
Efficient Scheduling of Weakly-Hard Real-Time Tasks with
Sufficient Schedulability Condition

V. Gabriel Moyano

German Aerospace Center (DLR)

Braunschweig, Germany

gabriel.moyano@dlr.de

Zain A. H. Hammadeh

German Aerospace Center (DLR)

Braunschweig, Germany

zain.hajhammadeh@dlr.de

Selma Saidi

Technische Universität Braunschweig

Braunschweig, Germany

saidi@ida.ing.tu-bs.de

Daniel Lüdtke

German Aerospace Center (DLR)

Braunschweig, Germany

daniel.luedtke@dlr.de

Abstract
Many real-time tasks, particularly control tasks, can accommodate

occasional missed deadlines thanks to robust algorithms. These

tasks can be effectively modeled using the weakly-hard model,

which specifies the maximum number of tolerable deadline misses,

denoted as𝑚𝑖 , within a sequence of 𝐾𝑖 executions. Research indi-

cates that utilizing the weakly-hard model can significantly reduce

the over-provisioning typically required in the design of real-time

systems. Therefore, different scheduling algorithms and schedula-

bility analyses have been proposed in the last few years. However,

state-of-the-art scheduling analyses do not scale with larger values

of 𝐾𝑖 . We present a new job-level fixed priority scheduling algo-

rithm whose schedulability analysis scales with 𝐾𝑖 . Furthermore,

our scheduling algorithm leverages the tolerable continuous dead-

line misses to assigning priorities to jobs. Schedulability analyses

show that the computation time of our analysis is up to 100 times

faster comparing to the approaches in literature improving also the

schedulability ratio for total utilization of 0.9.

CCS Concepts
• Computer systems organization→ Real-time system speci-
fication.

Keywords
Weakly-Hard, Real-Time Scheduling

ACM Reference Format:
V. Gabriel Moyano, Zain A. H. Hammadeh, Selma Saidi, and Daniel Lüdtke.

2025. Efficient Scheduling of Weakly-Hard Real-Time Tasks with Sufficient

Schedulability Condition. In The 40th ACM/SIGAPP Symposium on Applied
Computing (SAC ’25), March 31-April 4, 2025, Catania, Italy. ACM, New York,

NY, USA, 10 pages. https://doi.org/10.1145/3672608.3707844

This work is licensed under a Creative Commons 4.0 International License.

SAC ’25, March 31-April 4, 2025, Catania, Italy
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0629-5/25/03

https://doi.org/10.1145/3672608.3707844

1 Introduction
Advanced and computationally demanding control algorithms take

an important role in automotive and aerospace systems nowa-

days. These control algorithms require real-time guarantees which

computation usually consider worst-case scenarios. The use of

these considered scenarios comes at the cost of exacerbating over-

provisioning in such new software-based embedded systems, which

implies, for example, higher power consumption. Moreover, studies,

including references [9, 11, 13], have demonstrated that control sys-

tems can withstand occasional deadline misses with only minimal

performance degradation.

The weakly-hard real-time model [2] broadens the range of

schedulable tasks defined by the hard real-time model by effectively

leveraging tolerable deadline misses. In the weakly-hard real-time

model, the notation

(𝑚𝑖

𝐾𝑖

)
defines the maximum number of tolera-

ble deadline misses𝑚𝑖 in a sequence of 𝐾𝑖 executions. To compute

weakly-hard real-time guarantees, the developed analysis should

consider all possible combinations of jobs within a window of 𝐾

consecutive jobs. That makes computing the weakly-hard real-time

guarantees more complicated and subject for more pessimism. How-

ever, literature [7] shows that leveraging the weakly-hard model

can relax the over-provisioning associated with designed real-time

systems.

In recent years, weakly-hard real-time systems have garnered

significant attention, leading to the development of various schedu-

lability analyses [5, 12, 16]. Choi et al. proposed a job-level fixed

priority scheduling approach for single-core systems in [4, 5], where

jobs are assigned varying priorities based on whether they meet

or miss their deadlines. The scheduling analysis proposed by Choi

et al. requires a reachability tree-based analysis, which complexity

increases exponentially with 𝐾 .

This work improves the job class level scheduling by reducing the

complexity of the analysis. Our main contributions are as follows:

• We demonstrate that satisfying the weakly-hard constraint( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
for the highest-priority jobs within their respective

priority classes is sufficient to ensure that task 𝜏𝑖 meets the

constraint

(𝑚𝑖

𝐾𝑖

)
, where𝑤𝑖 represents themaximum tolerable

consecutive deadline misses and ℎ𝑖 denotes the minimum

required deadline hits following𝑤𝑖 .

https://orcid.org/0009-0009-1932-974X
https://orcid.org/0000-0001-7539-2393
https://orcid.org/1234-5678-9012
https://orcid.org/0000-0002-6758-1562
https://doi.org/10.1145/3672608.3707844
https://creativecommons.org/licenses/CC-BY-NC-SA/4.0/legalcode
https://creativecommons.org/licenses/CC-BY-NC-SA/4.0/legalcode
https://doi.org/10.1145/3672608.3707844


SAC ’25, March 31-April 4, 2025, Catania, Italy V. Gabriel Moyano, Zain A. H. Hammadeh, Selma Saidi, and Daniel Lüdtke

• We propose a new job-level fixed priority scheduling ap-

proach that utilizes predefined priority classes for tasks ca-

pable of tolerating a bounded number of deadline misses.

• We show that the complexity of our scheduling analysis

scales with 𝐾 .

• We show that the results of our analysis are less pessimistic

than the results in [4, 5].

The rest of this paper is organized as follows: the next section

recalls the related work. In Section 3, we present our system model

and we elaborate our problem statement. Our contribution starts in

Section 4 by showing the new job-class-level scheduling algorithm.

Section 5 shows the analysis for the presented scheduling algorithm.

In Section 6, we evaluate our proposed scheduling and present the

results. Finally, Section 7 concludes our paper.

2 Related Work
The term "weakly-hard" was introduced by Bernat et al. in [2] to

characterize systems that can tolerate a limited number of deadline

misses while still maintaining predictable performance. According

to the weakly-hard model, tasks have the

(𝑚
𝐾

)
constraints where

𝑚 represents the maximum number of tolerable deadline misses in

a sequence of 𝐾 jobs. The notation

(𝑚
𝐾

)
is older and was defined

first in [8] by Hamdaoui et al. as (𝑚,𝐾)-firm.

Hamdaoui et al. presented the approach called Distance-based

Priority (DBP) in [8]. In DBP, the priority is assigned at the job-level

and its value is based on the amount of deadline misses required to

violate the (𝑚,𝐾) constraint, which is known as distance. One issue

in DBP is that the priority is assigned by just using the sequence of

deadline (hits and misses) of the task without taking into account

other tasks.

A Linear Programming (LP) based weakly-hard schedulability

analysis for overloaded systems was introduced in [16]. This ap-

proach offers two key advantages: 1) It scales effectively with both

the number of tasks and the parameter 𝐾 , as it relies on an LP

relaxation, and 2) It can be extended to accommodate additional

scheduling policies. However, it is worth noting that this method

exhibits significant pessimismwhen applied to small values of𝐾 [6].

Sun et al. introduced aweakly-hard schedulability analysis in [12]

that determines the maximum bound on𝑚 within a time window

of 𝐾 consecutive jobs using Mixed Integer Linear Programming

(MILP). This MILP framework evaluates all potential scenarios

within the 𝐾 job time window, where tasks are activated period-

ically. Consequently, the analysis presented in [12] can provide

tight bounds on𝑚 with manageable complexity for small values of

𝐾 ≤ 10 [10].

The job-class-level scheduling presented in [4] and [5] recalled

the original concept proposed by Hamdaoui et al. [8], in which each

task is assigned a different priority upon meeting/missing their

deadlines. Every task has a group of priorities which are assignable

to its jobs. Each priority of this group is mapped to a job class of the

task. A released job is assigned to a job class, and therefore taking

its priority, based on the number of deadlines previously met. Every

time that a job meets its deadline, the next one will be assigned to a

job class with lower priority. After some amount of deadline misses

happen, which is calculated based on the weakly-hard constraint,

the next job is assigned to the job class with highest priority of the

task.

Pazzaglia et al. [11] investigated the performance costs associated

with deadline misses in control systems. Their research highlights

how the distribution of deadline misses within a sequence of 𝐾 jobs

affects overall system performance.

Recently, Maggio et al. proposed an approach to analyze the sta-

bility of control systems under various patterns of deadline misses

in [9, 13–15]. This methodology aids in deriving weakly-hard con-

straints, specifically by bounding𝑚 and 𝐾 , thereby enhancing the

understanding of how deadline misses impact system stability.

3 System Model
This paper considers independent sporadic tasks with constrained

deadlines, in which a task 𝜏𝑖 is described using 5 parameters:

𝜏𝑖 � (𝐶𝑖 , 𝐷𝑖 ,𝑇𝑖 ,
(𝑚𝑖

𝐾𝑖

)
)

Where 𝐶𝑖 is the worst-case execution time of 𝜏𝑖 , 𝐷𝑖 is the relative

deadline of each job of 𝜏𝑖 (since tasks have a constrained deadline

𝐷𝑖 ≤ 𝑇𝑖 ), 𝑇𝑖 i the minimum inter-arrival time between consecutive

jobs of 𝜏𝑖 and
(𝑚𝑖

𝐾𝑖

)
is the weakly-hard constraint of 𝜏𝑖 (𝑚𝑖 is the

number of tolerable deadline misses in a 𝐾𝑖 window,𝑚𝑖 < 𝐾𝑖 and

𝑚𝑖 ≥ 1). Moreover, we use similar weakly-hard constraint notations

as in [2], see Table 1. A hard real-time task is characterized by𝑚𝑖 = 0

and 𝐾𝑖 = 1.

Table 1: Weakly-hard constraint notations

deadline hits deadline misses

any order

(
𝑚𝑖

𝐾𝑖

) (
𝑚𝑖

𝐾𝑖

)
consecutive

〈𝑚𝑖

𝐾𝑖

〉 〈𝑚𝑖

𝐾𝑖

〉
Additionally, tasks are classified based on the deadline misses

tolerable in a 𝐾𝑖 window:

Definition 3.1. Low-tolerance tasks: weakly-hard real-time tasks

which require more deadline hits than tolerable misses in the 𝐾𝑖
window, i.e. tasks with a ratio𝑚𝑖/𝐾𝑖 < 0.5 and𝑚𝑖 > 0.

Definition 3.2. High-tolerance tasks: weakly-hard real-time tasks

which tolerate a bigger or equal quantity of deadline misses than

quantity of deadline hits in the 𝐾𝑖 window, i.e. tasks with a ratio

𝑚𝑖/𝐾𝑖 ≥ 0.5.

Schedulability of weakly-hard tasks.

Definition 3.3. Adeadline sequence is a binary sequence of length

𝐾𝑖 , in which 1 represents a deadline hit and 0 represents a deadline

miss.

Definition 3.4. A weakly-hard task 𝜏𝑖 with constraint

(𝑚𝑖

𝐾𝑖

)
is

schedulable if, in any window of 𝐾𝑖 consecutive invocations of the

task, no more than𝑚𝑖 deadlines are missed.

Utilization. The utilization of a task 𝜏𝑖 is defined as the fraction

of processor time required by its execution:𝑈𝑖 =
𝐶𝑖

𝑇𝑖



Efficiently Job-class-level Scheduling SAC ’25, March 31-April 4, 2025, Catania, Italy

The total utilization is defined as the sum of all task utilization:

𝑈 =
∑𝑛
𝑖=1𝑈𝑖 =

∑𝑛
𝑖=1

𝐶𝑖

𝑇𝑖
, where 𝑛 is the number of tasks in the task

set.

System-level action for missed deadlines. The proposed

scheduling algorithm and schedulability analysis considers the

Job-Kill in case of a deadline miss. In this system-level action, the

job that does not meet its deadline is killed to remove load from

the processor.

Problem statement. In this work, we aim to exploit the weakly-

hard constraints for increasing the number of schedulable tasks on

a single-core platform. Given a task set of independent weakly-hard

tasks and a single-core platform, our goal is to provide a scheduling

algorithm for the weakly-hard tasks and a scheduling analysis.

4 Scheduling Algorithm for Weakly-hard
Real-time Tasks

In this section, we present a new job-class-level algorithm for sched-

uling weakly-hard tasks. We start by defining a deadline sequence

that satisfies the weakly-hard constraint. Our algorithm works on

enforcing the defined deadline sequence to guarantee the schedu-

lability by assigning various priorities to released jobs. Then, we

show how priorities are assigned to tasks and to released jobs.

In the next section, we show how the enforced deadline sequence

facilitates the schedulability analysis.

4.1 Defining the Critical Sequence
The

(𝑚𝑖

𝐾𝑖

)
constraint does not specify the distribution of the𝑚𝑖 dead-

line misses, e.g. if they could happen consecutively or not. Hence,

there are different deadline sequences that satisfy the weakly-hard

constraint. We are interested in one sequence that we can enforce in

our scheduling algorithm such that we guarantee the satisfiability

of

(𝑚𝑖

𝐾𝑖

)
. For that end, we define𝑤𝑖 and ℎ𝑖 .

Definition 4.1 (𝑤𝑖 ). The maximum number of consecutive dead-

line misses resulting from uniformly distributing𝑚𝑖 in a window

of 𝐾𝑖 and it is calculated as follows:

𝑤𝑖 = max

(⌊
𝑚𝑖

𝐾𝑖 −𝑚𝑖

⌋
, 1

)
(1)

Definition 4.2 (ℎ𝑖 ). The number of deadline hits required per

deadline miss and it is calculated as follows:

ℎ𝑖 =

⌈
𝐾𝑖 −𝑚𝑖
𝑚𝑖

⌉
(2)

𝑤𝑖 , ℎ𝑖 take particular values when we consider low-tolerance or

high-tolerance tasks.

Lemma 4.3. If 𝜏𝑖 is low-tolerance task, then 𝑤𝑖 = 1. If 𝜏𝑖 is high-
tolerance task, then ℎ𝑖 = 1.

Proof. 𝑚𝑖/𝐾𝑖 < 0.5 ⇒ ⌊ 𝑚𝑖

𝐾𝑖−𝑚𝑖
⌋ = 0, hence, 𝑤𝑖 = 1. Similarly,

𝑚𝑖/𝐾𝑖 ≥ 0.5⇒ ⌈𝐾𝑖−𝑚𝑖

𝑚𝑖
⌉ = 1, hence, ℎ𝑖 = 1. □

Definition 4.4 (Critical sequence). It is the sequence made up of

ℎ𝑖 consecutive deadline hits followed by𝑤𝑖 consecutive deadline

misses.

Figure 1: Critical sequence examples for a high-tolerance
task (above) and a low-tolerance task (below). Yellow arrows
represent task activation, while orange ones represent dead-
lines. Gray boxes refer to deadline hit. Boxes in orange refer
to deadline miss.

Figure 1 shows two critical sequence examples, one for high-

tolerance tasks and the other for low-tolerance tasks.

Our scheduling algorithm assigns a higher priority to the ℎ𝑖 con-

secutive jobs, i.e. to the jobs which require to meet their deadlines

according to the critical sequence. Therefore, it is vital to prove that

the critical sequence satisfies

(𝑚𝑖

𝐾𝑖

)
. However, the critical sequence

satisfies the

〈 𝑤𝑖

𝑤𝑖+ℎ𝑖
〉
constraint by definition. We show now that

the critical sequence also satisfies the constraint

( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
.

Lemma 4.5. The critical sequence satisfies the weakly-hard con-

straint
( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
.

Proof. For low-tolerance tasks 𝑤𝑖 = 1, hence, the following

holds:

〈
1

1+ℎ𝑖
〉
≡

(
1

1+ℎ𝑖
)
. From [2], we have

( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
≡

( ℎ𝑖
𝑤𝑖+ℎ𝑖

)
.

Therefore, we can change our focus for high-tolerance tasks to

the deadline hits. As ℎ𝑖 = 1, hence, the following holds:

〈
1

1+𝑤𝑖

〉
≡(

1

1+𝑤𝑖

)
. □

Our goal is to prove that the critical sequence satisfies

(𝑚𝑖

𝐾𝑖

)
and not only

( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
. Therefore, we have to prove that

( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
is

harder than

(𝑚𝑖

𝐾𝑖

)
.

Definition 4.6 ([2]). Given two constraints, 𝜆 and 𝛾 , we say that

𝜆 is harder than 𝛾 , denoted by 𝜆 ≼ 𝛾 , if the deadline sequences that
satisfy 𝜆 also satisfy 𝛾 .

Lemma 4.7.

( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
≼

(𝑚𝑖

𝐾𝑖

)
.

Proof. Theorem 5 of [2] shows that if every sequence of dead-

line hits and misses that satisfies the constraint 𝜆 satisfies the con-

straint 𝛾 then 𝜆 ≼ 𝛾 . In our case,

( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
is derived from

(𝑚𝑖

𝐾𝑖

)
such

that𝑚𝑖 is uniformly distributed over 𝐾𝑖 . Hence, every sequence

that satisfies

( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
, also satisfies

(𝑚𝑖

𝐾𝑖

)
, i.e.,

( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
≼

(𝑚𝑖

𝐾𝑖

)
. □

Theorem 4.8. If 𝜏𝑖 fulfills the constraint
( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
, it also fulfills

the constraint
(𝑚𝑖

𝐾𝑖

)
.

Proof. This is proven by Lemma 4.7, as

( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
≼

(𝑚𝑖

𝐾𝑖

)
. □



SAC ’25, March 31-April 4, 2025, Catania, Italy V. Gabriel Moyano, Zain A. H. Hammadeh, Selma Saidi, and Daniel Lüdtke

4.2 Job Classes Priorities
We assign a group of priorities to every weakly-hard task. Each job

of a task is assigned only one priority from this group, i.e., job-level

fixed priority. Jobs which require to meet their deadlines based on

the critical sequence will receive the highest priority of the task.

The other jobs will receive a lower priority. In this way, a task can

reduce its priority after achieving the minimum number of deadline

hits (ℎ𝑖 ) relaxing its interference to other tasks.

The group of priorities of a task is represented by the concept

of job classes coming from [5]. Each task has job classes and every

job class has a different designated priority.

Definition 4.9. A task 𝜏𝑖 comprises JC𝑖 = 𝐾𝑖 −𝑚𝑖 +1 job classes,
each represented by JC𝑞

𝑖
, where 𝑞 can take values from the range

[0, 𝐾𝑖 −𝑚𝑖 ]. Job classes with lower values of 𝑞 are assigned with

higher priorities, i.e. JC𝑞=0
𝑖

and JC𝑞=𝐾𝑖−𝑚𝑖

𝑖
have the highest and

lowest priority of the task, respectively.

Table 2 shows an example of three different tasks and their

corresponding q range.

Table 2: Example of three tasks and their 𝑞 ranges according
to Def. 4.9. The last column shows the assigned priorities
according to Algorithm 1.

Tasks (𝐶𝑖 , 𝐷𝑖 ,𝑇𝑖 ,
(𝑚𝑖

𝐾𝑖

)
) 𝑞 range Priorities

𝜏1 = (2, 6, 6,
(
2

5

)
) [0, 3] [9, 6, 3, 1]

𝜏2 = (3, 7, 7,
(
1

3

)
) [0, 2] [8, 5, 2]

𝜏3 = (2, 8, 8,
(
2

3

)
) [0, 1] [7, 4]

Every job class has a different priority, i.e. the same priority

is not shared between job classes of different tasks. Algorithm 1

shows how priorities are assigned to each job class. First, tasks

are sorted in ascending order of deadline (Line 2). If two or more

tasks share the same deadline, the task with the lower𝑚𝑖 is ordered

first. If tasks have also the same 𝑚𝑖 , the order between them is

selected randomly. Then, the total number of priorities is calculated

by counting number of job classes between all tasks (Line 5). Finally,

the priority is assigned to each job class level by iterating over them

(from Line 8 until Line 12).

4.3 Scheduling Algorithm
Every time a job is released, the scheduler assigns it to a job class

based on the previous deadline misses/hits. We define a variable for

every task named job-level 𝑗𝑙𝑖 used for selecting to which particular

job class a job should be assigned.

Algorithm 2 shows how 𝑗𝑙𝑖 is calculated for a given task based

on the last deadline. The inputs for the algorithm are a task and a

boolean variable (named 𝑙𝑑) that indicates if the last deadline was a

hit. In the algorithm, it is observed that every task is characterized

by the values ofℎ𝑖 ,𝑤𝑖 ,𝐾𝑖 and𝑚𝑖 . Additionally, every task also saves

the number of deadline misses (𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒_𝑚𝑖𝑠𝑠𝑒𝑠) and the number of

consecutive deadline hits (𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒_ℎ𝑖𝑡𝑠). 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒_𝑚𝑖𝑠𝑠𝑒𝑠 is used

to count misses which is required to reset 𝑗𝑙𝑖 to its default value

−(ℎ𝑖 − 1). 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒_ℎ𝑖𝑡𝑠 counts up to ℎ𝑖 deadlines hits and is used

Algorithm 1: Priority assignment to job classes.

1 Input: taskset T
2 𝑠𝑜𝑟𝑡_𝑡𝑎𝑠𝑘𝑠_𝑎𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔_𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 (T)
3 for 𝜏𝑖 ∈ T do
4 JC𝑖 ← 𝐾𝑖 −𝑚𝑖 + 1
5 JC ← ∑

∀𝜏𝑖 ∈T JC𝑖
6 𝑝𝑟𝑖𝑜 ← JC
7 JC𝑚𝑎𝑥 ←𝑚𝑎𝑥 {JC𝑖 |∀𝜏𝑖 ∈ T}
8 for 𝑞 ← 0;𝑞 < JC𝑚𝑎𝑥

;𝑞 ← 𝑞 + 1 do
9 for 𝜏𝑖 ∈ T do
10 if 𝑞 < JC𝑖 then
11 JC𝑞

𝑖
← 𝑝𝑟𝑖𝑜

12 𝑝𝑟𝑖𝑜 ← 𝑝𝑟𝑖𝑜 − 1

to reset 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒_𝑚𝑖𝑠𝑠𝑒𝑠 , allowing a task to miss𝑤𝑖 deadlines after

ℎ𝑖 hits.

Algorithm 2: Selection of job class.

1 Inputs: task (𝜏 ), last deadline (𝑙𝑑)

2 if 𝑙𝑑 == 𝑇𝑟𝑢𝑒 then
3 𝜏 . 𝑗𝑙 ←𝑚𝑖𝑛 (𝜏 . 𝑗𝑙 + 1, 𝜏 .𝐾 − 𝜏 .𝑚)
4 𝜏 .𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒_ℎ𝑖𝑡𝑠 ← 𝜏 .𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒_ℎ𝑖𝑡𝑠 + 1
5 if 𝜏 .𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒_ℎ𝑖𝑡𝑠 == 𝜏 .ℎ then
6 𝜏 .𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒_𝑚𝑖𝑠𝑠𝑒𝑠 ← 0

7 𝜏 .𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒_ℎ𝑖𝑡𝑠 ← 0

8 else
9 𝜏 .𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒_𝑚𝑖𝑠𝑠𝑒𝑠 ← 𝜏 .𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒_𝑚𝑖𝑠𝑠𝑒𝑠 + 1

10 𝜏 .𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒_ℎ𝑖𝑡𝑠 ← 0

11 if 𝜏 .𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒_𝑚𝑖𝑠𝑠𝑒𝑠 == 𝜏 .𝑤 then
12 𝜏 .𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒_𝑚𝑖𝑠𝑠𝑒𝑠 ← 0

13 𝜏 . 𝑗𝑙 ← −(𝜏 .ℎ − 1)

14 𝜏 .𝑞 ←𝑚𝑎𝑥 (0, 𝜏 . 𝑗𝑙 )

Furthermore, based on how 𝑗𝑙𝑖 is updated, the following con-

sequences can be deduced. For high-tolerance tasks, the starting

value of 𝑗𝑙𝑖 is zero, since for that kind of tasks ℎ𝑖 is one; and for

low-tolerance tasks, every time a deadline is missed, 𝑗𝑙𝑖 is restored

to −(ℎ𝑖 − 1), since for those kind of tasks𝑤𝑖 is one (see Lemma 4.3).

Figure 2 shows the transitions between job classes for low-

tolerance and high-tolerance tasks.

5 Scheduling Analysis
This section presents a scheduling analysis for the proposed job-

class-level scheduling algorithm described in the previous section.

We compute the response time for every task considering the critical

instant, i.e. considering that the task is released simultaneously with

all higher-priority tasks. The response time of a task is prolonged

as much as tasks with higher priorities interfere with the execution

of the analyzed task. Our analysis verifies that the response time is

shorter than the deadline for every task in the set.

Furthermore, we consider the critical sequence for calculating

the interference. We start this section explaining why the critical



Efficiently Job-class-level Scheduling SAC ’25, March 31-April 4, 2025, Catania, Italy

Figure 2: Job classes transitions for low-tolerance and high-
tolerance tasks. Solid circles represent the highest priority,
hence, jobs which are assigned to the priority represented by
the solid circle are guaranteed to meet their deadlines.

sequence is important for our analysis. Next, we calculate the inter-

ference produced by the critical sequence for both high-tolerance

and low-tolerance tasks. Finally, the schedulability condition for a

task set is defined.

5.1 Using the Critical Sequence
First, we show that is sufficient to only take jobs in JC𝑞=0

𝑖
into

account.

Lemma 5.1. For a task 𝜏𝑖 , to meet its constraint
( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
, it is

sufficient that the jobs belonging to JC𝑞=0
𝑖

meet their deadlines.

Proof. Our proposed scheduling assigns ℎ𝑖 jobs to the JC𝑞=0
𝑖

every time 𝜏𝑖 misses 𝑤𝑖 deadlines as Figure 2 illustrates. Hence,

if all jobs belonging to JC𝑞=0
𝑖

meet their deadlines, 𝜏𝑖 meets its

constraint

( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
regardless whether the other jobs, which belong

to other job classes, meet their deadlines or not. □

Lemma 5.2. If the priority of JC𝑞=0
𝑖

is higher than the priority

of JC𝑞=0
𝑘

, then the jobs of 𝜏𝑘 in JC𝑞=0
𝑘

suffer interference from the

jobs of 𝜏𝑖 in JC𝑞=0𝑖
.

Proof. The algorithm in Algorithm 1 assigns a priority value to

job classes starting by 𝑞 = 0 and every time a priority is assigned,

the next priority value is reduced by one. In this way, priority values

of job classes JC𝑞≥1 are always lower than the ones assigned to

job classes JC𝑞=0. From which it follows that jobs of a task 𝜏𝑘

which belongs to job class JC𝑞=0
𝑘

suffers interference of other jobs

in JC𝑞=0
𝑖

, only if the priority of JC𝑞=0
𝑖

is higher than the priority

of JC𝑞=0
𝑘

. □

Consequently, our analysis considers only the jobs in job classes

JC𝑞=0
𝑖

.

Furthermore, considering the critical sequence for analysing the

interference corresponds with the highest induced interference

over lower-priority jobs. Hence, the following Lemma:

Lemma 5.3. The maximum interference induced by a task occurs
when its jobs follow the critical sequence.

Proof. The critical sequence contains the maximum number

of consecutive deadline misses allowed. Only after this amount of

deadline misses occurs, the task is executed with its highest priority.

Therefore, the maximum number of consecutive highest priority

jobs are contained in the critical sequence. Hence, the interference

produced by the critical sequence is bigger than the produced by

other sequences which satisfy the

( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
. □

5.2 Interference Produced by the Critical
Sequence

Let us start by recalling how to calculate the interference to task 𝜏𝑘
over the interval of time 𝑡 :

𝐼𝜏𝑘 (𝑡) =
∑︁
𝑖≠𝑘

𝐼𝑖,𝑘 (𝑡) (3)

Where 𝐼𝑖,𝑘 (𝑡) is the interference of the task 𝜏𝑖 over the task 𝜏𝑘 for

the interval 𝑡 :

𝐼𝑖,𝑘 (𝑡) =
⌈
𝑡

𝑇𝑖

⌉
𝐶𝑖 (4)

For simplification, we use 𝐼𝑖,𝑘 (𝑡) = 𝐼𝑖 (𝑡) sometimes in this paper.

For Task-Level Fixed Priority (TLFP), only the tasks with higher

priority than 𝜏𝑘 interfere, therefore, 𝐼𝑘 (𝑡) is reduced to:

𝐼𝜏𝑘 (𝑡) =
∑︁

𝑖∈ℎ𝑝 (𝑘 )
𝐼𝑖,𝑘 (𝑡) (5)

Here, ℎ𝑝 (𝑘) is the set of tasks that have higher priority than 𝜏𝑘 .

Now,we update Equation (4) for high-tolerance tasks considering

the critical sequence. Remember that the critical sequence for a

high-tolerance task 𝜏𝑖 is𝑤𝑖 deadline misses after a single deadline

hit. This allows to consider the interference generated by such a

task as the same produced by a task with a longer inter-arrival time

that is equal to (𝑤𝑖 + 1)𝑇𝑖 . Formally writing this:

Lemma 5.4. The interference generated by a high-tolerance task 𝜏𝑖
with constraint

(𝑚𝑖

𝐾𝑖

)
can be calculated as if it were coming from an

equivalent hard-real time task 𝜏𝑒𝑞
𝑖

= (𝐶𝑖 , 𝐷𝑖 , (𝑤𝑖 + 1)𝑇𝑖 ).

Proof. The jobs of the hard real-time task 𝜏
𝑒𝑞

𝑖
= (𝐶𝑖 , 𝐷𝑖 , (𝑤𝑖 +

1)𝑇𝑖 ) have the same worst-case execution time 𝐶𝑖 as the jobs of

𝜏𝑖 in JC𝑞=0𝑖
, and occur at the same inter-arrival time (𝑤𝑖 + 1)𝑇𝑖 .

Therefore, they induce the same interference. □

Next, we calculate the interference.

Lemma 5.5. The interference coming from a high-tolerance task 𝜏𝑖
within the window of size 𝑡 is: 𝐼𝑖 (𝑡) =

⌈
𝑡

(𝑤𝑖+1)𝑇𝑖

⌉
𝐶𝑖

Proof. Lemma 5.4 allows to consider the interference coming

from 𝜏𝑖 as it were coming from a task with longer inter-arrival time

which is equal to (𝑤𝑖 + 1)𝑇𝑖 . □

We show next the interference from low-tolerance tasks con-

sidering the critical sequence. For low-tolerance tasks, the mini-

mum inter-arrival time between two jobs belonging to JC𝑞=0
𝑖

is

𝑇𝑖 . Therefore, bounding the interference of low-tolerance tasks re-

quires considering𝑇𝑖 as inter-arrival time. However, we also need to

exclude the jobs that do not belong to JC𝑞=0, i.e. the lower-priority
jobs. The following Lemma shows the number of jobs excluded to

calculate the interference.



SAC ’25, March 31-April 4, 2025, Catania, Italy V. Gabriel Moyano, Zain A. H. Hammadeh, Selma Saidi, and Daniel Lüdtke

Figure 3: Interference due to the critical sequence coming
from a high-tolerance task (above) and a low-tolerance task
(below). Green boxes refer to jobs in JC𝑞=0

𝑖
. Boxes in blue

refer to lower priority jobs. Orange boxes represents the
interference seeing by a lower priority task.

Lemma 5.6. Following the critical sequence, there are

𝑂𝑖 (𝑡) =
⌊

𝑡

(ℎ𝑖 + 1)𝑇𝑖

⌋
(6)

jobs that belong to a priority class different from JC𝑞=0
𝑖

over the
interval of time 𝑡 .

Proof. From the critical sequence for low-tolerance tasks, there

areℎ𝑖 jobs of 𝜏𝑖 shouldmeet their deadlines and only after a deadline

miss is tolerated. Therefore, the time interval in which a job misses

its deadline is (ℎ𝑖 + 1)𝑇𝑖 . □

Finally, we calculate the interference generated from a low-

tolerance task as follows:

Lemma 5.7. The interference coming from a low-tolerance task 𝜏𝑖
within a time interval 𝑡 is:

𝐼𝑖 (𝑡) = (𝑁𝑖 (𝑡) −𝑂𝑖 (𝑡))𝐶𝑖 (7)

where 𝑁𝑖 (𝑡) =
⌈
𝑡
𝑇𝑖

⌉
, i.e. the total number of jobs in the interval of

time 𝑡 and 𝑂𝑖 (𝑡) as in (6).

Proof. Within the interval 𝑡 there are no more than 𝑁𝑖 (𝑡) jobs,
out of which there are 𝑂𝑖 (𝑡) jobs that do not belong to JC𝑞=0

𝑖
.

Hence, it is safe to consider only 𝑁𝑖 (𝑡) −𝑂𝑖 (𝑡) jobs to bound the

interference. □

Figure 3 shows the interference coming from a high-tolerance

and a low-tolerance task.

5.3 Schedulability Condition
Our schedulability analysis is based on the Deadline Monotonic

(DM) guarantee [1] which verifies that the response time of ev-

ery tasks in the set is shorter than its deadline. For analysing the

response time of a task, the DM guarantee considers the critical

instant which happens when the task is released simultaneously

with all higher-priority tasks.

Figure 4: Binary trees created for counting deadline se-
quences (example of sequence highlighted).

Furthermore, we modified the algorithm in [1] by introducing

the interference coming from high-tolerance tasks (Lemma 5.5) and

from low-tolerance tasks (Lemma 5.7).

Finally, we show the schedulability condition for one task and

then we extend it to the set.

Theorem 5.8. A weakly-hard real-time task 𝜏𝑘 is schedulable by
our algorithm if the response time of its jobs in JC𝑞=0

𝑘
is shorter than

𝐷𝑘 .

Proof. Lemma 5.2 shows that jobs in JC𝑞=0
𝑘

are interfered

only by other jobs in JC𝑞=0
𝑖

when these last have a higher priority.

Meaning that, the response time of jobs in JC𝑞=0
𝑘

is prolonged

as much as other jobs in JC𝑞=0
𝑖

with higher priority interfere.

Moreover, jobs in JC𝑞=0
𝑘

meet their deadlines if the interference

over them allows them to finish before its deadline (𝐷𝑘 ). Finally,

Lemma 5.1 shows that a task 𝜏𝑘 meets its constraint when its jobs

in JC𝑞=0
𝑘

meet their deadlines. □

Corollary 5.9. A task set of weakly-hard real-time tasks is schedu-
lable by Algorithm 2 if Theorem 5.8 is satisfied for every task in the
set.

6 Evaluation
Our scheduling algorithm is based on transforming the weakly-

hard constraint

(𝑚𝑖

𝐾𝑖

)
into the constraint

( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
, which operates

over a smaller window. In this section, we begin by highlighting

the limitations that arise from adopting a more stringent constraint

than

(𝑚𝑖

𝐾𝑖

)
.

Next, our scheduling analysis is compared against the Integer

Linear Programming (ILP) analysis in [12] and the Job-Class-Level

(JCL) in [5]. The experiments are based on the analysis of task

sets randomly generated using the UUnifast algorithm [3]. For a

given total utilization, we calculate the percentage of schedulable

task sets, known as schedulability ratio, and measure the required

computation time.

6.1 Transformation Cost
To analyze the limitations introduced by transforming the con-

straint

(𝑚𝑖

𝐾𝑖

)
into the harder constraint

( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
, we examine the

possible deadline sequences that satisfy both constraints. For count-

ing the deadline sequences, we create a binary tree with depth of

𝐾 . Later, the solutions for
(𝑚𝑖

𝐾𝑖

)
and

( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
are counted from the

branches, see Fig. 4.

Results for various values of

(𝑚𝑖

𝐾𝑖

)
are presented in Table 3. For

low-tolerance tasks, the number of omitted deadline sequences



Efficiently Job-class-level Scheduling SAC ’25, March 31-April 4, 2025, Catania, Italy

Table 3: Limitation for harder constraints

(𝑚𝑖

𝐾𝑖

) ( 𝑤𝑖

𝑤𝑖+ℎ𝑖
) ( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
solutions /

(𝑚𝑖

𝐾𝑖

)
solutions(

1

5

) (
1

5

)
1.0(

2

5

) (
1

3

)
0.5625(

3

5

) (
1

2

)
0.5(

4

5

) (
4

5

)
1.0(

4

10

) (
1

3

)
0.1554(

8

10

) (
4

5

)
0.9003(

8

20

) (
1

3

)
0.01040(

16

20

) (
4

5

)
0.7511

can be significantly high when𝑚𝑖/𝐾𝑖 approaches 0.5. In contrast,

high-tolerance tasks exhibit fewer omitted sequences. Additionally,

for both types of tasks, the number of omitted sequences increases

when considering constraints that are multiples of one another,

such as

(𝑚𝑖

𝐾𝑖

)
=
(
8

20

)
and

(𝑚𝑖

𝐾𝑖

)
=
(
2

5

)
. This phenomenon occurs be-

cause certain deadline sequences with consecutive deadline misses

are not accounted. Despite this limitation, our experiments show

better results than ILP [12] and JCL [5]. Furthermore, the results

regarding the transformation cost presented here are theoretical,

as not all uncounted deadline sequences necessarily correspond to

schedulable solutions.

6.2 Scheduling Analysis Setup
Task sets are generated for a specified range of total utilization

values using the UUnifast algorithm [3]. The utilization of the

generated tasks does not exceed one. For each total utilization value,

1000 task sets are created. The schedulability ratio is calculated,

and the computation time is recorded for each generated task set.

Additionally, the generated tasks are assigned implicit deadlines,

meaning their deadlines are equal to their inter-arrival times (i.e.,

𝐷𝑖 = 𝑇𝑖 ).

We compare the results of our scheduling analysis (here labeled

as RTA WH) against the Integer Linear Programming (ILP) anal-

ysis [12] and the Job-Class-Level (JCL) proposed in [5]. The first

experiment compares the result of three analysis. For this experi-

ment, the range of total utilization used is from 0.1 to 1 due to the

longer computation times of the ILP analysis for utilization bigger

than 1. Also, the value used for𝐾𝑖 is 5 due to the scalability issues of

the ILP analysis [10]. We run the three analysis on sets of 30 tasks,

which are all either low-tolerance or high-tolerance. Moreover, we

use𝑚𝑖 = 1 for low-tolerance tasks and𝑚𝑖 = 4 for high-tolerance

tasks.

In the rest of the experiment, we compare our analysis (RTAWH)

only against JCL. The values for𝑚𝑖 are chosen randomly between

the values that fulfill the desired𝑚𝑖/𝐾𝑖 . For example, given 𝐾𝑖 = 5,

𝑚𝑖 can be 1 or 2 for low-tolerance tasks; and 3 or 4 for high-tolerance

tasks. In the legends, "high" denotes sets of high-tolerance tasks

while "low" refers sets of low-tolerance tasks. The range of total

utilization starts from 0.1 and ends at 2.5. In order to compare

scalability, we use different amount of tasks per set (30 and 100)

and different values of 𝐾𝑖 (5 and 10).

We used a desktop computer with a Intel(R) Core(TM) i7-8700

processor (6 cores, 2 threads per core) and 32GB of RAM running

Ubuntu 22.04 to run the experiments.

6.3 Scheduling Analysis Experiments

Figure 5: Schedulability ratio for ILP, JCL and RTA WH (K =
5) with maximal utilization used is U = 1

Figure 5 shows the schedulability ratio for ILP, JCL and our

analysis (RTA WH) using sets with 30 tasks. In case of JCL, both

priority assignment algorithms (𝐿𝐼𝐹 − 𝑤 and 𝐿𝐼𝐹 − ℎ) are used.

𝐿𝐼𝐹−𝑤 assigns priorities to job classesJC𝑞=0
𝑖

based on the deadline

and then based on𝑤𝑖 for the remaining job classes. 𝐿𝐼𝐹−ℎ improves

𝐿𝐼𝐹 −𝑤 for low-tolerance tasks by repeating the assigned priorities

ℎ𝑖 times between the job classes. Since 𝐿𝐼𝐹 −ℎ does not change the

assigned priorities for high-tolerance tasks, there is no difference

between 𝐿𝐼𝐹 −𝑤 and 𝐿𝐼𝐹 −ℎ for high-tolerance tasks. Therefore, we
do not label which priority assignment is used for high-tolerance

tasks. For low-tolerance tasks, the results for ILP are better than for

JCL 𝐿𝐼𝐹 −𝑤 but using the priority assignment 𝐿𝐼𝐹 −ℎ improves the

schedulability. Then, our analysis shows better schedulability ratio

than JCL 𝐿𝐼𝐹 − ℎ. For high-tolerance tasks, JCL and our approach

show similar results while ILP does not show any schedulable set

after utilization higher than 1.

Figure 6, Figure 8 and Figure 9 show the computation times for

ILP, JCL and our approach respectively. Overall, ILP computation

times are longer than the rest. In particular, ILP starts taking longer

from 𝑈 = 0.4 because no complicated calculation is required for

lower utilizations. JCL 𝐿𝐼𝐹 − ℎ is faster than JCL 𝐿𝐼𝐹 −𝑤 to reject

unschedulable sets (this is observed for values of 𝑈 = 0.9 and

𝑈 = 1). Also, JCL 𝐿𝐼𝐹−ℎ takes up to 40milliseconds. Our scheduling

analysis is the fastest one, always taking less than 2 milliseconds

and generally around tens of microseconds.

Figure 7 shows a schedulability ratio analysis extended until

𝑈 = 2.5 for JCL and our analysis. In this experiment, we observe

the same behavior as before, i.e. our approach is better than JCL

𝐿𝐼𝐹 − ℎ for low-tolerance tasks and equivalent than JCL for high-

tolerance tasks. The reason our approach is better for low-tolerance



SAC ’25, March 31-April 4, 2025, Catania, Italy V. Gabriel Moyano, Zain A. H. Hammadeh, Selma Saidi, and Daniel Lüdtke

Figure 6: Computation time for ILP (K = 5) with maximal
utilization used is U = 1

Figure 7: Schedulability ratio for JCL and RTA WH (K = 5).
Note that the green curve is above the blue one.

Figure 8: Computation time for JCL (K = 5).

tasks is because JCL 𝐿𝐼𝐹 − ℎ considers the interference of all job-

classes with the repeated priority (there is no repeated priority

between job classes in our approach). Additionally, high-tolerance

tasks seem to be schedulable even after the practical limit (𝑈 = 1).

This is explained by Lemma 5.4, which allows us to consider the

interference coming from the high-tolerance tasks as it were coming

from a task with longer inter-arrival time, reducing the utilization



Efficiently Job-class-level Scheduling SAC ’25, March 31-April 4, 2025, Catania, Italy

Figure 9: Computation time for RTAWH (K = 5)

Figure 10: Schedulability ratio for JCL and RTA WH (K = 10).
Similar than before, the blue and green curves are overlapped

of the task. This also explains why this behavior is not seen for

low-tolerance tasks.

Figure 11: Computation time for JCL (K = 10).

We executed experiments for sets of 100 tasks with 𝐾𝑖 = 5. JCL

and our approach for high-tolerance tasks increase the schedula-

bility ratio for values higher than𝑈 = 1.5 in comparison with sets

of 30 tasks. The reason is that having more tasks, while keeping

the same total utilization, makes the tasks more lightweight which

reduces the interference between them. However, it was observed

that the computation time increases by no more than 10 times.

Figure 10 shows the schedulability ratio for sets with 30 tasks

and 𝐾𝑖 = 10. There is no observable difference with the schedu-

lability ratio for sets with 30 tasks and 𝐾𝑖 = 5. However, as it is

shown in Figure 11, the computation times for JCL 𝐿𝐼𝐹 −ℎ increases
significantly (up to around 100 milliseconds). The longer computa-

tion times reflect the increase of the complexity due to the size of

the reachability trees. In case of JCL for high-tolerance tasks, the

computation times also increase but remaining below 40 millisec-

onds. Finally, the computation times of our scheduling analysis are

not significantly affected by increasing the value of 𝐾𝑖 remaining

bellow 1 millisecond.

7 Conclusion
In real-time systems, if few deadline misses are tolerable, lever-

aging the weakly-hard model can reduce the over-provisioning.

This paper proposed a new job class scheduling for weakly-hard



SAC ’25, March 31-April 4, 2025, Catania, Italy V. Gabriel Moyano, Zain A. H. Hammadeh, Selma Saidi, and Daniel Lüdtke

Figure 12: Computation time for RTAWH (K = 10).

real-time tasks, appended with a schedulability test. The schedul-

ing algorithm exploits the tolerable deadline misses by assigning

different priorities to jobs upon urgency of meeting their deadline.

Such job-level priority assignment reduces the interference with

low-priority tasks and helps them to satisfy their weakly-hard con-

straints. The proposed schedulability analysis utilizes neither ILP

nor reachability tree-based analysis, as similar approaches in the

literature. Rather, it focuses on verifying the schedulability of the

maximum tolerable consecutive deadline misses.

Our experiments show that the computation time of the proposed

analysis scales with 𝐾𝑖 being always faster than the state-of-the-art

approaches, which complexity increases with 𝐾𝑖 due to the size of

the recheability tree.

Furthermore, our future work will contemplate a reduction in the

limitations for low-tolerance tasks, different system-level actions

for reacting to deadline misses and the interference between tasks

due to shared resources.

References
[1] Neil C Audsley, Alan Burns, Mike F Richardson, and Andy J Wellings. 1991.

Hard real-time scheduling: The deadline-monotonic approach. IFAC Proceedings
Volumes 24, 2 (1991), 127–132.

[2] Guillem Bernat, Alan Burns, and Albert Liamosi. 2001. Weakly hard real-time

systems. IEEE transactions on Computers 50, 4 (2001), 308–321.
[3] Enrico Bini and Giorgio C Buttazzo. 2005. Measuring the performance of schedu-

lability tests. Real-Time Systems 30, 1 (2005), 129–154.
[4] Hyunjong Choi, Hyoseung Kim, and Qi Zhu. 2019. Job-Class-Level Fixed Priority

Scheduling of Weakly-Hard Real-Time Systems. In 2019 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). 241–253. https:

//doi.org/10.1109/RTAS.2019.00028

[5] Hyunjong Choi, Hyoseung Kim, and Qi Zhu. 2021. Toward practical weakly hard

real-time systems: A job-class-level scheduling approach. IEEE Internet of Things
Journal 8, 8 (2021), 6692–6708.

[6] Zain A. H. Hammadeh, Sophie Quinton, and Rolf Ernst. 2019. Weakly-Hard

Real-Time Guarantees for Earliest Deadline First Scheduling of Independent

Tasks. ACM Trans. Embed. Comput. Syst. 18, 6, Article 121 (dec 2019), 25 pages.
https://doi.org/10.1145/3356865

[7] Zain A. H. Hammadeh, Sophie Quinton, Marco Panunzio, Rafik Henia, Laurent

Rioux, and Rolf Ernst. 2017. Budgeting under-specified tasks for weakly-hard

real-time systems. In 29th Euromicro Conference on Real-Time Systems (ECRTS
2017). Schloss-Dagstuhl-Leibniz Zentrum für Informatik.

[8] Moncef Hamdaoui and Parameswaran Ramanathan. 1995. A dynamic priority

assignment technique for streams with (m, k)-firm deadlines. IEEE transactions
on Computers 44, 12 (1995), 1443–1451.

[9] Martina Maggio, Arne Hamann, Eckart Mayer-John, and Dirk Ziegenbein. 2020.

Control-system stability under consecutive deadline misses constraints. In 32nd
Euromicro Conference on Real-Time Systems (ECRTS 2020). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik.

[10] Marco Di Natale. 2017. Beyond the m-k model: restoring performance considera-

tions in the time abstraction. ESWEEK - Tutorial Slides.

[11] Paolo Pazzaglia, Luigi Pannocchi, Alessandro Biondi, and Marco Di Natale. 2018.

Beyond the Weakly Hard Model: Measuring the Performance Cost of Deadline

Misses. In 30th Euromicro Conference on Real-Time Systems (ECRTS 2018), Vol. 106.
10:1–10:22. https://doi.org/10.4230/LIPIcs.ECRTS.2018.10

[12] Youcheng Sun and Marco Di Natale. 2017. Weakly Hard Schedulability Analysis

for Fixed Priority Scheduling of Periodic Real-Time Tasks. ACM Trans. Embed.
Comput. Syst. 16, 5s, Article 171 (sep 2017), 19 pages. https://doi.org/10.1145/

3126497

[13] Nils Vreman, Anton Cervin, and Martina Maggio. 2021. Stability and Perfor-

mance Analysis of Control Systems Subject to Bursts of Deadline Misses. In 33rd
Euromicro Conference on Real-Time Systems (ECRTS 2021) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 196), Björn B. Brandenburg (Ed.). Schloss

Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 15:1–15:23.

https://doi.org/10.4230/LIPIcs.ECRTS.2021.15

[14] Nils Vreman, Richard Pates, and Martina Maggio. 2022. WeaklyHard.jl: Scalable

Analysis of Weakly-Hard Constraints. In 2022 IEEE 28th Real-Time and Embedded
Technology and Applications Symposium (RTAS). 228–240. https://doi.org/10.

1109/RTAS54340.2022.00026

[15] Nils Vreman, Paolo Pazzaglia, Victor Magron, Jie Wang, and Martina Maggio.

2022. Stability of Linear Systems Under Extended Weakly-Hard Constraints.

IEEE Control Systems Letters 6 (2022), 2900–2905. https://doi.org/10.1109/LCSYS.

2022.3179960

[16] Wenbo Xu, Zain A. H. Hammadeh, Alexander Kröller, Rolf Ernst, and Sophie

Quinton. 2015. Improved Deadline Miss Models for Real-Time Systems Using

Typical Worst-Case Analysis. In 2015 27th Euromicro Conference on Real-Time
Systems. 247–256. https://doi.org/10.1109/ECRTS.2015.29

https://doi.org/10.1109/RTAS.2019.00028
https://doi.org/10.1109/RTAS.2019.00028
https://doi.org/10.1145/3356865
https://doi.org/10.4230/LIPIcs.ECRTS.2018.10
https://doi.org/10.1145/3126497
https://doi.org/10.1145/3126497
https://doi.org/10.4230/LIPIcs.ECRTS.2021.15
https://doi.org/10.1109/RTAS54340.2022.00026
https://doi.org/10.1109/RTAS54340.2022.00026
https://doi.org/10.1109/LCSYS.2022.3179960
https://doi.org/10.1109/LCSYS.2022.3179960
https://doi.org/10.1109/ECRTS.2015.29

	Abstract
	1 Introduction
	2 Related Work
	3 System Model
	4 Scheduling Algorithm for Weakly-hard Real-time Tasks
	4.1 Defining the Critical Sequence
	4.2 Job Classes Priorities
	4.3 Scheduling Algorithm

	5 Scheduling Analysis
	5.1 Using the Critical Sequence
	5.2 Interference Produced by the Critical Sequence
	5.3 Schedulability Condition

	6 Evaluation
	6.1 Transformation Cost
	6.2 Scheduling Analysis Setup
	6.3 Scheduling Analysis Experiments

	7 Conclusion
	References

