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Abstract—Monitoring and analyzing vegetation trends and their
climatic drivers are useful to understand the possible impacts of
climate change on vegetation. In this study, we analyzed normalized
difference vegetation index (NDVI) trends at 1 km2 resolution
for spring (March–May), summer (June–August), and autumn
(September–November) for individual biogeographical regions and
land cover types in Europe for the 30-year period 1989–2018. In
addition, we determined the influence of precipitation, tempera-
ture, solar radiation, and vapor pressure deficit (VPD) on the NDVI
and identified their influence in areas showing significant (p<0.05)
negative and positive NDVI trends. Our results show varying sea-
sonal NDVI trends for different regions, ranging between +0.004
and −0.001 NDVI units per year. Highest NDVI increase can be
observed for land cover classes in the Pannonian region in autumn
(>0.005 NDVI year−1), strongest NDVI decrease (<−0.002 NDVI
year−1) for grassland (summer), and rain-fed cropland (autumn)
in the Steppic region. In spring, significant positive causal links
between the NDVI and temperature are dominant in large areas of
Europe while VPD influences the NDVI in north-eastern (positive
link) and southern Europe (negative link). In summer, precipitation
shows positive causal links to NDVI in parts of the Anatolian
and Mediterranean regions, while VPD influences NDVI regionally
(negative link). In autumn, precipitation (positive link) and VPD
(negative link) are the dominant controlling factors on the NDVI
for central-eastern Europe and parts of the Iberian Peninsula.
Across Europe, significant positive NDVI trends in spring can
be mainly explained by increasing temperatures. Negative spring
NDVI trends can be linked to decreasing VPD in some regions. In
the Mediterranean, Steppic, and Anatolian regions, a significant
NDVI decrease in summer and autumn is mainly linked to decreas-
ing precipitation. The results of this study assist in understanding
and quantifying ongoing vegetation change in Europe and reveal
the influence climate variables have on the vegetation activity for
individual land cover types within different regions.
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I. INTRODUCTION

V EGETATION plays an important role in the Earth system
[1], [2]. As a key component of the terrestrial ecosystems,

it contributes to valuable ecosystem services, such as food pro-
duction, biodiversity, habitat provision, and water conservation
[3], [5], [14] and is an integral part of the global carbon cycle [6],
[7], [8]. In recent years, the impacts of climate change on Earth’s
ecosystems have become more and more evident [9], [10],
[11], [12]. Vegetation is particularly influenced by climate as
vegetation growth and phenology depend on climate conditions
[13], [14], [15]. Europe is the fastest-warming continent, with
temperatures rising at around twice the global average rate [16].
Therefore, major impacts on vegetation from climate change are
expected, especially in southern regions of Europe [17].

Monitoring past and current vegetation change and trends
and their relation to climate variables are useful to understand
the possible impacts of climate change on terrestrial ecosys-
tems. Satellite remote sensing has become a standard in mon-
itoring land surfaces as it facilitates spatially continuous and
repeatable observation over large areas. Long time periods of
at least three decades are required to identify climate-relevant
changes and trends [18], [19]. Such area-wide and long time-
series on vegetation conditions can be derived from the ad-
vanced very high resolution radiometer (AVHRR). AVHRR
is the only satellite sensor that provides a time-series of four
decades on a daily temporal resolution, going back to the early
1980s. For monitoring the state of vegetation, remote-sensing-
based vegetation indices are well established. The most widely
used is the normalized difference vegetation index (NDVI),
which is calculated as the normalized difference from the
spectral reflectance in the near-infrared (NIR) and red spectral
domain [20].

Previous studies on long-term vegetation trends have mainly
been performed on a global scale with spatial resolutions be-
tween 0.5° and 8 km, showing little detail on inner-European
variation [21], [22], [23], [24], [25], [26], [27], [28], [29].
Pan-European studies have been conducted by Julien et al. [30],
who analyzed NDVI change from the Pathfinder AVHRR Land
dataset, and He et al. [31], who derived NDVI trends based on
the global inventory modeling and mapping studies NDVI. The
previous studies on vegetation trends on a global or European
scale report, in general, a greening of vegetation (e.g., [23], [28]).
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However, there are regional differences, and for areas in southern
and eastern Europe, negative trends were also observed (e.g.,
[29], [31]).

A novel multidecadal homogeneous NDVI time-series from
AVHRR sensors has been generated within the Time-Series Pro-
cessing of Medium Resolution Earth Observation Data assessing
Long-Term Dynamics In our Natural Environment (TIMELINE)
project at the German Remote Sensing Data Center (DFD)
by the German Aerospace Center (DLR) [19], [32], [33]. The
time-series starts in the early 1980s and allows monitoring of
climate change-related vegetation dynamics over Europe and
North Africa at a 1 km spatial resolution. Although there are
other AVHRR time-series products of NDVI such as the National
Oceanic and Atmospheric Administration (NOAA) Climate
Data Record at 0.05° resolution [34], the TIMELINE-derived
information products are the only ones supplied at 1 km over
the entire Europe. A previous study by Eisfelder et al. [33] used
the TIMELINE NDVI data to derive 30-year NDVI trends for
Europe. The study revealed regional patterns and differences
among vegetation trends for different seasons. Currently, there is
a lack of more detailed analyses on inner-European variation and
land-cover-specific trends for individual seasons over Europe.
Due to the large variety of ecosystems and their fragmented dis-
tribution in Europe, analyses at high spatial resolution including
individual land cover classes within different regions of Europe
are required.

Moreover, to understand and explain detected NDVI trends,
studies usually apply correlation or residual analyses (e.g.,
[28], [35]). These analyses calculate the relationship between
the NDVI and climate variables, including precipitation, tem-
perature, and solar radiation. However, the calculation of the
correlation between a set of variables might lead to spurious
results and the derived correlation coefficient does not provide
any information on the direction of influence between the used
variables [36]. In addition, previous studies generally focused
on the analysis of the relationship between the NDVI and
climate variables at an annual scale (e.g., [37]). However, the
climate variables might show different patterns of influences
on the NDVI among the different meteorological seasons. In
this regard, the use of causal discovery algorithms addresses
the aforementioned issues, including the direction of influ-
ence as well as minimizing spurious links [36]. Many studies
investigating vegetation–climate relationships used, e.g., the
Granger causality framework [38], [39]. However, this approach
is originally designed for analyzing bivariate relations only. In
comparison, the causal discovery algorithm Peter and Clark
Momentary Conditional Independence (PCMCI) is designed
to evaluate interdependencies of multivariate as well as seri-
ally correlated time-series. To this aim, the PCMCI algorithm
determines significant causal links between a set of univariate
time-series by means of the generation of causal process graphs
in consideration of contemporaneous and past temporal lags
[36], [40]. Over the last years, PCMCI was frequently applied in
the context of vegetation analyses with remote sensing [41], [42],
[43]. However, a detailed causal exploration of NDVI drivers at
pixellevel and seasonal temporal scale for Europe is lacking so
far.

With this study, we aim to close the research gaps regarding
more detailed analyses of inner-European NDVI trends on the
seasonal scale as well as of NDVI drivers. We investigate the
following research questions.

1) What are the seasonal NDVI trends over 30 years within
different biogeographical regions in Europe and for indi-
vidual land cover types?

2) What proportional area of the biogeographical regions and
individual land cover types is affected by significant trends
of increasing or decreasing vegetation activity?

3) In which areas and for which land cover types are the
monthly NDVI time-series driven by meteorological pa-
rameters and which parameter shows the largest influence
on the NDVI within different seasons?

4) Can seasonal NDVI trends be explained by climate
drivers?

II. STUDY AREA

The area covered by this study extends over Europe includ-
ing continental Europe, Great Britain, and Iceland. The extent
toward the North and East is limited by the coverage of the
TIMELINE Level 3 NDVI product (see Section III-A). The total
area considered amounts to 10 616 503 km2. The area covers
the biogeographical regions in Europe [44] (see Section III-C),
as shown in Fig. 1(a). Biogeographical regions present in the
northern part of Europe include: Arctic, Boreal, and Alpine.
The latter is distributed over mountainous regions throughout
the continent. In central Europe, the following regions can be
identified from West to East: Atlantic, Continental, Pannonian,
and Steppic. Southern Europe is mainly characterized by the
Mediterranean biogeographical region, which is complemented
by the Black Sea and Anatolian regions in the Southeast. The
area proportion of each biogeographical region within the study
area is shown in Fig. 1(c). The land cover in Europe is diverse and
fragmented. In all biogeographical regions, several land cover
types are present. While forest areas dominate northern Europe,
a mixture of rain-fed cropland and patches of other land cover
types are typical for central and southern Europe.

The analyses performed in this study were limited to areas
with stable land cover, i.e., pixels that were assigned the same
land cover class in all annual land cover datasets available (see
Section III-B). This was done to exclude areas where NDVI
trends are influenced by transition to or from other land cover
or land uses. The largest areas with stable land cover can be
observed for rain-fed agriculture (31% of study area), followed
by needleleaf forest (15% ), broadleaf forest (11% ), grassland
(8% ), and other forest (8% ). The distribution of land cover types
in the study area is shown in Fig. 1(b), which presents stable
land cover classes derived for this study based on the ESA land
cover products [45] (see Section III-B). Fig. 1(d) gives the area
proportion for stable pixels of each land cover class within the
study area.

III. DATA

A. NDVI Monthly Composites

A multidecadal homogeneous NDVI time-series from
AVHRR sensors has been generated within the TIMELINE
project at the German Remote Sensing Data Center (DFD) by
the German Aerospace Center (DLR). The time-series starts in
the early 1980s and allows monitoring of global change-related
vegetation dynamics over Europe and North Africa at a 1 km
spatial resolution [19]. The current TIMELINE products are
derived from AVHRR/1, AVHRR/2, and AVHRR/3 data on 12
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Fig. 1. Study area in Europe with (a) biogeographical regions (as defined by EEA, [44]) and (b) stable land cover (based on the ESA-CCI land cover product
[45]). The histograms give (c) area proportion of the biogeographical regions and (d) area proportion of the stable land cover classes within the study area. NSV
stands for “no stable vegetation” (includes urban area, bare area, water body, snow and ice, and no stable landcover pixels).

NOAA satellites. A range of preprocessing steps is applied to
allow turning the data from different sensors into harmonized
analysis-ready data. The preprocessing steps include system
correction and calibration, orthorectification, quality flagging,
atmospheric correction, and radiometric harmonization [32]. To
enable time-series analysis, all data are projected from orbit
geometry into a common reference grid in map projection
(Lambert Azimuthal Equal Area (LAEA) with ETRS89 datum).
The NDVI is finally calculated based on the spectral reflectance
measurements in the NIR and red regions using the well-known
formula

NDVI = (NIR− red) /(NIR + red). (1)

The TIMELINE Level 3 (L3) NDVI product includes daily,
ten-day, and monthly NDVI composites that were created by ap-
plying a median compositing approach [32]. The NDVI product
is provided in four tiles, covering the extent of the European
Environmental Agency (EEA) reference grid, which includes
the area from 900 000 m East and 900 000 m North to 7 400 000
m East and 5 500 000 m North [46].

Within this study, the TIMELINE monthly NDVI composites
from 1989 to 2018 were used, as for the most northeastern part

of the study area, only a few data were recorded in the years
before 1989 [33], rendering analyses for these years and regions
unreliable. Preprocessing of the data included filling data gaps
and smoothing the NDVI time-series on a per-pixel basis, as
described in [33]. The applied approach combines “intrayear”
interpolation for short gaps with “interyear” interpolation for
longer time periods, relies only on the available data of the
TIMELINE NDVI product, and maintains the phenological
cycle also in case of longer data gaps. A Savitzky–Golay filter
was applied in order to remove outliers and to smooth the time-
series [33]. This procedure results in a continuous and gap-free
NDVI time-series. Finally, the four tiles were mosaicked to
retrieve one dataset for each month covering the entire study
area.

B. Land Cover Data

The annual ESA climate change initiative (CCI) land cover
products provided for the years 1992–2018 with a spatial
resolution of 300 m [45] were used to separate among differ-
ent land cover classes. This product does not cover the first
three years of our analysis time-span but it is the only existing
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Fig. 2. Area proportion of individual stable vegetation classes within each
biogeographical region. The land cover classes are RC: Rain-fed cropland; IC:
Irrigated cropland; MC: Mosaic cropland/natural; BF: broadleaf forest; NF:
needleleaf forest; OF: other forest; SL: Shrubland; GL: Grassland; SV: Sparse
vegetation; FA: Flooded area; NSV: No stable vegetation.

consistent annual LC product going back as far as 1992. The
ESA-CCI land cover product differentiates among 37 land cover
classes and subclasses. For the current study, these classes were
grouped into the following ten vegetation classes and four non-
vegetated classes: Rain-fed cropland, Irrigated cropland, Mosaic
cropland/natural vegetation, Broadleaf forest, Needleleaf forest,
Other forest, Shrubland, Grassland, Sparse vegetation, Flooded
area, Urban area, Bare area, Water, Snow, and ice. Table I
provides an overview of the land cover classes used within this
study and the original CCI classes included. As a second step,
the land cover data were resampled to a 1 km spatial resolution
in order to match the resolution of the TIMELINE NDVI data
by determining the most prevalent land cover class for each
pixel. Finally, stable land cover pixels over time were identified.
Stable pixels are all pixels that were assigned the same land
cover class in all years from 1992 to 2018. The distribution
of the stable land cover classes over the study area is shown
in Fig. 1(b). The total area covered by all stable vegetated
land cover pixels extends to 85.7% of the study area [see
Table I, Fig. 1(d)].

C. Biogeographical Regions

The EEA provides a map of biogeographical regions in Eu-
rope. This contains the official delineation of regions used in
the Habitats Directive. The regions were derived by general-
izing natural vegetation maps to describe areas of animal and
plant distribution having similar or shared characteristics and
similar environmental conditions. The current version used in
this study reflects the status of the Biogeographical Regions in
Europe from 2016 onwards [44]. The data were downloaded
as shapefiles from the EEA Datahub [47]. For inclusion in this
study, the polygon data were converted to raster files with 1 km
spatial resolution in order to match the NDVI time-series and
trend datasets. Fig. 1(a) provides an overview of the spatial
extent of the biogeographical regions in the study area. The ten
biogeographical regions present in the study area and their area
coverage are listed in Table II. Fig. 2 shows the area percentage
covered by the above-defined stable vegetated land cover classes
for each biogeographical region.

D. ECMWF ERA5-Land Reanalysis Data

Using the ERA5-Land reanalysis data from the European
Centre for Medium Range Weather Forecasts (ECMWF) [48],
we analyzed the influence of precipitation, temperature, solar

radiation, and vapor pressure deficit (VPD) on the NDVI. The
ERA5-Land component of the ERA5 reanalysis data comes at
an improved spatial resolution of approximately 9 km over the
land surface, enabling more detailed spatial analyses compared
to the ERA5 data. In particular, we retrieved the variables
total precipitation, surface solar radiation downwards, 2-m air
temperature, and 2-m dew-point temperature. The reliability
of ERA5 precipitation and temperature over Europe was in-
vestigated in many studies and the time-series showed good
performance (e.g., [49], [50]). In addition, the climate variable
VPD was calculated based on the 2-m air temperature and
2-m dew-point temperature using the equation in [51]. VPD
proved to be an important driver of vegetation greenness [52],
[53], which is why this variable is considered a potential driver
of NDVI in this study. Furthermore, the preprocessing of the
monthly time-series included the reprojection of the data to the
LAEA-ETRS89 (EPSG:3035) coordinate system. In addition, a
resampling to 1 km spatial resolution was conducted using the
nearest neighbor approach to enable a pixelwise driver analysis
of the NDVI.

IV. METHODS

A. Seasonal NDVI Trends

The preprocessed TIMELINE NDVI monthly composites
were used to derive seasonal trends over the 30-year period
1989–2018. For this, mean NDVI was calculated for spring
(March to May), summer (June to August), and autumn (Septem-
ber to November) months. Winter data were excluded from
the analysis because the data availability is largely reduced
due to insufficient sun illumination. Moreover, large areas in
northern Europe are covered by snow in winter, which affects the
reflectance signal and thus the NDVI. Mann–Kendall trend test
[54], [55] and Theil–Sen Slope Estimator [56], [57] were then
performed to identify areas with significant consistent positive
or negative trends and to calculate the direction and strength
of the trend. The applied method is described in detail in [33].
Significant trends are considered to have p-values lower than
0.05, which is a common threshold representing a statistical
significance at the 95% level [23], [26], [58], [59]. The sea-
sonal trends for spring, summer, and autumn were calculated
for the four TIMELINE tiles covering the study area and then
mosaicked.

For statistical analyses, the areas showing NDVI trends for
spring, summer, and autumn intersected with both the prepro-
cessed biogeographical regions (see Section III-C) and stable
vegetated land cover (see Section III-B) classes including about
86% of the European land area. These raster data were used
to mask areas not of interest, i.e., to regard only specific bio-
geographical regions and/or land cover classes. In addition,
areas with more than 50% missing monthly NDVI composite
data and areas with no or little vegetation cover were excluded
from the analysis. The NDVI trends for the three seasons were
then analyzed with respect to the strength of the trend and
with respect to the areas affected by significant/nonsignificant
positive or negative trends for all combinations of indi-
vidual biogeographical regions and vegetated land cover
classes.

B. NDVI Driver Analysis

The PCMCI+ algorithm was used to determine the influ-
ence of the climate variables precipitation, temperature, solar
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Fig. 3. NDVI trend for (a) spring, (b) summer, and (c) autumn for the period 1989–2018 derived from the TIMELINE level 3 monthly NDVI time-series [33] for
the study area in Europe. The masked area includes insignificant trends (p≥0.05), pixels with no or little vegetation cover (mean annual NDVI <0.2), and areas
with more than 50% missing monthly NDVI composites.

radiation, and VPD on the monthly NDVI [60]. PCMCI+ enables
the determination of contemporaneous (lag 0) and lagged causal
links for the investigated time-series. In contrast to the standard
PCMCI, PCMCI+ is capable of detecting the causal direction of
contemporaneous links. In general, PCMCI consists of two main
steps to determine significant causal links. The first step retrieves
potential time lagged drivers, also called causal parents, for each
used variable by means of a version of the Peter and Clark (PC)
algorithm. This step runs iteratively on each variable using the
partial correlation as an independence test. The result of this
step is a set of causal parents for each investigated variable.
However, at this stage, the potential causal parents might include
false positives. For this purpose, the second step covers the
momentary conditional independence (MCI) test to extract the
significant causal links given the identified sets of causal parents
of the considered variables from the first PC step. Ultimately,
the causal parents that pass the MCI test will be considered as
causal links [36], [40].

In this study, the used time-series had a monthly temporal
resolution and the entire analysis was conducted at 1 km pixel
level. To evaluate the temporal dependencies of the climate
variables on the monthly NDVI, a temporal lag of three months
was allowed. Considering the temporal lags, the observations of
the drivers were allowed to be outside of the considered season.
Next, a causal link was considered significant if the p-value was
lower than 0.1. Furthermore, the time-series were preprocessed
prior to the application of the PCMCI algorithm to meet several
assumptions of this approach [61]. First, we removed the linear
trend of the time-series using the least square fit and then cal-
culated seasonal anomalies to meet the stationarity requirement
when using the partial correlation as an independence test. The
seasonal anomalies were calculated by subtracting the respec-
tive observations from the long-term seasonal average. Next,
to meet the causal stationarity assumption, we performed the
driver analysis at seasonal temporal scale for the seasons spring,
summer, and autumn. Here, the temporal lags of the time-series
include observations prior to the investigated season as well.
In addition, certain NDVI pixels were excluded from the driver

analysis. For this, the same rules were applied as for the trend
analysis (see Section IV-A).

In a further step, the results from the driver analysis were
used to identify the climate influence on the NDVI for in-
dividual land cover types within each of the biogeographical
regions for the three seasons. Therefore, for each land cover
type within each region, the average MCI, giving the strength
of the influence resulting from the NDVI driver analysis, was
calculated.

For identifying possible drivers of observed NDVI trends,
we analyzed the influence of meteorological variables within
areas showing significant positive or negative NDVI trends only.
Therefore, the MCI dataset was overlayed with the NDVI trends
and filtered for areas with significant positive or negative NDVI
trends. The average MCI was then derived separately for the
individual stable land cover classes within each biogeographical
region and for the three seasons.

V. RESULTS

A. Regional and Land Cover-Specific Seasonal NDVI Trends

The seasonal NDVI trends are shown in Fig. 3. A mask was
applied to show only significant (p<0.05) trends. The masked
area also includes pixels with no or little vegetation cover
characterized by a mean annual NDVI of less than 0.2 (e.g., [62],
[63], [64], [65]) and areas with more than 50% missing monthly
NDVI composite data within the respective season in the period
1989–2018. Missing data occur due to persistent cloud cover,
especially in autumn over northern Europe due to insufficient
sun illumination [33]. The area affected by significant positive
trends ranges between 21% (spring) and 25% (autumn) of the
entire study area. Significant negative trends occur for 4% to 6%
of the land area.

The diagrams in Fig. 4 show the mean NDVI trends over
individual biogeographical regions for spring, summer, and
autumn. Although the regionally averaged trends are overall
low because all positive and negative values are included in
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Fig. 4. Mean NDVI trend for each biogeographical region for the three seasons of (a) spring, (b) summer, and (c) autumn within the period 1989–2018. The
vertical lines give the standard deviations, and the dashed horizontal lines give the average trend for each season for the entire study area in Europe.

the average, they allow for a general comparison among seasons
and regions. In spring [see Fig. 4(a)], the average NDVI trend for
the study area in Europe is positive with 0.0016 NDVI units per
year (dashed line). Two regions show exceptionally high positive
NDVI trends. These are the Black Sea and Pannonian regions.
Lower than average are the trends within the Mediterranean,
Arctic, Continental, and Steppic regions.

In summer [see Fig. 4(b)], most regions show very low pos-
itive NDVI trends with an average of about 0.001 NDVI units
per year. Highest positive trends can be observed for the Black
Sea, Continental, Pannonian, and Alpine regions. The Steppic
region is the only region with an overall negative summer NDVI
trend.

The average NDVI trend over the study area is strongest
positive in autumn [see Fig. 4(c)] with 0.0021 NDVI units per
year. Two different groups of regions can be observed in this
season. On the one hand, seven of the ten regions experience
NDVI trends higher than this average, with the highest values
observed for the Pannonian, Atlantic, and Continental regions.
On the other hand, there are two regions (Anatolian and Arctic)
with almost no trend and one region (Steppic) for which a
negative NDVI trend can be detected in autumn.

The trends for the different biogeographical regions indicate
that regions in western and central Europe (Atlantic, Conti-
nental, Mediterranean, and Pannonian) tend to show a stronger
positive NDVI trend in autumn compared to spring and summer.
In contrast, the regions toward the South-East (Steppic, Black
Sea, and Anatolian) have a stronger positive NDVI trend in
spring and lower positive or negative NDVI trends in summer
and autumn.

The analysis of the seasonal NDVI trends for individual land
cover classes can further provide information about differences
among land cover types. Fig. 5 gives the mean seasonal NDVI
trends for spring, summer, and autumn for the individual land
cover types within each biogeographical region. The NDVI
trends are given in NDVI units per year. As an example, a trend
of 0.004 NDVI units per year corresponds to an NDVI increase
of 0.12 NDVI units over the 30-year period of investigation.

Fig. 5 reveals that individual land cover classes show highly
different seasonal NDVI trends among regions. Also, land cover
classes within one region can differ largely. For the Black
Sea region in spring [see Fig. 5(a)], for example, we find that
the comparatively high NDVI increase results mainly from an

increase of four land cover classes. These are rain-fed cropland,
mosaic cropland/natural, broadleaf forest, and needleleaf forest.
The other land cover classes do not show outstanding high NDVI
trends. For the Pannonian region, in contrast, similarly high posi-
tive NDVI trends can be observed across all land cover classes in
spring, except for irrigated cropland [see Fig. 5(a)]. In summer,
the differences in the Pannonian region are larger. Here, the three
forest classes show higher positive NDVI trends compared to
other land cover classes in this region [see Fig. 5(b)].

In autumn, all land cover classes in the Pannonian region
experience strong NDVI increase [see Fig. 5(c)], with the highest
values for mosaic cropland/natural, the three forest classes,
flooded area, and grassland. In the Continental region, also
several classes contribute to the overall positive autumn NDVI
trend. In the Atlantic region, rain-fed cropland and mosaic
cropland/natural show higher positive NDVI trends compared to
other land cover classes in autumn. Especially rain-fed cropland,
but also grassland, due to their large area coverage (compare
Fig. 2), contribute to the positive autumn NDVI trend in this
region.

B. Area With Negative or Positive NDVI Trends

For each biogeographical region and each land cover class,
we additionally derived the percentage of stable land cover
pixels, which show a negative or positive seasonal NDVI trend
within the period 1989–2018. The diagrams in the upper row in
Fig. 6(a)–(c) give the results for the three seasons of spring,
summer, and autumn for biogeographical regions. Different
intensities of color differentiate between significant (p < 0.05)
and nonsignificant (p ≥ 0.05) trends. Areas with nonsignificant
trends are included in the figures in order to provide information
about the tendency of trends for the entire study area coverage.
The diagrams in the lower row show percentual areas affected
for individual land cover classes [see Fig. 6(d)–(f)].

In spring, the two regions with the highest average positive
NDVI trend (compare Fig. 4), Pannonian and Black Sea, also
show outstanding high percentages of the area with a significant
positive trend [see Fig. 6(a)]. The other regions have significant
positive trends in about 20% –30% of their area, while neg-
ative trends are mostly not significant in spring. Larger areas
(>10%) with significant negative NDVI trends can be observed
in summer [see Fig. 6(b)] in the Mediterranean and Anatolian
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Fig. 5. Mean NDVI trend for individual land cover classes within the biogeographical regions for (a) spring, (b) summer, and (c) autumn for the period 1989–2018.

regions, and, most prominent, in the Steppic region, where 27%
of the area have a significant decreasing summer NDVI. The
Steppic region is the only region with larger areas affected by
negative trends than by positive trends, both in summer and
autumn. Except for the Steppic, Arctic, and Anatolian regions,
all other regions feature significant positive trends for at least
45% of their area in autumn.

Comparing the area affected by significant NDVI trends for
individual land cover classes, we find similar patterns for all
classes in spring [see Fig. 6(d)]. In summer and autumn, dif-
ferences among land cover classes are larger. Broadleaf forest
shows the largest area with significant positive trends (49% )
in summer and almost no area with significant negative trends,
while the classes grassland and sparse vegetation have similar
percentage areas (about 17% ) with significant negative and
significant positive trends. In autumn, sparse vegetation and
rain-fed cropland show the largest percentage area with signifi-
cant negative NDVI trends (12% –13% ) [see Fig. 6(f)]. Sparse
vegetation also has the smallest area with significant positive
trends from all land cover classes in autumn. The other classes
show a maximum area with significant positive trends (30%

–63% ) in autumn, with the largest areas observed for the three
forest classes. For all three seasons, the largest percentage area
with significant positive trends can be observed for the broadleaf
forest.

In Fig. 11, a series of diagrams is provided that give the
percentual area for individual stable land cover classes with
negative or positive trends for each biogeographical region.
Fig. 7 includes the diagrams for the four largest biogeographical
regions. In the Continental region [see Fig. 7(a)], the percentage
area with significant positive NDVI trends becomes larger from
spring to summer to autumn for most land cover classes. In
autumn more than 42% of the area for all classes has significant
positive NDVI trends. For some land cover classes (sparse vege-
tation, cropland classes), small percentual areas with significant
negative trends can also be observed in spring. Only sparse vege-
tation shows significant negative trends for more than 20% of its
area in summer. For the Mediterranean region [see Fig. 7(b)], a
higher percentage of area with negative trends can be observed
in summer for all land cover classes compared to spring and
autumn. Areas with significant negative trends reach between
4% and 19% in summer. However, significant positive trends are
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Fig. 6. Percent area with negative (red) or positive (blue) NDVI trends within each biogeographical region for (a) spring, (b) summer, and (c) autumn. Percent
area with negative or positive NDVI trends for individual land cover classes for (d) spring, (e) summer, and (f) autumn. Different intensities of color differentiate
between significant (p<0.05, dark red and blue) and nonsignificant (p≥0.05, bright red and blue) trends.

present at larger areas of between 18% for rain-fed cropland and
59% for broadleaf forest. In the Boreal region [see Fig. 7(c)], we
observe varying percentages of area among land cover classes
with negative or positive NDVI trends. The area with significant
positive trends ranges from <9% for grassland and cropland to
27% for needleleaf forest and >40% for broadleaf and other
forest in spring. In summer, needleleaf forest and other forest
show comparatively small areas with significant positive trends.
In autumn all land cover classes in the Boreal region have
significant positive NDVI trends for between 1/3 and 2/3 of their
area. In the Steppic region [see Fig. 7(d)], trends differ largely
among land cover classes, especially in summer and autumn. In
spring, all classes show significant positive NDVI trends for 12%
–26% (except for irrigated cropland) and significant negative
trends for <8% of the area. In summer, especially grassland and
sparse vegetation show large areas with decreasing vegetation
activity. About 53% of the area is covered by grassland and 40%
of sparse vegetation, as well as 25% of mosaic cropland/natural,
and 19% of rain-fed cropland show significant negative NDVI
trends in this region in summer. In autumn, the trends are
similar to summer, but the area with significant negative trends
decreased for several classes, especially for grassland and sparse
vegetation. However, rain-fed cropland shows with 36% an even
larger area percentage with significant negative NDVI trends in
autumn.

C. Seasonal NDVI Drivers

Fig. 8 shows the relationships, the strength of the influence,
and temporal lags between the climatic variables precipita-
tion, temperature, solar radiation, and VPD with the NDVI

per season during 1989–2018. Separate figures for all variables
showing their strength of influence and temporal lags can be
found in Figs. 12 and 13, respectively. In addition, Fig. 14
provides bar charts showing the strength of influence of the
climate variables on the NDVI for the individual land cover
classes within each of the biogeographical regions for the three
seasons.

In spring, significant causal links between the NDVI and tem-
perature are dominant in large areas of Europe, with strongest
influences observed in the Black Sea, Continental, Pannonian,
Alpine, and Steppic regions, as well as for South-West Boreal
(see Figs. 8(a), 12(d), and 14). As demonstrated in Fig. 8(d),
this coupling between temperature and the NDVI is positive
and indicates that vegetation growth over these regions is con-
trolled by temperature. The positive influence of temperature
on the NDVI is present for almost all classes in all regions,
with forest classes often most influenced (see Fig. 14). Also, it
was found that the NDVI response to temperature takes place
with a temporal lag of 1 month [see Figs. 8(g) and 13(d)].
Besides temperature, VPD was found to influence the spring
NDVI, especially in parts of the Anatolian, Boreal, Mediter-
ranean, and Steppic regions [see Figs. 8(a) and 12(j)]. This
coupling between the VPD and the NDVI was found to be
negative in southern parts (Anatolian, Black Sea, Mediterranean,
and Steppic) and positive in northern and mountainous re-
gions (Arctic, Boreal, and Alpine) of Europe (see Figs. 12(j)
and 14). In spring, precipitation and solar radiation appear
to control the NDVI only regionally in parts of the Anato-
lian, Mediterranean, and Steppic biogeographical regions [see
Fig. 12(a) and (g)].
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Fig. 7. Percent area with negative (red) or positive (blue) NDVI trends for individual land cover classes within the biogeographical regions (a) Continental, (b)
Mediterranean, (c) Boreal, and (d) Steppic for spring (left), summer (center), and autumn (right). Different intensities of color differentiate between significant
(p<0.05, dark red and blue) and nonsignificant (p≥0.05, bright red and blue) trends. The land cover classes are RC: Rain-fed cropland; IC: Irrigated cropland; MC:
Mosaic cropland/natural; BF: broadleaf forest; NF: Needleleaf forest; OF: Other forest; SL: Shrubland; GL: Grassland; SV: Sparse vegetation; FA: Flooded area.

In summer, precipitation was found to have a positive influ-
ence on the NDVI in parts of the Anatolian and Mediterranean
regions [see Fig. 8(b) and (e)], especially affecting the land cover
classes grassland, rain-fed cropland, mosaic cropland/natural,
and sparse vegetation (see Fig. 14). This coupling is particularly
pronounced in parts of Spain and Türkiye [see Fig. 12(b)]. For
most of the pixels, the temporal lag was found to be at one

month [see Fig. 13(b)]. Regions where the NDVI was influenced
by temperature shifted north as compared to spring. In detail, a
positive coupling between temperature and the NDVI was found
in Northern Scandinavia, including the regions Alpine, Arctic,
and Boreal [see Fig. 12(e)]. Solar radiation indicated a negative
coupling with the NDVI in the Mediterranean, particularly on the
Iberian Peninsula [see Figs. 8(b), (e), and 12(h)]. The variable
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Fig. 8. Climate drivers having the largest influence on the (a)–(c) NDVI per season as well as the (d)–(f) strength of their influence and (g)–(i) their temporal
lag, respectively. The strength of the influence is measured by the MCI test, which is the partial correlation coefficient. Pixels in light gray color have no causal
link. Pixels in white were excluded from the analysis due to a low NDVI value or data availability.

VPD was found to influence the NDVI regionally in many bio-
geographic regions, including parts of the Anatolian, Atlantic,
Boreal, Mediterranean, and Steppic regions [see Figs. 8(b) and
12(k)]. This coupling is negative and dominant at a temporal lag
of 1 month [see Fig. 13(k)]. Land cover classes most strongly
influenced by VPD in summer include grassland, mosaic agri-
culture/natural, shrubland, and sparse vegetation, especially in
the Steppic and Anatolian regions, as well as grassland in the
Pannonian region. Forest classes are less affected by VPD (see

Fig. 14). For large parts of the Continental biogeographic re-
gion, no significant causal links were identified in summer [see
Fig. 8(b)].

The variables precipitation and VPD appear to be the domi-
nant controlling factors on the NDVI in autumn [see Fig. 8(c)].
For example, the influence of precipitation on the NDVI in the
Southern Iberian Peninsula remained positive in autumn [see
Fig. 12(c)]. In addition, precipitation had a positive influence on
the NDVI in the Steppic region [see Fig. 12(c)]. These positive
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couplings between the NDVI and precipitation were mostly
characterized by a temporal lag of one month [see Fig. 13(c)].
In both regions, especially grassland, mosaic cropland/natural
and rain-fed agriculture showed to be influenced by precipi-
tation (see Fig. 14). On the other hand, the NDVI showed a
negative response to VPD in Eastern parts of Europe, including
the regions Boreal, Continental, Pannonian, and Steppic [see
Fig. 12(l)]. The dominant temporal lag for this coupling was at
one month as well [see Fig. 13(l)]. The variables temperature
and solar radiation were found to have less influence on the
NDVI in terms of their spatial occurrence [see Fig. 12(f) and
(i)]. For example, temperature showed positive influences on
the NDVI in small parts of the Atlantic and Mediterranean
regions.

D. Climate Drivers of Significant NDVI Trends

Fig. 9 shows the strength of the influence of the meteorological
variables (temperature, precipitation, solar radiation, and VPD)
in areas with significant NDVI trends in the period 1989–2018.
The diagrams for each biogeographical region separate between
significant negative and significant positive NDVI trends and
give the relation for each of the three seasons (spring, summer,
and autumn). The strength of influence is presented for the
four land cover classes with the largest area coverage in the
study area (rain-fed cropland, broadleaf forest, needleleaf forest,
and grassland), covering together two-third of the study area in
Europe (see Table I).

Fig. 9 reveals that in several regions, positive NDVI trends
in spring are influenced by increasing temperatures (red bars
in all graphs). This is especially the case in the Continental,
Pannonian, Steppic, Black Sea, Anatolian, and Alpine biogeo-
graphical regions. In five of these six regions, the strength of the
influence is the strongest between temperature and broadleaf
forest. In some regions, including the Steppic and Anatolian
regions, also a relation to decreasing VPD can be observed for
areas with increasing NDVI with the strongest influence for
rain-fed cropland. For summer and autumn, the areas with pos-
itive NDVI trends do not show pronounced influence from the
meteorological variables (see Fig. 9). A slight negative coupling
to VPD can be observed in some regions. Positive trends for
rain-fed cropland and grassland in the Anatolian are positively
linked to precipitation in summer, and increased grassland NDVI
in the Pannonian shows to be influenced by solar radiation in
autumn.

Areas with negative NDVI trends in spring show considerable
influence from VPD in the Continental, Boreal, Steppic, Anato-
lian, and Alpine regions (see Fig. 9). In the Pannonian region,
areas of rain-fed cropland and grassland with decreasing NDVI
experienced decreasing temperatures (positive coupling). In the
Mediterranean region, a strong influence of the meteorological
variables on areas with negative NDVI trends can be observed
in summer. Decreasing NDVI is most influenced by decreasing
precipitation (positive coupling) but also by increasing solar
radiation (negative coupling), especially for broadleaf forest,
grassland, and rain-fed cropland. Similar but weaker relations
can be observed in autumn in the Mediterranean region. A neg-
ative coupling to VPD can also be found for areas with negative
NDVI trends in summer and autumn in the Boreal, Steppic, and
Anatolian regions. In the Anatolian region, however, negative
trends in summer are strongly influenced by decreasing pre-
cipitation. Similar to the Mediterranean, negative NDVI trends

in autumn also show mainly a positive coupling to decreasing
precipitation in the Steppic region (see Fig. 9).

VI. DISCUSSION

A. Significance of Seasonal NDVI Trend Analyses at 1 Km
Resolution Over Europe

In this study, we present analyses of seasonal NDVI trends for
biogeographical regions and individual land cover classes over
Europe for the period 1989–2018. Our study is the first to analyze
distinct seasonal, regional, and land-cover-specific analyses over
the entire Europe at 1 km spatial resolution over 30 years.
Our results show varying trends for different regions and land
cover classes, and reveal that the individual land cover classes
have highly different seasonal NDVI trends within different
regions in Europe. This confirms the importance of including a
combination of both land cover information and biogeographical
regions for the analysis of vegetation trends in a large study
area with diverse vegetation, such as Europe. The analyses at
such a level of detail have been possible based on the recently
developed long-term TIMELINE NDVI time-series for Europe
at 1 km spatial resolution. Fig. 10 provides a comparison of
the pixel size of 1 km TIMELINE NDVI data [see Fig. 10(a)]
with data at 4 and 8 km spatial resolution, comparable to the
resolution of other available global AVHRR NDVI time-series
(e.g., [34], [66], [67], [68]). It becomes obvious that due to the
highly fragmented landscapes, which are typical for Europe, the
availability of long NDVI time-series at 1 km spatial resolution
is a great advantage for meaningful land cover-specific trend
analyses.

The large differences among seasons prove that it is important
to analyze individual seasons separately and that this provides
valuable additional information compared to using the annual
mean only. The seasons are defined to the standard definition
of three-month periods over Europe. Varying dates of actual
start and end of seasons, for e.g., more northern or southern
regions, is accounted for by analyzing biogeographical regions
separately.

B. Comparison to NDVI Trends From Other Studies

The distribution of areas with positive/negative trends cor-
responds to the results of previous studies, which also show a
general greening of vegetation in Europe but negative trends
in parts of the Mediterranean and the Steppic regions (e.g.,
[24], [26], [29], [69]). Focusing on Europe, for example, Julien
et al. [30] reported an NDVI decrease in arid and semiarid areas
including southern Spain, and an increase in temperate areas
of western and central Europe, especially in the Continental
region. He et al. [31] reported an increasing NDVI for large
parts of Europe but found negative trends north of the Black Sea
and Caspian Sea. These areas lie within the Steppic region, for
which we also obtained negative NDVI trends in summer and
autumn.

Trends for different land cover classes have rarely been ana-
lyzed on European scale before. One study by Vicente-Serrano
et al. [70] analyzed NDVI trends in Spain for the period 1981–
2014. At an annual scale, changes were positive for all land
cover classes. Coniferous forests showed a stronger increase than
deciduous and mixed forests and a comparable amount of change
to shrubs and pastures. In our study, we observe a higher NDVI
increase for broadleaf forest, compared to the other forest types
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Fig. 9. Strength of the relation between the climate drivers and the NDVI for areas with significant NDVI trends in the period 1989–2018. The diagrams give the
strength of the influence measured by the MCI on the four most prevalent land cover classes (RC: Rain-fed cropland; BF: Broadleaf forest; NF: Needleleaf forest;
GL: grassland) separated for areas with significant negative and significant positive NDVI trends for spring, summer, and autumn within each of the biogeographical
regions.
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Fig. 10. Comparison of the pixel size of NDVI data at 1 km, 4 km, and 8 km spatial resolution for a subset area in southern Germany with (a) TIMELINE NDVI
data (mean annual NDVI) at 1 km resolution, (b) resampled NDVI data with 4 km resolution, (c) resampled NDVI data with 8 km resolution, and (d) land cover
from ESA CCI [45].

in the Mediterranean region (see Fig. 5). Consistent with [70],
we also find that differences between land cover classes are least
pronounced in spring. Vicente-Serrano et al. [70] also analyzed
the percentage of surface area impacted by significant trends
(p<0.05). Their results, for e.g., irrigated land, shrubs, and forest
classes, are comparable to our results for the Mediterranean
region. Although the study for comparison covers only a small
part of the entire study area, the large agreement suggests that
the results of our study are reliable, especially as the comparison
to other studies on NDVI trends also showed good agreement in
the general distribution of positive/negative NDVI trends over
Europe (e.g., [24], [26], [29], [69]).

C. Discussion of Regional and Land Cover-Specific Variation
of Seasonal NDVI Trends Over Europe

Regarding the NDVI trends for different seasons, we observed
a generally stronger increase of NDVI in spring and autumn
compared to summer. This might be explained by changes in
seasonality, with earlier greening in spring and delayed senes-
cence in autumn. Trends toward a longer growing season in large

parts of central and eastern Europe have been reported by several
studies such as [24], [22], and [71]. The results of our study also
confirm that temperature plays an important role in increasing
NDVI in spring.

The comparatively small NDVI increase in summer might
also be influenced by a limitation of the vegetation index,
as NDVI is prone to saturation. Its sensitivity decreases with
increasing leaf area index (LAI) (e.g., [72], [73], [74]). Thus,
analyses based on NDVI might underestimate the vegetation
trend in summer for areas with dense vegetation canopy and
high LAI.

The analyses for the individual regions show clear differences
and regional patterns, e.g., regarding differences between sea-
sons. For future studies, additional analyses for smaller regions
would be of interest, e.g., in the Mediterranean. Within this
region, we observe different and even opposite NDVI trends
in summer for the western (Iberian Peninsula) and eastern part
(Greece, Türkiye ).

A known limit for the analysis of NDVI observations in
Arctic and Boreal zones is presence of snow cover, which
decreases the values of vegetation indices such as NDVI [75],
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[76]. A previous study on snow cover duration (SCD) reported
decreasing early SCD (autumn–winter) for areas in the Boreal
and Steppic regions [77]. For the late SCD (winter–spring),
trends were patchy with both negative and positive trends over
Europe [77]. Another publication reported significant negative
SCD trends mainly for the Baltic sea region (especially Baltic
states) for both early and late SCD [78]. Changes in SCD are
not relevant for most of our study area and do not affect the reli-
ability of the results. We do not observe outstanding increasing
NDVI trends in the areas possibly affected. However, for more
detailed analyses in the Boreal region, focusing, e.g., on the
Baltic state, a combined analysis of NDVI and snow cover data,
which are also available from the TIMELINE project [79], is
recommended.

A general observation from the land-cover-specific analyses
is that broadleaf forest shows the largest area with significant
positive NDVI trends for all seasons over Europe. Moreover,
all three forest classes show very small areas with significant
negative trends. The largest percentages of areas with negative
trends can be observed for grassland and sparse vegetation in
summer, as well as for sparse vegetation and rain-fed cropland
in autumn. These are classes that have relatively little biomass
and woody vegetation parts in order to store humidity, and hence
are especially vulnerable to increasing temperatures and VPD.
Differing observations between irrigated cropland and natural
herbaceous vegetation, especially in summer, can likely be at-
tributed to human influence on water availability on intensively
farmed irrigated areas. Mosaic landscapes generally have fewer
negative trends than, for example, cropland and grassland. This
indicates that heterogeneous landscapes may be able to cope
better with heat and drought.

D. Discussion of Seasonal NDVI Drivers

Considering the analyzed NDVI drivers, this study revealed
spatially and seasonally heterogeneous patterns of the climate
drivers between 1989 and 2018. In spring, the NDVI was
found to be primarily controlled by temperature over a large
area in central Europe, especially in the Alpine (Carpathians),
Black Sea, Southwest of Boreal, and Continental biogeographic
regions. This positive coupling between the NDVI and tem-
perature indicates a strong influence of warming temperatures
on the green up of vegetation in these biogeographic regions.
Consistent with this, Wang et al. [80] identified a significant
positive partial correlation between temperature and the veg-
etation green-up in parts of the Alpine, Boreal, and Conti-
nental biogeographic regions. Also, Wu et al. [37] evaluated
the response of the NDVI to climate variables between 1982
and 2008 at an annual scale and reported positive correlations
between temperature and the NDVI for large parts of Europe. In
this context, Higgins et al. [81] suggested that temperature and
moisture are among the variables that explain most of the NDVI
variability.

In addition to temperature, Yuan et al. [52] also emphasized
the role of atmospheric CO2 and VPD as important contributors
to the variability of the NDVI. In fact, VPD was found to be an
important driver of the NDVI over Europe in our study. More
specifically, our analysis revealed a predominantly negative
coupling between VPD and the NDVI over the Mediterranean
and Steppic region during spring, summer, and autumn. For
comparison, Yuan et al. [52] calculated the correlation between

multiple vegetation indices and VPD between 1982 and 2015
at annual scale; however, while the identified patterns for the
NDVI in their study do not exactly match the reported patterns
of this study, the patterns match those calculated for the LAI. It
should be noted that a comparison of results between studies is
challenging due to differences in the used datasets, investigated
periods, and used methods.

Moreover, the identified positive coupling between precipi-
tation and the NDVI over the Mediterranean during summer,
in particular over the Iberian Peninsula, as well as over large
areas of the Steppic region in summer and autumn, likely de-
scribes a negative influence. Similar findings for the relation
between precipitation and the NDVI were reported by Zhao
et al. [82]. The authors analyzed drivers of the NDVI for the
growing season between 1982 and 2013 and identified signifi-
cant positive correlations between precipitation and the NDVI
over the Western and Eastern Mediterranean and the Steppic
region. However, Zhao et al. [82] did not identify a positive
correlation between temperature and the NDVI over large parts
of the Continental region as we found in this study. In fact,
they found a positive correlation between temperature and the
NDVI only over northern areas of Europe, including parts of the
Arctic and Boreal region. These contrasting findings might be
explained by differences in the considered seasons and studied
periods.

Considering the temporal lags of the seasonal NDVI driver
analysis, most of the significant causal links were found to
have a lag of one month. However, at a temporal lag of three
months, temperature and VPD were found to have a maximum
influence over some regions of the Anatolian, Mediterranean,
and Steppic. In comparison, Wu et al. [37] reported a temporal
lag of 0 for the relation between the NDVI and temperature
over most parts of Europe. However, in parts of the Anato-
lian, Mediterranean, and Steppic, the temporal lag was at up
to three months as well. In case of precipitation, the authors
suggested a temporal lag larger than one month for most parts of
Europe.

E. Impact of Climate Drivers on European Vegetation

The analysis of the strength of influence of the climate
drivers in areas with significant NDVI trends performed in
this study revealed varying impacts for different biogeographi-
cal regions and seasons. In several regions (Continental, Pan-
nonian, Steppic, Black Sea, Anatolian, and Alpine), positive
NDVI trends in spring are strongly influenced by increasing
temperature. Decreasing NDVI in spring can for some regions
be related to decreasing VPD (Continental, Boreal, Steppic,
Anatolian, and Alpine). Decreasing NDVI in summer and au-
tumn in the Mediterranean, Steppic, and Anatolian regions are
mainly influenced by decreasing precipitation but are also re-
lated to solar radiation (Mediterranean) and VPD (Steppic and
Anatolian).

These results confirm that increasing temperatures in spring
lead to earlier and/or increasing vegetation activity in several
regions over central Europe. On the other hand, in south-
ern and eastern Europe decreasing NDVI trends in summer
(Mediterranean/Iberian Peninsula, and Anatolian) and autumn
(Mediterranean/Iberian Peninsula and Steppic) are influenced
by decreasing precipitation but also increasing solar radiation
and/or VPD, e.g., in the Mediterranean, Steppic, and Anatolian
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regions. These differentiated analyses are important in order
to understand varying effects of climate change on European
vegetation. The analyses have shown that different biomes react
sensitively to different climatic conditions and weather. Such
detailed analyses have now been carried out for the whole of
Europe for the first time.

Climate change in Europe is expected to lead to further rising
temperatures. This study showed that temperature influenced
vegetation growth in spring with a positive coupling over all
regions during the last three decades. Thus, future tempera-
ture increase might strengthen already existing trends toward
increased vegetation growth in spring in Europe. More irregular
precipitation patterns, however, might have a negative influence
especially in the Mediterranean in summer and autumn, but also
in the Steppic region in autumn and in the Anatolian region
in summer as vegetation growth in these regions shows to be
influenced by precipitation over the past 30 years. Climate
change is also predicted to increase the importance of VPD
in plant growth [83]. As our study shows, higher VPD in the
past led to an increase in NDVI in spring for the Alpine,
Arctic, and Boreal regions but to a decrease in other regions
across Europe in summer and autumn. Solar radiation influ-
enced summer NDVI in the Mediterranean and most strongly
in the Iberian Peninsula where increasing solar radiation led to a
decrease in vegetation growth. Thus, increasing solar radiation
in combination with decreasing precipitation can be expected
to intensify the risk of droughts, especially in this area in
future.

F. Outlook and Future Research Potential

The TIMELINE NDVI product offers the unique ability to
analyze a time-series of almost 40 years over Europe with a
spatial resolution of 1 km and a temporal resolution of up to
one day. In this study, we analyzed seasonal trends based on
the monthly NDVI composites. Several additional information
products can be derived from the TIMELINE NDVI data, such
as anomalies or phenological information, which can assist
to further understand ongoing vegetation change and dynam-
ics. Application of recent methods, such as advanced time-
series reconstruction (e.g., [84]) or additional trend detection
methods (e.g., [85]) might allow to address further research
questions.

There is also a lot of potential in the dataset, e.g., in combi-
nation with other TIMELINE data, such as land surface tem-
perature or snow cover. Also, combination with other freely
available data sources, including information on soil moisture,
heat waves, or deforestation, would allow to tackle additional
research topics.

Further future research potential exists in the application
of multisources data and comparing the conclusions obtained
from different data sources. Fusion of AVHRR and MODIS
NDVI (e.g., [86]) or Landsat data can be used to generate
global long-term NDVI data at higher spatial resolution com-
pared to previously available global datasets. This, however,
requires additional harmonization, sophisticated downscaling,
and validation to generate reliable time-series. Comparison of
observations from different data sources can support quality
assessment and confirm and reinforce trends and conclusions
obtained.

The TIMELINE NDVI product is currently subject to
further development. Data processing for the extension of

the time-series to more recent years is ongoing, allowing
for the analysis of an even longer NDVI time-series in
future.

VII. CONCLUSION

In this study, we conducted the first detailed causal exploration
of NDVI drivers for different biogeographical regions and land
covers at a seasonal temporal scale for Europe. Our results
reinforce the previously reported general greening of vegetation
in Europe over the last decades. However, the detailed spatial
and regional analyses reveal that this greening is not pervasive
and that some areas experienced seasonal decrease in NDVI
over the 30-year period from 1989 to 2018, e.g., within the
Steppic, Anatolian, and Mediterranean regions. Our results also
reveal differences between seasons. For most regions, NDVI
trends are lowest in summer. The trends for the different bio-
geographical regions indicate that regions in western and central
Europe (Atlantic, Continental, Mediterranean, and Pannonian)
tend to show a stronger positive NDVI trend in autumn com-
pared to spring and summer. In contrast, the regions toward the
South-East (Steppic, Black Sea, and Anatolian) have a stronger
positive NDVI trend in spring and lower positive or negative
NDVI trends in summer and autumn. These results confirm that
seasonally differentiated analyses, as performed in this study,
are required to capture the various differences in vegetation
growth.

Moreover, individual land cover classes within biogeograph-
ical regions showed strong differences both in the strength of
seasonal NDVI trends and in the percentage of area affected.
Also, areas with the same land cover show very different be-
havior in the different zones. These results corroborate the
relevance of including and combining both spatial information
about land cover distribution and discrete geographical regions
for the analysis of long-term NDVI trends over large and diverse
study areas such as Europe.

Regarding the influence of climatic drivers on the NDVI,
our study disclosed several major findings. In spring, the NDVI
was primarily controlled by temperature (positive coupling) in
the biogeographic regions such as Continental, Southwest of
Boreal, Black Sea, and Alpine (Carpathians), especially the
areas with positive NDVI trends were influenced by increasing
temperatures in spring in several regions. Regarding the influ-
ence of VPD, our analysis revealed mostly a negative coupling
with the NDVI in parts of the Mediterranean, Anatolian, and
Steppic regions during spring, summer, and autumn. For areas
with negative NDVI trends, especially in the northern Steppic,
eastern Continental, and Boreal, in contrast, a positive coupling
to VPD was observed in spring. A coupling between decreas-
ing precipitation and decreasing NDVI was identified over the
Mediterranean, in particular over the Iberian Peninsula, and
the Anatolian region during summer, and in the Steppic and
Mediterranean regions in autumn. These trends are expected to
aggravate under ongoing climate change.

Our study is based upon the recently developed TIMELINE
NDVI product providing a consistent time-series for more
than 30 years covering entire Europe at 1 km spatial resolu-
tion. Combined with a land cover data set, this allowed for
European-wide NDVI analyses at a level of detail not avail-
able before. The results of our study significantly contribute
to further understand the vegetation activity dynamics over
Europe.
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APPENDIX

The appendix contains Tables I and II, and Figs. 11, 12, 13, and 14

TABLE I
GROUPED LAND COVER CLASSES USED WITHIN THIS STUDY
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Fig. 11. Percent area with negative (red) or positive (blue) NDVI trends for individual land cover classes within the biogeographical regions for spring (left),
summer (center), and autumn (right). Different intensities of color differentiate between significant (p<0.05, dark red and blue) and nonsignificant (p≥0.05, bright
red and blue) trends. The land cover classes are RC: Rain-fed cropland; IC: Irrigated cropland; MC: Mosaic cropland/natural; BF: Broadleaf forest; NF: Needleleaf
forest; OF: Other forest; SL: Shrubland; GL: Grassland; SV: Sparse vegetation; FA: Flooded area.
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Fig. 11. (Continued.)
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Fig. 12. Strength of the relation between the climate drivers and the NDVI per season separately for the four climate variables. The strength of the influence is
measured by the MCI test, which is the partial correlation coefficient. Pixels in light gray color have no causal link. Pixels in white were excluded from the analysis
due to a low NDVI value or data availability.
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Fig. 13. Temporal lags for the estimated relation between the climate drivers and the NDVI separately for the four climate variables. The temporal lags are
measured in months. Pixels in light gray color have no causal link. Pixels in white were excluded from the analysis due to a low NDVI value or data availability.
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Fig. 14. Strength of the relation between the climate drivers (temperature, precipitation, solar radiation, and VPD) and the NDVI for the three seasons (spring,
summer, and autumn) for the period 1989–2018. The diagrams give the strength of the influence measured by the MCI on individual land cover classes within each
of the biogeographical regions. The region abbreviations are Alp: Alpine, Ana: Anatolian, Arc: Arctic, Atl: Atlantic, Bla: Black sea, Bor: Boreal, Con: Continental,
Med: Mediterranean, Pan: Pannonian, and Ste: Steppic.

TABLE II
BIOGEOGRAPHICAL REGIONS IN EUROPE AND THEIR AREA COVERAGE
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tem in Alaska with the LVS3 model,” Remote Sens. Environ., vol. 240,
Apr. 2020, Art. no. 111677, doi: 10.1016/j.rse.2020.111677.

[76] R. Wang, K. R. Springer, and J. A. Gamon, “Confounding effects of snow
cover on remotely sensed vegetation indices of evergreen and decidu-
ous trees: An experimental study,” Glob. Change Biol., vol. 29, no. 21,
pp. 6120–6138, Nov. 2023, doi: 10.1111/gcb.16916.

[77] S. Roessler, A. Dietz, and S. Holzwarth, “A European time series of daily
snow cover from AVHRR data over 36 years: Results of the timeline
project,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., Jul. 2023,
pp. 114–117, doi: 10.1109/IGARSS52108.2023.10282415.

[78] S. Roessler and A. J. Dietz, “Development of global snow cover—Trends
from 23 years of global snowpack,” Earth, vol. 4, no. 1, pp. 1–22, 2023,
doi: 10.3390/earth4010001.

[79] S. Rößler and A. J. Dietz, “Detection of snow cover from
historical and recent AVHHR data—A thematic TIME-
LINE processor,” Geomatics, vol. 2, no. 1, pp. 144–160,
2022, doi: 10.3390/geomatics2010009.

[80] L. Wang, F. Tian, Y. Wang, Z. Wu, G. Schurgers, and R. Fensholt, “Ac-
celeration of global vegetation greenup from combined effects of climate
change and human land management,” Glob. Change Biol., vol. 24, no. 11,
pp. 5484–5499, Nov. 2018, doi: 10.1111/gcb.14369.

[81] S. I. Higgins, T. Conradi, and E. Muhoko, “Shifts in vegetation activity
of terrestrial ecosystems attributable to climate trends,” Nature Geosci.,
vol. 16, no. 2, pp. 147–153, 2023, doi: 10.1038/s41561-022-01114-x.

https://dx.doi.org/10.1038/s41467-019-10105-3
https://dx.doi.org/10.1016/j.scitotenv.2022.157515
https://dx.doi.org/10.1080/15481603.2024.2364461
https://dx.doi.org/10.5194/bg-17-1033-2020
https://www.eea.europa.eu/en/analysis/maps-and-charts/biogeographical-regions-in-europe-2
https://www.eea.europa.eu/en/analysis/maps-and-charts/biogeographical-regions-in-europe-2
https://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf
https://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf
https://www.eea.europa.eu/data-and-maps/data/eea-reference-grids-2/about-the-eea-reference-grid/eea_reference_grid_v1.pdf/at_download/
https://www.eea.europa.eu/data-and-maps/data/eea-reference-grids-2/about-the-eea-reference-grid/eea_reference_grid_v1.pdf/at_download/
https://www.eea.europa.eu/data-and-maps/data/eea-reference-grids-2/about-the-eea-reference-grid/eea_reference_grid_v1.pdf/at_download/
https://www.eea.europa.eu/en/datahub/datahubitem-view/11db8d14-f167-4cd5-9205-95638dfd9618
https://www.eea.europa.eu/en/datahub/datahubitem-view/11db8d14-f167-4cd5-9205-95638dfd9618
https://dx.doi.org/10.24381/cds.68d2bb30
https://dx.doi.org/10.1002/joc.7269
https://dx.doi.org/10.1109/lgrs.2021.3137643
https://dx.doi.org/10.1038/s41598-019-51857-8
https://dx.doi.org/10.1126/sciadv.aax1396
https://dx.doi.org/10.1038/ngeo2903
https://dx.doi.org/10.2307/1907187
https://dx.doi.org/10.1080/01621459.1968.10480934
https://dx.doi.org/10.3390/s17061298
https://dx.doi.org/10.1111/gcb.12647
http://proceedings.mlr.press/v124/runge20a.html
https://dx.doi.org/10.1063/1.5025050
https://dx.doi.org/10.1016/j.rse.2004.02.003
https://dx.doi.org/10.1016/j.heliyon.2021.e07637
https://dx.doi.org/10.1007/s10113-023-02084-5
https://dx.doi.org/10.3390/rs16193686
https://dx.doi.org/10.1109/Igarss.2007.4422974
https://dx.doi.org/10.1080/01431160500168686
https://dx.doi.org/10.3390/rs6086929
https://dx.doi.org/10.1016/j.gecco.2022.e02016
https://dx.doi.org/10.1080/01431161.2019.1674460
https://dx.doi.org/10.1016/j.oceano.2022.02.007
https://dx.doi.org/10.3390/rs70505329
https://dx.doi.org/10.1016/S0034-4257(00)00150-4
https://dx.doi.org/10.1016/S0034-4257(99)00067-X
https://dx.doi.org/10.1016/j.rse.2020.111677
https://dx.doi.org/10.1111/gcb.16916
https://dx.doi.org/10.1109/IGARSS52108.2023.10282415
https://dx.doi.org/10.3390/earth4010001
https://dx.doi.org/10.3390/geomatics2010009
https://dx.doi.org/10.1111/gcb.14369
https://dx.doi.org/10.1038/s41561-022-01114-x


11248 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 18, 2025

[82] L. Zhao, A. Dai, and B. Dong, “Changes in global vegetation activity
and its driving factors during 1982–2013,” Agricultural Forest Meteorol.,
vol. 249, pp. 198–209, 2018, doi: 10.1016/j.agrformet.2017.11.013.

[83] C. Grossiord et al., “Plant responses to rising vapor pressure
deficit,” New Phytologist, vol. 226, no. 6, pp. 1550–1566, Jun. 2020,
doi: 10.1111/nph.16485.

[84] D. Chu et al., “Long time-series NDVI reconstruction in cloud-prone
regions via spatio-temporal tensor completion,” Remote Sens. Environ.,
vol. 264, Oct. 2021, Art. no. 112632, doi: 10.1016/j.rse.2021.112632.

[85] M. Rhif, A. Ben Abbes, B. Martinez, R. de Jong, Y. F. Sang, and I. R.
Farah, “Detection of trend and seasonal changes in non-stationary remote
sensing data: Case study of Tunisia vegetation dynamics,” Ecol. Inform.,
vol. 69, Jul. 2022, Art. no. 101596, doi: 10.1016/j.ecoinf.2022.101596.

[86] X. Guan et al., “Fusing MODIS and AVHRR products to gen-
erate a global 1-km continuous NDVI time series covering four
decades,” Big Earth Data, vol. 9, no. 1, pp. 72–99, Jan. 2025,
doi: 10.1080/20964471.2024.2448072.

Christina Eisfelder received the Dipl.-Ing. degree
and the Ph.D. (Dr.-Ing.) degree in cartography from
the Technical University of Dresden, Dresden, Ger-
many, in 2008 and 2013, respectively.

Her diploma thesis dealt with object-based forest-
type mapping based on very high resolution opti-
cal remote sensing data. Her dissertation was on
modeling net primary productivity and above-ground
biomass for mapping of spatial biomass distribution
in Kazakhstan. Since 2008, she has been with the Ger-
man Remote Sensing Data Center (DFD), German

Aerospace Center (DLR), Oberpfaffenhofen, Germany. As a Research Scientist
within the Department “Land Surface Dynamics,” she has been involved in
several international research projects. Her current research interests include
remote sensing analyses in the context of vegetation dynamics and land surface
monitoring, land cover and crop type mapping, phenological analyses, long
time-series and trend analyses, and drought monitoring and early warning.

Soner Üreyen received the M.Sc. degree in geoinfor-
matics from the Friedrich Schiller University of Jena
(FSU), Jena, Germany, in 2015 and the Ph.D. degree
in geography from the Julius Maximilians University
of Wuerzburg (JMU), Wuerzburg, Germany, in 2022.

From 2018 to 2024, he was a doctoral student and a
Postdoctoral Researcher with the German Aerospace
Center, Oberpfaffenhofen, Germany. He is currently
a Patent Examiner with the European Patent Office,
Munich, Germany. His research interests include re-
mote sensing time series, spatio-temporal analysis,
and machine learning.

Sarah Asam received the M.Sc. degree in global
change ecology from the University of Bayreuth,
Bayreuth, Germany, in 2010 and the Ph.D. (Dr. rer.
Nat.) degree in geography from the University of
Würzburg, Würzburg, Germany, in 2015.

Her dissertation was on the potential of high-
resolution remote sensing data for leaf area index
derivation using statistical and physical models. From
2014 to 2017, she was a Postdoc Scientist with
the Institute for Earth Observation, Eurac Research,
Bolzano, Italy. From 2017 to 2020, she was a Project

Manager of the TIMe Series Processing of Medium Resolution Earth Observa-
tion Data assessing Long-Term Dynamics In our Natural Environment (TIME-
LINE) project, facilitating the analysis of multidecadal AVHRR time series.
Since 2017, she has been a Research Scientist with the Agricultural and Forest
Ecosystems Team, Department of Land Surface Dynamics, German Remote
Sensing Data Center, Oberpfaffenhofen, Germany. Her research interests include
the mapping and characterization of vegetation in agricultural, grassland, and
forest ecosystems, using time series, cover fraction analysis, and classification
approaches.

Andreas Hirner received M.Sc. degree in geology
from the Ludwig-Maximilians-University Munich,
Munich, Germany, in 1996 and the Ph.D. degree in
geology from the University of the Witwatersrand,
Johannesburg, South Africa, in 2002.

After working as a Spatial Software Developer
for a small startup, he began his first stint with the
German Remote Sensing Data Center (DFD), Ger-
man Aerospace Center (DLR) in 2003, where he
worked for six years as a Research Scientist in the
Sino-German coal fire project. From 2009 to 2012,

he had a contract with the Critech unit, Joint Research Center (JRC) of the
European Commission, Ispra, Italy, where he was involved in crisis management
in response to natural disasters. After that, he returned to DFD/DLR, Wessling,
Germany. Since the last more than ten years, he has been a Research Scientist
with the Department “Land Surface Dynamics” on various projects. His focus
currently is on vegetation dynamics and large-scale processing of geospatial
data using the latest developments in machine learning.

Philipp Reiners received the Master of Science de-
gree in physical geography from the University of
Marburg, Marburg, Germany, in 2019. Since 2022,
he has been working toward the Ph.D. degree in ge-
ography with the Land Surface Department, German
Aerospace Center, German Remote Sensing Data
Center, Wessling, Germany.

Since 2019, he has been a Research Scien-
tist with the Land Surface Department, German
Aerospace Center, German Remote Sensing Data
Center, Wessling. During his Ph.D., he developed a

long-term data record of 40 years of land and sea surface temperature from
AVHRR data over Europe and North Africa. His special research interests
include thermal remote sensing, climatology, time series analysis, calibration,
and validation.

Juliane Huth received the Dipl.-Ing. degree in
geodesy from the Karlsruhe Institute of Technology,
Karlsruhe, Germany, in 2004.

Since 2007, she has been working with the Ger-
man Remote Sensing Data Center of the German
Aerospace Center (DLR), Wessling, Germany. She
is currently leading a group for remote sensing ap-
plications for coasts and river basins. Her research
interests include the effects of climate change and
extreme climatic events on natural ecosystems and
the human-influenced environment in general.

Felix Bachofer received the Ph.D. degree in geog-
raphy in 2016 from the University of Tuebingen,
Tuebingen, Germany.

Since 2020, he has been the Head of the “Coasts
and River Basins” Research Team with the Earth Ob-
servation Center, German Aerospace Center (DLR),
Wessling, Germany. He has been subsequently in-
volved as a Postdoctoral Researcher in various envi-
ronmental and geospatial research projects. In 2018,
he became a Researcher with DLR, where he has
been actively involved in managing several research

projects. His research pursuits primarily revolve around the exploration of
urban development, coastal areas, flood and drought dynamics, and the intricate
relationships between these factors and climate change, all through the lens of
multisensor remote sensing.

https://dx.doi.org/10.1016/j.agrformet.2017.11.013
https://dx.doi.org/10.1111/nph.16485
https://dx.doi.org/10.1016/j.rse.2021.112632
https://dx.doi.org/10.1016/j.ecoinf.2022.101596
https://dx.doi.org/10.1080/20964471.2024.2448072


EISFELDER et al.: 30-YEAR ANALYSES OF SEASONAL NDVI AND CLIMATIC DRIVERS ACROSS DIFFERENT LAND COVER TYPES 11249

Martin Bachmann received the Dipl.-Geogr. degree
in geography from the Technical University of Dres-
den, Dresden, Germany, in 2002, and the Ph.D. (Dr.
rer. nat.) degree in geography from the University of
Würzburg, Würzburg, Germany, in 2007.

Since 2005, he has been a Research Scientist
with the Land Applications Department, German
Remote Sensing Data Center, German Aerospace
Center (DLR), Wessling, Germany, leading the team
“Applied Spectroscopy” between 2009 and 2013. He
leads the work package on “Data Quality Control”

within the EnMAP ground segment and within the DESIS ground segment,
including vicarious calibration and validation activities for these imaging spec-
trometers. For the upcoming ESA CHIME mission, he is leading the L2B
thematic processor part. His research interests also include the application of
field and imaging spectroscopy for land degradation applications.

He is currently active within the CEOS WGCV IVOS on Infrared and Visible
Optical Sensors, within CEOS LSI-VC activities toward Analysis Ready Data,
cochairing the EARSeL SIG-IS, being Secretary of the ISPRS WG I/3 (Mul-
tispectral, Hyperspectral and Thermal Sensors), and a member of the Mission
Advisory Group of the ESA “TRUTHS” spectrometer mission.

Stefanie Holzwarth received the engineering degree
in geodesy from the University of Stuttgart, Stuttgart,
Germany, in 2002.

Since 2002, she has been a Research Scientist with
the Department of Land Surface Dynamics, German
Remote Sensing Data Center, Oberpfaffenhofen, Ger-
many. She has more than 20 years of experience in
hyperspectral remote sensing. Since 2020, she has
been a Project Manager of the TIMELINE project
(TIMe Series Processing of Medium Resolution Earth
Observation Data Assessing Long-Term Dynamics in

Our Natural Environment). Her research interests include the application of
remote sensing for forest monitoring.

Claudia Kuenzer received the diploma (M.Sc.) de-
gree in geography from the University of Trier, Trier,
Germany, in 2001 and the Ph.D. degree in remote
sensing from the TU Vienna, Vienna, Austria, in 2005.

From 2001 to 2006, she was a Research Associate
with the German Remote Sensing Data Center, Ger-
man Aerospace Center, Germany. In 2005, she spent
half a year as a Guest Scientist with the Institute of
Remote Sensing Applications, and Beijing Normal
University, Beijing, China. From 2006 to 2008, she
held a position as a Postdoc Scientist and an Institute

Assistant with the Institute of Photogrammetry and Remote Sensing, TU Vienna.
Since 2008, she has been back with the Earth Observation Center, where she
acted as a Research Group Leader and a Science Coordinator of several large
interdisciplinary international projects. Since 2016, she has been the Head of
the Department “Land Surface Dynamics” with the Earth Observation Center,
German Aerospace Center, Oberpfaffenhofen, Germany. She is currently a
Professor of remote sensing and geosciences. She currently supervises 12 Ph.D.
students and two habilitation candidates. She has contributed to more than 180
SCI journal papers and more than 200 conference proceedings. Her research
interests include remote sensing applications for the assessment of land surface
dynamics based on long time series analyses and deep learning.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


