 
similarity principles:
�̇�𝑐 = �̇�

√

𝑇in∕𝑝in (5)

𝑁𝑐 = 𝑁∕
√

𝑇in (6)

As initial maps, the compressor models use performance data measured 
by the manufacturer [27], while the initial turbine maps were obtained 
from 3D-CFD simulations of the turbine.

3.1.1. Compressor
The compressor performance map consists of three tables, each 

acting as a lookup table with two independent variables: the corrected 
speed 𝑁𝑐 and the auxiliary coordinate 𝛽:

• Corrected mass flow rate �̇�𝑐 : 
�̇�𝑐 = 𝑘𝑓 ⋅ 𝑓�̇�𝑐

(

𝑁𝑐 , 𝛽
)

(7)

• Pressure ratio 𝛱 = 𝑝out∕𝑝in: 
𝛱 = 𝑘𝑝 ⋅ 𝑓𝛱

(

𝑁𝑐 , 𝛽
)

(8)

• Isentropic efficiency 𝜂: 
𝜂 = 𝑘𝑒 ⋅ 𝑓𝜂

(

𝑁𝑐 , 𝛽
)

(9)

The functions 𝑓�̇�𝑐
, 𝑓𝛱  and 𝑓𝜂 are constructed by bicubic Akima splines 

interpolating the supplied data. This results in functions that are con-
tinuously derivable with respect to 𝑁𝑐 and 𝛽. The constant factors 𝑘𝑓 , 
𝑘𝑝 and 𝑘𝑒 are included in order to allow for map scaling and calibration.

A 𝛽-grid, an auxiliary coordinate system, as described by Walsh and 
Fletcher [28], is introduced to represent regions where the pressure 
ratio cannot be uniquely determined as a function of flow. This is 
relevant at choked flow conditions, where the speedlines are nearly 
vertical. Fig.  3 shows the performance map of compressor 1 with a 𝛽-
grid. Eq. (10) is used to transform a compressor map onto a 𝛽-grid: 

𝛱 = (1 − 𝛽) ⋅
(

𝑎0�̇�
𝑏0
𝑐 + 1

)

+ 𝛽 ⋅
(

𝑎1�̇�
𝑏1
𝑐 + 1

)

(10)

The 𝛽-grid is spanned by two polynomials of the type 𝑎𝑖�̇�𝑏𝑖
𝑐 + 1. These 

polynomials are positioned near the first and last available speedline 
data points by appropriately selecting the coefficients 𝑎0, 𝑏0, 𝑎1, 𝑏1. For 
each combination of 𝑁𝑐 and 𝛽, a root finding algorithm is used to 
find the values for 𝛱 and �̇�𝑐 that satisfy Eq. (10). This is equivalent 
to determining the points of intersection between speedlines and 𝛽-
lines depicted in Fig.  3. The resulting values are stored in (𝑛𝛽 × 𝑛𝑁𝑐

)
matrices 𝐹�̇�𝑐

, 𝐹𝛱  and 𝐹𝜂 , with 𝑛𝛽 being the number of 𝛽-lines and 𝑛𝑁𝑐
the number of speed lines. These matrices are ultimately converted to 
the functions in Eqs. (7), (8) and (9).
5 
The surge margin (SM) quantifies the distance of an operating point 
to the surge line. This study employs a flow-based definition of SM, as 
given in Eq. (11) and shown in Fig.  3, due to the relatively ‘‘flat’’ speed 
lines of the radial compressors used in the heat pump system. A small 
constant 𝜖 is added to the denominator to avoid division-by-zero at zero 
flow (e.g. at plant start-up). 

SM =
�̇�𝑐,OP − �̇�𝑐,SL
�̇�𝑐,OP + 𝜖

(11)

The compressor model connects to a model of the motor-driven drive 
system with two compressor shafts and gears, accounting for rotational 
inertia and gear slip. A proportional–integral (PI) controller controls 
the shaft speed by applying torque to the drive system.

3.1.2. Turbine
Turbine performance is modeled through a map-based approach 

similar to the compressor model, but with two maps instead of three. 
The corrected mass flow rate �̇�𝑐 and isentropic efficiency 𝜂 are modeled 
as functions of pressure ratio 𝛱 and corrected speed 𝑁𝑐 :

�̇�𝑐 = 𝑘𝑓 ⋅ 𝑓�̇�𝑐

(

𝛱,𝑁𝑐
)

(12)

𝜂 = 𝑘𝑒 ⋅ 𝑓𝜂
(

𝛱,𝑁𝑐
)

(13)

The factors 𝑘𝑓  and 𝑘𝑒 allow for scaling of the turbine map. Turbine 
maps do not require an auxiliary 𝛽-grid, as �̇�𝑐 remains well-defined 
with respect to 𝛱 . The turbine operates in two regimes: unchoked and 
choked, with the latter occurring at pressure ratios higher than 2.

The turbine model is connected to a generator system model, which 
includes the generator and a gearbox. The generator, represented in 
the model by a variable external torque, recovers power from the 
turbine shaft by applying a negative torque to it. The gear transmits the 
rotational motion from the turbine to the generator, with transmission 
ratios that account for both the gear ratio and slip.

3.2. Piping

The system’s volume dynamics, thermal inertia, pressure losses, and 
thermal losses are significantly influenced by the extensive network of 
pipes, as illustrated in Fig.  1. The pipe volumes between the heat pump 
components are aggregated and modeled by the Buildings library’s
MixingVolume model using dynamic balance equations for energy 
and mass.
𝜕𝑚
𝜕𝑡

= �̇�in + �̇�out (14)

𝑚 = 𝑉 ⋅ 𝜌(𝑝, ℎ) (15)

Eq. (14) represents the mass balance, with 𝑚 denoting the fluid mass 
within the volume. The relationship between volume 𝑉 , density 𝜌 and 
mass 𝑚 is defined by Eq. (15) where 𝜌 is dependent on the pressure and 
specific enthalpy. Together, these equations enable the volume models 
to simulate the heat pump’s volume dynamics. Additionally, the pipe 
volume models are connected to a lumped heat capacity model (from 
the Modelica Thermal package) which also exchanges heat with the 
ambient assuming a constant thermal resistance between pipe surface 
and ambient air.

Pressure losses are calculated using the PressureDrop model 
from the Buildings library. This model assumes that the total pressure 
drop is the sum of a quadratic and linear correlation, as described in 
Eq. (16). 

𝛥𝑝 = 𝛥𝑝quad

(

�̇�
�̇�quad

)2
+ 𝛥𝑝lin

�̇�
�̇�lin

(16)

The parameters �̇�quad, �̇�lin, 𝛥𝑝quad and 𝛥𝑝lin represent the nominal 
conditions, which serve as the basis for calculating pressure losses at 
other operating points. In the presented model, �̇�quad = �̇�lin is assumed 
and assigned an arbitrary nominal value. 𝛥𝑝quad and 𝛥𝑝lin are calibrated 
using measurement data.
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Fig. 3. Performance map of the first compressor with 𝛽-lines and exemplary surge margin.
3.3. Heat exchangers

The model for the heat exchangers is based on the BasicHX
model from the Modelica Standard Library. Given that the thermal 
inertia of the heat pump is mainly determined by the heat exchangers, 
a detailed modeling approach was chosen. The heat exchangers are 
modeled using a flow scheme where the flows and the heat exchanger 
tube and shell material are discretized into a selectable number of 
1D segments. The model is configured as a pipe-wall-pipe-wall system 
depicted in Fig.  4 with countercurrent flows. Each pipe and wall is 
discretized into six segments, a number found to reasonably balance 
accuracy and numerical complexity. Each segment is equipped with 
dynamic balance equations for mass, momentum and energy included 
in the DynamicPipe model from the Modelica Fluid package. These 
balance equations are complemented by flow models and heat transfer 
models which determine the pressure losses along a segment and the 
heat exchange with the surrounding walls. The geometry and material 
properties of the tubes and shell were sourced from manufacturer data 
sheets. Thermal conduction between wall segments is neglected.

Flow models and heat transfer models can be configured inde-
pendently for each flow side of the heat exchanger. A flow model 
equivalent to Eq. (16), using nominal pressure loss values is selected 
for all heat exchanger flows.

As shown in Fig.  4, four heat transfer models are configured for the 
heat exchanger, determining the heat transfer coefficients, 𝛼, between 
the tube flow, tube walls, shell flow, shell walls, and ambient air. The 
heat transfer area 𝐴 is defined independently of the geometry used in 
the flow models, enabling simplified flow models while maintaining an 
accurate heat transfer model. For tube flow to tube wall heat transfer, 
𝛼 is calculated from Eq.  (17), which employs a Nusselt number correla-
tion, 𝑓 , expressed as a function of Reynolds and Prandtl numbers. For 𝑓 , 
the Gnielinski correlation [29] for turbulent tube flow given in Eq. (18) 
and (19) is assumed. The resulting Nusselt number is then scaled by a 
calibration factor, 𝑘ℎ, to allow for model adjustment and calibration 
against experimental data. The characteristic length 𝐿 and the thermal 
conductivity 𝜆, which appear in Eq. (17), are derived from the heat 
exchanger tube geometry and material properties.

Nu = 𝛼𝐿
𝜆

= 𝑘ℎ ⋅ 𝑓 (Re,Pr) (17)

𝑓 (Re,Pr) =
(𝜉∕8) RePr
√ ( 2∕3 )

[

1 +
(

𝑑𝑖
𝐿

)2∕3
]

(18)

1 + 12.7 𝜉∕8 Pr − 1
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𝜉 =
(

1.8 log10 Re − 1.5
)−2 (19)

For the remaining heat transfers �̇�2, �̇�3 and �̇�𝐴, constant values for 𝛼
are assumed. The tube flow is modeled directly based on the geometry 
of the heat exchanger tubes. In contrast, the shell flow, owing to 
the complexity of tube bundle flows, is approximated by a tube flow 
representation. The baffled shell flow has also been neglected and 
simplified to a pure counterflow configuration.

3.4. Electric heaters

The electric heaters, located in the heat source and upstream of 
the compressor, are modeled using the Heater_T component from 
the Buildings library. This model adds a heat flow rate to maintain 
the set-point temperature at the heater outlet, subject to the heater’s 
capacity limit. The inherent dynamics of the heater, arising from its 
thermal mass and control system, are quantified by specifying a time 
constant, which serves as an indicator of the system’s response time.

3.5. Control valves

Valve models from the Buildings library [12] are used to model 
the turbine bypass valve and the three-way valve. The mass flow rates 
through the valves are calculated using Eq. (20) where 𝛷 represents the 
valve characteristic, 𝐴𝑣 is the valve flow coefficient, 𝛥𝑝 is the pressure 
drop across the valve and 𝜌std is the reference density. 

�̇� = 𝛷 ⋅ 𝐴𝑣
√

𝛥𝑝 ⋅ 𝜌std (20)

The valve flow coefficient 𝐴𝑣 is correlated to the valve throat area, 
and its value derived from manufacturer data sheets. Valve char-
acteristics were also sourced from manufacturer data, assuming an 
equal-percentage characteristic for the turbine bypass valve and linear 
characteristics for the three-way valve.

The fluid inventory valves are modeled as idealized mass flow 
rates injected into the low-pressure section or released from the high-
pressure section of the heat pump. A PI controller regulates the valve 
mass flow rates to maintain the set-point pressure at the compressor 
inlet. A more detailed modeling approach was avoided for the fluid 
inventory valves, as the analysis of the fluid inventory control system 
is not in the scope of this study.
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Fig. 4. Discretization scheme of the heat exchanger model.
3.6. Heat sink and source air supply system

The fans driving the secondary air flows are modeled using flow-
controlled mover models from the Buildings library. These models 
come with default pressure curves and efficiency correlations, so the 
only required inputs are the nominal mass flow rate and the nominal 
pressure head. The fan models use mass flow rate as an input, which 
simplifies numerical calculations and calibration compared to models 
that rely on speed as an input.

The heat sink fan draws air from a boundary source with constant 
temperature and pressure, which can be adjusted to reflect the ambient 
conditions during heat pump operation. Components related to air dry-
ing and buffering have not been modeled, instead assuming reservoirs 
of dry air at nominal pressure.

The heat source is modeled as a closed-loop system comprising a 
fan, heater, and heat exchanger, reflecting the actual system configu-
ration.

3.7. Medium model

The simulation model uses the DryAirNasa model from the Modelica 
Media library to represent the working medium, dry air. The model 
calculates thermodynamic properties based on polynomials with NASA 
Glenn coefficients, which assume ideal gas behavior and are valid over 
a temperature range of approximately 200K to 6000K.

3.8. Control signals and boundary conditions

The plant has numerous components that require a continuous 
control signal from the operator or a controller. The control input 
signals are organized in a signal bus (or expandable connector) with the 
minimum set of signals shown in Table  1.

Additionally, ambient and initial conditions for the simulation can 
be specified through boundary conditions, allowing for configuration of 
various simulation scenarios such as cold start, warm start, and more.

3.9. Simulation

The component models described above are integrated into the 
overall heat pump model. The relationship between component mod-
els is defined by the flow, thermal and signal connectors. During 
model translation, a process known as model flattening [30] is applied, 
7 
Table 1
Input signals and boundary conditions for the model.
 Input signals Symbol 
 Motor speedSP 𝑁𝑀  
 Generator speedSP 𝑁𝐺  
 Bypass valve opening 𝛩𝐵  
 Three-way valve opening 𝛩3𝑊  
 Sink mass flow rate �̇�101  
 Source mass flow rate �̇�201  
 Primary heater temperatureSP 𝑇𝑆,0  
 Source heater temperatureSP 𝑇𝑆,201  
 Compressor inlet pressureSP 𝑃𝑆,0  
 Boundary conditions  
 Ambient temperature 𝑇Amb.  
 Initial temperature 𝑇init  
 Initial pressure 𝑝init  
SP Signal is a set-point signal.

which converts the hierarchical, object-oriented structure into a set of 
differential–algebraic equations (DAEs) of the form: 
𝐹 (�̇�, 𝑥, 𝑦, 𝑡) = 0. (21)

In Eq. (21), 𝑥 denotes the states, �̇� their derivatives, 𝑦 the algebraic 
variables and 𝑡 the independent time. While Modelica also supports 
discrete variables 𝑑 within the equation system, these are omitted here 
for clarity. Depending on the selected numerical solver, the DAE may 
be transformed into an index-1 DAE
�̇� = 𝑓 (𝑥, 𝑦, 𝑡) (22)

0 = 𝑔(𝑥, 𝑦, 𝑡), (23)

or into an ordinary differential equation (ODE) where algebraic vari-
ables 𝑦 and algebraic loops (systems of equations requiring simultane-
ous solution) are incorporated into 𝑓 : 
�̇� = 𝑓 (𝑥, 𝑡) (24)

Furthermore, the simulation requires the specification of initial con-
ditions for the state variables so that their initial values 𝑥0 can be 
computed. Cellier and Kofman [31] provide more details on transform-
ing and solving DAEs. Solvers for both the index-1 DAE in Eqs. (22), 
(23) and ODE in Eq. (24) are available in most Modelica simulation 
environments. The model in this study can be simulated using various 
solvers, including DASSL [32], IDA [33] and Radau IIA [34]. All 
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presented results were obtained using DASSL with a tolerance of 10−5. 
DASSL (Differential/Algebraic System Solver) is a numerical integration 
algorithm that uses a variable-step, variable-order backward differen-
tiation formula (BDF) method. While originally developed for index-1 
DAEs, it can also be applied to ODEs. In this work, DASSL is applied 
to the ODE representation with adaptive step sizing based on error 
estimates.

4. Calibration

Using the dynamic model presented in the previous chapter as a 
foundation, the following sections focus on the process of calibrating 
the heat pump model, where key parameters are adjusted to match the 
simulation results with measurement data.

4.1. Calibration of compressor performance maps

The compressors have a major influence on the heat pump perfor-
mance, making their calibration a focus of this study. Pressure and 
temperature measurements were taken at the inlet, intermediate duct, 
and outlet of the compressors, along with mass flow rate and shaft 
speed data. These measurements allow for the calculation of all the 
quantities needed in the compressor map.

Data from 14.5 h of operation over three days of testing were used 
for calibration. Fig.  5 shows the reference compressor maps from the 
manufacturer [27], alongside the measured operating points used in 
the calibration. Due to constraints of the drive unit, shaft speeds were 
limited to approximately 70% of the maximum speed. As a result, data 
from the compressors’ high-speed operating range were unavailable 
for calibration. The calibration method presented in this work aims to 
adjust the compressor maps with the following requirements:

1. Preserve the original map’s shape to retain the general compres-
sor characteristics.

2. Accurately predict measured operating points, minimizing dis-
crepancies between simulated and observed data.

3. Allow plausible extrapolation into high-speed regions not cov-
ered by the measurement data.

The calibration assumes that map errors are functions of 𝛽 and shaft 
speed. The calibrated map data matrix 𝐹cal. is calculated by applying 
correction matrices 𝐶 and 𝐷 on the original map data matrix 𝐹  as 
expressed in Eq. (25):

𝐹cal. = 𝐶 ⋅ 𝐹 ⋅𝐷 (25)

𝐶 =
⎡

⎢

⎢

⎣

𝑐1
⋱

𝑐𝑛𝑁

⎤

⎥

⎥

⎦

(26)

𝐷 =
⎡

⎢

⎢

⎣

𝑑1
⋱

𝑑𝑛𝛽

⎤

⎥

⎥

⎦

(27)

When the map data 𝐹  is organized as an (𝑛𝛽 × 𝑛𝑁 ) matrix, the matrices 
𝐶 and 𝐷 are diagonal matrices of dimensions (𝑛𝑁 × 𝑛𝑁 ) and (𝑛𝛽 ×
𝑛𝛽 ), respectively. The multiplication of these matrices corresponds to 
applying scaling factors to each column (corresponding to each speed 
line) and each row (corresponding to each 𝛽-line) of the map data. By 
constraining the entries 𝑐𝑖 and 𝑑𝑖 of 𝐶 and 𝐷 to a narrow range around 
1, the adjustments made to the data are small, ensuring that the original 
shape of the map is largely preserved. A numerical optimization is 
employed to determine values for 𝑐𝑖 and 𝑑𝑖 that minimize the deviation 
between the compressor map and the measured data, quantified by the 
residual sum of squares. The following additional transformations are 
applied to the correction factor vectors:
8 
• For the 𝑐𝑖 correction factors, the values are replaced by a weighted 
average of the original value and the mean value ∑𝑖 𝑐𝑖∕𝑛𝑁 . This 
approach is based on the assumption that all speedlines are 
similarly over- or underperforming relative to the original map.

• For the 𝑑𝑖 correction factors, a Gauss filter is applied on the 
vector. This ensures that the resulting speedlines are smooth.

The resulting calibrated compressor maps are shown in Fig.  5. 
Regarding the pressure ratio, compressor 1 is slightly underperforming, 
whereas compressor 2 is significantly underperforming. This is also 
illustrated in the parity plot in Fig.  6 where measured and predicted 
pressure ratios are compared. After applying the calibration, the pres-
sure ratio of nearly all operating points can be predicted with a relative 
error of less than 5%. The calibration of isentropic efficiency turned 
out to be more challenging, as shown in the parity plot in Fig.  7. 
Measured efficiencies of compressor 2 were significantly lower than 
those reported in the original performance map. This discrepancy is 
mostly attributed to suboptimal inflow conditions and pressure losses 
in the inter-compressor duct. Changes to the compressor rotor material 
and volutes, made specifically for the heat pump, may also contribute 
to deviations from the map data. The prediction of efficiency after 
calibration is mostly accurate within the 5% error band, although 
some operating points show much larger deviations. While operating 
points outside the measured regime cannot be directly verified due 
to technical constraints, the method’s reliability is supported by the 
accurate prediction of measured points.

4.2. Calibration of model parameters

The model was exported as a Functional Mock-up Unit (FMU) with 
tunable parameters to enable optimization using the Python library 
SciPy. Input data for the simulations, which include the control signals 
described in Section 3.8, was generated using test data. An optimization 
algorithm was used to adjust the model parameters, aiming to minimize 
the error between the simulated and measured signals. Model error is 
quantified through the residual sum of squares, evaluated at equidistant 
points along the measured and simulated time series.

Optimizing all parameters in a single optimization was found to 
be infeasible with regard to computational time and optimization con-
vergence. Therefore, the signals and tunable parameters were divided 
into four groups shown in Table  2, which were selected to minimize 
interactions between the groups. The signals were chosen so that, 
once calibrated, the model accurately predicts compressor and heat 
exchanger performance. The allocation of parameters to these signals 
was based on analysis to identify which quantities most significantly 
affect them. For example, mass flow rates and pressures are predomi-
nantly influenced by the interactions among the compressor, turbine, 
and pressure losses, which motivated the parameter selection for group 
A.

Due to the nearly constant inflow conditions of the first compres-
sor throughout the tests, the components are calibrated sequentially 
along the heat pump flow direction. For each group, the optimization 
algorithm determines parameter values that minimize errors between 
the model and measurements. It achieves this by repeatedly adjusting 
and re-running the simulation model. The selected grouping allowed for 
efficient tuning by ensuring that the effects between groups were kept 
minimal, making the optimization process more manageable. To further 
eliminate the effects of cross-influence between groups, the routine was 
performed twice.

The minimization problems were solved numerically using a combi-
nation of genetic and gradient-based optimization methods: To increase 
the chance of finding the global optimum, the process began with a 
genetic algorithm for a fixed number of iterations. Specifically, the
differential_evolution method from the SciPy library [35], 
which implements the algorithm developed by Storn and Price [36], 
was applied. The best solution obtained from this genetic algorithm was 
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Fig. 5. Original and calibrated compressor maps with indicators for measured operating points.
Fig. 6. Parity plot of the pressure ratio.
Fig. 7. Parity plot of the isentropic efficiency.
then used as the initial guess for a gradient-based optimization, employ-
ing the Sequential Least Squares Programming (SLSQP) method [37], 
which produced the final solutions listed in Table  2.

The resulting nominal values for the pressure drop and map cor-
rection scalers fall within expected ranges. However, the high values 
9 
of the correction factors 𝑘h,LTHX and 𝑘h,HTHX are striking. This suggests 
that the heat transfer was significantly underestimated by the initially 
assumed Nusselt correlation prior to calibration.

After adjusting the model parameters according to Table  2, a six-
hour test run with varying operating conditions was simulated to study 
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Table 2
Model parameter tuning.
 Grp. Signals fitted Parameters tuned Bounds Final value 
 A �̇� 𝑘𝑝,𝐶1 [0.97, 1.05] 1.023  
 𝑝0A 𝑘𝑝,𝐶2 [0.97, 1.05] 1.042  
 𝑝1 𝑘𝑓,𝑇 [0.97, 1.05] 1.004  
 𝛥𝑝lin,HP [500, 7000] Pa 6215 Pa  
 𝛥𝑝quad,HP [500, 7000] Pa 3050 Pa  
 B 𝑇2 𝛥𝑝lin,Sink [500, 12000] Pa 3951 Pa  
 𝑇101 𝛥𝑝quad,Sink [500, 12000] Pa 11 747 Pa  
 𝑘h,HTHX [1, 30] 14.11  
 C 𝑇4B 𝑘𝑒,𝑇 [0.92, 1.05] 0.97  
 D 𝑇5 𝛥𝑝lin,Src. [500, 6000] Pa 4583 Pa  
 𝑇201 𝛥𝑝quad,Src. [500, 4000] Pa 2293 Pa  
 𝑘h,LTHX [1, 30] 27.98  

Table 3
Root mean squared error (RMSE) and mean-normalized root mean squared error 
(NRMSE) of the main process variables.
 Measurement signal RMSE NRMSE 
 Compressor outlet 𝑇1 2.91K 0.69%  
 HTHX outlet 𝑇2 1.24K 0.39%  
 Turbine outlet 𝑇4𝐵 1.38K 0.53%  
 LTHX outlet 𝑇5 0.50K 0.17%  
 HTHX inlet (sink) 𝑇101 0.57K 0.19%  
 HTHX outlet (sink) 𝑇102 1.99K 0.50%  
 LTHX inlet (source) 𝑇201 0.37K 0.12%  
 LTHX outlet (source) 𝑇202 0.76K 0.27%  
 Mass flow rate �̇� 0.0041 kg∕s 1.46%  
 Compressor inlet 𝑝0 1203 Pa 1.18%  
 Inter-compressor 𝑝0𝐴 2388 Pa 1.37%  
 Compressor outlet 𝑝1 3379 Pa 1.33%  

the system model’s dynamic responses. Fig.  8(a) shows the measured 
and simulated pressures upstream, in between and downstream the 
compressors. The results demonstrate high model accuracy, particularly 
at higher pressure ratios. Fig.  8(b) compares the measured and sim-
ulated temperatures at the inlets and outlets of the high-temperature 
heat exchanger, showing strong agreement between them. The good 
agreement of temperatures indicates that the model is able to capture 
the system’s thermal inertia.

To quantify the model’s predictive accuracy, root mean square error 
(RMSE) and mean-normalized root mean square error (NRMSE) were 
calculated for each process variable. RMSE, defined in Eq. (28), repre-
sents the average squared deviation between the measured data 𝑦 and 
the simulated values �̂�, while NRMSE, defined in Eq. (29), normalizes 
this error relative to the mean of the measured data �̄�.

RMSE =

√

√

√

√

𝑛
∑

𝑖=1

(𝑦𝑖 − �̂�𝑖)2

𝑛
(28)

NRMSE = RMSE
�̄�

(29)

Table  3 lists the RMSE and NRMSE values for the main process 
variables, assessed using 500 equidistant samples over the six-hour test 
period. The consistently low NRMSE values across all variables, particu-
larly for temperatures, show that the model is capable of replicating the 
system’s thermodynamic behavior accurately. This agreement between 
the model and the test data confirms the model’s capability of capturing 
both temperature and pressure dynamics under a range of operational 
conditions.

5. Analysis

The validated model enables numerous possibilities to support the 
operation and further development of the heat pump, including control 
system design, condition monitoring and virtual pre-testing of plant 
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Fig. 8. Comparison of measured and simulated values for temperatures and pressures 
after calibration.

modifications. The following sections present the simulation of a plant 
cold start-up and shutdown with emphasis on investigating the effects 
of the system dynamics on compressor stability and heat exchanger 
warm-up.

5.1. Start-up and shutdown procedure

The simulated maneuver assumes ambient temperatures (15 ◦C) as 
initial conditions for all fluid and metal temperatures in the heat 
pump. Unlike the simulation used for model calibration, the initial fluid 
inventory remains unchanged throughout the entire process, with an 
initial pressure set at 2.7 bar, under the assumption of a perfectly sealed, 
air-tight heat pump system. The mass flow rates for both the heat source 
and heat sink are set at 0.6 kg∕s.

Fig.  9 shows the motor and generator speeds during the maneuver. 
After initialization, the motor and generator speeds are increased from 
a standstill to approximately 40%, a state referred to as Operating 
Point 1 (OP1). OP1 is maintained for one hour to allow the system to 
stabilize. Following this, the motor and generator speeds are ramped 
up to 80% during a 15 min acceleration period, reaching a higher-
temperature operating state, referred to as Operating Point 2 (OP2). 
OP2 is held constant for one hour. After this period, the motor and 
generator are rapidly decelerated within 30 s, returning to OP1 for the 
remainder of the simulation.

Fig.  10 depicts the thermodynamic cycle of the heat pump at OP1 
(𝑡 = 3700 s) and OP2 (𝑡 = 8100 s). The blue cycle represents OP1, the 
idle operating point, which operates within a temperature and pressure 
range close to the initial conditions. The red cycle corresponds to OP2, 
the high-temperature operating point, which spans a broader range 
of temperatures and pressures, reaching a maximum temperature of 
220 ◦C.
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Fig. 9. Motor and generator speeds during start-up and shutdown procedure.

Fig. 10. Thermodynamic cycle of OP1 and OP2 in the T,s diagram.

Fig.  11 demonstrates the pressure behavior upstream, between, and 
downstream of the compressors throughout the simulated maneuver. 
With a constant fluid inventory, the heat pump’s pressure levels deviate 
from the initial pressure as the power level increases.

5.2. Heat exchanger temperatures

Using the 1D heat exchanger model presented in Section 3.3, the 
dynamic temperature response of the heat exchangers can be simulated. 
Fig.  12 shows the air temperature of the flow into the HTHX tubes and 
the metal temperatures along the length of the HTHX tubes during the 
start-up, acceleration and deceleration phases.

The results show the effects of the large heat capacity of the heat 
exchanger material. Despite allowing one hour of constant control 
inputs at each operating point, the metal temperatures have not fully 
settled at steady-state conditions. This aligns with observations from 
heat pump testing. Notably, the temperature drop upon returning to 
OP1 is faster than the preceding temperature rise when transitioning 
to OP2. This asymmetry occurs because, during this transition, the 
HX tubes experience cooling from both flow sides, as the compressor 
outlet temperature falls to 60 ◦C, which is lower than the metal tube 
temperatures.
11 
As the temperature distribution is also calculated for the HX shell, 
the model enables the evaluation of thermally induced mechanical 
tensions within the tubes. Monitoring these tensions is essential for 
safe operation, as they can damage the structural integrity of the heat 
exchanger under varying thermal loads.

5.3. Dynamic compressor stability

Fig.  13 shows the operating trajectory of the first compressor during 
the maneuver. When transitioning between operating points OP1 and 
OP2, the deceleration trajectory approaches the surge line more closely 
than during acceleration. This behavior results from two main factors:

• Volume dynamics: The large air volumes within the system cause 
pressure – and consequently, the pressure ratio – to adjust more 
slowly than the shaft speed.

• Thermal inertia: During deceleration, the heat exchanger retains 
high temperatures from the previous high-temperature operating 
condition. Due to choked flow conditions (constant corrected 
mass flow rate) in the turbine, this elevated inlet temperature 
reduces flow rates in accordance with Eq. (5), drawing the op-
erating point closer to the surge line.

These mechanisms can make rapid deceleration maneuvers in heat 
pumps a potential concern for compressor stability. However, in the 
radial compressors investigated here, stability issues appear minimal, 
as sufficient margin from surging is maintained even under dynamic 
deceleration conditions. This is illustrated by Fig.  14 which shows 
the first compressor’s surge margin during the maneuver. The rapid 
decrease in speed results in a temporary reduction in surge margin, 
before stabilizing at steady conditions.

6. Conclusion and outlook

This study presents a validated dynamic model of a high-
temperature heat pump based on the Brayton cycle, implemented 
using Modelica. The model, calibrated with experimental data, predicts 
thermodynamic properties such as temperature, pressure, and flow rate 
variations at key locations within the heat pump. The compressor map 
calibration method developed in this work was used to adjust existing 
performance data with the available measurements and to reasonably 
estimate performance in regimes where measurements were not avail-
able. The calibrated map accurately matches the measured data and 
remains numerically robust during simulations, while preserving the 
original shape of the speedlines. Optimization-based tuning of com-
pressor maps and model parameters achieved accuracy levels reflected 
by normalized root mean square errors (NRMSEs) ranging from 0.12%
to 1.46%. These results indicate the model’s utility for studying heat 
pump performance across various operating conditions and support its 
application in designing and controlling high-temperature heat pumps 
for industrial use.

The model also provides insights into how the heat pump be-
haves during transient processes like start-up and deceleration. Sim-
ulations highlight aspects of compressor stability, including the risk 
of approaching surge limits during rapid decelerations. By tracking 
temperature changes within heat exchangers, the model can help pre-
dict thermal stresses at varying thermal loads, which is essential for 
maintaining system durability and safety.

In future work, the authors aim to develop a real-time version of 
the model that operates in parallel with the physical plant and supports 
continuous online calibration. This enhancement will allow the model 
to dynamically adjust to variations in component performance. The 
authors also plan to use the model to test and evaluate control systems. 
In particular, the model will be used as a training environment for a 
Reinforcement Learning (RL) agent. By leveraging RL, the aim is to 
develop a control system capable of handling complex dynamics more 
effectively than conventional methods. Such developments may con-
tribute to improved performance and adaptability of high-temperature 
heat pumps in industrial contexts.
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Fig. 11. Pressures during start-up and deceleration.
Fig. 12. Simulated dynamic heat exchanger tube temperature response of the HTHX.
Fig. 13. Simulated trajectory of compressor 1 during start-up and deceleration.
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Fig. 14. Surge margin of compressor 1 during start-up and deceleration.
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