
The online reconfiguration of a distributed on-board

computer: The time and network behaviour of a

dependable scheduling algorithm

Glen te Hofstéa,∗, Andreas Lunda, Alexandra Coroiub, Marco Ottavic,d,
Daniel Lüdtkee

aInstitute of Software Technology, German Aerospace Center (DLR), Münchener Straße
20, Weßling, 82234, Germany

bInstitute for AI Safety and Security, German Aerospace Center
(DLR), Wilhelm-Runge-Straße 10, Ulm, 89081, Germany

cFaculty of Electrical Engineering, Mathematics and Computer Science, University of
Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands

dUniversity of Rome Tor Vergata, Via Cracovia 50, Rome, 00133, Italy
eInstitute of Software Technology, German Aerospace Center (DLR), Lilienthalplatz

7, Braunschweig, 38108, Germany

Abstract

On-board Computers (OBCs) are at the centre of space-faring systems. With
the increasing demand for cost-effective computing power in space, using
high-performance commercial-off-the-shelf (COTS) components for OBCs
has gained significant traction. COTS components, however, do not provide
the necessary fault tolerance mechanisms. The ScOSA (Scalable On-board
computing for Space Avionics) architecture uses COTS components in a
distributed system to provide more computing performance and dependability.
The effects of node failures are mitigated by removing the failed node from
the system through reconfiguration. A reconfiguration is performed by using
a set of predetermined configurations, which hinders system scalability due
to exponentially increasing memory consumption depending on the number
of nodes.

This paper continues the work on the ScOSA online reconfiguration

∗Corresponding author
Email addresses: glen.hofste@dlr.de (Glen te Hofsté ), andreas.lund@dlr.de

(Andreas Lund), alexandra.coroiu@dlr.de (Alexandra Coroiu), m.ottavi@utwente.nl
(Marco Ottavi), daniel.luedtke@dlr.de (Daniel Lüdtke)

Preprint submitted to JSA 2024 May 5, 2025



algorithm as a solution to this scalability problem. The online reconfiguration
algorithm, which has been integrated into a scheduler, makes task scheduling
decisions at run-time, eliminating the need for predetermined configurations.
The six-phase scheduling mechanism uses the real-time state of the system
and is a step towards higher dependability in distributed on-board computing.
New test scenarios have been introduced to provide insight into the temporal
and network behaviour of online reconfiguration. By evaluating in terms of
time, network traffic and memory usage, it is shown that online reconfiguration
is not only capable of dynamically generating configurations but also providing
a solution to the scalability problem for systems with varying numbers of
both nodes and tasks.

Keywords: Fault Tolerance, On-board Computers, Reconfiguration,
Middleware, Distributed Systems, Dependability, Self-X

1. Introduction

Wildfire detection, autonomous missions on celestial bodies, and encrypted
global communications are just a few examples of today’s applications for
space systems. They all have in common that they require a certain level of
computing power to provide their service or fulfil their mission, and these
performance requirements continue to increase. Typical on-board computer
(OBC) architectures currently consist of a single, radiation-hardened, custom
processing unit, such as the RAD750 [1] or the LEON5 processor [2]. These
architectures are often unable to deliver the desired performance. For this
reason, there is a trend towards using more Commercial-off-the-shelf (COTS)
components in space systems. This saves cost, reduces time-to-fly, and simpli-
fies application development. However, these components cannot withstand
radiation in the same way as radiation-hardened parts [3, 4]. This leads to
a trade-off between a high-performance but radiation-intolerant OBC and a
radiation-tolerant but low-performance OBC.

1.1. Background

To meet the increased performance requirements, NASA has developed
a hybrid architecture [5]. Using an Ethernet communication medium, the
Dependable Multiprocessors integrate dependable processors with COTS
processors. Other, more recent, solutions include the Xilinx Zynq Ultrascale+
System-on-Chip (SoC) as a high-performance processing unit, monitored by

2



rad-hard components [6, 7, 8]. Similar to these architectures, the German
Aerospace Center (DLR) is working to overcome the aforementioned trade-off
with the Scalable On-board computing for Space Avionics (ScOSA).

1.1.1. ScOSA - The Scalable On-board Computer Architecture for Space
Avionics

ScOSA combines reliable, radiation-hardened components, with COTS
components to form a distributed OBC. This creates an architecture that
brings both worlds together. The reliable computing nodes (RCNs) execute
the critical subsystems and act as a fallback for the high-performance nodes
(HPNs). All nodes are interconnected via SpaceWire or Ethernet. Using
a middleware [9] that runs on all processors, the distributed complexity is
abstracted for the application developer, facilitating the development process.
Applications range from earth observation and signal processing to remote
sensing and artificial intelligence. An important feature of the middleware is
that when a node fails, the node’s applications, or tasks, are automatically
migrated to other available nodes. This makes the system reconfigurable and
dependable. An example of a reconfiguration due to a failing node, with tasks
migrated to other nodes, can be seen in Fig. 1.

The middleware is implemented using a layered approach. The lowest
layer is called SpaceWireIPC, a protocol that enables reliable communica-
tion over SpaceWire and Ethernet. On top of this, there is the Network
Dispatcher, which is the intermediate layer that organises the messages to
and from other nodes, and forwards them to the corresponding applications
or services, i.e., the next higher layer. This next layer contains the System
Management Services [9], which implement the fault tolerance mechanisms
and the applications, which are implemented using the Distributed Tasking
Framework. In these layers, the nodes in the system are also given roles,
which can either be the role of coordinator, observer, or worker. At any time,
there is only one coordinator and several observer nodes. The observer nodes
monitor the ”health” of the coordinator.

1.1.2. Reconfiguration services

The Monitoring Service of the coordinator monitors the state of other
nodes through periodic heartbeat messages. If a node stops responding to a
heartbeat or other types of messages, the service notifies the Reconfiguration
Manager about the detected node failure. The Reconfiguration Service and
Reconfiguration Manager Service allow the middleware to respond to node

3



Figure 1: An example of ScOSA reconfiguration due to node failure

failures. To do this, upon an incoming event, the middleware looks up
the current scenario, i.e., which nodes are still available and which are not
in a tree structure. The configuration to be executed, i.e., the mapping
of tasks to nodes, is stored there. The Reconfiguration Manager of the
coordinator node then initiates the Reconfiguration Service on all available
nodes. The reconfiguration is executed by first stopping all tasks on all nodes
and then (re)starting them based on the new configuration. Finally, the
Reintegration Service is used by starting or recovering nodes. It will request
the Reconfiguration Manager to reintegrate it into the system. The node
itself becomes the coordinator if no response is received within a timeout
period.

Reconfiguration is implemented as an offline algorithm. This means that
the responses to the possible failure scenarios are predetermined during the
design phase and stored in configurations. A configuration holds information
about node roles, task-to-node assignments, and network paths. All configu-
rations are stored on all the nodes of the OBC as decision graphs. Problems

4



arise, however, when the system scales up. When there are more nodes in
the system, the number of configurations grows exponentially [10], which
consumes significant memory that is not available to the applications. Creat-
ing the configurations is furthermore an NP-complete problem, making the
offline reconfiguration only feasible for small systems. In addition, the offline
reconfiguration cannot react appropriately to unforeseen failure scenarios,
instead, forcing the OBC to switch to a safe mode and wait for instructions
from the ground.

To address these issues, we present the continued work on the online
reconfiguration algorithm for the ScOSA OBC in this paper. The online
algorithm uses information that is present during run-time, for example,
resources, suitability of a task, or network traffic, to determine the next
configuration. This enables the self-x properties of self-configuration and
self-healing for the task-to-node mapping of the system.

1.2. Outline

This work is organised as follows: In Section 2, the related work is reviewed,
followed by the design of the scheduling algorithm in Section 3. The design
is implemented and incorporated in the ScOSA middleware, on which it has
been evaluated in Section 4. The results are presented and discussed in
Section 5, followed by a conclusion in Section 6.

2. Related work

Online scheduling algorithms for distributed systems are not a new phe-
nomenon. There are several related works on desirable features for an online
algorithm, such as fault tolerance, heterogeneity, parallelism, and multi-
objective scheduling. Research on cloud scheduling [11, 12] proposes several
path-searching algorithms with support for heterogeneity. Priority-based
scheduling techniques [13, 14, 15, 16] show how ranking functions can be
applied in combination with parallelism. Multi-objective scheduling [17, 18]
can be used to optimise for a set of objectives instead of just one, increasing
the balance in the system in terms of load and network usage. Other types of
scheduling methods [19, 20, 21, 22] show that different approaches can also
be feasible while being just as good, if not better, in some aspects. Because of
the focus on dependability, the research on fault tolerant systems [23, 24] is
particularly interesting, as it resembles the scheduling problem of ScOSA the

5



most. They provide important insights into the convergence of an algorithm
in combination with heterogeneity and the ability to provide guarantees.

2.1. A new online scheduling algorithm

The literature indicates the diversity of heterogeneous distributed systems
and their solutions. The field stretches from loosely coupled cloud systems
to tightly coupled fault tolerant systems. Even though several fields cover
features such as fault tolerance, parallelism, heterogeneity, and multi-objective
scheduling, no solution exists that combines these features into one solution.
The works on fault tolerance specifically do not include features such as
parallelism or multi-objective scheduling. A novel solution is needed that
integrates these features into one algorithm, while taking full advantage
of the features unique to ScOSA. Multi-objective scheduling is outside the
scope of this paper and will be part of future work. The other features of
fault tolerance, heterogeneity, and parallelism, however, should be combined
into a single algorithm. Therefore, this paper proposes a unique solution
that combines the ScOSA middleware with the best of several scheduling
techniques, resulting in the following contributions:

• A novel online scheduling algorithm design for reconfiguring dependable
distributed on-board computers is described.

• The extendable algorithm provides a unique combination of fault tol-
erance mechanisms, extendability, caching, parallelism, self-x, and the
usage of the real-time system state.

• The online scheduling algorithm is presented as a solution to the short-
comings of the offline algorithm based on an evaluation of its temporal,
network, and memory behaviour.

2.2. Extension to the algorithm evaluation

This paper is an extension of the conference paper originally presented
at the 37th GI/ITG International Conference on Architecture of Computing
Systems (ARCS) held on May 14–16, 2024 in Potsdam, Germany [25]. The
following contributions are introduced beyond the scope of the cited conference
paper:

• The testing has been reworked and extended to provide more information
on the time spent in each scheduling phase. Additionally, instead of

6



testing only for an increasing number of nodes, a new variation was
introduced with an increasing number of tasks.

• A distribution of the total reconfiguration time was calculated based on
the new test results. The calculated distribution is used to show the
effects of caching.

• The network analysis has been extended with an analysis of the traffic
that is generated during each phase. This is used to derive a formula
for the network traffic that is generated during the scheduling cycles of
the offline and online algorithms.

3. Design of the online algorithm

This work presents an online (scheduling) algorithm designed specifically
for ScOSA. Although related work exists, there is a gap where fault tolerance,
parallelism, heterogeneity, and multi-objective scheduling are combined into
one solution. On the way towards implementing such an online algorithm,
a solution is presented that focuses on fault tolerance and parallelism while
providing extendability to implement multi-objective scheduling in future
work. The algorithm is implemented in the ScOSA middleware as a part
of its System Management Services to evaluate its scalability in a real non-
deterministic system environment.

3.1. Definitions

The temporal behaviour of the algorithm is evaluated by separating the
time it takes to assign the node roles, to decide where to schedule a task t
to and the time it takes to apply these decisions by a single reconfiguration.
The time it takes to assign the node roles is called the role assignment time
and is defined in terms of clock c as:

rolesc ∈ R≥0 (1)

A task scheduling decision can be either that a task can be successfully
scheduled or that no task mapping was found within a bounded period,
resulting in a switch to safe mode, where it waits for instructions from the
ground. The decision time in which it decides to schedule a single task t to a
node, in terms of clock c is defined as:

decisiontc ∈ R≥0 (2)

7



Where:
c ∈ R≥0 (3)

When all scheduling decisions are made, they are applied by reconfiguring
the system. The reconfiguration time in terms of clock c is defined as:

reconfigurationc ∈ R≥0 (4)

The total reconfiguration time (trt) from the time a scheduling event
arrives to the time the reconfiguration is finished is defined by the time it
takes to assign the node roles, the total (sum of the) decision time decisiontc

to schedule a set of tasks tset and the reconfiguration time reconfigurationc:

trt = rolesc +
∑
tset∈T
t∈tset

decisiontc + reconfigurationc (5)

The maximum (trt) that the online scheduling algorithm shall not exceed
is determined by the target hardware’s limitations. A limit of 4 seconds was
set by the ScOSA team, based on previous design objectives and internal
testing. For the network traffic, the communication timeout was set to 200 ms
as determined by internal testing.

3.2. Events

A reconfiguration is triggered in the Reconfiguration Manager on the
arrival of four types of events. The New Task Event is generated when a
new, previously unscheduled task needs to be scheduled. This task can, for
example, be dynamically loaded during operation. The Scheduling Failure
Event is generated when a task is unsuccessfully assigned to a node e.g., due
to a severed communication. The task can be rescheduled to another node
or, if this is not possible, graceful degradation or even a switch to safe mode
can take place.

The Node Recovery Event is called when a node requests reintegration into
the system. If a node has been in the system before, the system can recover
to a state where the node was included or, as suggested for future work, the
system should be optimised by re-balancing the tasks across its nodes. When
a node failure is detected, the Node Failure Event is invoked. When a node
fails, the running tasks are rescheduled to other nodes. The system is made
aware of the failure so other nodes no longer attempt to engage with it.

8



3.3. Scheduling

The online algorithm’s scheduling procedure starts when an event arrives.
The algorithm’s input is a data structure containing a set of tasks to be
scheduled and a set of healthy nodes. The algorithm can be seen in Algorithm 1
as pseudo code and consists of six phases, starting at Phase 1.

Algorithm 1 Scheduling procedure

Require: N ▷ Set of healthy nodes nset in the system
Require: T ▷ Set of tasks tset to schedule
1: Phase 1: Assign node roles
2: if N does not contain a coordinator node then
3: Assign new coordinator n in N
4: if isCoordinator == True then
5: if N contains a node n without a role then
6: Assign a role to n
7: Move to Phase 2
8: Phase 2: Check cache
9: if A cache entry exists for system N then

10: Schedule tasks according to the cache entry
11: Move to Phase 6
12: else
13: toSchedule ← T ▷ Set list of unscheduled tasks
14: ScheduleTasks(N, toSchedule) ▷ See function in Algorithm 2
15: Phase 6: Finish reconfiguration
16: Nodes affected by scheduling stop execution
17: Scheduling changes are applied on the affected nodes
18: The nodes start executing
19: Cache is updated and reconfiguration finishes

In Phase 1 the Coordinator, Observer 1, Observer 2 and worker roles are
assigned to the healthy nodes in the system. If there is no coordinator in the
system, one will be selected based on the lowest node id. If not already present,
the (two) observer nodes are also assigned. All remaining nodes are then
assigned the Worker role. If the coordinator or observer node roles change,
an update is sent to all nodes in the system via a partial reconfiguration.

9



Algorithm 2 Scheduling Phase 3-4-5

procedure ScheduleTasks(N, toSchedule)
2: Phase 3: Prioritise tasks

if length(toSchedule) > 0 then
4: Calculate priority value of toSchedule tasks

priorityTask ← highest priority task id
6: Move to Phase 4

else
8: Move to Phase 6 ▷ Break out of recursion

Phase 4: Prioritise nodes
10: Advertise highest priority task to all nodes in N

The nodes return a calculated normalised priority value
12: Node responses are appended to nodePriorities

Sort nodePriorities in descending order
14: Move to Phase 5

Phase 5: Schedule task
16: i← 0 ▷ Node priority index

Schedule the priorityTask to nodePriorities [i]
18: if isSchedulingSuccessful == False then

Attempt to schedule to lower priority nodes
20: if Attempt successful then

Remove priorityTask from toSchedule
22: else

Remove priorityTask from toSchedule
24: ScheduleTask(N, toSchedule) ▷ Move to Phase 3 recursively

In Phase 2, the algorithm checks for a cache entry, which can provide a
quick response if a scheduling situation has already occurred before. There is
a limit to the number of cache entries that can be stored due to the limited
memory and to improve the response time. A simplified version has been
implemented that stores and maintains all the scheduling decisions until it is
filled. This simplified version does allow the performance of a cached decision
to be evaluated in terms of the time taken to handle an event.

With no cached decision to load, the transition is made to Phase 3 by
calling ScheduleTasks(), to which the set of healthy nodes N and set of tasks
to be scheduled toSchedule is passed. As can be seen in Algorithm 2, the
tasks to schedule are prioritised to determine in which order they are to be

10



scheduled. The prioritisation focuses on keeping as many tasks available in
the system as possible. As the Tasking Framework does not currently provide
mixed criticality or time-related parameters (such as arrival time, execution
time, finish time, and task deadlines), the tasks are prioritised based on the
number of successor tasks. If multiple tasks end up having the same priority,
then tasks with a lower task id are currently prioritised.

In Phase 4, nodes are prioritised based on their ability to execute the
highest priority task. The ability of a node to execute a task is calculated
individually by each node in the system. The coordinator ”advertises” the
highest priority task to all healthy nodes over the network, which will indi-
vidually and in parallel calculate a normalised priority value. Similar to the
artificial hormone system in [22], the priority calculation is determined by
factors such as:

• The availability of resources on a node (e.g., CPU utilisation, memory
usage, temperature);

• The ability to execute a specific task, which may be different due to
heterogeneous hardware in the system;

• The impact on the network by generating increased traffic;

• The locality to predecessor and successor tasks.

The priority calculation is currently based on the availability of resources
and the ability of a node to execute a specific task, given the limitations in
the SpaceWireIPC layer. These limitations will be addressed in future work.

Each node returns its calculation result to the coordinator. The coordi-
nator creates a sorted priority list of the responses, limited by a timeout. If
multiple nodes calculate the same priority, then nodes with a lower node id
are prioritised.

In Phase 5, the highest priority task is scheduled to the highest priority
node. This involves a single partial reconfiguration directed to the highest
priority node with a request to execute this task. Using a dynamic configura-
tion, the node stores the task change before applying it in Phase 6. When
the coordinator receives the acknowledgement of the partial reconfiguration,
the online algorithm removes the task from the set of tasks that need to be
scheduled and recursively goes back to Phase 3 to schedule any remaining
tasks. If there are no more tasks to schedule, the algorithm breaks out of the

11



recursion of ScheduleTasks() and moves to Phase 6 to finalise the changes.
Currently, if a partial reconfiguration cannot be applied due to a scheduling
failure, the task should not be removed from the set. Instead, in future work,
the Scheduling Failure event should be called, which will attempt to schedule
the task to the second highest priority node.

Finally, in Phase 6, applying the scheduling changes will complete the
reconfiguration. In this phase, the affected nodes will temporarily stop execu-
tion to reconfigure to the dynamic configuration, as created by the partial
reconfigurations. Once applied, the nodes send the coordinator a ”recon-
figuration successful” message. The coordinator waits for all the successful
reconfiguration messages from the nodes, after which it will finish the recon-
figuration by sending a ”reconfiguration finish” message to all nodes to notify
them of the changes. At this point, the nodes start executing tasks again,
resulting in the system being fully available again.

4. Evaluation

Two test setups are used to evaluate the online reconfiguration algorithm,
a time setup on the target hardware and a simulated network setup on a
Linux server.

4.1. Test Setup 1: time analysis

The first test setup is used to find the total reconfiguration time trt . The
test programs are run on the target hardware, using three HPN nodes that
are connected via Ethernet. Each HPN node runs Linux on a Xilinx Zync
7000 series system-on-a-chip with a dual-core ARM A9 processor with a total
of 1GB of DDR3 memory and gigabit Ethernet.

The reconfigurationc parameter tracks how long it takes for the system
to reconfigure and apply a new configuration. The decision time parameter
decisiontc keeps track of how long it takes the coordinator to decide and
schedule a task to a node. Only the online algorithm has a decision time,
as for the offline algorithm the decisions are predetermined offline using a
decision graph. Due to the dependency on the network during the scheduling
procedure, the network delay is also part of the overall decision-making time.
Finally, rolesc, decisiontc, and reconfigurationc are used to calculate the total
reconfiguration time trt (Eq. 5) in milliseconds.

Compared to the offline reconfiguration, the online reconfiguration depends
heavily on the communication between nodes during phases 4 and 5 of the

12



algorithm. It is important to determine how the total reconfiguration time
increases and how it scales for a larger set of tasks.

Four tests are performed on the target hardware to find decisiontc and
reconfigurationc, using the following test programs:

• Test Program 1 (TP1): Offline reconfiguration (4 tasks)

• Test Program 2 (TP2): Online reconfiguration + cache (4 tasks)

• Test Program 3 (TP3): Online reconfiguration (4 tasks)

• Test Program 4 (TP4): Online reconfiguration + cache (20 tasks)

Two types of simple tasks are used in all tests: sender and receiver tasks.
A sender task periodically sends a counter value, whereas receiver tasks receive
the counter value and print it out. Besides incrementing the counter, the
sender tasks do not perform any additional computations.

TP1 is used as the reference program to benchmark and compare the
online reconfiguration programs with and without cached decisions. It is
configured to use four tasks, consisting of three receiver tasks receiving the
output of one sender task. The sender task sends the counter value every
500 ms to the receiver tasks. TP2 and TP3 run the same tasks as TP1 to
make a direct comparison. The influence of the cache can then be evaluated
between TP2 and TP3. The cache is disabled in TP3. The final program TP4
is used to evaluate the algorithm when there are more tasks in the mission
configuration. It is configured to use five sender tasks with a send interval of
500 ms, each with a subset of three receiver tasks that receive and print the
output of the sender task.

To automatically run each test program on the nodes, a test script is
used, which starts and stops nodes at random time intervals, according to a
uniform distribution between 20 and 60 seconds. The test script emulates
the behaviour of nodes failing and reintegrating into the system.

4.2. Test Setup 2: network analysis

The second test setup is used to analyse the network traffic in terms of the
number of bytes generated by a scheduling procedure. The network analysis
tests are performed on a ”worst-case” node failure with a failing coordinator
node, as the coordinator selection combined with the task scheduling results
in the largest amount of traffic. The tests are conducted on a server with

13



an x86 64 desktop processor, utilising internal loop-back routing for network
traffic, allowing for the operation of more than three virtual nodes. As the
dependency on memory for offline reconfiguration is effectively changed to a
dependency on the network, it is important to determine how the network
traffic scales. With the ability to increase the number of virtual nodes, the
network traffic of online reconfiguration could be tested for a system with
a higher number of nodes. Systems consisting of 3, 4, 5, 6, 7, 8, 9, 16, 32,
48, 64, 80 and 96 nodes are tested 25 times each. To analyse the different
test cases, the accumulated reconfiguration traffic in bytes is filtered to only
include packets from scheduling procedures. Then, each scheduling procedure,
from the failure event to the finish reconfiguration message, is extracted from
the filtered traffic to find the exact packets that are associated with a full
reconfiguration. These packets are subsequently used to derive a formula that
describes the network traffic.

Three different tests are performed on the server to find the worst-case
network traffic, using the following test programs:

• Test Program 1 (TP5): Offline reconfiguration (4 tasks)

• Test Program 2 (TP6): Online reconfiguration + caching (4 tasks)

• Test Program 3 (TP7): Online reconfiguration (4 tasks)

These programs are essentially the same as in Test Setup 1, with the exception
that they are compiled for x86 64.

5. Results and discussion

5.1. Timing analysis

The timing analysis is performed on the results from Test Setup 1 (see
Section 4.1). It focuses specifically on the time it takes to execute the different
phases of the algorithm. The timing analysis is performed with a 1 millisecond
resolution. Throughout all tests, the time required to assign the node roles
(Phase 1) was found to be no more than 1 millisecond. This value is used
as a worst-case role assignment time rolesc (Eq. 1) for finding the total
reconfiguration time trt (Eq. 5).

14



5.1.1. Decision time

The time it takes to decide which node to schedule a (single) task to, is
defined by decisiontc (Eq. 2), which corresponds to phases 3, 4 and 5 of the
algorithm. In case a cached decision exists, decisiontc corresponds to Phase
2, determined by the time it takes to load and schedule a decision from cache.
The results were then split between cached decisions and decisions based on
node and task prioritisation. If only the node role was changed during Phase
1 of the scheduling procedure, zero tasks would be scheduled, resulting in a
direct transition to Phase 6, and subsequent decisiontc of zero for Phase 2 or
Phase 3-4-5.

A distinction was made based on whether there were one or multiple
healthy nodes in the system. If there is only one healthy node, the one
running the scheduling procedure, then naturally all tasks are scheduled to
that node, resulting in a reduced decisiontc.

The resulting decisiontc of Phases 3-4-5 (without cached decisions) can
be seen in Table 1. The data shows the difference in mean decision times
between scheduling one or multiple nodes. The distributions of decision times
from Table 1 can be seen in Fig. 2. Note that the results do not include
experiments where a communication timeout occurred, which is set to 200 ms.

Multiple Nodes Count Mean Std Dev Min Max
False 2815 34.50 4.57 33 199
True 9087 101.28 13.96 48 192

Table 1: Decision time (ms) per task, not cached

Figure 2: Decision time per task, not cached

15



When Phase 3-4-5 is executed with multiple nodes in the system, the
mean stays around 101 ms, regardless of the number of nodes in the system.
This is due to the parallelism of the algorithm, where all nodes calculate
their own priority value in Phase 4. When there is only one node in the
system, the coordinator schedules all tasks to itself if sufficient resources
are available, resulting in a mean decision time of around 34 ms with a low
standard deviation. The separation between multiple nodes and a single node
in the system is therefore important to consider. It must be noted that when
the system is in flight, a situation with only a single healthy node left is
unlikely to occur when using larger system sizes than three nodes.

When decisions are loaded from cache in Phase 2, the decisiontc for one
and multiple nodes can be seen in Table 2 and Fig. 3. Notice that for both
cases the mean is around 35 ms, with a very low standard deviation. Thus,
when a cached decision can be loaded, the total decision time can be reduced.

Multiple Nodes Count Mean Std Dev Min Max
False 32 35.16 1.61 33 38
True 4762 35.56 1.32 33 42

Table 2: Decision time (ms) per task, cached

Figure 3: Decision time per task, cached

5.1.2. Total decision time

Knowing the decision times per task, the total decision time can be
determined. Using TP4, the decision times to schedule a set of tasks without
cached decisions are captured and can be seen in Fig. 4. The trend line

16



indicates that the total decision times increase linearly with the number of
tasks that are scheduled, both for one and for multiple nodes.

Figure 4: Total decision time (Mean and 1 Std Dev), 1-20 tasks, not cached

The effect of caching on the total decision time in the case of 20 tasks
and multiple nodes can be seen in Table 3. Not only is the mean more than
halved, but the standard deviation of cached decisions is also smaller, making
them more predictable.

Cached Decision Count Mean Std Dev Min Max
False 192 2035.08 280.80 701 2382
True 81 724.15 24.88 679 757

Table 3: Total decision time (ms), 20 tasks, with multiple nodes

5.1.3. Reconfiguration time

The reconfiguration time (Eq. 4) is the last missing value to find trt (Eq. 5),
and is captured during Phase 6 of the algorithm. The reconfiguration time of
TP1, TP2, and TP3 can be seen in Table 4. The results of test programs 2 and
3 are combined, as caching only impacts decisiontc, and not reconfigurationc.

17



The difference between offline and online distributions can be seen in Fig. 5,
and explains the higher standard deviation for online reconfigurations.

Statistic Count Mean Std Dev Min Max
Offline 779 80.38 16.61 34 119
Online 2327 139.04 90.33 11 333

Table 4: Reconfiguration time (ms)

Figure 5: Reconfiguration time

The distribution of online reconfiguration times presents a bimodal dis-
tribution. The two modes are caused by network delays and the handling
of Node Failure and Node Recovery events. When a node reintegrates into
the system, it must be initialised. The initial reconfiguration of this node
after a boot-up is time-consuming. Since the coordinator node has to wait for
the reintegrating node to finish the time-consuming initial reconfiguration,
there is an increased reconfiguration time, which results in the second mode.
The first mode is caused by a reconfiguration after a node failure where no
initialisation is required. This, therefore, results in a lower reconfiguration
time, which is similar to a full offline reconfiguration.

5.2. Comparing to the benchmark

To be able to compare to the offline benchmark of TP1, the identical tasks
are scheduled through an online scheduling procedure. Similar to what is
displayed in Fig. 4, decisiontc is examined per number of scheduled tasks in
a scatter-plot in Fig. 6. It shows the decision times without cached decisions.

18



Figure 6: Total decision time, 1-4 tasks, not cached

A difference between offline and online reconfigurations is that an offline
reconfiguration always re-loads and re-starts all tasks, contrary to the online
reconfiguration where only the updated tasks are affected. Therefore, the
total decision time can be any of the number of tasks of Fig. 6. The decisiontc

when explicitly considering the case where four tasks are scheduled can be
seen in Table 5.

Multiple Nodes Count Mean Std Dev Min Max
False 4 144.50 7.89 138 154
True 26 415.92 30.57 318 468

Table 5: Total decision time (ms), four tasks, not cached

Fig. 6 and Table 5 only show the decisiontc that was not a result of a
cache load in Phase 2. This is because there were insufficient occurrences of
cached decisions where there is only one node in the system for statistical
analysis. For cached decisions with multiple nodes in the system the mean
decisiontc is 151.63 ms for four tasks. This is an improvement over the mean
value of 415.92 ms when executing Phase 3-4-5, indicating the effectiveness of

19



caching, even for a small set of tasks. If more cache loads can be achieved
during scheduling, it is expected that the overall mean decisiontc will decrease,
resulting in a better trt .

5.2.1. Total reconfiguration time

With all the variables known to calculate trt (Eq. 5), the distribution
of the total reconfiguration time was computed as the sum of two random
variables: one drawn from the distribution of decision times, the other from
the distribution of the reconfiguration times. This operation was performed
for four tasks as seen in Fig. 7 and twenty tasks as seen in Fig. 8.

Figure 7: Computed total reconfiguration time, four tasks (kernel density estimate with
bandwidth = 1)

Most importantly, the limit trt (4 sec) of the design objectives (as stated
in Section 3.1) would never be exceeded (Max trt four tasks = 802, Max
trt twenty tasks = 2716). Both figures also show the effect caching would
have on the trt. In situations where cached decisions are loaded (indicated
by cached = True) the trt would be lower than for the non-cached decisions.
This difference increases even more when the number of tasks that need to
be scheduled increases, as can be seen when comparing the trt distributions
of four and twenty tasks. To extend on this, it is thus clear that during

20



Figure 8: Computed total reconfiguration time, twenty tasks (kernel density estimate with
bandwidth = 1)

boot-up the trt is expected to be high as well, since the full set of tasks needs
to be scheduled, without the presence of any cached decisions. A changing
system topology due to nodes failing or reintegrating can be handled quickly
as usually not the full set of tasks needs to be scheduled.

One way to reduce the time during boot-up is to force a cached decision by
implementing cache preloading. Common system states can be predetermined,
similar to the offline configurations, and preloaded into the cache. The system
can then quickly load an optimised configuration for a common situation,
such as the nominal state when all nodes are healthy. This can make cache
loads more frequent, resulting in a lower overall trt.

5.3. Network analysis

The test outputs from Test Setup 2 (see Section 4.2) are used for the
network analysis. TP5 and TP6 are used to compare the offline and online
reconfigurations one-to-one. The impact of caching on online reconfiguration
is evaluated between TP6 and TP7. Since the offline and online scheduling
procedures are always the same, the captured network traffic can be used to

21



find a formula that describes the traffic as a function of the number of nodes
and tasks.

The total network traffic that is generated after a node failure by the
offline reconfiguration is a function of the number of nodes that are in the
system. After analysing the captured network traffic, it was found that the
total network traffic can be calculated using Eq. 6, where nset is the set of
healthy nodes in the system. A Node Failure Event message (73 bytes) occurs
only once and is represented as a constant. Traffic from the Reconfiguration
Request, Reconfiguration Finish, and Reconfiguration Successful messages
(217 bytes total) of the offline algorithm, is dependent on the number of
healthy nodes (nset) in the system. One is subtracted from nset, since the
coordinator is also counted in the set of healthy nodes. However, packets
from the coordinator to the coordinator do not affect the network traffic, as
they are handled internally by the middleware.

trafficoffline = (nset − 1) ∗ 217 + 73 (6)

The total network traffic generated by online reconfiguration after a node
failure is a function of the number of nodes in the system and the set of
tasks that need to be scheduled. We found that the total network traffic
can be calculated using Eq. 7, where nset is the set of healthy nodes in the
system, and tset is the set of tasks to be scheduled. Node Failure Event and
Reconfiguration Finish messages (121 bytes total) occur only once and are
represented as a constant. Traffic from Phase 1 and Phase 6 (272 bytes total)
depends on the number of healthy nodes (nset) in the system, where again the
coordinator is subtracted from nset. Traffic from Phase 4 (233 bytes) depends
on the set of healthy nodes and the set of tasks tset, as for every task that
needs to be scheduled, all nodes are contacted to advertise the task, to which
they will all respond. Finally, traffic from Phase 5 Partial Reconfiguration
Requests (100 bytes) depends on the set of tasks tset, and are always sent to
only one node.

trafficonline = (nset − 1) ∗ (272 + (tset ∗ 233)) + tset ∗ 100 + 121 (7)

These two equations can be used to find the expected total network
traffic for systems with a varying number of nodes and tasks. Table 6 shows
the expected total offline and online network traffic. Note how the offline
reconfiguration traffic is not dependent on the number of tasks involved in

22



a reconfiguration, since here, only the switch to the next predetermined
configuration is handled over the network by the coordinator. For the online
reconfiguration, the total traffic increases with the number of nodes and
tasks. For large systems, where a large set of tasks needs to be scheduled,
the amount of traffic will approach the limits of the network. However, as
systems of 96 nodes are considered unrealistic, more realistic systems of e.g.,
16 nodes were found to always be within the limits of the network.

Healthy Nodes
Offline reconfig. Tasks Online reconfig. Tasks

Any 1 4 20

2 290 726 1725 7053

16 3328 7796 18581 76101

96 20688 48196 114901 470661

Table 6: Total traffic (bytes), offline vs. online (1, 4, 20 tasks) reconfiguration

The total network traffic has also been analysed in a virtual environment,
to determine how non-determinism affects the behaviour of the algorithm,
by e.g., introducing other miscellaneous network traffic or by simulating
node failures while scheduling. It is furthermore important to see how the
network traffic scales when the number of nodes in the network increases in a
non-deterministic environment. Fig. 9 shows the captured network traffic of
TP6 and TP7 for an increasing number of nodes with caching enabled and
disabled.

For both TP6 and TP7, the network traffic increases linearly, with the
caching-enabled version requiring slightly less traffic, since Phase 3-4-5 can be
skipped. The largest system with 96 nodes had a worst-case network traffic
of 139626 bytes. This is higher than the calculated traffic in Table 6, and
occurs in failure situations where one or more network packet resends are
necessary. This is, however, still within the limits of the network.

5.4. Memory analysis

When scaling up the number of nodes in the system using the network
setup, the memory usage of the online algorithm was analysed using TP6 and
TP7. Offline reconfiguration e.g., in TP6, has been shown to have memory
consumption that scales exponentially [10]. Online reconfiguration should
solve this problem in particular. As nodes using the online reconfiguration

23



Figure 9: Total traffic for online reconfiguration (regression line CI=95%)

have to keep track of where tasks are running in the system, they are expected
to consume more memory when the system size increases. After running a
memory profiler, it was discovered that the stack usage increases linearly
with the number of nodes in the system, regardless of the node’s role. In
fact, when the number of nodes doubles, the stack usage doubles as well,
with the heap usage remaining stable for all system sizes. When the number
of nodes increased from 3 to 96 (a 32 times increase), there is only a 28-29
times increase in stack usage. This shows the online reconfiguration’s ability
to solve the scaling problem, which is in contrast to the offline algorithm’s
exponentially increasing memory usage.

The results demonstrate that online reconfiguration is an effective solution
to the scalability problem of the offline reconfiguration. Although runtime
and network traffic increase, these do not increase exponentially and remain
within the system’s limits. The online algorithm provides a solution to the
inability of offline reconfiguration to support systems with many nodes and to
adapt to runtime behaviour. Online reconfiguration, therefore, allows larger
systems to utilise a distributed avionics middleware such as ScOSA.

24



6. Conclusion

Dependability in spacecraft on-board computers remains a significant
challenge. In this paper, we present the continuation of the work on a
distributed system with the ability to self-configure based on the real-time
state of the system. The novel online reconfiguration mechanism overcomes
the scalability issues of offline reconfiguration by eliminating the need for
predetermined configurations. By implementing online reconfiguration in the
ScOSA middleware, the dynamic creation of configurations was evaluated in
terms of time, network traffic, and memory usage. The online reconfiguration
mechanism can schedule tasks to nodes at the cost of increasing the total
reconfiguration time and network traffic, while remaining within the limits of
the system. However, as the number of nodes and tasks in the system scales,
the total reconfiguration time, network traffic, and memory usage increase
linearly, in contrast to an exponential increase in memory usage for the offline
reconfiguration mechanism.

There is thus a trade-off to be made depending on which aspects are
more important. For smaller systems, where all configurations can still be
predetermined offline and fit into memory, the increase in time and network
traffic of the online reconfiguration may lead to an unacceptable increase
in time and network usage. However, offline reconfiguration provides no
resilience to contingencies and has no self-x properties.

If the best of both mechanisms can be brought together in a combined
solution, a middle ground could be reached that would provide the greatest
net improvement. It became clear that for the online reconfiguration, the
total reconfiguration time increases with the number of tasks to be scheduled.
Therefore, when a large set of tasks needs to be scheduled, online reconfigura-
tion reduces the time in which all tasks are operational. Caching combined
with cache preloading is proposed as a kind of hybrid solution that combines
offline features with online reconfiguration to mitigate the shortcomings of
both approaches.

Investigating this trade-off will be part of future work, while the develop-
ment of the online reconfiguration algorithm continues. From a maintainability
perspective, changes to the scheduling phases can be easily made to further
extend and optimise the scheduling procedure, paving the road for multi-
objective scheduling in the future. Enhanced with this online reconfiguration,
ScOSA can be developed into a dynamic but dependable OBC architecture.
This opens up new possibilities: from a power-aware system that adapts to

25



the available power to spacecraft-spanning systems e.g., constellations that
dynamically distribute tasks among themselves.

As a first step, ScOSA will be demonstrated with some typical space ap-
plications as part of a CubeSat mission in 2026 [26]. This will initially include
offline reconfiguration, but will be followed by an update to demonstrate
online reconfiguration under operational conditions.

References

[1] BAE systems: Rad750 radiation-hardened powerpc microprocessor,
accessed: 03-02-2023.
URL https://www.baesystems.com/en-media/uploadFile/

20210404045936/1434555668211.pdf

[2] Frontgrade Gaisler: Leon5 processor, accessed: 03-02-2023.
URL https://www.gaisler.com/index.php/products/processors/

leon5

[3] A. N. Nikicio, W.-T. Loke, H. Kamdar, C.-H. Goh, Radiation analysis and
mitigation framework for leo small satellites, in: 2017 IEEE International
Conference on Communication, Networks and Satellite (Comnetsat),
2017, pp. 59–66. doi:10.1109/COMNETSAT.2017.8263574.

[4] C. Wilson, A. George, CSP hybrid space computing, Journal of Aerospace
Information Systems 15 (4) (2018) 215–227.
URL https://doi.org/10.2514/1.I010572

[5] J. Samson, J.R., E. Grobelny, S. Driesse-Bunn, M. Clark, S. Van Port-
fliet, Post-TRL6 dependable multiprocessor technology developments, in:
Aerospace Conference, IEEE, 2010. doi:10.1109/AERO.2010.5446658.

[6] A. Pawlitzki, F. Steinmetz, multiMIND–high performance processing
system for robust newspace payloads, in: 2nd European Workshop on
On-Board Data Processing (OBDP2021), 2021. doi:10.5281/zenodo.

5521502.

[7] R. Costa Amorim, R. Martins, P. Harikrishnan, M. Ghiglione, T. Helfers,
Dependable MPSoC framework for mixed criticality applications, in: 2nd
European Workshop on On-Board Data Processing (OBDP2021), 2021.
doi:10.5281/zenodo.5521521.

26

https://www.baesystems.com/en-media/uploadFile/20210404045936/1434555668211.pdf
https://www.baesystems.com/en-media/uploadFile/20210404045936/1434555668211.pdf
https://www.baesystems.com/en-media/uploadFile/20210404045936/1434555668211.pdf
https://www.gaisler.com/index.php/products/processors/leon5
https://www.gaisler.com/index.php/products/processors/leon5
https://www.gaisler.com/index.php/products/processors/leon5
https://doi.org/10.1109/COMNETSAT.2017.8263574
https://doi.org/10.2514/1.I010572
https://doi.org/10.2514/1.I010572
https://doi.org/10.1109/AERO.2010.5446658
https://doi.org/10.5281/zenodo.5521502
https://doi.org/10.5281/zenodo.5521502
https://doi.org/10.5281/zenodo.5521521


[8] P. Kuligowski, G. Gajoch, M. Nowak, W. S ladek, System-level harden-
ing techniques used in the COTS-based data processing unit, in: 2nd
European Workshop on On-Board Data Processing (OBDP2021), 2021.
doi:10.5281/zenodo.5521575.

[9] A. Lund, Z. A. H. Hammadeh, P. Kenny, V. Bensal, A. Kovalov,
H. Watolla, A. Gerndt, D. Lüdtke, ScOSA system software: The re-
liable and scalable middleware for a heterogeneous and distributed
on-board computer architecture, CEAS Space Journal (Mai 2021).
doi:10.1007/s12567-021-00371-7.

[10] A. Kovalov, T. Franz, H. Watolla, V. Vishav, A. Gerndt, D. Lüdtke,
Model-based reconfiguration planning for a distributed on-board com-
puter, in: 12th System Analysis and Modelling (SAM) Conference - Lan-
guages, Methods and Tools for AI-based Systems, co-located with MOD-
ELS 2020, Virtual Event, Oct. 19-20, 2020, Association for Computing
Machinery (ACM), 2020, pp. 55–62. doi:10.1145/3419804.3420266.

[11] L. Zohrati, M. Abadeh, E. Kazemi, Flexible approach to schedule tasks
in cloud-computing environments, Iet Software (2018). doi:10.1049/

IET-SEN.2017.0008.

[12] K. Karmakar, R. K. Das, S. Khatua, Resource scheduling for tasks of
a workflow in cloud environment, Lecture Notes in Computer Science
(2020). doi:10.1007/978-3-030-36987-3_13.

[13] W. Zheng, Z. Chen, R. Sakellariou, L. Tang, J. Chen, Evaluating
DAG scheduling algorithms for maximum parallelism, 2020 IEEE
Intl Conf on Parallel & Distributed Processing with Applications,
Big Data & Cloud Computing, Sustainable Computing & Commu-
nications, Social Computing & Networking (2020). doi:10.1109/

ISPA-BDCLOUD-SOCIALCOM-SUSTAINCOM51426.2020.00033.

[14] L. Liu, G. Xie, L. Yang, R. Li, Schedule dynamic multiple parallel
jobs with precedence-constrained tasks on heterogeneous distributed
computing systems, in: 2015 14th International Symposium on Parallel
and Distributed Computing, 2015, pp. 130–137. doi:10.1109/ISPDC.

2015.22.

27

https://doi.org/10.5281/zenodo.5521575
https://doi.org/10.1007/s12567-021-00371-7
https://doi.org/10.1145/3419804.3420266
https://doi.org/10.1049/IET-SEN.2017.0008
https://doi.org/10.1049/IET-SEN.2017.0008
https://doi.org/10.1007/978-3-030-36987-3_13
https://doi.org/10.1109/ISPA-BDCLOUD-SOCIALCOM-SUSTAINCOM51426.2020.00033
https://doi.org/10.1109/ISPA-BDCLOUD-SOCIALCOM-SUSTAINCOM51426.2020.00033
https://doi.org/10.1109/ISPDC.2015.22
https://doi.org/10.1109/ISPDC.2015.22


[15] R. M. Sahoo, S. K. Padhy, A novel algorithm for priority-based task
scheduling on a multiprocessor heterogeneous system, Microprocessors
and Microsystems 95 (2022).
URL https://doi.org/10.1016/j.micpro.2022.104685

[16] B. Hu, Z. Cao, L. Zhou, Adaptive real-time scheduling of dynamic
multiple-criticality applications on heterogeneous distributed computing
systems, in: 2019 IEEE 15th International Conference on Automation
Science and Engineering (CASE), 2019, pp. 897–903. doi:10.1109/

COASE.2019.8842895.

[17] M. N. Krishnan, R. Thiyagarajan, Multi-objective task scheduling in fog
computing using improved gaining sharing knowledge based algorithm,
Concurrency and Computation: Practice and Experience (2022). doi:
10.1002/CPE.7227.

[18] M. Chatterjee, S. K. Setua, A multi-objective deadline-constrained task
scheduling algorithm with guaranteed performance in load balancing
on heterogeneous networks, SN computer science (2021). doi:10.1007/
S42979-021-00609-5.

[19] L. Xu, J. Qiao, S. Lin, W. Zhang, Dynamic task scheduling algorithm
with deadline constraint in heterogeneous volunteer computing platforms,
Future Internet (2019). doi:10.3390/FI11060121.

[20] L. Eskandari, J. Mair, Z. Huang, D. Eyers, I-Scheduler: Iterative schedul-
ing for distributed stream processing systems, Future Generation Com-
puter Systems (2021). doi:10.1016/J.FUTURE.2020.11.011.

[21] S. Ahmad, C. S. Liew, E. U. Munir, T. F. Ang, S. U. Khan, A hybrid
genetic algorithm for optimization of scheduling workflow applications in
heterogeneous computing systems, Journal of Parallel and Distributed
Computing (2016). doi:10.1016/J.JPDC.2015.10.001.

[22] A. von Renteln, U. Brinkschulte, M. Pacher, The artificial hormone sys-
tem—an organic middleware for self-organising real-time task allocation,
Organic Computing—A Paradigm Shift for Complex Systems (2011)
369–384.
URL https://doi.org/10.1007/978-3-0348-0130-0_24

28

https://doi.org/10.1016/j.micpro.2022.104685
https://doi.org/10.1016/j.micpro.2022.104685
https://doi.org/10.1016/j.micpro.2022.104685
https://doi.org/10.1109/COASE.2019.8842895
https://doi.org/10.1109/COASE.2019.8842895
https://doi.org/10.1002/CPE.7227
https://doi.org/10.1002/CPE.7227
https://doi.org/10.1007/S42979-021-00609-5
https://doi.org/10.1007/S42979-021-00609-5
https://doi.org/10.3390/FI11060121
https://doi.org/10.1016/J.FUTURE.2020.11.011
https://doi.org/10.1016/J.JPDC.2015.10.001
https://doi.org/10.1007/978-3-0348-0130-0_24
https://doi.org/10.1007/978-3-0348-0130-0_24
https://doi.org/10.1007/978-3-0348-0130-0_24


[23] J. Mei, K. Li, X. Zhou, K. Li, Fault-tolerant dynamic rescheduling for
heterogeneous computing systems, Journal of Grid Computing (2015).
doi:10.1007/S10723-015-9331-1.

[24] D. Feng, B. Liu, J. Gong, An on-board task scheduling method based on
evolutionary optimization algorithm, Journal of Circuits, Systems and
Computers (2022). doi:10.1142/S0218126623501001.

[25] G. te Hofsté, A. Lund, M. Ottavi, D. Lüdtke, Towards the online re-
configuration of a dependable distributed on-board computer, in: Ar-
chitecture of Computing Systems, Springer, Cham, 2024, pp. 127–141.
doi:https://doi.org/10.1007/978-3-031-66146-4_9.

[26] D. Lüdtke, T. Firchau, C. G. Cortes, A. Lund, A. M. Nepal, M. M.
Elbarrawy, Z. H. Hammadeh, J.-G. Meß, P. Kenny, F. Brömer, M. Mirza-
agha, G. Saleip, H. Kirstein, C. Kirchhefer, A. Gerndt, Scosa on the
way to orbit: Reconfigurable high-performance computing for spacecraft,
in: 2023 IEEE Space Computing Conference (SCC), 2023, pp. 34–44.
doi:10.1109/SCC57168.2023.00015.

29

https://doi.org/10.1007/S10723-015-9331-1
https://doi.org/10.1142/S0218126623501001
https://doi.org/https://doi.org/10.1007/978-3-031-66146-4_9
https://doi.org/10.1109/SCC57168.2023.00015

	Introduction
	Background
	ScOSA - The Scalable On-board Computer Architecture for Space Avionics
	Reconfiguration services

	Outline

	Related work
	A new online scheduling algorithm
	Extension to the algorithm evaluation

	Design of the online algorithm
	Definitions
	Events
	Scheduling

	Evaluation
	Test Setup 1: time analysis
	Test Setup 2: network analysis

	Results and discussion
	Timing analysis
	Decision time
	Total decision time
	Reconfiguration time

	Comparing to the benchmark
	Total reconfiguration time

	Network analysis
	Memory analysis

	Conclusion

