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Abstract

In recent years, terrestrial Radio Frequency Interference (RFI) from sources such as airports, har-
bors or air surveillance systems, as well as spaceborne RFIs from growing multisatellite constella-
tions have increasingly impacted TerraSAR-X data.

This thesis investigates methods to detect and mitigate these interferences in raw data. Therefore,
machine learning methods, including Isolation Forest (iForest), autoencoder, and Variational Au-
toencoder (VAE) architectures, are evaluated and compared regarding their detection performance.
A clearly superior detection performance of the autoencoder for this particular case is found.

The performance of conventional Signal-to-Interference Ratio (SIR), Cell Averaging (CA)-
Constant False Alarm Rate (CFAR) filtering and the autoencoder are further assessed and compared
in terms of detection performance and mitigation effectiveness. As a reference a conventional SIR
filter of 18 dB is determined for the scenes at hand and set as the benchmark. In case of Narrow
Band Interferences (NBI) the CA-CFAR detects RFIs in additional 0.6% of the image’s samples
and the autoencoder an additional 1.3%. In case of Wide Band Interferences (WBI) the CA-CFAR
detects 7.93% less than the SIR filter and the autoencoder an additional 2.7%. Therefore, the de-
tection rate of the autoencoder not only outperforms the conventional methods but it is also more
robust. However, blanking the isolated RFIs in each rangeline’s Power Spectral Density (PSD) for
mitigation shows that the improved detection rate of the autoencoder to the SIR benchmark visually
has a neglectable impact.

Finally, a data set derived from gloablly distributed SAR acquisitions is analyzed based on occupied
bandwidth, RFI power, and the number of RFIs in its PSD. This enables a global mapping of RFI
occurrences in TerraSAR-X data from 2023 and 2024, along with an initial analysis of the nature
of these RFIs and hence proves the power of the developed autoencoder.
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1 Introduction

The use of spaceborne remote sensing using Synthetic Aperture Radar (SAR) and microwave ra-
diometry techniques above optical sensing on satellites has increased strongly in the recent years
and is increasing continuously. The advantage of those technologies is that they are independent of
weather or the sun’s light and therefore can be used for Earth observation at practically all times.

This real-time Earth observation data is crucial for the monitoring of natural disasters impact, e.g.
earthquakes [Ell20], volcano eruptions, tsunamis [HOS+20]. Its availability is required and used
by local authorities in order to coordinate disaster management and control [Air25]. Additionally, it
contributes significantly to scientific fields in geosciences and the monitoring of climate change and
natural resources. Ice shelves, glaciers and permafrost can be measured from space even in very re-
mote and hard or not at all fully coverable areas such as Antarctica [KBC+14]. Furthermore, forest
heights and types can be acquired in rain forest areas. Additionally, SAR technologies were used
in order to acquire a global Digital Elevation Model (DEM) using SAR interferometry. Especially
here those remote areas as Antarctica are impossible to measure terrestrially on this large scale with
this precision [KFH+05]. SAR images are also used for agricultural or urban planning in general,
such as infrastructure monitoring and security applications [Air25].

In the recent years the RFI occurence in X-band has been increasing. This is already known as
a problem for passive spaceborne remote sensing particularly in the protected L-band [VDG+19].
But in recent years also increasing impact on active remote sensing in the protected X-band is rising.
These interferers are estimated to be even more severely above the legally restricted limit. This is
because instead of the passive radiometers measuring brightness temperatures emitted as reflections
of cosmic radiation in general, SAR measures the backscatter of its own system’s transmitted power.
This means that the SAR signal’s power levels are already higher than those of radiometers and
the RFIs are still strong enough to dominate and contaminate the scene locally [SGS18]. This
is even after further processing steps including matched filtering to the transmitted signal’s pulse
shape. However, lower frequency bands as the L-band also are generally easier accessible and more
crowded which makes them more vulnerable to RFIs [dHHA19].

RFIs are mostly terrestrial and occur mainly around harbours, airports, military bases. However,
there are also some RFIs caused by nearby satellites transmitting in X-band for Earth monitoring
and flying in a similar orbit. This risk of RFIs caused by neighboring satellites is also increasing
because of the current trend in the aerospace industry to rather build many smaller and cheaper
satellites such as cube-sats. Therefore, the total number of satellites in the orbits increase. This
increase is strongest in the Low Earth Orbit (LEO) rising from 1000 satellites in 2014 to 10 000
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2 1 Introduction

satellites in 2024 [Uni25]. This is already problematic itself. The TerraSAR-X and TanDEM-X
satellites that are considered here also operate in the LEO and in X-band. However, the spectrum
allocation for the X-band in LEO is additionally crucial for downlinking and disseminating space-
collected data under any weather conditions which makes it even more problematic especially for
the case at hand. This is caused by the fact that its downlink is far less expensive, complex and
ultimately more adoptable than alternatives [Air25].

This increase in RFIs also in X-band SAR data makes it inevitable to analyze and search for RFI de-
tection and mitigation techniques that can be reliably applied. Since the problem of RFI occurence
and along the urge for documentation and RFI detection and mitigation techniques is already exist-
ing in other scientific fields for a long time, their approaches need to be considered first.

As an example RFI cleanliness is a long ongoing and consisting issue for radio astronomy and
astrophysical observatories since very sensitive sensors are employed in order to detect very low
power signals of events far away. However, this sensitivity also makes them more sensitive for RFIs
which makes it unsurprising that unsupervised Machine Learning (ML) techniques as clustering are
employed in order to detect RFI events from actual events [HCRDR19]. Another approach from
radio astronomy employs edge-thresholding in real-time data to achieve RFI mitigation also in real
time [BS19].

In Earth observation the issue of RFI detection and mitigation is investigated best and longest for
passive remote sensing in radiometers. This evolution of the RFI scenario world wide, and its
impact on the mission as well as lessons learned in RFI detection and geo-location and the prob-
lems of RFI contamination of the SMOS mission in L-band were discussed after 10 years in orbit
already in 2019 [LDO+19]. Even though for example Soil Moisture Active/Passive (SMAP) has
early step RFI filtering implemented already the detection is continuously improved in order to
detect insufficiently detected hotspots using an iso-line mapping approach [SLVdM19]. SMAP’s
RFI detectors include pulse, cross-frequency, kurtosis, and polarimetric methods, as a function of
the RFI sources’ power and are regularly investigated for their performance. Also methods to ex-
amine remaining RFIs after detection and filtering are already established [BJMP17]. Furthermore,
automatic RFI detection, clustering, identification and localization were researched in detail using
long-term serial cross-polarization data source. For this use case an iterative density-based spatial
clustering algorithm with noise and emission intensity characteristic that simultaneously considers
the emission intensity and distribution density of the RFI source was suggested [WWF+19]. Over-
all, the three passive remote sensing satellites Aquarius, SMOS and SMAP in L-band can be com-
pared and normally observe the same RFI distribution. They all have different established on-board
detection and mitigation techniques implemented which might be the future for X-band SAR sys-
tems as well. While SMOS relies on a threshold detection algorithm, SMAP on a kurtosis detector
and Aquarius on an outlier detector. Because of malfunction about Japan’s distributed TV system
and the aforementioned comparison, the outlier detector of Aquarius was however extended by an
absolute detection threshold. This threshold is based on the maximum expected level of natural
emissions [SdMLV16]. This and further, rather regular updates in the RFI detection and mitigation
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steps of radiometers are clearly documented and analyzed as for example in [dMSLV16] separating
the steps in the active and passive instruments of Aquarius. Another example for the global impor-
tance and established integration of RFI detection and mitigation processing techniques in L-band
is given in the Lobe Differencing Correlating Radiometer (LDCR) using a cross-frequency peak
detection, time and frequency domain kurtosis, and complex coherence phase to detect RFIs in the
radiometric data [VDG+19]. As a consequence of the increasing amount of RFIs for radiometers
this effort in algorithms and hardware for RFI detection and mitigation is clear. However, due to
the long development times of spaceborne systems the required onboard detection and blanking of
RFIs was not implemented yet in former satellites in orbit but rather planned for and implemented
in future systems like MetOp Second Generation and the Copernicus High Priority Mission Passive
Imaging Microwave Radiometer satellites [KSSB19].

There is also research on detecting and classifying RFIs using ML algorithms for SMAP to obtain
changes of RFI environment in L-band from 2015 to 2022 using a Convolutional Neural Net-
work (CNN) [BBJ+22]. Beyond that research [PPQC24] is also suggesting ML techniques for the
classification and characterization of real RFI events in passive remote sensing such as radiometry
and Global Navigation Satellite Systems (GNSS)-reflectometry. Due to the amount of degrees of
freedom this classification regarding identification and location of the interference source cannot
be achieved adequately using classical signal processing techniques. For classification here CNNs
and Recurrent Neural Network (RNN)s are employed and a future outlook is given on examining
transfer learning and autoencoders for further improvements.

However, there are also RFI detection and mitigation techniques developed and in operation in
SAR systems, particularly in Sentinel-1 in C-band already. For detection and mitigating whole
RFI containing image parts, [LZL+22] is working on Level-2 data which is focussed imaging data.
A method is presented that suggests first constructing an RFI-free background image from pre-
processed time-series images from the past and then generating difference images from it with the
image change detection method. The difference images entropy is calculated and compared to an
adaptive threshold which replaces the conventional screening step. Subsequently, the preliminary
RFI part is removed and the entropy calculation step of the new difference images is repeated.
They yield the final screening and detection results and validate them on Sentinel-1 images. The
aforementioned conventional screening step for Sentinel-1 was implemented since 2022 an inter-
ference detection module was added to the Sentinel-1 ground processor. This module includes
pre-screening and detection functions which require the SAR system to receive additional noise
signals. The detection is implemented using distribution statistics to locate the position of inter-
ference in the echoes. This is simple but comes with a low application accuracy due to the variety
of interference types. In [FPR+21] however RFI is detected in Level-0 or raw data, which reduces
the loss and impact of the mitigation. They use noise like rank echoes for global RFI monitoring.
Those rank echoes are the first measures of each burst taken in Sentinel-1 in TOPSAR mode be-
cause the backscatter has not been received yet. RFI detection is implemented using the Fisher’s Z
for narrow-band high-power RFI and Kullback Leibler (KL) divergence for wide-band low-power
RFI. Retrieved from the raw data’s statistical properties this yields a global mapping of RFIs in
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C-band.

Also Deep Learning (DL) based RFI detection is investigated for C-band RFIs. For example [IL19]
investigates mimicking human visual inspection of processed images to detect RFIs in the measure-
ment in instrumentation radar systems using a CNN. However, this is first of all also operating in
C-band and secondly also implemented on processed imaging data which is mainly useful for la-
belling or for mitigation by mitigating or removing the whole contaminated part of the image which
leads to enhanced loss of information.

This work focuses on the analysis of RFIs in X-band SAR data and additionally works on Level-0
meaning raw data. This aims for a high detection performance and a mitigation keeping the loss of
information as low as possible.

RFIs are conventionally not only investigated on real RFI-contaminated SAR images. Especially,
if they are still relatively rare as in X-band SAR data. Instead RFI simulators are built where the
RFIs can be modelled and the effectiveness of detection, characterization and mitigation techniques
can be compared on that particular modelled type of RFI. For example there is such a simulator
for the Galileo uplink operations including its Ultra High Frequency (UHF) link for SAR, its S-
band link for Telemetry, Tracking and Command (TTC), and its C- Band link for mission data. It
includes RFI transmitters on ground and RFIs from satellites allowing sweeps of the interferer’s
power. The detection can be implemented as energy detection with a power detector in Time
Domain (TD) or gaussian detector or a PSD detection with a space domain detector or a power
detector in Frequency Domain (FD). The detected RFIs can be characterized by mean frequency,
pulse width, occupied bandwidth, duty cycle and spectral kurtosis. For classification DL techniques
such as RNN, CNN, Support Vector Machine (SVM) are used which require a ground truth labelled
data set of the different RFI classes which is only feasible with simulated RFIs. Furthermore, the
RFI can be localized using Time Difference of Arrival (TDOA), Frequency Difference of Arrival
(FDOA) or the MUltiple SIgnal Classification (MUSIC) algorithm. It has to be noted that despite
their usefulness for modelling the dependence on an RFIs power and for classifications real-world
interferers differ significantly from models. Also, their variety is not represented nor do they meet
most simulators’ models’ assumptions such as isotropic and continuously transmitting interferers
[Oy22].

The target of this work is to analyze the detection, characterization and mitigation of RFIs in real
X-band SAR data of the TerraSAR-X mission. In order to do so ML techniques and architectures
are to be selected, implemented and compared regarding their performance for the detection of
RFIs.

In Chapter 2 firstly the theoretical foundations are built. They focus on the SAR principle and
on RFIs, conventional RFI detection, introducing DL methods and methods for RFI mitigation.
Next, in Chapter 3 the three differently used data sets for different types of analysis are introduced.
Subsequently, the DL architectures’ selection is described along with their pre-processing steps,
design choices and the implementation in Chapter 4. With the final comparison of their performance
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the best DL architecture is chosen for further investigations and analysis on the X-band SAR data
sets.

The chosen DL architecture is tested on conditions representative to the real-world RFIs and com-
pared with conventional methods to benchmark in Chapter 5. Further classification and isolation of
the RFIs in the PSDs yields a global classified RFI mapping regarding total occupied bandwidth,
RFI power and the distribution of separate RFI counts in the PSD. Finally, having isolated the
RFIs spectrally the comparison with conventional methods in detection rate can be validated on
processed images using frequency blanking as mitigation technique in Chapter 6.





2 Theoretical Fundamentals

This chapter is treating all of the theoretical fundamentals required to understand the following
results. In the beginning the basic function of radar systems and imaging radars will be discussed
before introducing the SAR for spaceborne radar remote sensing. Additionally, the considered ML
concepts and basic functions and applications relevant for the further work will be illustrated.

2.1 Imaging Radar and Spaceborne Radar Remote
Sensing

There are several options to obtain images for Earth observation from space. The most basic con-
cept is to employ commercial camera principles in order to obtain optical images [LWZ19]. This
method is the most cost-effective one in terms of achieving favourable results. However, it is sub-
ject to certain constraints in terms of time, namely the requirement for good weather conditions and
daylight hours.

Another passive sensor based principle is spaceborne microwave radiometry, which is measuring
cosmic background and thermal radiation backscattered from Earth. Here a receiving antenna is
employed as a sensor. The measurement is wide-band operated and therefore containing atmo-
spheric windows. Therefore, it is weather independent and radiation from weather effects in the
atmosphere as clouds or rain can be detected just as well as lower frequent radiation from under-
lying structures. However, the resolution of a radiometer image is about 1000-10 000 times lower
than for a SAR image. Therefore, the information of the structures, vegetation and soil can be
joined but radiometers alone cannot be used for a precise mapping. In spaceborne radar remote
sensing the active sensor principle is utilised. Therefore, the antenna as a sensor is replaced by a
radar system operating the antenna in transmit and receive mode. This is how imaging can take
place independent from the sunlight since the measured backscattered power is the one transmitted
by the system. Weather dependent effects are avoided and the penetration depth is set by selecting
the operating wavelength of the system as a design choice. That way the system can be optimized
to measure atmospheric effects as clouds or Earth surface effects, such as even penetrating into
vegetation or soil [CM91].
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8 2 Theoretical Fundamentals

2.1.1 Basic Radar Concepts

Radar sensors are being used for distance measurement in the first place. In case of radar remote
sensing pulsed and coherent radars have to be used in order to form the synthetic aperture. The
following chapter will provide a brief introduction of the aforementioned radar types.

Pulsed Radar

Operating a pulsed radar system a high frequency pulse that is short in TD is transmitted and
reflected by the scene. The radar echo is detected as the received power in the frequency band
used for transmitting. This can be described mathematically by the radar equation Eq. 2.1 where
G is the antenna gain of the Transmitting Antenna (TX) and the Receiving Antenna (RX) and λ
the according wavelength of the chosen frequency of the sent pulse. r is the radial distance of the
target to the radar system which functions as a transmitter (TX) as well as as receiver (RX). The
target is being characterized by its Radar Cross-Section (RCS) σRCS. Knowing these parameters
the received pulse power PRX is calculated from the transmitted pulse power PTX as

PRX =
GTXGRXλ

2σRCS

(4π)3r2TXrRX

2

PTX. (2.1)

A pulsed radar system keeps sending pulses equidistant in time domain with a fixed Pulse Repeti-
tion Frequency (PRF). This PRF determines the receiving window, in which a received pulse can
be allocated unambiguously to the transmitted pulse. A pulse received in the next receiving window
will be allocated to the next transmitted pulse and therefore is interpreted to be a closer target.

The pulsed radar systems resolution is determined by the pulses duration τP or the according band-
width BW = 1/τP. It can be derived from the minimum geometric distance of two targets that can
be differentiated for their echoes not to overlap at the receiver [KH10]. This is expressed as

δr =
c0

2BW
. (2.2)

This signifies that the radar system’s ability to separate neighboring targets is limited by the band-
width of the transmitted signal’s pulse. Physically close targets cause the received pulses to overlap
in time domain. An increased bandwidth or shorter pulse duration therefore leads to an increased
resolution, reducing the probability of the pulses to overlap.

However, a signal’s energy is determined integrating the signal’s power over time. Applying the
reduction of the pulse length therefore directly translates into a reduction of the signal’s energy E
as
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E = PTXτP. (2.3)

This trade-off between resolution and received Signal-to-Noise Ratio (SNR) requires a high pulse
power which makes the concept itself solely not applicable for most cases.

Frequency Modulated Coherent Pulsed Radar

Combining the pulsed radar with a frequency modulated pulse shape allows separating physically
close targets along with long pulse duration by their different instantaneous frequencies [Mor00].
The transmitted signal is shaped as a linear frequency ramp which is called a chirp and can be
described mathematically as

sBP = sin(2π(fc + kt)t), with t ∈
[
−τP

2
,
τP

2

]
. (2.4)

The signal is centered around the center frequency fc and the chirp rate k is calculated as

k =
BWc

τP
. (2.5)

In order measure the range the received signal’s phase shift to the transmitted signal’s phase needs
to be determined. Therefore, the instantaneous frequency fi(t) is derived by differentiating the
signals phase ϕ(t) after time as

fi(t) =
1

2π

dφ(t)

dt
=

1

2π

d

dt
[2π (fc + kt) t] = fc +

BWc

τP
t. (2.6)

Here it is important to consider that the radar system’s operating bandwidth needs to operate at
double the chirp frequency in order to fulfill the nyquist criterion. This particularly concerning the
sampling frequency of the Analog-to-Digital Converter (ADC).

In order to maximize the received SNR a matched filter is applied. The matched filter is a digital
filter convolving the transmitted signal with its complex conjugate in TD or multiplying it in the
FD [KH10].

Radar systems are mainly characterized by their impulse response. It is described by the radar sys-
tems response to a normalized point target. From this the geometric resolution can be determined
from the 3-dB-bandwidth of its main lobe. The sidelobe suppression can be evaluated from the
Peak-to-Side-Lobe Ratio (PSLR). The basic reference function is a sinc-function which without



10 2 Theoretical Fundamentals

any weighting function employs a PSLR of 13 dB. This is often improved by using a hamming-
weighting-function to the antenna pattern which leads to a PSLR of 43 dB, so that there is more
contrast in the resulting image. However, this comes to the cost of a wider main lobe and therefore
a slightly decreased resolution [Mor00].

2.1.2 Synthetic Aperture Radar

A frequency modulated pulsed radar can be enhanced to a two-dimensional (2D) imaging radar
system. In order to do so the system is mounted onto a moving platform e.g. a satellite in orbit and
a synthetic aperture is being processed from the received backscattered signals.

Figure 2.1: Geometric principles of a SAR scene including the azimuth and range direction, the
swath width and footprint of the SAR antenna’s beam, the transmitted chirp and the
SAR system’s synthetic aperture θa.

SAR systems can operate in a monostatic, bistatic or multistatic manner, depending on the amount
of receivers and their location relative to the transmitter. Fig. (2.1) shows the geometry of a SAR
scene. On the Earth the radar system’s footprint can be seen that is enlighted by the radar system’s
beam when imaging the target. The target is a hypothetical point of interest on the Earth’s surface.
However, the real SAR system measures the beam footprint as an area instead of the hypothetical
point target.

The flight direction is called azimuth and the perpendicular Line-of-Sight (LOS) beam direction
to the target is called slant range or range direction. The point on the Earth’s surface right below
the satellite is called the nadir. With this point another range measure can be taken which is the
according ground range along the Earth surface to each slant range [CW05].
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In the following work when referring to the beamwidth the half-power beamwidth is meant. The
beamwidth in elevation or range direction causes the beam footprint on the Earth’s surface to spread
an area from the nearest point in near-range to the furthest in far-range. This spread corresponds to
the swath width on the ground [CW05].

Since the radar system is mounted on a platform moving in azimuth direction SAR systems utilize
the SAR Doppler frequency. The Doppler effect describes that the received signal’s frequency in-
creases when the distance to the target decreases and on the other hand decreases with an increasing
distance to the target.

In order to make use of this effect it is necessary to operate the radar system in a pulsed manner and
coherently with a constant PRF. If a coherent operation is not ensured, meaning the start time and
phase of the pulses is not accurately controlled, the information of the phase center and therefore
the option to process the synthetic aperture is lost. Therefore the Doppler SAR frequency works as
a function of the carrier frequency that the baseband signal is upconverted to before it is transmitted
more than as a function of the baseband signal itself [CW05].

A real antenna’s angular resolution θa in azimuth direction is described by the beamwidth of its
main lobe. This resolution depends on the wavelength λ and the length of the antenna da only

θa =
λ

da
. (2.7)

However, this is undesirable, since the resolution can only be improved by decreasing the wave-
length and therefore increasing the frequency and increasing the antenna length. Both of those
parameters however are limited, since the higher frequency goes along with a higher sampling fre-
quency. This sampling frequency needs to be double the chirp’s bandwidth BW(c according to the
nyquist criterion. Also the physical antenna length mounted on a spaceborne system is limited by
practical reasons.

Forming the synthetic aperture radar by creating synthetic antenna elements in between the imaging
time the resolution can be adapted to θsa. Instead of depending on the antennas dimension depends
on the length of the synthetic aperture Lsa as

θsa =
λ

2Lsa
. (2.8)

The factor two appears because the of the time shift in transmitting from each synthetic element
that is considered "two-way". Since in a real antenna or array all elements transmit at the same time
the gradient in phase only appears on the backscattered path of the signal. By forming the synthetic
aperture however the path of the transmitted signal also experiences a phase shift. Nevertheless,
the phase shift is equal to the one on the way back since it is caused by the transmitted signal’s path
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length which is equal to the backscattered signal’s path.

The length of the synthetic aperture is defined by Lsa in Eq. 2.9:

Lsa = θar0 =
λ

da
r0. (2.9)

Inserting Lsa from Eq. 2.9 into the product of θsa from Eq. 2.8 and r0 yields the synthetic aperture’s
resolution in range direction

δsa = θsar0 =
da

2
. (2.10)

This means that the resolution in azimuth direction becomes equal to the antenna resolution itself
and also invariant to range [Mor00].

Figure 2.2: In the principle SAR data flow the power transmitted and received by the antenna front-
end at different times passes the RF electronics and amplification stages in the SAR
sensor before being A/D sampled and demodulated into the digital domain. In the
following the digital raw data is range- and azimuth compressed by applying matched
filters to the transmitted chirp and Doppler and the raw data is focused to be imaging
data. The final image can be evaluated and interpreted further.

Summarizing the SAR processing to one step in a data flow chart the signal’s processing chain is
depicted in the block diagram in Fig. 2.2. In the SAR sensor which is containing the Radio Fre-
quency (RF) electronics the signal is generated and pulse modulated and by a circulator switched
to the transmitter circuit to be amplified and transmitted via the antenna front-end. Switching back
to operate the antenna in the receiving mode during the echo windows in the Pulse Repetition In-
tervals (PRI) in between transmitting the pulses, the antenna receives the echos that are amplified
and demodulated by the SAR sensor’s RF circuit. Therefore the received pulse is bandpassfiltered,
amplified and downconverted to baseband. The demodulation takes place in the sampling step,
sampling the In-Phase (I) and Quadtrature (Q) components [CM91]. Furthermore the signal is
sampled according to the nyquist theorem in order to preserve all information which means a min-
imum sampling rate of double the signal’s maximum frequency component. In order to fulfill the
first nyquist criterion the sampling frequency in range direction, which is also defined as the fast
time direction because it is determined by the pulse duration, would be expected to be minimally
bigger than double the chirp’s bandwidth. However, it can be made use of the I/Q modulation of
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the signal, which allows to reduce the sampling frequency by a factor of two since the signal is
split in two channels, in its real and imaginary part. Therefore in elevation a sampling frequency
only higher than the chirp’s bandwidth is sufficient. The same effect is exploited when sampling in
azimuth direction so the sampling frequency is set by the PRF. The azimuth direction is also named
slow time because it is determined by the illumination time going along with the synthetic aperture
length. Therefore it needs to be larger than the significant Doppler bandwidth. Since the azimuth
spectrum rolls of more slowly than the range spectrum conventionally an oversampling factor in
between 1.1 and 1.4 is chosen in order to avoid aliasing and ambiguities [CW05].

Having the signal downconverted to baseband and sampled in digital domain, it enters the SAR
processing chain. As already discribed the pulse shape that is chosen to be transmitted for the SAR
signal is a chirp, usually chosen to be an upscaling chirp. Therefore, the received signal in range
direction is expected to be shaped as the transmitted signal. In order to implement a matched filter
which optimizes the SNR the received signal is convolved with a reference signal. This reference
signal is the complex conjugate of the received signal’s shape and therefore the complex conjugate
of the transmitted signal. This processing step is called range compression.

Figure 2.3: SAR processing chain with the 2D raw SAR data experiencing range compression and
azimuth compression in order to focus the scene and particularly a marked point target.
This involves the convolution with the according reference function and considers the
range variance in case of the azimuth compression.

In azimuth direction the Doppler effect which is caused by the moving platform has a similar
modulation effect taking place. Therefore a similar azimuth compression step is implemented
convolving the range compressed data with an azimuth reference function following the concept of
the matched filter. This can be seen in Fig. 2.3. However, it is important to notice that in contrast
to the range effects the azimuth effects are range variant. Therefore, the azimuth reference function
needs to be range variant too [Mor00].
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In order to enable near-realtime processing the concept of unfocused processing evolved. This
concept means reducing the length of the synthetic aperture. This is done in a way so that the
far-field condition from Eq. 2.11 for coherent processing is possible without focussing:

r0 ≥
2d2a
λ

. (2.11)

In unfocused processing the phase is considered but not corrected. The received signal is allowed to
have phase errors up to 90°. The higher the phase errors the higher are the sidelobes in the impulse
response. Skipping the correction of the phase error the reference function is rectangularly shaped
in the signal’s bandwidth. Therefore the convolutional integral simplifies to integrating the azimuth
signal over the illumination time that is defined by the length of the synthetic aperture. With the
maximum allowed phase error being set to 90° [Mor00] the unfocused length translates to

Lsa,unf =

√
2λr0ϕf

π
≡
√
λr0. (2.12)

For the resolution this goes along with deterioration and range variant effects [Mor00] as can be
seen

δsa,unf =
Lsa,unf

2
≡

√
λr0
2

. (2.13)

2.1.3 Radio Frequency Interference

Interfering signals emitted from other radio frequency sources are occuring in the received radar
data as RFI. It is common that SAR systems operating at lower frequencies as in P- or L-band or
also operating with a larger bandwidth are particularly sensitive to RFIs [TSHW19].

As well for active remote sensing with SAR but even more so for passive remote sensing with
radiometers in the lower frequency bands (< 15GHz) the occurence and impact of RFIs in and
therefore on the imaging data is very severe. In the case of SAR the presence of RFI in an acquisi-
tion which is a so called "data take" may corrupt information including amplitude, frequency, time
delay, polarization, Doppler shift and phase [TSHW19]. Therefore, the system’s frequency bands
are conventionally protected by regulations proposed on international level by the International
Telecommunication Union (ITU) [GCW+15].

According to the frequency allocation rules [Uni09] imposed by the recommendation ITU-R
RS.577-7, the allowed frequency bands and bandwidths for space-borne SAR sensors is listed in
Tab. 2.1.

The Geoscience and Remote Sensing Society (GRSS) is providing a global map showing RFI



2.1 Imaging Radar and Spaceborne Radar Remote Sensing 15

Table 2.1: The current spectrum and bandwidth regulatory rules for each space-borne active sensor
set by the ITU including band designation, allowed frequency interval and permitted
bandwidth.

Band designation Allowed frequency interval Permitted bandwidth
P band 432 to 438MHz 6MHz

L band 1215 to 1300MHz 85MHz

S band 3100 to 3300MHz 200MHz

C band 5250 to 5570MHz 320MHz

X band 8550 to 8650MHz 100MHz

9300 to 9900MHz 300MHz

detections for different instruments and frequency bands as shown in Fig. 2.4. It can be noted
that in well-developed and densely populated areas as Europe or southern Asia the RFI occurence
is a lot more crowded. Since this work is handling X-band SAR data particularly the X-band
RFIs ranging from 8GHz to 12GHz are of interest. However, all only data of NASA’s Global
Precipitation Measurement Microwave Imager (GMI) radiometer operating at 10.6GHz is entered
in the underlying data base.

Figure 2.4: Globally detected RFIs by scientific missions are reported and registered by the IEEE
GRSS. This scientific database is made accessible by the visualizations of the IEEE
GRSS RFI observations display system [GRS19].

The SAR data this work is based on is yielded from the TerraSAR-X and TanDEM-X mission of
the German Aerospace Center. Those two satellites fly in close formation on a polar orbit around
Earth and operate in X-band at a center frequency of 9.65GHz with bandwidths ranging from 100

to 300MHz. They can be operated in a monostatic or bistatic mode depending on the case of
application. For generating SAR images or in bistatic mode using interferometry in order to create
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DEMs for example. They can also be operated in different imaging modes and polarizations. Using
different polarizations has the advantage to get more information about the surface structure and
materials, and imaging modes may enhance the monitored area or resolution. The resolution and
monitored area depends highly on the operating mode. FOr example for large areas are covered by
the ScanSAR mode with a lower resolution while for high resolution but smaller areas the Spotlight
mode is used. However, filtering the X-band RFIs in the map above to the operating bandwidth of
the TerraSAR-X Mission which is ranged 9.5GHz to 9.8GHz the number of documented RFIs in
the GRSS Map reduces to zero, since there were no RFIs reported from satellites operating in that
frequency range yet.

In order to avoid conflict of remote sensing systems to collide to the maximum extent, the radio
transmission in each frequency band is categorized into primary and secondary services by the ITU.
Depending on the frequency band SAR can therefore be a primary basis in one band but only be
a secondary basis in another one and therefore be denied from imaging large areas. This is the
case in P-band where it is also only allocated by a permitted bandwidth of 6MHz. Additionally, it
is the cause of restricting the European Space Agency (ESA)’s biomass mission from large areas
of Northern America and Europe because of possible interferences with wind profilers and space
object tracking radars [TSHW19].

Most RFI sources are originated in commercial or industrial radio devices over land. These include
for example radiolocation radars, wind profilers, telecommunication devices and amateur radios
[TSHW19]. In X-band they can be seen most prominently observed in areas of airports, harbours
and military stations. However, there are also few cases of RFI originated in other space-borne
satellites, such as broadcasting signals from the GNSS constellations, communication satellites or
other active remote sensing systems. These spaceborne RFI sources can affect the SAR system in
two ways. One is hitting the SAR system with a direct jamming signal within an antenna side-lobe.
This kind of interference power was analyzed and found out to be non-negligible but tolerable due
to the antenna pattern. The other one is terrain scattered interference that occurs when two SAR
satellites share a nearby illuminated area. This interference gets potentially large since the main
lobes could couple and hit specular targets on specular surfaces as lakes. Then the received echo
of a target would not be seen as a point-like source anymore. The combination of the both SAR
system’s transmitted signal’s and backscatter would overlay and cause a remodulation across the
illuminated area. This scenario was not actually found to have occured yet. However, it is gaining
in probability for future missions with large swath widths, more frequent revisits and orbit crossings
[TSHW19].

The received echo S(n) is just like the RFI I(n) and the noise W (n) a time series and can therefore
be modeled of length N with elements n. Therefore the interfered Signal X(n) can be mathemati-
cally modeled as the summation:

X(n) = S(n) +W (n) + I(n), with 1 ≤ n ≤ N . (2.14)
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Low power incoherent RFI could be "mitigated" during the matched filtering in SAR processing.
However, this is more a smearing than a controlled filtering. Therefore, high power RFIs remain in
the focused image as visible artifacts and noise.

(a) LA, USA (b) Erdaojiang, China

Figure 2.5: Exemplary focussed 2D SAR images. They contain different RFI patterns and are
aligned with the azimuth axis lying in the x-axis and the range axis lying on the y-axis.
This convention is kept for the following work.

The SAR data is 2D- imaging data with the azimuth and range axis. One rangeline is therefore
defined to describe all range samples per azimuth sample. These visible artifacts are in azimuth
direction normally limited by the antenna pattern but in range direction blurred over the whole
rangeline.

If there are a multitude of low power RFI sources in bistatic data the injected noise causes the
loss of the phase information and introduces a phase error that may make it unapplicable for SAR
interferometry [TSHW19].

NBIs take a narrow bandwidth in relation to the SAR’s chirped signal bandwidth and are continuous
in time relatively to the illumination time. This type of RFI usually occurs in land-mobile and
amateur radio systems and can be modeled mathematically as a sum of complex sinusoidal tones
Al, fl and θl being amplitude, center frequency and phase for the l-th RFI component [TSHW19]:

INBI(n) =
L∑
l=1

Al(n) exp(j(2πfln+ θl)). (2.15)

Pulsed WBIs have a varying PRF and a wider bandwidth. They are common in ground-based
radiolocation radars. They can be differentiated into Chirp Modulated (CM) (Eq. 2.16) and
Sinusoidally Modulated (SM) (Eq. 2.17) WBI, which normally each do not describe real RFIs
perfectly but real RFIs can rather be described as a combination of both of them:
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ICM(n) =
L∑
l=1

Al(n) exp(j(2πfln+ πγln
2)), (2.16)

ISM(n) =
L∑
l=1

Al(n) exp(jβlsin(2πfln+ ϕl), (2.17)

with γl, βl and ϕl being the chirp rate, modulation factor and initial phase of the l-th component.

Broadband Continuous Wave (CW) RFI signals are modulated and therefore occupy a relatively
broad bandwidth. Also they are continuous in time with respect to the integration time. They
often occur in broadband communication systems or coded signals as the GNSS and have noise
like characteristics. This could be for example caused by a Digital Video Broadcasting- Terrestrial
(DVB-T) Signal as in Eq. 2.18 that is organized in frames and sub-carriers using Orthogonal
Frequency Division Multiplexing (OFDM) symbols. With m, l and kSC being the frame number,
symbol number and subcarrier number. The information s is modulated on the subcarriers and in
order to extract the actual physical signal only the real part is retrieved [TSHW19]. This type of
RFI is the hardest to detect and mitigate.

IDVB-T(n) = Re

{
exp(j2πfcn)

∞∑
m=0

lmax∑
l=1

Kmax∑
kSC=1

sφ(n)

}
, (2.18)

with:

φ(n) =

{
exp( j2πk(n−Tg−lTS−lmaxmTs)

Tu
) if (l + lmaxm)TS ≤ n ≤ (l + lmaxm+ 1)TS) ,

0 else.
(2.19)

The signal is transmitted in frames. Each fram duration TS consists of data part Tu and a guard
interval with the duration Tg. Each frame consists of lmax = 68 OFDM symbols.

Fig. 2.6 shows a comparison the normalized magnitudes of those three RFI types logarithmic in
exemplary range spectra.
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(a) Narrow-band (b) Pulsed Wide-band (c) Broadband

Figure 2.6: Differing exemplary RFIs from [TSHW19] in their normalized range spectra in com-
parison to each other.

2.2 Conventional RFI Detection

RFI detection methods can be separated according to their point of action in the data flow. This
split results into the categories of detecting RFIs in level-0 data which effectively means unfocused
raw data or level-1 data meaning the focused imaging data [LZL+22].

RFI detection in the level-0 data can be implemented in TD, FD or the time-frequency-Domain.
The easiest implementation is using a power threshold and comparing the received signal in TD.
This is adequate for short and strong pulses, however weaker longer RFIs remain undetected.

A more adaptible way of detection is to transform the received signal to the FD using a Fast Fourier
Transformation (FFT) and comparing it to a threshold or perform detection algorithms in the FD.

However, most conventional is the detection and mitigation with spectrograms in time-frequency-
domain. Thereby the signals dimensional extension in time and frequency is taken into account. So
continuous wave and pulsed RFIs can be detected simultaneously [PQPC20].

A conventional approach to separate targets from background noise is the CFAR. It was originally
suggested by Finn and Johnson in [Fin68] and is since then state-of-the-art in many variations
depending on the scenery.

The simplest case of a CFAR is the CA-CFAR. The CA-CFAR is working according to Fig. 2.7.
There is one Cell Under Test (CUT) x0 considered at a time that is surrounded by guard cells on
each side. The noise level estimate E is calculated by averaging the reference cells xiN on both
sides where N is the length of the CFAR filter meaning the number of cells considered as

E =
1

N

N∑
i=1

xi. (2.20)
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Figure 2.7: Basic function principle of a CA-CFAR from [JYB16] including the CUT x0, the guard
cells and the reference cells on but sides. It also depicts the resulting noise estimate
E and the multiplication with the detection scale factor B leading to the final target
indication.

Scaling this noise estimate by a predetermined detection scale factor B the threshold T can be
calculated by T = EB. With this threshold T there is a binary decision for every CUT x0 if there
is a target or RFI detected or not [JYB16].

Calculating the sliding window over the backscatter and deciding on pixel basis means that CA-
CFAR processing yields large computational effort and low speeds. In order to accelerate the
computation, the fast CA-CFAR is a CA-CFAR enhanced by a convolution of the CFAR window
and the signal’s power in the raw data or image’s intensity in the imaging data instead of pixel by
pixel performance [YLL+24].

CA-CFAR is a very effective detector in case of stationary and homogeneous interferers. How-
ever, in case of multiple targets or RFIs some can be masked by the biggest target or strongest
RFI [JYB16]. Also in the case of WBIs the averaging results in layering around the target which
deteriorates the detection probability.

A CFAR algorithm that is supposed to deal with that problem of separating multiple close targets
is the Order Statistic (OS)-CFAR. In OS-CFAR the reference windows samples are sorted in as-
cending order and there is no guard interval. The k-th element of the sorted list is called the k-th
order statistic, with the n/2-th order statistic being the data’s median. False alarms can be reduced
in case k-th order statistic is chosen close to the maximum, however that goes along with a loss of
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detection probability [JYB16].

2.3 Deep Learning Methods

In a conventional engineering design flow a problem is typically defined, analyzed and standard-
ized by experts in order to implement a mathematical model that can be solved analytically or
numerically. However, sometimes this design flow is too costly or inefficient, or the problem is too
complex to be studied in its full generality. In this case ML and DL models have evolved. Instead of
relying on domain knowledge ML relies on large data sets labelled according to ground truth of the
task and trains and optimizes general-purpose learning machines accordingly to fulfill the desired
task [S+18]. The terminology DL evolves from the principle that the ability to learn complicated
concepts is built out of multiple simpler ones. Depicting this structure as a graph there are many
individual simple layers on top of each other and therefore showing a deep structure [GBC16].

Finding unexpected, rare patterns in data is defined as anomaly detection. In order to do so with
ML the detector is trained with normal data only. This is highly advantageous since the anomaly’s
nature is sparse which often causes the problem that even with a large data set available the amount
of anomalous data samples is insufficient for a supervised classification training. However, in
anomaly detection scenarios usually a lot of normal data samples are available which enables the
use of normal data for training in semi-supervised detectors. Even though more powerful methods
for fault detection such as knowledge-based methods and supervised learning-based methods do
exist, they are mostly not feasible in real scenarios because they require detailed a priori knowledge
of potential faults and perturbations [GAFC23]. Therefore the conventional model-based approach
with statistical methods, classification-based methods, and clustering-based methods for anomaly
detection is to construct a profile of normal instances, to afterwards identify anomalies as instances
that do not conform to the normal profile [LTZ09].

The field of DL is broad and the methods and architectures are numerous. However, they can be
categorized most basic into supervised and unsupervised learning. In supervised learning a training
data set with according target variables or so-called labels is given. The goal therefore is to find
an algorithm to predict the target variable or label for a new data point on the exterior of the so
far observed domain. The most prominent yet basic example for this type of learning is linear
regression.

In contrary to that in unsupervised learning training is taking place on unlabelled data sets. Apart
from that major difference however, unsupervised learning is more loosely defined. Given a data
set the goal is to learn some useful information on the characteristics of interests for the specific
application at hand from the data distribution given. The learning process typically uses hidden or
latent variables. Example uses are density estimation for a direct approximation to the data set’s
distribution, dimensionality reduction and representation or the generation of new samples [S+18].
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There are various architectures of ML used for anomaly detection. So are e.g. instance based
methods used frequently because they are simple, efficient and intuitive computing an outlier score
from the distance of a new sample point relative to the data points stored in the memory. Prominent
examples for this category are the k-nearest neighbor algorithm such as the local outlier factor
[LTZ09].

While ensemble architectures can be as well used in combination with ML methods in order to
increase performance or sensitivity they can also be used for anomaly detection on their own. The
most well-known example for that is the iForest constructed by an ensemble of Isolation Tree
(iTree)s for direct isolation of outliers [LTZ09]. This approach will be discussed in the following
work.

Alternatively, explicit generalization models retrieve the normal behavior in a fixed size model,
e.g. linear regression models, boltzmann machines or Neural Networks (NN)s while requiring low
memory and offering various possible extensions of the basic methods. As part of explicit gener-
alization models most prominently NNs that Artificial Intelligence (AI) falls into can be named.
In anomaly detection most NN architectures are based on autoencoders, VAEs or time-series-
networks, where the two prior ones will be explained in the following work in detail [GAFC23].

2.3.1 Isolation Forest

The iForest is a model-based architecture that explicitly isolates anomalies rather than profiling
normal instances. It exploits the anomalies’ attributes of being a minority consisting of fewer
instances and having clearly differentiable attribute-values from normal instances. Because of those
attributes anomalies in a decision tree are isolated closer to the roots whereas normal points are
isolated deeper down at the end of a tree as is depicted in Fig. 2.8.

(a) Principle [DHS22] (b) Isolating x0 [LTZ09]

Figure 2.8: Basic function principle of the iForest network architecture showing its ensemble struc-
ture. Furthermore, the implementation of outlier isolation is shown.

The iForest is an ensemble consisting of several iTrees. Each iTree consists of a certain amount of
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nodes. Each node T can be either an external node with no child because the prior split already met
the splitting condition. Or it is an internal node with one test and exactly two daughter nodes Tl and
Tr. In an iTree every test consists of an attribute q and a split value p. The test is therefore splitting
the data set at T along q<p into the subsets of the data set at Tl and Tr. Implementing those splits
an iTree is set up by recursively dividing the data set by randomly choosing an attribute q and a
split value p until either a height limit is reached, the subset is containing one sample only or all of
the subset’s elements have the same value. If each node in the tree has exactly zero or two daughter
nodes the iTree is a proper binary tree. Since all anomalies are expected to be isolated to external
nodes of number n the memory requirement is bounded and only grows linearly with number of
isolated anomalies [LTZ09].

In order to detect anomalies a ranking that reflects the degree of anomaly is required. One way to
deal with this is to sort the data samples along path length and anomaly score and to pick the tops
of the list as anomalies. The path length h(x) of a point x is measured by the number of edges x
traverses in an iTree from the root node until reaching an external node [LTZ09].

Deriving an anomaly score is challenging since while the maximum possible height of iTree grows
in the order of n, the average height grows in the order of log(n). However, the anomaly score is
computed as in Eq. 2.21 from the average path length E(h(x)) of a collection of isolation trees and
c(n) which describes the average of path length h(x) for a given external nodes of number n. This
is borrowed from describing an unsuccessful search in binary search trees [LTZ09]:

s(x, n) = 2−
E(h(x)
c(n) . (2.21)

Along the anomaly score s the sample can be ranked as an anomaly or not. If instances return s
very close to 1, they are definitely ranked as anomalies. Instances with s much smaller than 0.5,
are quite safe to be regarded as normal instances, while if all instances return s ≈ 0.5, the entire
sample does not really have any distinct anomaly.

Multiple iTrees for a given data set stuck together in an ensemble form an iForest. An iForest is a
powerful method for anomaly detection and classifies based on the average path lengths, while its
only variables are number of trees t and subsampling size ψ. Empirical studies in [LTZ09] have
shown that for various applications choosing ψ = 256 generally provides enough details to perform
anomaly detection with desired behaviour and convergence for t ≤ 100. Anomaly detection using
the iForest is implemented in a two-stage process. The first stage is the training stage which builds
iTrees using sub-samples of the training set. The result is exemplary iTrees with decision nodes
with particular attributes q and a split values p. The second stage is the testing stage which passes
the test instances through iTrees to obtain an anomaly score for each instance. As described prior
the iTrees are functioning in the recursive splitting manner building a partitional model. The limit
in tree height is set by roughly the average tree height from training since only shorter than average
path lengths are expected to be anomalies [LTZ09].
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2.3.2 Autoencoder

Autoencoders are neural networks consisting of the same number of output units as input units.
They are trained to generate an output y that is close to the input x. A trained autoencoder feedfor-
wards each input to a unique representation z(x) in the latent dimension within the neural network.
Overall the autoencoder therefore consists of two parts, the encoder mapping x to the hidden rep-
resentation z(x) and the decoder mapping z(x) onto the output y(z). In order to find non-trivial
solutions and learn significant features, some constraint is required so that the network does not
simply copy the input values to the outputs. A conventional approach is to restrict the latent dimen-
sion of z relatively to the input x.

(a) Architecture (b) Example for image

Figure 2.9: Basic function principle of the autoencoder after [BB23]. The non-linear hidden units
in the deep, layered encoder and decoder structure are depicted mapping the input to
the output layer via the latent dimension. Additionally, an example implementation for
the case of an image is given.

This compression is normally taking place over various layers and the architectures can therefore
be described as deepautoencoders. Fig. 2.9 shows a basic multilayer network with D inputs and
outputs mapped onto M hidden units and a dimensionality compression meaning M < D. The
target variables for training are the input itself since the goal is to reconstruct the input values x
from the latent dimension data z(x). This is called an autoassociative mapping. The reconstruction
error from input to reconstructions is described by an error function. Minimizing this error function
the network parameters w are determined [BB23]. The encoded data z(x) in the latent dimension
can be described by the encoding layer’s activation function f , the weight matrix W and the bias b
as in [STG21]:

z(x) = f(Wx+ b). (2.22)

Reconstructing the data in the decoder layers is described symmetrically by decoding layer’s acti-
vation function f ′, its weight matrix W ′ and its bias b′ as
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y(z) = f ′(W ′h+ b′). (2.23)

For linear activation functions the error function has a unique global minimum. At this minimum
the network performs a projection onto the M -dimensional subspace that is spanned by the first
M principal components of the data. This special case of a linear autoencoder is simple and very
prominently used as the Principle Component Analysis (PCA) in order to choose the most signifi-
cant attributes in complex data.

Including nonlinear layers in the network however, the input and output units, such as potentially
even the latent layer units are still linear. However, changing the encoding and decoding layers to
use sigmoidal nonlinear activation functions makes this mapping very general and not restricting
linearity. This improves generalization abilities. However it also requires computationally intensive
nonlinear optimization techniques that come with increased complexity of and introduce the risk of
finding a sub-optimal local minimum of the error function [BB23].

2.3.3 Variational Autoencoder

Similar to the standard autoencoder, VAEs consist of an encoder, latent space and a decoder. They
also aim to minimize the reconstruction error between the input data and its reconstructions. How-
ever, while a standard autoencoder encodes each input vector as a single vector in latent space,
VAEs encode the input as a Gaussian distribution in the latent space [STG21].

Figure 2.10: Basic function principle of the VAE after [STG21] keeping the autoencoders encoder
and decoder structure. The gaussian distribution in latent space is represented by its
mean µ and its standard deviation σ Additionally, the resampling trick with random
sampling from this distribution in training is depicted. This is supposed to increase the
model’s generalization abilities and therefore also its robustness.

This principle is depicted in Fig. 2.10. The ML’s backpropagation principle cannot be applied
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to a random sampling process when training the model. Therefore a ‘reparameterization trick’ is
applied, where a random value is sampled from a unit Gaussian distribution [KW19].

The latent vector z is described by µ, σ, ϵ being the mean, standard deviation and a random value
of the gaussian distribution. The ⊙ is the elementwise multiplication [STG21] as

z = µ+ σ ⊙ ϵ. (2.24)

The VAE loss LVAE function consists of a reconstruction and a regularization term. The regular-
ization term is expressed as the KL divergence between the learned distribution and the true prior
distribution. It is computed by µ, σ, x,y which are the mean, standard deviation, input and recon-
struction as

LVAE(x, y, µ, σ) = L(x, y)
N∑
i=1

σ2
i µ

2
i=1 − log(σi)− 1. (2.25)

L(x, y) is the reconstruction term and
∑N

i=1 σ
2
i µ

2
i=1 − log(σi)− 1 is the regularization term and N

describes the dimension of the latent space [STG21].

2.3.4 Evaluation Metrics

In order to quantify and compare an architecture’s performance evaluation metrics are required.
One of the most commonly used is the accuracy. The accuracy is computed from the True Positives
(TP), True Negatives (TN), False Positives (FP), and False Negatives (FN) and is a first measure
for the ability in anomaly detection

accuracy =
TP + TN

TP + TN + FP + FN
. (2.26)

However, it has to be noted that the accuracy alone is not sufficient for particularly imbalanced
problems such as anomaly detection. Since the data load for the normal data (negatives) is much
higher than for the anomalous data (positives) a high accuracy score does not automatically mean
a high anomaly detection rate. Instead further metrics have to be taken into account [GAFC23].

Another commonly used evaluation metric is the precision. The precision is used to describe the
percentage of results that are relevant and is calculated as

precision =
TP

TP + FP
. (2.27)
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Consequently, the recall is the percentage of the relevant results that were classified correctly by
the algorithm that is observed. It is defined as

recall =
TP

TP + TN
. (2.28)

Ultimately the F1-Score calculates the balance between precision and recall from the two metrics
above in order to design the algorithm adequately. It yields a value between zero and one with
higher values indicating a balanced performance [STG21] as

F1 = 2
precisionrecall

precision+ recall
. (2.29)

Another two metrics particularly useful for anomaly detection is the True Positive Ratio (TPR) and
False Positive Ratio (FPR) as computed in Eq. 2.30 and Eq. 2.31. Their importance resumes from
their function in the Receiver Operating Characteristic (ROC)-curve. The ROC-curve optimizes
the trade-off in between TPR and FPR, meaning the maximum correct detection rate of anomalies
along with the minimum false detection rate of normal data samples [GAFC23]. They are defined
as

TPR =
TP

TP + FN
, (2.30)

and:

FPR =
FP

FP + TN
. (2.31)

With the ROC-curve the threshold separating the normal and anomalous detected samples is swept
and which thus optimizes the trade-off for the samples at hand. The resulting performance is
conventionally depicted in a confusion matrix separating the normally and anomalously labelled
samples according to their predicted labels. Such an exemplary confusion matrix is depicted in
Fig. 2.11. These measures will be relied on in order to comprehensively compare the network
architectures in the following work.
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Figure 2.11: Exemplary confusion matrix showing the structure used for the later on performance
measure. It separates truely normal or anomalous samples and visualizes the amount
of them that are predicted to be normal or anomalous by the investigated model.

2.4 Mitigation

Whilst most research investigates the RFI detection and mitigation in the focussed SAR imaging
data such as CFAR [YLL+24] and Notch Filtering in [ZLX+24], it also offers benefits to implement
the detection and mitigation on the raw data directly. This is because the realtime processing
abilities for rapid onboard processing of the SAR imaging data is limited. This requirement offers
opportunities for the investigations of RFI detection and mitigation on the raw data as it is driven for
example with a filter bank approach in [MACC24] and a two-stage mitigation with pulse-by-pulse
difference detection in [WHG+25].

As in conventional detection RFIs in SAR data can also be mitigated in the TD, FD or time-
frequency domain.

In TD Mitigation is taking place by techniques pulse blanking and amplitude domain processing.
However, it is very limited to the well-functioning for short and strong power pulses.

In FD Mitigation is conventionally implemented by notch filtering or frequency blanking. Fre-
quency blanking means locating the RFIs in the raw data spectrum and setting a power threshold
to limit the RFIs’ bandwidth sideways. Using frequency blanking the detected bandwidths in the
rangelines are blanked out and set to zero, therefor the RFIs’ power and but also the signal for these
bandwidths is lost [PQPC20]. The most intuitive approach is to use a notch filter. The concept is
simple yet very effective, which is why it is widely used for spaceborne onboard mitigation. Most
notch filters consider a particular threshold and zero notch to suppress the RFI with the notch as a
contrary shaped filter. There are also novel approaches trying to introduce adaptability to the RFIs’
energy [ZLX+24]. However, the notches advantage depends on the actual RFIs’ resemblance with
the assumed RFI shape. Notch filters assume narrow-band RFIs which is the RFI type occuring
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most frequently.

In time-frequency fomain detection and mitigation go hand in hand conventionally using spectro-
grams and a frequency banks for mitigation [MACC24].

Adaptive filters are more complex and can be implemented in time, frequency, spatial, polariza-
tion, or by multi-domain joint analysis. The most popular one is the recursive least-mean-squares
algorithm that can achieve a good compromise for convergence speed, stability, complexity and
adaptability at the same time. The filter coefficients are calculated by minimizing the mean square
prediction error. Another advantage is the computational effort and speed, since wide-band as well
as narrow-band RFIs are mitigated within one filter’s pass. This is enabling the mitigation technique
for onboard processing which is another reason for its frequent usage [TSHW19].





3 Data Set

In order to detect, analyze and investigate RFIs in SAR X-band data first of all a data set needs
to be built. Therefore, the scenes were chosen based on their quicklook images yielded from the
TerraSAR-X mission in monostatic operation mode. For this analysis three types of data sets were
built. The first one consists of selected imaging scenes without RFI and scenes with strong RFI
that are distributed on a global level. The second is a subset of this data set in order to establish
a validated ground truth for it. The third data set consists of noise pulses from all TerraSAR-
X acquisitions performed in 2023 and 2024. They are used to expand the analysis to a global
coverage.

3.1 Scene Selection

First of all quicklook images around the world containing and not containg RFI are chosen and
separated according to whether their quicklook images were visually showing signs of RFIs or not.
This sorting yielded 99 RFI-free scenes of which two examples can be seen in Fig. 3.1.

(a) Mexico City, Mexico (b) On-Dong, North Korea

Figure 3.1: Three exemplary quicklook scenes of the data set without visible RFI artifacts. This
data set consists of a total of 99 scenes scenes that are selected on a visual inspection
basis.

Additionally, it yielded 28 scenes containing strongly visible RFIs. 16 of those scenes are located at
Los Angeles. As a result of a previous study most of the scenes are found to contain interferences
close to an airport’s radar system at different times [SKAH+24]. The variety in those scenes is
led back to the radar system differing in operating frequency and mode over time even during one
satellite overflight. Therefore, even for the same stationary RF interferer as a source the behaviour,

31
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interference with the SAR system and therefore resulting RFI pattern in the focussed image can vary
a lot. However, there are various radar systems serving as RFI sources at, e.g., airports, harbours
or military bases around the world. Since already the same one differs a lot in operation and RFI
pattern, different RFI sources have an even larger variance. This can be seen in Fig. 3.2.

(a) Los Angeles, USA (b) Los Angeles, USA

(c) Liadong Bay, China (d) Australia, Queensland

Figure 3.2: Four exemplary quicklook scenes of the data set with strongly visible RFI artifacts. This
data set consists of a total of 99 scenes scenes that are selected on a visual inspection
basis.

3.2 Pre-Study on Rangeline Level

What can also be seen in these examples in Fig. 3.2 is that not the whole scene is affected by
the RFI. The RFI is smearing and destroying the information for the whole rangeline. Because of
the azimuth compression it should be smeared in azimuth direction as well. However, due to the
antenna pattern the dominant artifacts are very compressed to few rangelines in azimuth direction.
Depending on the interference the antenna pattern and sidelobes of the SAR antenna can be noted,
but the overlaying RFIs Doppler together with the SAR Doppler seem to compress the RFIs impact
in SAR processing to few rangelines only. These RFIs in the processed images can be visually
classified as RFI or RFI-free by experts easily but with high manual effort. Therefore, replacing this
manual form of RFI detection by ML algorithms is already being investigated using CNNs [IL19].
CNNs divide images into areas of pixels and scan those pixels in order to detect significant areas
for classification. It is known that for each affected rangeline the whole processed rangeline will
be smeared. However, for scenes containing RFIs most of the image’s rangelines are not affected
by the RFI. Since mitigation can only be implemented in the raw data anyways also the detection
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is chosen to be implemented on raw data. Another advantage of choosing the raw data domain
is using on-board detection in large bandwidth systems to choose other frequency bands for the
data take as an immediate action. Since RFIs are strongly visible in the rangelines PSDs already,
the sampled raw data x[n] is converted into the Fourier domain using an FFT and the absolute
value is taken. That way the PSD Sx[k] by the FFT mapped to frequency bins k is computed. It
is normalized over the total amount of N samples per rangeline and divided by the frequency bin
width or spectral resolution ∆f

Sx[k] =
1

fs
|FFT(x[n])|2 = 1

N∆f

∣∣∣∣∣
N−1∑
n=0

x[n]e−j 2π
N

kn

∣∣∣∣∣
2

, (3.1)

with the frequency bin width ∆f described by the sampling frequency fs and the total length of
samples N :

∆f =
fs

N
. (3.2)

The PSD Sx[k] describes how the power of a signal or time series is distributed across different
frequencies. It shows which frequencies contain the most energy, helping to analyze patterns like
noise, periodic signals or RFI. Therefore, those rangeline PSDs are the foundation of the data set.

3.2.1 Imaging Scenes

A basic characteristic with which RFIs can be detected or classified in the PSD is by the SIR. A
RFI signal can be characterized by its peak power

PRFI = max|FFT(x[n])|2, (3.3)

However, in order to interpret its impact it needs to be put into relation to the signal’s power

PS = mean|FFT(x[n])|2. (3.4)

The SIR of a signal can be described as

SIR =
PRFI

PS
. (3.5)

It can not only be used to quantify an interferer’s strength in relation to the signal’s strength in gen-
eral. Another use is to classify the RFI-contaminated signals in terms of significance and notability
in focused SAR. This allows to determine a measurable threshold underneath of which a potential
RFI might be neglectable or is not be separable at all from the backscattered signals.
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This filtering along a SIR threshold is implemented as a pre-detection of strong interferers. It is
important in order to implement a filtering of only rangelines that are secured to contain RFIs of
quantifiable strength to test and compare the detection and mitigation method’s performance. Doing
so the first challenge is to define a suitable threshold. This is achieved by calculating the SIR for
each rangeline over the whole RFI scenes in azimuth direction and analyzing the according mean
SIR µSIR,az and σSIR,az. Adding those two variables yields a first estimate of an upper threshold for
the scene at hand as

TSIR, az = µSIR, az + σSIR, az. (3.6)

In order to picture this threshold in an anomalous rangeline the computed TSIR, az is added to the
mean PSD µPSD,rl as

TPSD,rl = µPSD,rl + TSIR, az. (3.7)

These thresholds are depicted exemplary in Fig. 3.3.
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Figure 3.3: Filtering all rangelines of an RFI-contaminated scene by a SIR threshold of 18 dB. The
threshold Taz,rl is retrieved from all RFI-scene’s mean SIR µSIR,az and its standard devia-
tion σSIR,az. More deeply, the threshold TPSD,rl is depicted in an according PSD rangeline
spectrum together with the PSD-specific maximum and mean value that correspond to
the RFI’s power PRFI and the signal’s power PS.

Having this thresholding technique run over all 28 RFI scenes yielded TSIR, az in between 16 dB to
18 dB, while having it run over all 99 no RFI scenes yielded TSIR, az with a maximum of 13 dB. It
was validated empirically that a conservative threshold of TSIR, az = 18 dB indeed yielded only RFIs
with a notable SIR while lower thresholds included RFI-free rangelines as well.
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Having this filtering also check the visually sorted scenes showed three presumably RFI-free scenes
to contain RFI as well. They are depicted in Fig. 3.5. Comparing the quicklook images with the
SIR over azimuth with the set threshold depicted in Fig. 3.4 not even weak RFI patterns can be
found in the quicklook according azimuth positions in the quicklook images.
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Figure 3.4: Three RFIs found that are visible in the SIR filtered profiles but that are not visible in
the according processed quicklook images shown in Fig. 3.5

However, the existence of interferers in the detected PSD rangelines is validated as can be seen in
Fig. 3.6. Therefore, the three RFI-affected RFI-free files are sorted to the RFI scenes. Therefore
the scene ratio switched to 96 RFI-free scenes to 31 secured RFI scenes.
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(a) Taqtaq, Iraq (b) Xuchang, China (c) Abdali, Kuwait

Figure 3.5: RFIs invisible in the quicklook images but visible in the according SIR profiles.
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Figure 3.6: According PSD rangeline with maximum SIR for each quicklook image without visible
RFIs but SIR profile with RFIs above threshold T = 18 dB.
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3.2.2 Global Noise Scenes

Another data set used for the following work consists of globally distributed noise pulses. Before
and after every imaged scene short 50-100 receive-only sequences measuring the system noise are
recorded. This allows to annotate the noise in the processed image products. Those are not required
to be mitigated since they are not part of the SAR focusing or image. However, they can be used
to detect X-band RFIs all over the world in the data takes already acquired. As the noise pulses
are short and available in a local data base this reduces the computational effort compared to the
full level-0 data. Subsequently, there is no reason to depict images, have a look at all rangelines of
the noise pulse or reduce the regarded bandwidth to the SAR signal’s bandwidth to check the pure
existence of an interferer at the according coordinate. Therefore, each noise pulse is regarded with
the whole bandwidth in raw data and simplified to its maximum in the noise sequence per range
sample only. So every noise sequence taken before a data take is summarized into the rangeline
with the maximum power peak value only and computational effort is reduced.

3.3 Ground Truth Data Set

Ground truth is a term to describe the validated truth of the labelling of a data set. It is particularly
important using DL methods. This is because there huge data sets are used in order to train a
network for a task since its performance depends highly on the quality of the data set. Since the
total amount of rangelines of the data set is in the order of 3 mio. RFI-free vs. 75 000 RFI-affected
PSD profiles it is not feasible to check them all manually nor to quantify the RFIs adequately.
Therefore, the SIR filtering is used in order to implement a ground truth basis with RFIs > 18 dB

considered only. Furthermore, a subset of the full signal data set is taken. It consists of five files in
total. Three of them are RFI-free and later on used for training. One of them is RFI-free and later
on reserved for validation. The test set is a combination of RFI-free and RFI-contaminated files. It
consists of two RFI scenes as depicted in Fig. 3.7 (b) and (c) in order to capture a diversity of RFIs
and obtain representability and one RFI-free scene as depicted in Fig. 3.7 (a).

In order to ensure the ground truth in the following context, the SIR rangelines are taken as a
detected baseline to compare the selected architectures performances to. Furthermore, only the ad-
ditional detected RFI affected rangelines are checked by hand in order to evaluate the improvement
from the benchmark of detecting strong RFIs with a SIR > 18 dB. Therefore, a lower bound on
the detectable RFI strength cannot be measured and neither does a full ground truth labelling of
the scene exist. However, the ground truth of the training and validation set is validated manually.
Also the RFI rangelines include clearly quantifiable RFIs above an SIR of 18 dB. Therefore, the
filter is describing a clear and quantifiable lower bound for considered RFIs in the test data set.
This ensures a fair comparison of performances with a verified benchmark. The improvement in
detection is evaluated relatively to this validated ground truth subset. It includes the SIR filtering
as a first step to create the benchmark and a subsequent manual check for verification.
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(a) RFI-free Alberta Canada (b) RFI Thitu Reefs Pacific

(c) RFI Los Angeles USA

Figure 3.7: Quicklook scenes of the ground truth data set (a) interference free scene over Alberta,
Canada; (b) and (c) scenes containing visible RFI over Reefs Pacific and Los Angeles,
USA, respectively.

Tab. 3.1 shows an overview of the data sets introduced in this chapter. They are built and labelled
as a basis for a fair and valid performance comparison. It has to be noted that the total RFI-scenes
and samples are equal to the ones used for testing since they are used for testing only. Also the
noise performance data set is a labelled subset of the total global noise data set in order to evaluate
the detection performance on the noise data. Due to its large size the global noise data set cannot
be labelled in a verified manner which is why it cannot be used for the performance comparison
directly. Therefore, the noise performance data set as a labelled subset is introduced.

Table 3.1: Overview of all data sets used for this work including the complete data set, ground truth
data set as a subset of it and the global noise data set for the performance test.

Attribute Complete data set Ground truth data set Noise performance data set
RFI-contaminated scenes total and test 31 2 592
RFI-free scenes total 96 5 3984
RFI-free samples total 2 938 856 173 366 3984
RFI-free scenes test 93 1 798
RFI-free samples test 2 938 472 48 024 798
RFI-contaminated samples 74 754 4787 592
Total RFI-contaminated percentage 2.5% 2.7% 14.8%
Total RFI-free percentage 97.5% 97.3% 85.2%

Tab. 3.2 shows an overview of particularly the autoencoder’s results on the aforementioned total
global noise data set. The model is trained and validated on the same amount of samples as in the
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performance comparison with the noise performance data set. In contrary to the noise performance
data set however it consists of all TerraSAR-X noise sequences taken in stripmap mode from 2023
and 2024.

Table 3.2: Overview of the autoencoder’s results on the extended total global noise data set. The
model is trained and validated on the same amount of samples as in the performance
comparison with the noise performance data set. In contrary to the noise performance
data set however it consists of all TerraSAR-X noise sequences taken in stripmap mode
from 2023 and 2024.

Attributes Global noise data set (results)
Training scenes and samples 2390
Validation scenes and samples 798
Total scenes and samples 58 084
RFI-free scenes and samples detected 53 960
RFI-contaminated scenes and samples 1747
Total RFI-contaminated percentage 3.0%
Total RFI-free percentage 97.0%





4 Network Selection and Implementation

In order to analyze RFIs in X-band SAR data the RFIs first of all need to be detected. Since the RFI
patterns in the images as well as in its PSD can vary a lot from, e.g., WBI, NBI to various WBI or
various NBI, novel ML architectures are considered for RFI detection. Furthermore, since RFI-free
PSDs on rangeline level are highly available in contrary to RFI samples themselves conventional
anomaly detection methods are pre-selected as most promising and compared in the following
work.

4.1 Data Pre-Processing

Feeding real, absolute SAR PSD profiles into a ML architectures obliges to some prior processing
for correct training and detection. Therefore, in the raw data first of all the imaging data needs to
be filtered from prologue and epilogue pulses transmitted before and after imaging pulses. Those
include e.g. calibration pulses, synchronization pulses or receive-only (noise) pulses.

As depicted in Fig. 4.1 the resulting imaging data samples are fed into the pre-processng chain
(a). Since they are still containing a Direct Current (DC) component at 0Hz which could be mis-
interpreted as an RFI the data is first DC filtered, which is depicted in (b). Furthermore, the noise
floor is cut off and the signal is truncated to the transmit bandwidth in order to only consider RFIs
that are actually affecting the signal in the bandwidth relevant for the further processing steps. The
result of this step is shown in (c). ML networks generally require the prior knowledge of two vari-
ables of the data set. One of them is the sample’s shape. Therefore, the training, validation and
complete testset is scanned for the maximum rangeline’s shape meaning its samples and all other
rangeline PSDs are interpolated to this maximum dimension in FD. This step is illustrated in (d),
even though it cannot be seen in the plotted spectrum. However, the amount of samples and the
oversampling factor simply increased for the maximum vector size handling of the PSD spectrum.
The other variable that has to be known is the data sample’s dynamic range so the ML network
expects the data to be passed over in a normalized form. In order to fulfill this criterion (e) shows
the normalization step mapping the rangelines PSD’s values in a range of zero to one.

41
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Figure 4.1: Pre-processing steps applied to all input samples before inputting them into ML net-
works. The retrieved rangeline PSD in (a) is DC filtered in (b) and limited to the SAR
signal’s bandwidth in (c). In order to standardize for the ML network’s proper function
additionally each input sample is interpolated in (d) and normalized in (d).
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4.2 Training and Validation Set Size

The standard approach for ML applications is to use 60% of the data set for training, 20% for
validation and 20% for testing. For anomaly detection only the normal data is used for training and
validation and the separation here is implemented on full scene level. In order to achieve a general
ground truth based on which the performance of the selected architectures can be compared fairly
and to be universally valid and representative, a ground truth data set as a subset of the actual data
set is used. It consists of five RFI-free scenes in total. Therefore, this leaves three RFI-free scenes
for training, one for validation and one for testing.

Additionally, for testing the two RFI containing test scenes already shown in Chapter 3 are SIR
filtered. The RFI rangelines are attached to the data set labelled as an RFI. In absolute data set
sample sizes this means 123 871 rangeline samples are used for training, 1479 for validation and
52 811 for testing, consisting of 48 024 RFI-free test samples and 4787 containing RFIs. With an
RFI ratio of 9% to 91% this is slightly increased to the complete data set that shows an RFI ratio
of 2.5% to 97.5%.

Fig. 4.2 exemplary shows the autoencoder’s training history with the all samples of the ground
truth training set consisting of three files in batches of 128 samples at a time such as its confusion
matrix. Training in batches means splitting the full training set in a set of subsamples and training
with this batched set before updating the weight matrix in the backpropagation step. This can
be implemented manually or dynamically. Additional manual Batching in tensorflow is required
for large data sets, when the full data set does not fit into the Random Access Memory (RAM)’s
memory and dynamic batching is sufficient when the data set does fit in to the RAM’s memory
but not into the Graphics Processing Unit (GPU)’s. However, batch sizes typically vary in between
16 and 512. They are chosen based on the sample size and come with a trade-off. The lower
the batch sizes the slower the training but the larger the batch sizes the more seldomly the weight
matrix is updated which may affect the convergence of the model. It increases the risk to slow down
optimization in each epoch and to run into a local, suboptimal minimum since the stochastical noise
introduced by small batches is avoided. An epoch is the iteration of training with the full training
set. With a small non-batched data set the whole training set is loaded into the model and the
weights are updated after every epoch. However, with batched training the weights are actualized
more regularly after every batch has been trained on in every epoch which maintains the favorable
conditions for convergence.

However, reducing the complete training set in size to a training subset keeps the computational ef-
fort and duration when training as low as possible. Enabling a manual check of all used training and
validation samples of the batch it even more importantly helps to ensure a ground truth. Therefore,
the three training scenes are contributing to a training subset by 128 samples each, each sample
referring to a rangeline or PSD profile. This results in a new reduced training set of 384 samples
from three different scenes. Another 384 samples are taken from the validation scene yielding a
validation set of also 384 samples.
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Figure 4.2: The training history (a) and performance (b) of the autoencoder using all samples of
the selected training and validation scenes of the ground truth data set is shown. The
train data set is sliced in batches of 128 for training and it yields optimal performance
meaning it is at least as performant as the underlying SIR filtering.

In comparison to training with the complete training set Fig. 4.3 exemplary shows the autoencoder’s
training history with the training subset such as its confusion matrix.

As can be seen, the performance is maintained on a constant level by increasing the number of
training epochs. This means that the backpropagation, which is the updating of the model’s weights
according to loss optimization after each batch remains the same. However, the number of itera-
tions over the whole data set is increased maintaining the same performance as feeding more data
samples.

Since this enabled the ground truth for this subset to be validated manually and the performance is
maintained, it is viewed as sufficient and is used for the following work.

Additionally, as can be seen from both confusion matrices, the resulting performance of the autoen-
coder yields a nearly optimal performance relatively to the SIR filtering. Therefore it is pre-set as
a benchmark for the other pre-selected architectures.

4.3 Implementation and Performance Comparison

For the RFI detection three ML architectures are pre-selected and therefore compared regarding
their performance. They were implemented in Python 3.10.8 using tensorflow for GPU and the
keras library.
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Figure 4.3: The training history (a) and performance (b) of the autoencoder using only the subset
of the three selected training scenes of the ground truth data set is shown. All samples
of the one validation scene are used for validation. The train data set consists of 128
samples of each of the three training scenes that are manually checked and verified to
be RFI-free. It still yields optimal performance meaning it is exactly as performant
as training with the full training set size. Also it is still at least as performant as the
underlying SIR filtering.

4.3.1 Isolation Forest

The iForest architecture is implemented as a package from the sci−kitlearn ensemblelibrary and
used as a pre-existing package. The features for the data set are of stochastical nature. Therefore the
mean and maximum value which represent in the RFI case the signal and the RFIs PSD are fed as
the principle components. However, in order to check for significance in other features additionally
the median and the standard deviation σ are fed for training. The standard deviation’s computation
is shown in Eq. 4.1 with the number of datapoints n in the sample, the i-th data point of the input
sample xi and the arithmetic mean of the sample x̄:

σ =

√∑n
i=1(xi − x̄)

n− 1
. (4.1)

The median is computed as with the number of datapoints n in the sample and the n-th data point
of the input sample xn as

Median =

{
xn+1

2
if n = odd,

1
2
(xn

2
+ xn

2
+1) if n = even.

(4.2)
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The sci-kit learn iForest as a model itself works in principle as described in the theoretical part in
detail. It sets up an ensemble of decision trees splitting the data set according to random features
at random values and stops splitting when a subset is isolated. Isolated subsets define outliers
and therefore the sample is classified as an anomaly. The iForest can be fed by the attributes
contamination which is by default set to auto. This assumes an anomaly ratio of 10% from the
original paper [LTZ09]. Another attribute used is random state which set to any integer ensures
reproducibility by keeping the trained ensemble structure. Both of those are used for the simulation
at hand. The unsupervised result as a scatterplot in Fig. 4.4 (a).
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Figure 4.4: The iForest implementation is shown including the scatterplot over the mean and maxi-
mum of the samples as principle components after the unsupervised iForest stage itself
(a). It shows that TNs and TPs cannot be separated uniquely from the TN and FP sam-
ples. This situation is similar for the MAE error distribution of all samples after the
semi-supervised thresholding stage in (b) as the MAE for a part of MAEs is very low.
This can be traced back to the mean and maximum value of each sample not being
truely independent but rather correlated features in case of being RFI-contaminated.

As was verified empirically the maximum and mean are the principle components. The iForest itself
is an unsupervised model. Having retrieved those principle components it can be transformed into a
semi-supervised model by using the predictions for the principle different features and calculating
the Maximum Absolute Error (MAE) as can be seen in Eq. 4.3.

The MAPE is computed by the difference of the element i-th predicted data point ŷ in a sample to
the i-th true data point ŷ. The maximum of all those differences can either be transformed into a
percentage representation to the Maximum Absolute Percentage Error (MAPE) [Gil18]. However,
it can also be taken directly as MAE per range line sample as it is implemented in the following
work as

MAE = max|ŷi − yi|. (4.3)
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4.3.2 Autoencoder

The autoencoder as in detail described in Section 2.3 works by compressing the input data to a
reduced dimension in the latent space. As a deep learning method it does so via various layers.
The implemented architecture consists of an input layer, three hidden layers for compression in the
encoder and symmetrically three hidden layers in the decoder before the output layer.

As dimensions for the latent space and the encoding and decoding layers a strong gradual compres-
sion of the input vector’s size of 26958 down to 16, 8 and finally 4 data points in the latent space
is chosen and verified empirically as the best performing option. This architecture’s setup can be
seen in Fig. 4.5.

Figure 4.5: The autoencoder’s network architecture consists of an encoder and a decoder each con-
taining multiple layers. The implemented autoencoder has an input and output layer
according to the largest input vector’s shape of 26 958 data points per input sample that
has to be known and standardized to all input samples. In the encoder this sample is
compressed to vector shape’s of 16, 8 and finally 4 in the latent dimension. All of these
layers are chosen to be dense layers and the dimensions are determined to yield best
results empirically. The decoder decompresses symmetrically. All layer’s activation
functions are chosen to be ReLU functions except for the last one that is chosen to be
a sigmoid function since the decision anomaly or not is binary. During training the
weights for each layer are optimized for the best reconstruction minimizing an MSE
loss function. The autoencoder itself is a fully unsupervised model.

There is a variety of layers available as options to choose from. The most typical ones are dense
layers, convolutional, pooling and normalization layers. While dense layer’s perform the linear
operation on the layer’s input vector with the activation function as described in Section 2.3, con-
volutional layers work as filters selecting subsets of the whole layer’s input vector at a time. They
are also operating linearly by matrix multiplications. But they have another activation function at-
tached at the layer’s output which usually operates non-linearly. A pooling layer on the other hand
effectively downsamples the data in between hidden layers passing on the prior valid information
while reducing the number of operations required for the following layers. Normalization layers
can be used at the input for feature scaling or as a hidden layer for batch normalization.
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The hidden layers for the autoencoder at hand are chosen to be all dense layers and empirically
verified to be sufficient for the RFI application. As activation functions for all layers the Rectifier
Linear Unit (ReLU) activation function is used. They are the most popular in feedforward networks
since they are computationally not too costly and accelerate the convergence of stochastic gradient
descent. It basically computes the maximum of the input and zero [KK24] as can be seen:

f(z) = max(0, z) =

{
z if z ≥ 0,

0 if z < 0.
(4.4)

For the last layer the sigmoid activation function is used. It is a binary activation function and
therefor more applicable towards the binary decision at the output deciding if the sample is detected
as an anomaly or not [KK24]:

f(z) =
1

1 + e−z
. (4.5)

The model is finally compiled using the Adaptive learning rate optimization algorithm (Adam)
to optimize the learning rate for the gradientdescent algorithm. In gradient descent there is a
loss or error function that needs to be optimized. Here this loss is chosen to be the Mean Square
Error (MSE). Compared to the MAE the MSE in this case performs best for training. It is computed
by the difference of the i-th predicted data point ŷ to the i-th true data point ŷ squared. All of those
differences are summed up and divided by the number of data points in order to get the mean and
therefore the MSE per range line sample [Gil18]:

MSE =
1

n

n∑
i=1

(ŷi − yi)
2. (4.6)

The autoencoder itself is an unsupervised deep learning model. However, for anomaly detection
its task is not only to learn how to reconstruct the input data. Instead, training only with normal
RFI-free data, the autoencoder does optimize its abilities to reconstruct the normal data with an
MSE reconstruction error as low as possible. Subsequently, testing on anomalous RFI data it is
expected to yield reconstructions with a generally higher reconstruction error. This can be seen in
Fig. 4.6.
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Figure 4.6: An exemplary normal input sample (a) and anomalous input sample (b) of the autoen-
coder is depicted in direct comparison to the according reconstruction. The normal in-
put sample’s reconstruction lies within the area of the input samples themselves whereas
the reconstruction of the anomalous sample is shifted on the y-axis. This is spanning an
area of error within the input sample and its reconstruction.

These reconstruction errors cummulated in histograms are depicted in Fig. 2.9 (a). Separating them
by a threshold transforms the algorithms functioning principle from an unsupervised learning to a
semi-supervised working manner. The optimal threshold is chosen by sweeping it while checking
the FPR and TNR with a labelled testset and the ROC curve as described in Section 2.3. This ROC
curve is depicted in Fig. 4.7 (b).

Another measure for the performance that can be retrieved from the ROC curve is the Area Under
Curve (AUC). It describes the area enclosed by the ROC curve as a first performance measure
ranging from 0.0 to 1.0. i is an index for every point on the ROC curve that runs from 1 to the
number of thresholds or pointsn on the ROC curve as

AUC =
n−1∑
i=1

(FPRi+1 − FPRi)
TPRi+1 + TPRi

2
. (4.7)
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Figure 4.7: The autoencoder’s reconstruction errors for the ground truth test set can be clearly seper-
ated in their MSE distribution histograms (a). The optimal threshold is determined with
the ROC curve that sweeps the threshold linearly and optimizes the ratio of the TPR
and the FPR accordingly (b). This thresholding is based on the labelled test set and
therefore supervised. This makes the combined anomaly detection of autoencoder and
thresholding a semi-supervised technique.

4.3.3 Variational Autoencoder

The VAE’s architecture setup is implemented analogue to the autoencoder. The main difference is
the extension of the latent space to a distribution instead of a vector as can be seen in the depicted
architecture in Fig. 2.10. This includes implementing the KL-loss described in detail in Section 2.3.
The extension of the autoencoders architecture at hand to a VAE is based on the general architecture
of the convolutional VAE in [Cho20].

However, just like for the autoencoder itself dense layers and the MSE as an error or loss function
are used and the number of layers, such as their dimension remain the same. Accordingly, the
subsequent semi-supervised steps with the thresholding techniques based on the ROC-curve remain
the same. In Fig. 4.8 the distribution of reconstruction errors with the threshold optimized for the
error distribution is also depicted for comparison reasons. As stated in Section 2.3 the threshold is
swept and chosen based on the optimal TPR and FPR trade-off.

In order to compare the architectures regarding their performance, the evaluation metrics introduced
in Section 2.3 and the confusion matrices in Fig. 4.9 are used. As can be seen in the confusion
matrices of the iForest and VAE on the first glance none of their performances comes close to the
nearly optimal performance seen in the autoencoders confusion matrix in Fig. 4.3 (b).

In detail Tab. 4.3.3 shows those evaluation metrics of the three architectures at hand compared.
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Figure 4.8: The VAE’s architecture is similar to the aforementioned autoencoder’s. The three hid-
den compression layers to 16, 8 and 4 remain such as the dense layer type and the MSE
loss function. They were emprically validated to still perform best. However, the input
sample in latent space is mapped to a gaussian distribution here and represented as its
mean and variance. The sample from this distribution randomly resampled as any point
of this distribution (a). The following supervised stage calculates the MSE reconstruc-
tion errors for the normal and anomalous and determines the optimal threshold with
the ROC curve according to the autoencoder (b). This also makes the VAE’s anomaly
detection semi-supervised.
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Figure 4.9: The confusion matrices of the iForest (a) and the VAE (b) in direct comparison both
showing performances significantly below the SIR filtering for RFIs with a SIR above
18 dB. Neither of them comes close to the performance of the autoencoder shown in
Fig. 4.2 and Fig. 4.3 in Section 4.2.
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Table 4.1: The comparison of the performance metrics for iForest, Autoencoder, and VAE is de-
picted including the AUC, best TPR, best FPR, accuracy, precision, recall, f1-score and
the according best threshold.

Attribute iForest Autoencoder VAE
AUC 0.61 1.00 0.38
Best TPR 0.59 1.00 0.17
Best FPR 0.00 0.00 0.06
Accuracy 0.9590 1.0000 0.8719
Precision 0.9344 1.0000 0.2219
Recall 0.5895 0.9998 0.1648
F1-score 0.7229 0.9999 0.1891
Threshold 0.052989 0.037976 0.015082

As can be seen from all the performance metrics the autoencoder performs significantly better
than the other two considered architectures. The labelled data is set as the benchmark by SIR
filtering with a threshold of 18 dB. Therefore it has to be noted that everything that is below
optimal performs worse than a classical SIR filter. Techniques underperforming this SIR filter for
strong RFIs do not need to be further investigated since their sensitivity yields no improvement to
traditional methods. While the iForest yields justifiable results regarding accuracy and precision, its
recall is already below the desired behaviour. This means that the iForest’s sensitivity and therefore
its ability to identify all RFIs is poor. This is probably due to the iForest’s simple architecture
and particular suitability for data of high complexity meaning for data with various features or
attributes. Since only the PSD per rangeline and some stochastic parameters retrieved from it are at
hand to feed the iForest it is supposedly neither operating on the most suitable data set nor complex
enough to detect the anomalies in the PSD profile per rangeline as the only important feature.

Even though being the most powerful and generalizing model the VAE shows the poorest perfor-
mance. With an accuracy below 90% and as well precision as recall below 25% it is not only
insufficient in detection. It still has a justifiable overall correction measured in the accuracy. How-
ever, its sensitivity measured in recall and accuracy of detected RFIs measured in the precision is
underperforming significantly.

Having a look at its reconstructed samples in Fig. 4.10 leads to the conclusion that the VAE gen-
eralizes too much reconstructing the input sample. Therefore, the low reconstruction errors as well
for normal but also for anomalous errors cannot be separated accordingly. A generalization so ro-
bust to fluctuations in the input would be very beneficial for the use case of creating new samples.
Nevertheless, it makes the architecture unsuitable for the RFI detection case at hand.

It can be also noted that the autoencoders statistics on the ground truth data set being 100% are
nearly optimal or optimal taking into consideration minor stochastical effects. This means it is at
least as performant as the underlying SIR filter of 18 dB. However, it may also be impacted by a
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Figure 4.10: An exemplary normal input sample (a) and anomalous input sample (b) of the VAE is
depicted in direct comparison to the according reconstruction. The normal input sam-
ple’s reconstruction lies within the area of the input samples themselves. In contrast
to the autoencoder’s reconstruction here so does the anomalous sample’s reconstruc-
tion. This means there is no area of error spanning within the input sample and its
reconstruction and the according MSE value is too low for a reliable separation.

limited difficulty of the subset. The ground truth data set is valuable as a fair and universally val-
idated comparison basis of the three network architectures. However, including two RFI-affected
scenes and one RFI-free scene only it is not solely applicable to evaluate a final realistic perfor-
mance. Therefore another evaluation on the complete data set has to be implemented in order to
represent more varying backgrounds and RFIs. This will be explained in the next chapter.





5 Autoencoder’s Results and Extensions

In this chapter the selected architecture’s performance evaluation is extended to the complete data
set in order to achieve more realistic and representative results. Additionally, the autoencoder’s
ground truth performance is compared with conventional methods in order to make statements on
the improvement of the novel detection method. Therefore, the SIR as well as the CA-CFAR filter
is comparatively used. Furthermore, the signal data as well as the globally distributed noise data set
is classified. It is analyzed regarding the occuring interferers and also a global interferer mapping
in X-band w.r.t. the RFI’s signal properties is presented. Finally an analysis of occuring errors is
given.

5.1 Performance on the Full Testset

In order to make the evaluate a realistic performance a representative variety of RFIs and scene
backgrounds needs to be considered. This goes beyond the ground truth data set used for the
comparison of architectures. It needs to be tested on scenes including more varying backgrounds
and RFIs. This is achieved by testing the model on the complete signal data set described in Chapter
3.

Fig. 5.1 shows the reconstruction errors of the autoencoder on the complete data set. As can be
seen zooming into the first 100 number of examples in the histograms the separation is no more as
perfect as in the ground truth example. This can be traced back to a higher variation and complexity
in the RFI-free scenes and also in the types of RFIs in the RFI scenes. An optimal total threshold
of 0.0276 for the MSE reconstruction errors is found which is set for the following analysis.

The full data set consists of 96 RFI-free scenes and 31 RFI scenes. The amount of rangelines in the
complete test data set sums up to a total of 2 938 472 RFI-free rangeline samples and 74 754 RFI
rangeline samples.

The RFI rangeline samples above the SIR of 18 dB are filtered for a labelled performance evalua-
tion. This means also in the complete testset considering all RFI-affected scenes at hand only their
rangelines that have an SIR of 18 dB or more are used as an RFI-affected test sample.

The training takes place with the same subset from Section 4.2 in order to ensure the manually
validated ground truth for the model optimization. For the complete testset however a manual
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Figure 5.1: For a more realistic representation of variations in RFIs and scene backgrounds the
autoencoder’s performance evaluation is extended to the complete data set stated in
Tab. 3.1. Its reconstruction errors and thresholds are depicted on a full-scale in (a) and
also zoomed in to the first hundred samples in (b) as a detailed view of the overlap.

verification is not feasible. Even though the SIR threshold filtering works well for the RFI de-
tection it sets a minimum below which potential weak RFIs remain undetected. These rangeline
samples surrounding the SIR filtered RFI-affected rangeline samples in the RFI labelled scenes
cannot be labelled clearly and would need to be checked manually. They are not included for the
performance evaluation itself and therefore left out of the testset. This is because the majority of
rangeline samples in an RFI-contaminated scene below the SIR threshold is RFI-free. However, the
amount of samples below the threshold is in the order of several 10 000s. This makes their manual
labelling extremely time consuming. Also it is not objectively quantifiable which makes it more
representative to consider the rangelines with a SIR above 18 dB in the RFI affected scenes for the
RFI-contaminated testset only. Subsequently, the remaining rangelines in the RFI affected scenes
with a SIR below 18 dB are excluded from the data set and considered for the investigations at a
later point in this work.

Actually a further step of the work is to even verify if RFIs below this or a lower SIR threshold
have a visual impact on the resulting image or if they can be neglected because of disappearing
in the received SAR echo. Also the RFI-free labelling is checked by the SIR filter since a manual
verification and labelling of 3 mio. RFI-free rangeline samples is not feasible by hand but necessary
in order to test the variety of monitored areas, backgrounds and targets.

Overall the full test data set with 2 938 472 RFI-free rangeline samples and 74 754 RFI rangeline
samples after SIR filtering yields a ratio of 97.5% to 2.5%. This strongly shows the applicability
for anomaly detection.

As can be seen in the confusion matrix in Fig. 5.2 the imperfect separation in the reconstruction
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errors before has a very low impact due to the large data set and the probabilistic distribution.
Therefore, the 746 FPs and the 12 FNs still yield a correct detection rate of 100.0% rounding to the
first decimal as it is implemented for the confusion matrix.
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Figure 5.2: The confusion matrix of the autoencoder applied on the complete data set’s test set
consisting of all scenes is shown. It yields an optimal performance of 100.0% relative
to the underlying SIR filtering. This means the verified detection performance for RFIs
with a SIR above 18 dB is a 100.0%.

5.2 Comparison with conventional Methods

The autoencoder as a novel deep learning method for the RFI detection in SAR raw data is selected
due to its superior performance to other deep learning anomaly detection techniques as the iForest
and the VAE. However, there are also conventional approaches targeting RFI detection and miti-
gation that have been established. Conventionally, they are used on simulated RFI affected data
where the interferer meets theoretical conditions such as transmitting continuously and constantly
in an isotropic manner. This differs from real RFIs since they do not meet those assumptions and
increase the RFIs variance [FBKO23].

Therefore the autoencoder’s detection performance needs to be held accountable against conven-
tional methods in order to examine the achieved improvements. In order to do so, the conventional
CA-CFAR which is commonly used in literature for RFI detection and mitigation across branches
such as the automotive branch [Wan21] or passive remote sensing in radiometers [QCP+21] is
compared. Additionally, the autoencoder’s detection rate is compared to the rather conservatively
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chosen SIR filtering with a threshold of 18 dB in order to measure a potential improvement. So far
this threshold was used to determine the ground truth benchmark to evaluate the autoencoder’s per-
formance against. In the following it will still be used as a benchmark but the whole RFI-affected
scene will be considered including the rangeline samples with a SIR below 18 dB. That way po-
tential improvements of the autoencoder or CA-CFAR relatively to the SIR filter can be evaluated.

The CA-CFAR is setting a threshold similar to performing a moving average over the rangeline
from for the CUT from the left and right CFAR cells while excluding the directly neighboring
guard cells padded by an application specific offset. This principle is explained in detail in Section
2.2.

As can be seen in Fig. 5.3 this principle of the CA-CFAR works as expected and well for NBIs with
slim and high peaks. However, even strong WBIs remain undetected because the moving average
is adapting to the continuous WBI pattern. This can be reduced by increasing the guard interval
to very large numbers. However, this reduces the CA-CFAR behaviour of a moving average and
adapting to the background noise to the simple SIR filtering approach that was used before.
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Figure 5.3: The CA-CFAR threshold in exemplary rangeline PSD profiles are depicted. (a) shows
the CFAR actually detecting the NBI by its peak whereas (b) shows that the WBI re-
mains completely undetected and the detection is a case of luck because of a very nar-
row additional RFI in the spectrum besides the WBI. This can be traced back to the
moving average that causes the CA-CFAR- threshold to adapt to the signal but also to
graduate slopes as a WBI’s artifacts.

In order to fairly compare this behaviour the two WBI scenes in the ground truth data set and
one additional NBI scene are selected as a subset for testing. The exemplary rangeline samples
in Fig. 5.3 are taken from those scenes. Tab. 5.1 shows the percentage of the total detected RFI-
affected samples in the RFI-affected scenes. The total amount of RFI containing rangelines in the
scenes cannot be determined since the manual load is too high. However, the SIR filtering with the
threshold of 18 dB detecting all RFIs above that threshold marks the benchmark. The benchmark
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marks the traditional, conventionally achievable reference that the other methods are evaluated in
relation to.

The percentage of the full scenes image that are RFIs with a SIR stronger than 18 dB is for the NBI
scene 5.7% and for the two WBI scenes together 8.7%. It is measured in rangeline samples. In
comparison the CA-CFAR for the NBI scene detects an additional 0.6% of manually verified RFI
affected rangelines. However, for the two WBI scenes it detects only 0.67% in total which yields
a deterioration to the conservative SIR filtering of −8.03%. Also it means that only 7.7% of the
strong RFIs with an RFI above 18 dB are detected.

Finally, the autoencoder for the NBI detects an additional 1.3% of the image compared to the SIR
benchmark which is also verified manually. Even more interestingly however, in case of the WBI
scenes it even detects an additional 2.7% in contrary to the deterioration of the CA-CFAR.

Table 5.1: The detected RFI percentages in the full WBI and NBI RFI scenes are depicted. A
manual ground truth cannot be determined for all rangelines with a SIR below 18 dB due
to the high data load. Therefore, the SIR filtering’s percentage is taken as a reference or
the benchmark and the conventional CA-CFAR as well as the suggested autoencoder are
compared against it.

Detected RFI rangelines in scene SIR CA-CFAR Autoencoder
NBI (one scene) 5.70% 6.30% 7.00%

WBI (two scenes) 8.70% 0.67% 11.40%

This result is highly promising for the autoencoder’s improved detection rate of real world RFIs in
real X-band SAR data that are not meeting the theoretical assumptions of simulators.

5.3 RFI Classification

Apart from directly mitigating the detected RFIs they can be also further analyzed and clustered
according to certain characteristics. In the imaging data with 31 scenes a certain variation of RFIs
may be represented but still only a limited variety of RFIs is pictured. Therefore, for the actual
imaging scenes it is rather interesting to test mitigation techniques. However, using another data set
namely the globally distributed noise data set described in Subsection 3.2.2 a way larger amount of
RFIs can be detected all over the world. This is where proper classification or clustering according
to selected features comes to play.
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5.3.1 Imaging Data Set

As a first step it is rather interesting to locate the RFI in the PSD and to find the occupying band-
width as forwarded information for further mitigation steps. This can be achieved by detecting the
peak and mapping it to the RFIs center frequency fc. For this sci-kit learns find_peaks function
can be used to find local maxima. The bandwidth can be detected by its according power level. The
straightforward approach would be to use the Half Power Beamwidth (HPBW) measure. However,
this is found to leave significant RFI power artifacts remaining. Better results are achieved using
the SIR threshold of 18 dB as a power threshold that is mapped to the according bandwidth. These
results are even improved using the scene specific SIR threshold as an adaptive power threshold
mapped to the according bandwidth.

This localization of one or potentially several separate RFIs along with their bandwidths is shown
in Fig. 5.4. It is depicted along the three interestingly varying quicklook examples from Fig.
3.2 in Chapter 3. Connecting the dots from the quicklook images to their according PSDs some
observations can be made.

Overall the brightness of the RFI pattern in the quicklook image can be translated to the power of
the according RFI in the spectrum. The clear bright lines across the whole rangeline dimension as
it is seen in the Los Angeles, USA (a) scene seem to connect to a strong but single and relatively
narrow-band interferer as a peak. This RFI is assumed to result from the Los Angeles airports radar
system. However they resemble the NBI from Section 2.1.3 that are common in land-mobile radar
systems [TSHW19]. The hatched, wide sawtooth patterns observed in Liadong Bay, China seems
to correspond to pulsed, peaky but distributed RFIs operating in several frequency bands within the
SAR’s imaging bandwidth (b). Since it is so close to a bay the guess of it resulting from maritime
and harbour radar systems can be made. They look like the pulsed WBI from Subsection 2.1.3 that
are common in ground-based radiolocation radars.

Finally, the sort of lines out of point target patterns including the semi-transparent hatched sawtooth
pattern in Queensland, Australia is not so clear. It seems to result from a rather wide-band RFI at
the edge of the SAR signal’s bandwidth as it is seen in (c) but also in other rangelines from an
NBI at a completely different frequency further within the signal’s bandwidth. Generally speaking,
WBI cause a rather wide but softer, semi-transparent stripe than the bright lines seen at the NBI.
So potentially the rare pattern in the processed image is due to the the differing RFI artifact shapes
and center frequencies during the data take itself as each rangeline is impacted at another point in
time and at another location individually. Another factor could be the RFI having it’s peak power
just at the signal’s bandwidth edge. Due to the matched filtering in the SAR processing this should
decrease the RFI’s effect in the focused image significantly. Therefore, these switches of RFI center
frequencies from further within the signal’s bandwidth and more narrow-band to further to the edge
and more wide-band RFIs are likely to be the reason for the mixed RFI pattern in the processed
mage.
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Figure 5.4: The corresponding RFI classifications to their quicklooks in Section 3.2 are depicted in
their maximum’s SIR rangeline PSD profiles.
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5.3.2 Global Noise Data Set

Even though the location in the PSD with its bandwidth can be used as a first step for classification
the actual use of the classification comes with the globally distributed noise data set. The global
noise data set itself consists of all noise sequences taken in 2023 and 2024 by TerraSAR-X in
stripmap mode. In order to evaluate the autoencoder’s performance first however there is the noise
performance data set created as a subset of this global noise data set as stated in Tab. 3.1 first.
It is labelled by thresholding for training, setting a representative threshold and to evaluate the
autoencoder’s performance on the noise sequences. This is required since without the signal’s
characteristics the noise PSD profiles partially differ a non-neglectable amount. However, the test
set used after confirming the performance with the subset contains the complete received noise
pulses acquired by TerraSAR-X in the years 2023 and 2024. Here each noise scene is compressed
into one rangeline containing the maximum in azimuth direction. This is done in order to keep the
computational effort low and easily split into RFI and non-RFI scenes.

The training is implemented with 60% of the RFI-free files of this subset. Those refer to 4788
training samples. There is no reduction to a subset feasible because noise pulses vary even stronger
than the imaging scenes. This results in a testset of 798 RFI-free and 592 RFI rangeline samples
yielding a ratio of 55.0% vs. 43.0% in the test set. It has to be noted that this results from the high
data load required for training since the total ratio of the subset is 85.2% to 14.8%. The higher
percentage of RFIs here is a result of the limitation to 3 984 RFI-free scenes of the complete global
noise data set for the performance evaluation.

As can be seen in the confusion matrix in Fig. 5.5 the noise performance data set yields a perfor-
mance that is worse than in the signal scenes but for noise pulses still very acceptable. It measures a
TNR of 99.9% which means 99.9% of truely RFI-free samples are detected as such. Also it shows
a TPR of 95.7% which means 95.7% of truely RFI affected samples are detected as such. This
yields an accuracy of 97.5%, a precision of 98.5% and a recall of 95.7%.

For the classfication or clustering of the RFIs a number of features are selected. The first attribute is
the location in the frequency band using the center frequency fc. Its histogram is used informatively
only instead of for classification. This can be seen in Fig. 5.6 (a). It is chosen not to be used for
classification since the same interferer may be transmitting at various center frequencies at different
times like the interferer in Queensland, Australia. This also opens a field for further investigation
extenting the scope of this research.

Furthermore, the degree of occupied bandwidth is analyzed. In order to do so for each center fre-
quency fc the according bandwidth above the TPSD,rl from Eq. 3.7 is determined. Several separated
peaks with different fc are set to have a minimum distance of 4000 samples to the next neighboring
fc, otherwise it is assumed to be the same RFI. Therefore, in case the power does not drop below
TPSD,rl within a one-sided window of 2000 samples the bandwidth is set to the according frequency
fc at the 2000-th sample. In the case of several separate interferers their bandwidths are summed
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Figure 5.5: The confusion matrix of the noise performance data set from Tab. 3.1 is shown in
order to evaluate the autoencoder’s performance on a labelled subset of the global noise
sequences. The full global noise data set is too large to be labelled as stated in Tab. 3.2.

up to a total occupied bandwidth that is used as a clustering metric. As can be seen in the histogram
in Fig. 5.6 (b) the total occupied bandwidths are clustered into three classes. Narrow-band RFIs
refer to BW ≤ 5MHz, wide-band RFIs to 5MHz ≤ BW ≤ 20MHz and very wide-band RFIs to
BW ≥ 20MHz.

Another attribute chosen to characterize the RFI is its total RFI power in dB. The RFI’s power
is retrieved from the PSD spectrum by dividing the rangeline’s PSD as a vector by the according
rangeline’s mean µ⃗PSDrl

which is the assumed signal in order to seperate the RFI’s power from the
combined signal’s and RFI’s power. Integrating over the RFI’s bandwidth yields the RFI’s power
as

PRFIrl = 10 log

(∫ f2

f1

⃗PSDrl

µ⃗PSDrl

df

)
. (5.1)

It is used to analyze the RFIs overall strength transmitted over the whole spectrum. Another useful
extension might be to consider the power normalized per occupied bandwidth. However, here
the absolute total power is chosen in order to compare the RFIs strength directly. That way the
impact of an increased power even if it is distributed over the whole spectrum and locally low per
frequency can be considered and compared. As can be seen in Fig. 5.6 (c) the RFI’s power is also
clustered into three categories. A weak RFI corresponds to a total PRFI ≤ 20 dB, strong RFIs range
in 20 dB ≤ PRFI ≤ 32 dB and very strong RFIs are PRFI ≥ 32 dB.
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Figure 5.6: The RFI’s selected attributes and bounds for further classification of complete set of
noise pulses from the years 2023 and 2024 are depicted. The classification is based on
the features total occupied bandwidth, total power of the RFI(s) and count of separate
RFI(s).
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The last metric chosen corresponds closely to the separation of center frequencies fc with the
minimum distance of 4 000 samples set in between. By counting the peaks or center frequencies fc

determined per PSD profile or rangeline, the separate RFI count is determined. This corresponds
to the chosen spectral distribution metric. As can be seen in Fig. 5.6 (d) the RFI count NRFI is also
separated in three classes. The single RFIs correspond to NRFI = 1 directly, 2 ≤ NRFI ≤ 3 are
summarized as distributed RFIs and NRFI ≥ 4 are clustered as very distributed RFIs.

This classification is applied to the global noise data set in order to retrieve a global mapping and
make statements on a global level. However, the data sets global distribution has to be taken into
account before that in order to ensure its ability to be representative and estimate biases and its
informative value.

In order to gain this estimation Fig. 5.7 shows the global distribution of all 58064 images and
therefore considered noise pulses acquired by TerraSAR-X and TanDEM-X in stripmap mode in
the years 2023 and 2024. The resolution of this map is 1◦ to 1◦ patches which correspond to the
TanDEM-X DEM tile grid. Each patch is identified by the according data take’s center coordinate.

The colour scale shows a ratio of RFI detected to RFI-free rangeline PSD profiles per data take,
since an interferer does not necessarily transmit constantly and not even necessarily in the same
frequency band every time the satellite passes by. Therefore, it may be that while in one overflight
the area appears to be RFI-free at another time an RFI is detected. This ratio is depicted by the
colorbar on the right varying from fully RFI-free in the blue case to only RFI affected detected in
the red case with a continuous gradient. Additionally, the information of how many data takes at
all have been acquired at this certain patch has to be made accessible. This is implemented by the
amount of transparency at the particular patch. While no data takes correspond to zero, it increases
to the maximum of data takes continuously as well.
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As can be seen from the global coverage of images and the RFI ratios, while having monitored the
world on large-scale most of the RFIs seem to occur in prosperous and emerging market countries.
Therefore, they especially cluster in Northern America, Europe, India and China. However, some
more distributed RFIs within South America, Australia and Africa are also registered.

Having evaluated the global coverage of the noise pulses the globally detected RFIs can be classified
in order to make statements about their geographical distribution. Firstly, Fig. 5.8 shows the
global distribution of RFIs classified based on their total bandwidth occupation. While the strong
occurence in Northern America, especially the USA, Europe and China is shown just as clearly as
before it can also be said that most of the global RFIs can be classified as NBI. Most of the very
wide-band RFIs can be found along the coast or within China, however also several wide-band
RFIs can be registered in the US and Europe. The exact sources of those RFIs and reasons for this
placement open up a field of further research.

narrowband: BW ≤ 5 MHz

wideband: 5 MHz < BW ≤ 20 MHz

very wideband: BW > 20 MHz

Figure 5.8: The globally detected RFIs of the TerraSAR-X mission’s data takes taken in stripmap
mode from 2023 and 2024 are visualized. Based on the autoencoder’s results from
Tab. 3.2 the detected RFIs are classified and depicted according to their total occupied
bandwidth.

Nextly, having a look at the global RFI distribution according to their power classes, it can be noted
that the very wide-band interferers also tend to be very strong ones especially within the asian
continent. There can no clear dominance of strong or very strong interferers be noted. However,
within the US mostly strong and very strong RFIs can be observed within the country and the
weaker ones operate along the coast allowing the guess for the weaker ones to be maritime radars
and stronger ones to be airport or military radar systems. However, this does not apply for Europe
the Middle East and Asia, where strong and very strong RFIs can be just as well fount at the coast as
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weak RFIs can be found within the continent. This and the very strong interferers in the polar region
as Greenland or Iceland might also enhance the guess that they might be rooted in air surveillance.
However, for a more detailed analysis further research is required.

weak: PRFI ≤ 20 dB

strong: 20 dB< PRFI ≤ 32 dB

very strong: PRFI > 32 dB

Figure 5.9: The globally detected RFIs of the TerraSAR-X mission’s data takes taken in stripmap
mode from 2023 and 2024 are visualized. Based on the autoencoder’s results from Tab.
3.2 the detected RFIs are classified and depicted according to their total RFI’s power.

Lastly, interpreting the spectral distribution of RFIs leads to a clear tendency again since the ma-
jority of detected RFIs appears to be single ones. However, plenty of distributed RFIs occur as
well in Northern America, just as in Europe, preferedly at the coast and especially on the eastern
Asian continent’s pacific coast. Most of the very distributed RFIs correspond to the very strong
RFIs that also tend to occupy very wide bandwidths within the Asian continent or along the Asian
coast, particularly appearing to be on Chinese territory. This might be rooted in different regulation
policies for airport or air surveillance systems of the according countries but in order to make more
detailed statements further investigation is required.
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single: CNTRFI = 1

distributed: 1 < CNTRFI ≤ 3

very distributed: CNTRFI > 3

Figure 5.10: The globally detected RFIs of the TerraSAR-X mission’s data takes taken in stripmap
mode from 2023 and 2024 are visualized. Based on the autoencoder’s results from
Tab. 3.2 the detected RFIs are classified and depicted according to their total separate
RFI(s) count.





6 Mitigation

So far a superior robustness of the autoencoder compared to the CA-CFAR and SIR filtering with
respect to the RFI’s bandwidth and shape such as detection performance in general are shown.
However, the limits of the minimum strength of a detectable RFI is unknown. Mitigation is ap-
plied in order to remove the RFI from the imaging data while preserving the imaging information.
The degree of mitigation depending on each detection rate is therefore evaluated in the following
chapter.

6.1 Frequency Blanking on Rangeline Level

In order to do so, frequency blanking as the most basic form of mitigation is selected. The test
mitigation of the selected scenes is implemented using an existing DLR internal software. The
occupied bandwidth from Subsection 5.3.1 is characterized in each rangeline’s PSD. For this their
center frequency fc and SIR threshold are chosen as the characterizing attributes. Frequency blank-
ing sets this RFI bandwidth to zero so the containing information regarding power and phase is
deleted.

The impact of this method differing NBIs and WBIs is evaluated on the NBI example scene and
the two WBI example scenes introduced in Section 5.2. In addition to the visual comparison of the
focused images for the evaluation of the RFI’s impact reduction power profiles along the azimuth
axis are used normalized to an RFI-free part of the image.

6.2 Narrow Band RFI

For the NBI the performance for the considered detection methods of SIR filtering, CA-CFAR and
the autoencoder vary only little. Therefore, little to no visible improvements in the processed image
are expected.

As Fig. 6.1 shows indeed the freuqency blanking mitigation yields very comparable results in the
images. Mitigating on rangeline level the bright RFI lines in Fig. 6.1 (a) cannot only be mitigated
in Fig. 6.1 (b), (c) and (d). This can be seen in the detail frame. But also underlying details like the
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ships are preserved. This shows that the underlying information is preserved for all three detection
techniques.

(a) Raw data (b) SIR filter (c) CA-CFAR (d) Autoencoder

Figure 6.1: Comparison of the quicklook images of the mitigated NBI scene in comparison to the
original unfiltered scene. After detecting with each detection method the data is miti-
gated by applying frequency blanking as a mitigation techique.

These conclusions retrieved visually from the processed images NBI scenes are reinforced looking
at the power profiles along the azimuth axis. As can be seen in Fig. 6.2 (a) there is a considerable
"hill" corresponding to the bright high power RFI lines in the original quicklook image with another
two power peaks on top that correspond to the ships. As can be seen in Fig. 6.2 (b), (c) and (d)
this basis hill introduced by the additional RFI power is reduced significantly mitigating all three
method’s detected RFIs while containing the ships’ backscatter.

This mitigation performance yields nearly optimal results already for the benchmark SIR filtering.
Therefore, the improved detection rate with an additional 0.7% of the CA-CFAR as well as with an
additional 1.3% of the autoencoder do not yield considerable improvements on the mitigated and
processed image’s quality in the case of an NBI.
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Figure 6.2: Comparison of the power levels of the mitigated NBI scene in comparison to the original
unfiltered scene. After detecting with each detection method the data is mitigated by
applying frequency blanking as a mitigation techique.
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6.3 Wide Band RFI

In the case of a WBI the CA-CFAR performs significantly inferior compared to the SIR filtering as
the benchmark and also to the autoencoder regarding their detection performance. Verifying this
detection performance’s impact on the processed and mitigated images the CA-CFAR mitigated
image is expected to contain significant RFI artifacts. Taking into account the detection perfor-
mance and the NBI’s mitigation results the SIR filtered image is expected to contain few impact of
the RFI only with insignificant but slight improvements of the autoencoder regarding the mitigation
performance itself. However, the scene specific SIR threshold has to be determined and verified
manually. The same applies to the generalized SIR threshold of 18 dB for all considered RFI scenes
in this work. It also has to at least verified to be suitable for the newly considered mitigation scene.
The autoencoder however is trained on the rangelines’ PSDs. Therefore, it is generalized and de-
tects RFIs by their patterns in the according PSD profile. The resulting autoencoder’s model trained
on RFI-free data only and tested on the 31 RFI files can therefore be applied directly to new scenes
without further adaptions.

Taking a look at the original WBI quicklook in Fig. 6.3 (a) it differs to the NBI pattern since the RFI
pattern here is a wide and semitransparent stripe rather than narrow, bright lines following the SAR
antenna pattern. As can be seen in Fig. 6.3 (c) the CA-CFARs detection performance of only 0.67%

of the whole scene shows an insignificant improvement to the original raw data image. However,
the RFI stripe after mitigation using SIR filtering in Fig. 6.3 (b) and the autoencoder detection
in Fig. 6.3 (d) yield comparable visual results. The image’s part impacted by the RFI can still
be made out, however it’s impact is reduced almost completely containing some semitransparent
narrow smeared lines along details like the ships along the rangeline axis only. Few but visually
insignificant improvements from the autoencoder’s mitigated image to the SIR filter can be noted.

(a) Raw data (b) SIR filter

(c) CA-CFAR (d) Autoencoder

Figure 6.3: Comparison of the quicklook images of the mitigated WBI scene in comparison to
the original unfiltered scene. After detecting with each detection method the data is
mitigated by applying frequency blanking as a mitigation techique.
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These observations and conclusions drawn visually from the quicklook evaluation is enforced look-
ing at the power profiles along the azimuth axis in Fig. 6.4. The RFI power peak in the original
image in Fig. 6.4 (a) remains for the CA-CFAR mitigated image in Fig. 6.4 (b). Accordingly, while
the withdrawal of the RFI’s power can be clearly seen as well in the SIR filtered mitigated profile in
Fig. 6.4 (b) and the autoencoder’s detected mitigated profile in Fig. 6.4 (d) the improved detection
rate of 2.7% of the latter cannot be noted in the power profile either.
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Figure 6.4: Comparison of the power levels of the mitigated WBI scene in comparison to the orig-
inal unfiltered scene. After detecting with each detection method the data is mitigated
by applying frequency blanking as a mitigation techique.

Therefore, while the autoencoder might introduce an enhanced detection rate and robustness to
varying RFI patterns and backgrounds it does not seem to have considerably improved impact to
the SIR filtering regarding the final processed images. However, in order to yield more holistic
results the mitigation performance using alternative mitigation techniques needs to be investigated.





7 Discussion and Error Analysis

In order to complete the evaluation potential errors in the assumptions and their limits have to
be considered. First of all weak RFIs below the SIR threshold of 18 dB might have remained
undetected in the RFI-free data set. In the RFI containing scene data set those weak RFIs however
are not included at all and therefore not considered for the optimization of the reconstruction error
threshold and the following performance estimation.

Additionally, the conventional method of the CA-CFAR which was retrieved from literature es-
pecially used for the RFI detection and mitigation is also known to have a general weakness for
wide-band targets. It does not seem to have impacted the RFI detection research a lot so far, which
might be due to the focus on artificially simulated RFI affected SAR data which does not include
these patterns within its assumptions. However, knowing that this weakness and data pattern ex-
ists an alternative version of the CFAR better suitable also for wide-band targets such as e.g. the
OS-CFAR should be implemented and compared in further investigations.

It also has to be considered that the ground truth is only ensured for RFIs additionally detected to
the SIR filtered quantifiable strong RFIs. Therefore, no absolute knowledge on the full RFI data
set was obtained due to manual effort. Additionally, even with a complete manual labelling of a
ground truth data set an objective and quantifiable lower RFI bound would have to be investigated.
In the same stroke the minimum RFI strength that still has an impact on the image and still needs
to be detectable as such would have to be set. Having found that even the additional weaker RFIs
detected of the autoencoder do not significantly contribute to the optical quality of the processed
image, it can be said that already the SIR threshold of 18 dB seems to be a valid approach for
mitigation and the higher detection ratios use is more for classification. However, even for the
ground truth data set this means it cannot be made an absolute statement on how many RFI affected
rangelines all three methods might miss but the statement remains relative to the SIR filter as a
benchmark.

Additionally, the ground truth scenes are selected randomly. While selecting two scenes decreases
the chance to get only one particular RFI shape or degree of complexity of the scene it still does
not ensure it to be representative. This can be seen in the comparison with the CFAR evaluating
the performance on an NBI in an additional third scene. It also shows that both ground truth RFI
scenes are showing rather WBI behavioral impact.

Generally thinking about a potential issue of optimizing the autoencoder to NBIs or WBIs it has
to be noted that the autoencoder is trained on normal, i.e. RFI-free data only and therefore only
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adapting to RFI-free data. The shape of the RFI only comes into play when calculating the MSE
reconstruction error. This one is used to optimize the threshold with the ROC-curve only. The
optimal threshold of the complete test set including 31 globally distributed and varying interfering
scenes is used. That is how a robustness towards varying RFI shapes is ensured. This can be seen
in the widened but on the lowe-bound side limited error distribution of the reconstruction errors in
Fig. 5.1 in section 5.1.

For classification as well as mitigation it has to be noted that the RFI’s bandwidth is limited. It is
detected until the SIR threshold or the maximum considered one-sided window size of 2000 sam-
ples as described in Subsection 5.3.2 only. Therefore, in some cases probably not the complete RFI
power retrieved while in other there already may be retrieved some of the backscatter information.
Meaning this general approach is not adaptive for each rangeline. For the imaging scenes it is adap-
tive for each scene, however for the noise scenes the general SIR threshold had to be used. Setting
this threshold for peak detection as well means some faulty RFIs may be avoided, but some weak
RFIs are also missed out on in classification which especially impacts the spectral distribution and
RFI count classes.

Additionally, the absolute power is more likely to be high with several RFIs which seems logical.
This comparison was intentional to be made, however the normalized power per Hz is an additional
metric that should be combined with the absolute power in order to yield more robust statements in
the comparison.

Overall it can be said that the classes are based on the test data set shown in the histograms. There-
fore, they are limited by the variations and degree of being representative of as well the imaging
RFI scenes data set such as the noise test data set’s RFI scenes.

The use of this approach would be extending it to potential future standard direct detection and mit-
igation on a ground module for all downlink data. Regarding this extension it has to be noted that
for the current model as well the input shape of the data has to be known such as the expected SIR
threshold has to be computed for the scene. This means a general maximal limit to the rangeline
dimension samples has to be set in order to interpolate smaller dimensions to this maximum. An-
other approach could be downsampling larger dimensions. Alternatively, using the SIR threshold a
continuous computation and updating of the SIR threshold along the data take would require some
further investigation.



8 Conclusion and Outlook

This work presents a holistic analysis of RFIs in general, such as their detection and mitigation
using DL techniques in X-band SAR data. In order to do so a data set consisting of globally dis-
tributed scenes with varying backgrounds and types of RFIs in raw and imaging data was selected.
It includes 28 RFI-contaminated scenes and 99 RFI-free scenes sorted based on a visual inspection
of quicklooks on the imaging level.

A ground truth labelling method was introduced, derived from the PSD statistics of all selected
RFI scenes and implementing a filtering of rangelines according to their simplified SIR. The SIR
filter is detecting potential RFIs by the ratio between the signal as the rangeline’s PSD mean value
and the PSD’s maximum value as the potential RFI’s peak. From the logarithmic difference the
absolute peak’s SIR is calculated. With this simplification the RFIs’ total power over the whole
SAR system’s imaging bandwidth is neglected. This is acceptable to filter strong RFIs but also
leaves room for improveming to a finer detection especially for WBI. From that a statistically
conservative SIR threshold of 18 dB, relying on the standard deviation σ of the RFI scenes, was
applied. This method enhanced the original labelling of clean scenes by incorporating weaker
RFIs into the RFIs data set. The resulting data set on rangeline level includes 2 938 472 RFI-free
(normal) rangeline PSD samples and 74 754 RFI-contaminated (anomalous) samples. This yields
a total ratio of 97.52% normal RFI-free samples to 2.48% anomalous RFI-contaminated samples.

Furthermore, a global noise pulse data set was selected and constructed in order to create a global
mapping of detected RFIs with the potentially enhanced detection rate. This can be used to con-
tribute to the scientific community in the IEEE GRSS global RFI mapping for X-band that was
depicted in Fig. 2.4 and retrieved from [GRS19].

In addition to those two data sets a ground truth data set as a subset of the complete imaging scenes
data set was chosen. This was caused by the large amount of data in the whole data set that was
too high for a manual verification of the ground truth of the labelling method. In the next step
the potential improvements of the implemented methods were investigated. Therefore, a manually
verified subset consisting of three RFI-free training files, one RFI-free validation file, one RFI-free
and two RFI-contaminated test files was built.

For the anomaly detection, the ML algorithms of iForest, autoencoder, and VAE were pre-selected,
implemented and optimized. This step contained preprocessing steps tailored for the real X-band
SAR data. The algorithms were compared in terms of their performance on the ground truth data
set. The retrieved results on the chosen evaluation metrics showed unambiguously that the iForest
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with an accuracy of 95.90% achieves the largest reconstruction errors that lead to a relatively high
threshold of 0.053. This suggests that it is a too simplistic approach for the data set and the input
data’s shape does not meet the iForest’s most suitable use case’s shape of having many different
features.

The autoencoder with an accuracy of 100.00% comes with smaller reconstruction errors and there-
fore also yields a smaller threshold of 0.038. This and the full set of evaluation metrics prove its
suitability and a very promising performance, robustness and adaptability for the task at hand.

The similar VAE with an accuracy of 87.19% shows the smallest reconstruction errors which results
also in the smallest threshold of 0.015 overall. While this at first seems promising because it is
very robust to fluctuations in the input data for anomaly detection it also means that it suffers
from strong generalization. This leads to a suboptimal performance since the RFI-contaminated
anomalies’ reconstruction is too similar to the normal RFI-free one and a separation is harder. As
a result, the autoencoder is selected for further observations as the most promising architecture for
RFI detection in X-band SAR data.

When applied to the full imaging scenes test set, the autoencoder still achieves a 100.00% accuracy,
100.00% precision, 99.98% recall, a best possible TPR of 1.00, and a best possible FPR of 0.00.
This is even though there are misclassifications in the order of hundreds. However, this impact is
neglectable relatively to the large complete data set size. While this is confirming the autoencoder’s
near-optimal performance it also suggests that it might be also an overly powerful and therefore
overachieving tool for the RFI detection on rangeline level.

Therefore, a comparison with conventional RFI detection methods, such as CA-CFAR and the SIR
labelling is drawn to evaluate potential improvements to the current state of the art. This comparison
showed that the autoencoder outperforms both other methods for NBI as well as WBI. In the case
of the NBI, the autoencoder improved by an additional 0.70% to the second best performing CA-
CFAR, while for the WBI scenes it increased the number of rangeline samples detected by even
2.70% to the second best performing SIR filter. The CA-CFAR is found to be particularly weak in
detecting WBI, which is however also a known weakness of the CA-CFAR.

In order to evaluate the benefits and necessity of the enhanced detection rate of the autoencoder
the mitigation of the compared test subset for the comparison is demonstrated. As a mitigation
technique frequency blanking is introduced as the simplest but exemplary method. While NBI
mitigation techniques show comparable results across methods, WBI mitigation also confirms the
extremely poor performance of CA-CFAR. However, also the autoencoder’s significant impact on
the detection rate’s improvement turns out to be marginal in mitigation. Therefore for the actual
mitigation of the image, the SIR filter derived from the data proves to be sufficient. However,
it could be investigated if optimizing the threshold for the RFIs detected bandwidth that is to be
blanked may yield more improved effects than an enhanced detection rate or can be combined with
the latter.
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What the enhanced detection rate does enable and does represent a benefit for is for global RFI
tracking and mapping. This is yielded from the global noise data set retrieved from the noise
pulses of all the globally taken TerraSAR-X imaging data takes of 2023 and 2024. Therefore, the
global coverage is depicted as the ratio between RFI-free data takes and RFI-contaminated data
takes on an 1° x 1°- resolution map taking into account the total amount of images taken in this
area. Furthermore, those RFIs are classified based on their carrier frequency fc, total bandwidth
BW , power PRFI, and individual RFI count NRFI. Preliminary analysis of raw data RFIs links them
to potential sources, with strong and wide-band RFIs concentrated in regions such as China and
along coastal areas. Bright, slim lines are connected to single NBI, semi-transparent wide stripes to
WBI, and sawtooth-like patterns in quicklook images are associated to pulsed, spectrally distributed
interferers. Other patterns may be connected to interferers that change their center frequency fc

and/or bandwidth during SAR flight observations.

Further research could investigate the lower bound of visible RFIs, for example with the potential
to enhance the SIR filter by incorporating RFI power or energy.

Additionally, DL based classification or clustering methods for the RFIs in the global noise data set
could be implemented with simulated RFI types used for training.

Another field of further research could be exploring the OS-CFAR as an alternative conventional
method to the CA-CFAR for RFI detection in order to cover the CFAR as a method adaptable for
WBI as well as NBI and reduce known weaknesses and biases.

On a larger scale further investigations on the shape of RFIs in raw and imaging data according to
their actual sources is required. Therefore, the raw data RFI shapes could be mapped more clearly
with particular examples to typical patterns in the processed images such as their occurence in
maritime and harbor systems, airport surveillance, air surveillance, military systems or other SAR
systems. This extension of the classification and analysis offers valuable opportunities.

Finally, implementing a time-series analysis could provide insights into interferers switching center
frequencies, bandwidths and maybe even their full operation mode over time.
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