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Explainable Quantum Machine Learning for cloud cover parametrization

Abstract

Cloud cover parameterizations play an important role in climate models, influenc-
ing radiative transfer, atmospheric dynamics, and hydrological cycles. However, their
correct formulation remains a major challenge in climate modeling, as subgrid-scale
cloud processes must be approximated.
Classical and quantum Neural Networks have been proposed as potential tools for
improving these parameterizations. While previous studies suggest that classical neu-
ral networks can produce physically meaningful results, it remains unclear whether
quantum neural networks (QNNs) exhibit similar capabilities or rely on spurious
correlations.
This study begins by comparing a classical neural network and a quantum neural
network to assess whether they capture comparable physical dependencies when
predicting cloud cover, before exploring alternative architectures for each approach.
Using explainable AI (XAI) techniques, specifically SHapley Additive exPlanations
(SHAP), the learned feature dependencies in both types of models are analyzed.
This approach enables us to evaluate not only predictive performance but also the
extent to which each model captures the underlying physics of cloud cover.
Our results show that both classical and quantum models exhibit similar learning
patterns, extracting comparable relationships from the data. While the QNN does
not outperform the classical network, it achieves comparable results, suggesting
that quantum machine learning (QML) could be a viable approach in this domain.
These findings contribute to the ongoing exploration of QML in climate science and
highlight the potential of quantum methods for atmospheric modeling. More broadly,
this study supports the integration of machine learning into climate science while
ensuring physical consistency and interpretability.

KeyWords : Quantum Machine Learning, Explainable AI, Cloud Cover Parameter-
ization, Neural Networks, Climate Modeling
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Zusammenfassung

Wolkenbedeckungs-Parametrisierungen spielen eine entscheidende Rolle in Klimamodellen,
da sie den Strahlungstransfer, die atmosphärische Dynamik und den Wasserkreislauf bee-
influssen. Ihre korrekte Formulierung stellt jedoch weiterhin eine große Herausforderung
dar, da Prozesse im Subgittermaßstab angenähert werden müssen.
Klassische und Quanten-Neuronale Netzwerke wurden als potenzielle Werkzeuge zur
Verbesserung dieser Parametrisierungen vorgeschlagen. Während frühere Studien gezeigt
haben, dass klassische neuronale Netzwerke physikalisch sinnvolle Ergebnisse liefern können,
ist unklar, ob Quanten-Neuronale Netzwerke (QNNs) ähnliche Fähigkeiten aufweisen oder
sich auf scheinbare Korrelationen stützen.
In dieser Arbeit werden beide Architekturen direkt verglichen, um zu beurteilen, ob
sie vergleichbare physikalische Abhängigkeiten bei der Vorhersage der Wolkenbedeckung
erfassen.
Mittels erklärbarer KI (XAI), insbesondere der SHapley Additive exPlanations (SHAP),
werden die gelernten Abhängigkeiten der Modelle analysiert. Dieser Ansatz ermöglicht eine
Bewertung nicht nur der Vorhersageleistung, sondern auch des physikalischen Verständnisses
der zugrunde liegenden Prozesse.
Die Ergebnisse zeigen, dass sowohl klassische als auch Quantenmodelle ähnliche Lernmuster
aufweisen und vergleichbare Beziehungen aus den Daten extrahieren. Obwohl das QNN
der klassischen Architektur nicht überlegen ist, liefert es vergleichbare Resultate, was
darauf hindeutet, dass Quantum Machine Learning (QML) ein vielversprechender Ansatz
in diesem Bereich sein könnte. Diese Arbeit leistet einen Beitrag zur Erforschung von QML
in der Klimawissenschaft und unterstreicht das Potenzial quantenbasierter Methoden für
die Atmosphärenmodellierung. Insgesamt wird die Integration von maschinellem Lernen
in die Klimaforschung unterstützt, wobei physikalische Konsistenz und Interpretierbarkeit
gewahrt bleiben.

Schlüsselwörter: Quantum Machine Learning, erklärbare KI, Wolkenbedeckung, Neu-
ronale Netzwerke, Klimamodellierung
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1 Introduction

1.1 Motivation

Climate change is one of the most critical challenges of our time, shaping ecosystems,
economies, and societies on a global scale [1]. The increasing concern over its impacts
stems from the observed shifts in key climate variables, such as global temperature and
precipitation patterns, in
uenced by both natural variability and human activities [2]. To
understand and predict these changes, climate models play a fundamental role in studying
large-scale climate variations and projecting future scenarios.

Among the various types of climate models, Earth System Models (ESMs) are the most
comprehensive, as they integrate atmospheric, oceanic, land, and ice processes [3]. However,
despite their sophistication, climate models show consistent bias [4], and their limitations
must be addressed to improve predictive accuracy.

One of the key challenges lies in model resolution: modern climate models typically operate
at horizontal resolutions between 50 and 150 km [5]. Achieving higher resolutions remains
computationally prohibitive due to the computational demands of numerically solving
the underlying partial di�erential equations (PDEs) over global scales and extended time
periods, especially for ensemble runs.

Coarse resolutions result in a loss of precision because numerical solutions average physical
properties over extensive areas, omitting small-scale processes that signi�cantly in
uence
the system's behavior. These unresolved processes include radiation, vertical di�usion, land
atmosphere interactions, gravity wave drag, convection, and cloud microphysics [6]. Since
these processes play a crucial role in climate dynamics, their e�ects must be incorporated
into the model.

This necessity leads to the introduction of parameterizations, submodels that approximate
the impact of unresolved processes [7,8]. Instead of solving the governing PDEs for each
microscopic detail, parameterizations estimate the average in
uence of these processes on
the model's larger-scale variables. Parameterizations are formulated in various ways and
introduce biases not only due to the selection of empirical parameters, which are often not
directly measurable, but also because they are approximations that may be subject to
systematic errors that cannot be eliminated, even with careful parameter selection [9].
Furthermore, di�erent models use di�erent parameterizations, leading to discrepancies in
climate projections among various models [10].
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Figure 1: Global mean surface air temperature (TAS) projections from 1850 to 2100,
relative to the 1995-2014 baseline. The black line represents historical observations,
while the colored lines indicate future climate projections based on di�erent greenhouse
gas emission scenarios from the Scenario Model Intercomparison Project (ScenarioMIP)
of CMIP6 [11]. Shaded areas represent the uncertainty range across climate models.
From [10].

Clouds are fundamental components of climate models as they signi�cantly impact Earth
energy balance, regulating both incoming solar radiation and outgoing infrared radiation
[12]. However, accurately representing cloud cover in models remains a major challenge,
as cloud formation depends on small-scale processes that cannot be directly resolved
at standard climate model resolutions [13]. To account for these unresolved dynamics,
parameterizations are used to approximate their e�ects. Yet, even at higher resolutions,
these schemes rely on statistical and empirical relationships rather than a direct physical
representation of cloud processes [14]. This underscores the inherent limitations of current
modeling approaches and highlights the need for improved parameterization techniques.
One promising alternative is the integration of machine learning methods, which o�er new
possibilities for enhancing parameterization accuracy [15].

1.2 Machine Learning for Cloud Cover Parametrization

Machine learning (ML) has gained widespread recognition for its ability to tackle complex
problems thanks to its highly 
exible architectures. Given its success in various scienti�c
domains, researchers have explored its potential for climate modeling [16].

In recent years, the increasing availability of high-resolution observational data and climate
simulations has opened new opportunities for improving traditional parameterizations. ML
approaches could potentially overcome many traditional limitations by leveraging large
datasets to learn more accurate and 
exible representations of physical processes [17]. Data-
driven techniques enable models to learn directly from data without relying on prede�ned

2
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empirical formulas. Several uses of ML for parameterizations have been proposed in the
literature, with prominent applications to radiation [18{ 21] convection [22{ 27] and cloud
cover [28{ 30]. One of the strategies in employing ML for cloud cover parameterizations
is to develop data-driven schemes trained on coarse-grained data from high-resolution
climate simulations, where convection and clouds are explicitly resolved.
Although ML o�ers a range of enhancements, it also brings forth several challenges,
including the necessity for trainable models that can accommodate diverse physical
scenarios, the requirement for substantial amounts of training data, and the capability to
generalize across previously unseen climate regimes [17].

1.3 Quantum Machine Learning for Climate Modeling

Quantum Machine Learning (QML) is a broad �eld that lies at the intersection of quantum
computing and machine learning. This interdisciplinary domain leverages the unique
properties of quantum systems to enhance machine learning techniques, promising to solve
complex problems more e�ciently than classical methods [31]. Within this domain, one
class of approaches involves Variational Quantum Algorithms (VQAs), which are hybrid
quantum-classical algorithms. Among these, quantum neural networks (QNNs) have been
explored for tasks such as classi�cation and regression and can be trained on both quantum
and classical data.
QNNs represent an alternative modeling approach compared to classical neural networks
(NNs). Theoretical studies suggest that they may o�er advantages in terms of generalization,
expressivity, and trainability under certain conditions [32].
The number of QML applications to classical problems and datasets is rapidly growing,
re
ecting an increasing interest in extending the scope of quantum machine learning
beyond purely quantum-related problems [33]. The use of QML is gaining traction also in
weather and climate science, driven by the search for new modeling approaches [34{36].
The application of QML to classical datasets is still emerging, largely in
uenced by the
current limitations of quantum hardware and the challenges posed by noise in quantum
computations. Existing studies provide valuable insights into the �eld [37, 38], but it
remains uncertain how signi�cant the advantages of QML will be over classical methods
in the long term [39].
In this work, we focus on the use of QNNs for regression applied to climate data, speci�cally
for cloud cover parameterization. The motivation for investigating QML in this context
lies not only in its potential to outperform classical methods in terms of computational
speed or accuracy but also in its capacity to provide alternative modeling techniques that
might better capture the complex, non-linear relationships in climate systems [35].

1.4 Challenges and the Role of Explainable AI

One of the major challenges in applying machine learning (ML) and QML is understanding
their decision-making processes [40,41]. This di�culty is particularly critical in climate
models, where ensuring that the predictions adhere to physical laws and accurately
re
ect the underlying physical processes governing sub-grid phenomena is essential. As
machine learning models, particularly deep learning networks, become increasingly complex,

3
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understanding their decision-making processes has become a critical challenge. While
these models often achieve high performance, their "black-box" nature makes it di�cult to
understand how they reach their predictions. This opacity leads to di�culties in trusting
their outputs.
To address this issue, Explainable AI (XAI) encompasses a range of methods and techniques
aimed at making machine learning models more interpretable and easier to understand
[41{44].

XAI has already been applied in the context of machine learning for climate models, for
example, to identify the most important input features for neural networks used to describe
physical processes, such as cloud cover [30] or to assess the quality of the relationships a
ML model has learned [27].

In this thesis, the focus is on the use of Shapley values, a well-recognized technique in
XAI, to compare classical neural networks (NNs) [45,46] and quantum neural networks
(QNNs) [44,47] for cloud cover in climate models. By analyzing the importance assigned
to input features by both types of models, we aim to gain a better understanding of
their decision-making processes and evaluate whether their learned representations are
consistent with physical expectations and manage to capture the underlying processess
important for cloud cover formation.

1.5 Key Questions

The goal of this thesis is to gain a clearer understanding of what classical and quantum
neural networks are learning about the physics behind a cloud cover parameterization. In
particular, using explainable AI tools, we aim to address the following key questions:

ˆ Which atmospheric variables play the most signi�cant role in determining cloud
cover, according to the models? Do classical and quantum approaches highlight the
same key factors?

ˆ What is the physical impact of each input variable on cloud cover predictions?

ˆ How well do the networks capture various physical regimes?

ˆ How stable are the interpretability results? Do the patterns observed in the networks
persist across di�erent training sessions?

ˆ How does the learning process depend on the number of input features?

1.6 Structure of the Thesis

This study builds upon the work by Lorenzo Pastori [35], who developed the classical and
quantum neural networks analyzed here as part of the DLR QCI project Klim-QML [48].
The thesis is structured as follows:

ˆ Section 2 provides all the necessary background information and prerequisites to
understand the results. Speci�cally:
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{ Section 2.1 introduces climate models, outlining their signi�cance in simulating
and predicting climate behavior.

{ Section 2.2 shows the physical processes governing cloud cover.

{ Section 2.3 delves into parameterizations, explaining how these techniques
simplify complex processes in climate models to make them computationally
feasible while maintaining accuracy and gives an overview regarding cloud cover
schemes.

{ Section 2.4 focuses on the ICON model.

{ Section 2.5 and Section 2.6 cover machine learning and quantum machine
learning.

{ Section 2.7 explains how a ML-based parameterization is created.

{ Section 2.8 introduces explainable AI, with a particular focus on Shapley values,
which are employed to interpret model predictions and understand feature
importance.

ˆ Section 3 explains the architectures used for the study and the dataset used for
training and testing the neural networks.

ˆ Section 4 presents the results of the research. The subsections cover:

{ Section 4.1 focuses on the performance validation of the models, discussing the
metrics used.

{ Section 4.2 presents a feature importance analysis, which investigates the
contributions of di�erent input features to model predictions.

{ Section 4.3 compares the results with the Xu-Randall approach, highlighting
similarities and di�erences to contextualize the �ndings within the broader
literature.

{ Section 4.4 conducts a regime-based analysis, examining how model performance
varies across di�erent climate regimes to ensure robustness and adaptability.

{ Section 4.5 evaluates di�erent training sessions, providing insights into the
stability of models' predictions.

{ Section 4.6 analyzes a model with eight input features instead of six, exploring
how increasing feature complexity a�ects outcomes and overall model e�ective-
ness.

ˆ Section 5 concludes the thesis by summarizing the main results and discussing
potential future developments.

5
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2 Theoretical background

2.1 Climate models

2.1.1 Earth climate system

Climate is commonly de�ned as the statistical description of atmospheric conditions over
a long period of time, ranging from months to thousands or millions of years [49]. The
di�erence between weather and climate lies in their timescales: while weather exhibits
short-term variability in
uenced by instantaneous atmospheric dynamics, climate refers to
long-term statistical properties and trends in the Earth system [1].
Despite this distinction, climate and weather are intrinsically linked: climate determines
the boundary conditions within weather events unfold, while the accumulation of weather
patterns over time contributes to observed climate trends.
The climate system is driven by solar radiation, which provides the primary energy
input. This energy is absorbed, re
ected, and redistributed by di�erent subsystems.
Understanding the climate system is essential for predicting long-term environmental
shifts, as well as for assessing the impact of anthropogenic activities on global temperatures
and weather patterns.

2.1.2 Components of climate system

Figure 2 represents a schematic of the components of the Earth system that govern and
regulate the climate.

Figure 2: Diagram showing parts of the Earth system. From [50]

The Earth's climate system is determined by a complex and dynamic interplay of �ve
major components:

6
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ˆ Atmosphere : The layer is made up of a mixture of gases, water and particles that
surrounds the Earth. It plays a crucial role in regulating the planet's energy budget
by absorbing, re
ecting, and emitting radiation. It is divided into distinct layers:
troposphere, stratosphere, mesosphere, thermosphere, and exosphere.

ˆ Hydrosphere : The part of the Earth system that includes liquid ocean, inland
water bodies and groundwater. It plays a central role for the water cycle, which
involves evaporation, condensation, precipitation, and runo�. This cycle in
uences
atmospheric humidity, cloud formation, and energy 
uxes.

ˆ Cryosphere : A subset of the hydrosphere that consist of frozen water, such as
glaciers, ice sheets, sea ice, and permafrost. It is a key regulator of climate due to
its high albedo, re
ecting incoming solar radiation and a�ecting the planet's energy
balance.

ˆ Lithosphere : The part of the Earth system that includes the solid earth : the
core, mantle, crust and soil layers. It plays a fundamental role in the carbon cycle,
particularly through weathering, volcanic activity, and sedimentation processes.
Land surface processes, such as soil moisture dynamics, vegetation cover, and
albedo variations, a�ect regional climate by modulating surface energy 
uxes and
hydrological processes.

ˆ Biosphere : A sphere that includes all of Earth's organisms, including humans, and
matter that has not yet decomposed. It plays a critical role in biogeochemical cycles,
particularly the carbon, nitrogen, and water cycles, which in
uence atmospheric
composition. Terrestrial vegetation regulates surface albedo, evapotranspiration, and
carbon uptake through photosynthesis, while marine ecosystems, such as phytoplank-
ton, contribute to oceanic carbon sequestration via the biological pump. Human
activities have also signi�cantly altered biospheric processes [1].

The interactions among these components govern the planet's energy balance, water cycle,
and biogeochemical processes, shaping the Earth's climate.
To represent these complex interactions and study how the climate evolves, climate models
are developed as mathematical representations of the Earth's system, simulating physical,
chemical, and biological processes to understand past changes and project future scenarios.
Climate models vary in complexity and scope, ranging from simple energy balance models
to fully coupled Earth System Models (ESMs). The choice of model depends on the
research question, computational constraints, and the level of detail required.

2.1.3 Building a Climate Model: Scienti�c Principles and Numerical Imple-
mentation

Climate models are formulated using physical principles such as the conservation of mass,
momentum, and energy. These principles lead to a set of coupled, nonlinear partial
di�erential equations (PDEs) that describe the temporal and spatial evolution of key
atmospheric and oceanic variables.
At the core of climate models are the Navier-Stokes equations, which describe the motion
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of 
uids and govern atmospheric and oceanic dynamics. These equations are derived from
conservation laws:

ˆ Continuity equation (mass conservation):

@�
@t

+ r � (� u) = 0 (1)

where� is the density of air (or water in ocean models) andu is the velocity �eld.

ˆ Momentum equation (Navier-Stokes equation in a rotating frame):

Du
Dt

= �
1
�

r p + g � 2
 � u + F frictional (2)

This equation describes the evolution of momentum, incorporating external forces
such as pressure (p) gradients, gravitational acceleration (g), Coriolis force (� 2
 � u,
where
 is the angular velocity of the Earth's rotation), and subgrid-scale e�ects
modeled as a frictional term (F frictional ).

ˆ Energy equation (�rst law of thermodynamics):

DT
Dt

=
Q
cp

�
�

@p
@t

�
R
cp

(3)

This equation governs temperature (T) evolution, accounting for adiabatic heating
(Q) from radiation, latent heat release, and convective processes. The second term
represents the e�ect of pressure variations on temperature, whereR is the speci�c
gas constant andcp is the speci�c heat capacity.

2.1.4 Numerical Implementation and Model Resolution

Since PDEs are highly nonlinear and computationally expensive to solve globally, they are
discretized using numerical methods. For this, the atmpshpere, land, surface and ocean
are divided into a three-dimensional grid, where each cell represents a control volume for
solving the PDEs iteratively.
The resolution of a model refers to the size of the grid cells, which determines how detailed
the simulation can be. Higher resolution models can resolve �ner-scale physical processes
but require a signi�cantly higher computational power. For this reason, typical resolutions
range from tens to hundreds of kilometers for global models [5].
Each grid cell tracks the physical state of the system, which includes variables such as
temperature, pressure, humidity, and wind velocity. A climate model computes how these
state variables evolve over time based on physical laws. While typical resolutions are
su�cient to capture large-scale atmospheric and oceanic dynamics, many crucial small-scale
processes remain unresolved, like cloud formation and microphysics, convective processes
and turbulence (See Figure 3).
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Figure 3: Illustration of the scale mismatch in climate models: Large-scale climate models
operate at low resolution, while subgrid processes (like cloud formation) occur at much
�ner scales. These small-scale processes can not be explicitly resolved by the model [51].

Parameterizations: A Necessary Approximation To account for these unresolved
processes, climate models rely on parameterizations, which are simpli�ed representations
that approximate the e�ect of unresolved processes on the larger-scale dynamics. Rather
than solving the full set of equations governing these small-scale processes, parameteriza-
tions estimate the average e�ect of these processes over a given grid cell or time step. They
are often based on empirical or semi-empirical relationships, derived from observations or
high-resolution simulations. This approach allows the model to remain computationally
feasible while still representing the impact of these unresolved processes on the larger-scale
climate system. Examples of parameterizations include those for convection, cloud cover,
and turbulence.

Challenges and Uncertainties in Parameterizations Parameterizations introduce
uncertainties into climate models [52]. Many parameterization schemes contain free
parameters, which are not known a-priori, and thus rely on empirical tuning. Also, they
often are sensitive to model resolution, causing challenges such as:

ˆ Intermodel variability: Di�erent climate models use di�erent parameterization
schemes, contributing to uncertainties in climate projections.

ˆ Scale dependency issues: At smaller grid spacing, the assumptions behind some
physical parameterizations may not be valid, requiring updating some of the param-
eterization schemes.

9
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2.2 Physical Processes Governing Cloud Cover

Cloud formation is a complex and chaotic process governed by a wide range of physical
mechanisms, from microscale interactions between water vapor and aerosol particles to
large-scale atmospheric dynamics.
This section provides an overview of the essential mechanisms driving cloud formation,
focusing on how atmospheric variables in
uence their development and persistence. Rather
than covering all aspects of cloud microphysics in detail, the emphasis will be on the
key thermodynamic and dynamic processes necessary to understand how cloud cover is
parameterized and for interpreting results from neural network-based parameterizations
and assessing whether these models successfully capture the critical factors underlying
cloud cover formation.

2.2.1 Cloud Formation Processes

Cloud formation is the result of complex interactions between thermodynamic, microphys-
ical, and dynamical processes in the atmosphere. At its core, the formation of clouds
requires the cooling of air masses to the point where water vapor condenses into liquid
droplets or sublimates directly into ice crystals. This process is in
uenced by various
factors, including humidity levels and the presence of aerosols acting as cloud condensation
nuclei (CCN).

Adiabatic Cooling and Saturation The most common mechanism leading to cloud
formation is the adiabatic cooling of rising air parcels. Adiabatic cooling requires air to
rise and can happen with di�erent lifting mechanisms, like convective lifting (leading to
buoyant air parcels rising due to density di�erences), orographic lifting (occurs when air
is forced to ascend over a topographic barrier) and convergence lifting (occurs when air
masses meet and are forced upward, as in low-pressure systems and tropical cyclones).
When an air parcel rises in the atmosphere, it expands due to the decreasing pressure.
This expansion leads to a decrease in temperature, as the parcel performs work on its
surroundings.
As the air cools, its capacity to hold water vapor decreases. When the air parcel reaches
the lifting condensation level, its temperature has dropped enough for it to be saturated,
meaning that the relative humidity reaches 100%. Further cooling can lead to condensation
and cloud formation. However, if the air is rapidly cooled or there are insu�cient cloud
condensation nuclei (CCN), the air can become supersaturated, where the relative humidity
exceeds 100% without immediate condensation. This state is unstable and can lead to
rapid condensation when nuclei or other disturbances trigger cloud formation.

Cloud Condensation Nuclei (CCN) and Nucleation Processes Condensation
is aided by the presence of cloud condensation nuclei (CCN), which are small aerosol
particles (e.g., dust, sulfate, sea salt, organic compounds) that provide a surface for water
vapor to condense. The ability of an aerosol particle to act as a CCN depends on its
chemical composition and size. Hygroscopic particles, such as sulfates and sea salt, are
particularly e�ective at attracting water vapor due to their ability to absorb moisture from
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the surrounding air. This property allows them to promote condensation even when the
relative humidity is slightly above 100%, a condition known as low-level supersaturation.

2.2.2 Atmospheric Variables In
uencing Cloud Cover

Cloud formation is in
uenced by a variety of atmospheric factors, which interplay in
complex ways to determine the formation, persistence, and distribution of clouds. These
factors include temperature, pressure, humidity, and dynamic atmospheric processes such
as winds. In this section, we explore the in
uence of these atmospheric variables on cloud
formation.

Temperature Temperature a�ects the capacity of air to hold moisture. Warmer air
can hold more water vapor, which can be critical in determining the amount of water
available for cloud formation. Conversely, in colder conditions, the air reaches saturation
more easily, leading to enhanced condensation and cloud formation.

Humidity: Speci�c and Relative Humidity Humidity, both speci�c and relative, is
crucial for understanding cloud formation and the persistence of clouds in the atmosphere.

ˆ Speci�c Humidity is the mass of water vapor per unit mass of air, typically
expressed in grams or kg of water vapor per kilogram of air. Speci�c humidity
directly a�ects the potential for cloud formation. When air becomes saturated with
water vapor and if there are surfaces for it, condensation occurs. The higher the
speci�c humidity, the greater the potential for cloud formation.

ˆ Relative Humidity is the ratio of the current amount of water vapor in the air
to the amount in saturated air at a given temperature and pressure, expressed
as a percentage. When relative humidity reaches 100%, the air is saturated, and
condensation can occur.

Cloud Condensate Clouds can be composed of both liquid water and ice, with their
physical state depending on the temperature and altitude at which they form. If there is
no condensate there is no cloud.

ˆ Cloud water refers to the liquid phase of water within clouds, primarily consisting
of tiny water droplets suspended in the atmosphere. These droplets are formed when
water vapor in the air condenses onto nuclei when the air reaches its dew point. The
higher the relative humidity, the greater the potential for cloud water formation. In
warm clouds, cloud water is the dominant phase.

ˆ Cloud ice forms when water vapor directly transitions into ice in colder cloud
environments, typically at temperatures below freezing. Ice crystals are an essential
component of many types of clouds, especially in cold clouds at high altitudes. In
clouds where the temperature is below the freezing point, water vapor can directly
deposit onto ice nuclei, forming ice crystals. Ice can also form from cloud water
droplets.
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2.3 Parametrizations and Cloud Cover Schemes

Parameterizations are a tool used in climate models to represent subgrid-scale processes
that cannot be explicitly resolved due to computational constraints. Rather than simulating
these processes in full detail, parameterizations approximate their net e�ect at the grid
scale of the model, ensuring consistency with the larger-scale dynamics.
Cloud cover parameterizations, in particular, estimate the fractional cloudiness within a
grid cell.

2.3.1 Cloud Cover Parametrization

The simplest cloud cover parameterization considers the total cloud condensate content of a
grid cell. If it exceeds a given threshold, then the grid cell is deemed fully cloudy, otherwise
it is cloud-free. However, this simple approach is only reasonable in small grid cells at
very high resolutions, where clouds typically �ll entire grid cells. At resolutions common
in Earth System Models, the fractional cloudiness needs to be estimated instead [53].

2.3.2 Sundqvist Scheme

The scheme of Sundqvist [54] explicitly expresses cloud cover as a monotonically increasing
function of relative humidity (RH). This scheme assumes that clouds can only form when
the grid-averaged RH exceeds a critical thresholdRH 0, which depends on the ratio between
surface pressure (ps) and local pressure (p):

RH > RH 0
def= RH 0;top + ( RH 0;surf � RH 0;top) exp (1 � (ps=p)n ) (4)

whereRH 0;top and RH 0;surf represent the critical RH values at the top of the atmosphere
and the surface, respectively, andn is a shape parameter controlling the vertical variation
of RH 0. The ratio ps=p represents how the critical relative humidityRH 0 varies with
altitude.
When this condition is met, the cloud cover fractionC is given by:

CSundqvist
def= 1 �

s
min f RH; RH satg � RH sat

RH 0 � RH sat
(5)

whereRH sat � 1 represents the relative humidity in the cloudy part of the grid cell.
This scheme includes four tuning parameters that remain constant throughout a General
Circulation Model (GCM) simulation:

ˆ RH 0;surf : the critical relative humidity at the surface

ˆ RH 0;top : the critical relative humidity in the upper atmosphere

ˆ n : the shape factor controlling the vertical pro�le ofRH 0

ˆ RH sat relative humidity in the cloudy portion of the grid cell (typically close to 1).

The derivation of Equations (4) and (5) relies on two assumptions:
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1. The relative humidity in the cloudy portion of a grid cell remains approximately
constant at RH sat , while the relative humidity in the cloud-free portion is denoted
by RH crit . This leads to a grid-mean RH expressed as:

RH = CRHsat + (1 � C)RH crit ; (6)

whereC is the cloud cover fraction andRH crit represents the relative humidity in
the cloud-free portion of the grid cell. In this framework,RH crit depends on factors
such as temperature, land fraction, and altitude.

2. The relative humidity in the cloud-free portion of the grid cell increases linearly with
the cloud fraction C.

The Sundqvist scheme provides a computationally e�cient way to represent fractional
cloud cover, ensuring a smooth transition between clear and cloudy conditions rather
than a binary switch. However, this threshold-based approach becomes less accurate at
the spatial resolutions typically used in GCMs, where clouds rarely occupy entire grid
cells. Therefore, more sophisticated schemes have been developed to estimate fractional
cloudiness.

2.3.3 Xu-Randall Scheme

Unlike the Sundqvist scheme, which relies solely on relative humidity, the Xu-Randall
scheme [55] also incorporates cloud condensate mixing ratios. This allows it to better
capture variations in cloud cover, as it ensures that grid cells remain cloud-free in the
absence of condensates. The additional dependence on cloud condensate makes this
scheme more physically realistic and has been shown to improve agreement with CloudSat
observations [56]. In a simpli�ed form, it can be formulated as:

CXu � Randall
def= min f RH � (1 � exp(� � (qc + qi ))) ; 1g (7)

whereqc is the cloud cover mixing ratio,qi the cloud ice mixing ratio, andf �; � g are two
tuning parameters.
Relative humidity based cloud cover schemes generally have some notable limitations. First,
the relationship between RH and cloud cover is not always well-de�ned observationally. For
instance, Walcek [57] demonstrated that cloud cover probability can be nearly uniform even
at RH values of 80%. Additionally, most cloud cover schemes rely on local thermodynamic
variables, yet rapid advection (e.g., updrafts) can introduce non-local e�ects. To mitigate
these inaccuracies, they include several tuning parameters, which are adjusted to maintain
a well-balanced top-of-the-atmosphere energy budget [6].
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2.4 ICON model

The ICON model (ICOsahedral Nonhydrostatic model [58]) is a 
exible, scalable, high-
performance modelling framework for weather, climate predictions and projections.
It is structured into di�erent components, allowing it to simulate various aspects of the
Earth system. These components include:

ˆ ICON-A (Atmosphere) , the core module used for weather prediction and climate
simulations.

ˆ ICON-O (Ocean) , that models ocean circulation and can be coupled to ICON-A
for climate simulations with coupled atmosphere and ocean dynamics.

ˆ ICON-L (Land) , which represents land surface processes

ˆ ICON-ART (Aerosols and Chemistry) , used for atmospheric composition
modeling

ICON-ESM (Earth System Model) is the fully coupled climate system model, used
for long-term climate simulations and IPCC climate projections.
Since the dataset used for training the networks in this thesis originates from ICON-A,
the focus will be on this component.

2.4.1 ICON-A : Main Computational Components

The ICON atmosphere model predicts the spatio-temporal evolution of the atmospheric
state in terms of the prognostic variables virtual potential temperature, 3D wind, total
air density and mass fractions of atmospheric water constituents and trace gases. In its
climate con�guration, ICON-A employs the ECHAM physics package [6].
Mathematically, the dynamical core of ICON-A solves the fully compressible, non-
hydrostatic Navier-Stokes equations on the sphere. These equations govern atmospheric

uid motion and account for a wide range of scales, from synoptic weather systems to
mesoscale turbulence.
The ICON-A model consists of three main computational components [59]:

ˆ Dynamics : The core of the model, responsible for solving the discrete 
uid motion
equations.

ˆ Tracer Advection : Governs the transport of atmospheric tracers, such as humidity
and cloud water.

ˆ Physics : Includes parameterizations for subgrid-scale processes, such as radiation,
convection, and cloud microphysics, which cannot be explicitly resolved by the
dynamical core.

The following diagram summarizes the structure and work
ow of the ICON model:
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Figure 4: The model M propagates the state X from time t to the new time t+�t (upper
part). The model operator M is split in operators for dynamicsD, advection A, and
physicsP, which yield partial updates. The dynamic variables ofX (vn , � v, and � ) are
processed n times by the fast dynamics operatorD1, here shown forn = 5, followed by the
damping/di�usion operator D2. The fast dynamics can be forced by the forcing from slow
physics,F 1. For e�ciency reasons, a distinction is made between so-called fast physics
processes, whose time scale is comparable or shorter than the model time step, and slow
physics processes whose time scale is considered slow compared to the model time step.
Tracer �elds are �rst advected and then updated with the forcing from the slow physics.
After dynamics and tracer advection, including the slow physics forcingF 1, the forcing
is newly computed, and the forcing owing to fast physics,F 2, is applied to dynamics
variables as well as tracer variables. Source: [6]

2.5 Machine Learning for Parametrizations

Machine learning (ML) is a widely used technology that plays a key role in data analysis,
allowing classi�cation, clustering, and pattern recognition in large datasets [31].
Its strength lies in its ability to analyze vast amounts of data and to identify hidden
patterns.
There are di�erent types of ML methods depending on the necessities, like decision trees,
neural networks and support vector machines.
As in many other scienti�c �elds [60,61], researchers are exploring the potential of ML to
enhance climate models. While ML has shown promising results, the use of ML in this
�eld introduces several challenges, such as the need for complex yet trainable models to
encompass various physical scenarios, the requirement for large amounts of training data,
and the ability to generalize to unseen climate regimes [17]. For this reason, its integration
into climate science is still in an on-going research �eld.
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One application of ML in climate modelling is the development of machine learning-based
parameterizations. This growing �eld can be broadly classi�ed into two groups:

ˆ The �rst group includes studies that use ML to emulate and accelerate existing
parameterizations, such as those by [62] and [21].

ˆ The second group includes studies that use ML to learn parameterizations directly
from three-dimensional, high-resolution data. In most cases, the high-resolution
data is coarse-grained to the low-resolution grid of the climate model. The �rst
proof of concept in this area was established by [22], who trained a small NN on
coarse-grained regional data. Later, various other authors adapted this approach to
global models (e.g. [16,25,26]).

Typically, ML-based parameterizations are �rst developed in an o�ine setting, where they
are trained and evaluated on pre-existing datasets before being coupled online within a full
climate model. Many of the studies mentioned above, such as [23,25,26], focus primarily
on o�ine training, assessing the ability of ML models to reproduce sub-grid scale processes
from high-resolution simulations. However, integrating these parameterizations into online
coupled simulations introduces additional challenges, such as ensuring numerical stability
and physical consistency over long-term climate runs. The transition from o�ine to online
coupling remains an active area of research, as even well-performing o�ine models can
lead to instabilities or biases when coupled interactively within a climate model.
One ML model analyzed in this thesis is a neural network (NN) for cloud cover param-
eterization. In the next section, a brief description of the working principles of neural
networks will be provided.

2.5.1 Neural Networks

A neural network (NN) is a computational model inspired by the human brain, designed
to recognize patterns in data. It consists of layers of interconnected neurons, where each
neuron performs a mathematical operation and passes its result to the next layer [63]. The
goal of a neural network is to learn a function that maps input data to an output, which
can be used for tasks such as classi�cation or regression.
A feedforward neural network (FNN) is a type of NN in which data 
ows in one direction,
from the input layer to the output layer, passing through one or more hidden layers [64].
Each neuron in a layer is connected to all neurons in the subsequent layer, and the network
learns to approximate the target function by adjusting its internal parameters. The output
of each neuron is computed as a weighted sum of the inputs, passed through a nonlinear
activation function, which allows the network to capture complex patterns in the data:

f � (x) = W (L )
L � 1Y

l=1

�
�
W (l )x + b (l )

�
+ b (L ) (8)

Where:

ˆ f � (x): The output of the neural network, as a function of the inputx and the
parameters� = f W (1) ; b (1) ; : : : ;W (L ) ; b (L )g.
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ˆ x: The input vector to the network.

ˆ W (l ) : The weight matrix for layer l , with dimensions (nl ; nl � 1), where nl is the
number of neurons in layerl .

ˆ b (l ) : The bias vector for layerl .

ˆ � (�): The activation function.

ˆ L: The total number of layers in the network.

The training of an FNN involves optimizing its parameters (weights and biases) by
minimizing the di�erence between the predicted output and the actual target value. This
process follows these steps:

1. Feedforward : The input data is passed through the network, layer by layer, to
produce a prediction.

2. Loss Computation : A loss function measures the discrepancy between the
predicted and actual values.

3. Backpropagation : The gradients of the loss function with respect to the weights
and biases are computed.

4. Parameter Update : The network parameters are updated iteratively using an
optimization algorithm, which adjusts the weights in the direction that minimizes
the loss.

During training, the weights are updated iteratively using optimization techniques like
stochastic gradient descent (SGD) [65]. Over iterations, this process helps the network
learn the underlying relationships in the data.

2.6 Quantum Machine Learning

Quantum machine learning (QML) is an emerging research �eld that lies at the intersection
of quantum computing and machine learning [31]. QML explores ways to harness quantum
properties like superposition, entanglement, and quantum interference to improve machine
learning models. The potential bene�ts include exponential speedups for certain types of
optimization, more expressive models, e�cient handling of complex correlations, especially
in domains where classical methods struggle with high-dimensional interactions [38,66,67].
However, while QML presents intriguing advantages, its practical impact remains largely
theoretical, as the �eld is still in its early stages. Recent technological advancements
and promising initial results have fueled growing interest in QML [68]. Current research
focuses on identifying tasks where QML can provide advantages over classical methods
and on developing hybrid quantum-classical approaches that leverage the strengths of
both paradigms [69].
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2.6.1 Classi�cation of Quantum Machine Learning Models

Quantum machine learning (QML) models can be categorized based on the nature of both
the data and the computational components (i.e., the algorithms or devices involved). This
classi�cation helps to understand how quantum and classical elements can be combined
within hybrid learning architectures [70]. As shown in Figure 5, , there are four possible
scenarios depending on whether the data and the algorithm are classical (C) or quantum
(Q). While only the three cases involving at least one quantum component fall under the
QML umbrella, the fully classical case is included in the diagram for completeness and as
a reference point.

Figure 5: The QML diagram represents data and and algorithm or device, which can be
classical (C) or quantum (Q) in four di�erent scenarios. After [70]

ˆ Classical Data + Quantum Algorithm (C-Q) : In this case, classical data is
used as input, but the learning algorithm is quantum. Since quantum computers
process information in quantum states, classical data must be encoded into quantum
states using one of various encoding techniques. After encoding, quantum circuits
perform computations, and the results are measured and converted back into classical
outputs.

ˆ Quantum Data + Classical Algorithm (Q-C) : Here, the data itself is quantum
in nature, but classical algorithms are used for processing. Quantum data can come
from any quantum device (e.g., a quantum simulator or a quantum sensor), typically
in the form of quantum states. In this scenario, classical machine learning techniques
are applied to analyze quantum datasets.

ˆ Quantum Data + Quantum Algorithm (Q-Q) : This represents the most
quantum-native scenario, where both data and algorithms are quantum. Quantum-
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generated data is processed using quantum machine learning models that run entirely
on quantum hardware.

Applications to classical problems and datasets are rapidly increasing [71], potentially
broadening QML's relevance beyond purely quantum problems. This includes growing
interest in applying QML to climate and weather science [34, 36, 72{ 74]. However, the
application of QML to classical data remains challenging due to the noise and limited
scalability of current noisy intermediate-scale quantum (NISQ) devices [75]. These devices,
characterized by a relatively small number of qubits and high error rates, are not yet
capable of executing large-scale quantum computations without signi�cant error correction,
making the long-term quantum advantage of QML still an open question [39,76].
Nonetheless, preliminary research suggests that QML might hold signi�cant potential for
advancing climate modeling. As quantum technology progresses, it is likely to play an
increasing role in climate science, o�ering more powerful tools to address challenges related
to climate change.
This study falls into the CQ category, employing a hybrid quantum-classical approach,
where classical climate data are processed using a QNN. In this case, classical data coming
from climate models are used as input, but the learning algorithm is quantum.

2.6.2 Quantum Neural Networks

QNNs are a class of hybrid quantum-classical models inspired by classical neural networks
but adapted to leverage quantum computing principles. They are a speci�c class of
hybrid quantum-classical models that are executed on both quantum processors as well
as on classical processors to perform a single task [77]. Unlike traditional deep learning
architectures, QNNs use quantum circuits as computational layers.

Structure of QNNs A QNN is made up by components that loosely resemble those of
classical neural networks. We will show how a QNN is made, focusing on the architecture
used in this thesis:

ˆ Input Layer (Data Encoding) : Since quantum computers operate on quantum
states, classical data must �rst be mapped onto qubits. This process is known
as quantum data encoding. The choice of encoding scheme impacts the model's
expressiveness and e�ciency [78,79]. Common encoding techniques include:

{ Amplitude Encoding: Encodes a classical vector into the amplitudes of a
quantum state.

{ Angle Encoding: Maps classical features to rotation angles of qubits in the
Bloch sphere.

{ Basis Encoding: Represents data as a binary string corresponding to computa-
tional basis states.

In this work, Angle Encoding is employed as the data encoding strategy.
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ˆ Parameterized Quantum Circuits (PQC) as "Hidden Layers" : Similar to the
hidden layers in classical neural networks, QNNs employ a sequence of quantum gates
forming a parameterized quantum circuit (PQC). These gates introduce trainable
parameters and can be adjusted to optimize the network's performance. A typical
PQC can be described by a unitary operatorU#(x):

Û#(x) =
LY

l=1

�
V̂ (#(l ))Ŝ(x)

�
(9)

where:

{ Ŝ(x) is the encoding layer that maps input datax to quantum states,

{ V̂ (#) represents trainable quantum gates (variational layers) depending on
parameters#,

Data re-uploading is often used to enhance expressivity, meaning that input data is
re-encoded multiple times within the circuit [78].

ˆ Measurement After quantum processing, the network's output is extracted by
measuring an observableM

f � (x) = h0j Uy
� (x)MU � (x) j0i (10)

This collapses the quantum state into classical values. These measurements serve as
the output of the QNN and can be further processed using classical techniques.

Training a QNN The training of a QNN involves optimizing the parameters� using a
hybrid quantum-classical approach. The process follows these steps:

1. Forward Pass : The input data is encoded into a quantum state, processed through
the PQC, and measured to obtain an output.

2. Loss Computation : A classical loss function quanti�es the di�erence between the
predicted output and the target value.

3. Gradient Estimation : The gradients of the loss function with respect to the
quantum circuit parameters are estimated using quantum di�erentiation techniques
such as the parameter-shift rule.

4. Parameter Update : Classical optimization algorithms (e.g., gradient descent,
Adam) adjust the parameters to minimize the loss.

This iterative process is repeated until convergence, allowing the QNN to approximate the
underlying data distribution. In this work, QNN computations are simulated classically,
meaning that the computations of the QNN, which would otherwise take place on a
quantum device, are calculated numerically.
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2.7 ML based parametrizations

The development of an ML-based parameterization follows a systematic process to ensure
that the network learns relevant physical relationships while operating at the target
resolution. For the case of cloud cover the procedure can be summarized as follows:

1. Data Generation : High-resolution simulations (e.g. 5km) from storm-resolving
models are used as the training dataset. These simulations explicitly resolve some of
the small-scale processes that are otherwise parameterized in lower-resolution models,
such ad deep convection and gravity waves. Explicitly resolving these dynamical
processes also improves the representation of other variables such as cloud cover.

2. Coarse-Graining : The high-resolution data are coarse-grained to match the
resolution of the target model (e.g. 80km). This step ensures that the network is
trained on data that correspond to the resolution at which it will be deployed.

3. Training : The dataset is used to optimize the network parameters� so that the
predicted cloud cover,f � (x), approximates the true coarse-grained cloud coverclc(x).
This optimization is performed by minimizing a suitable loss function.

4. Implementation and Testing : Once trained, the network is evaluated to ensure
that it generalizes well to unseen data and e�ectively represents the subgrid-scale
processes at the target resolution.

The following �gure provides a schematic representation of the training process.
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Figure 6: Schematic of the approach used to develop both classical and quantum NN-based
parameterizations. High-resolution simulation datax are �rst coarse-grained to match the
target resolution. A training dataset is thus constructed, where the coarse-grained state
variables, x, serve as inputs, and the corresponding coarse-grained cloud cover,clc(x),
acts as the output. The networks are trained by optimizing their parameters,� , so that
the predicted output, f � (x), closely approximatesclc(x). The functional form of f � (x)
depends on whether a classical (Equation 8) or quantum (Equation 10) neural network is
used. From [80]
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2.8 Explainable AI methods : Shapley Values

ML models, especially complex ones such as neural networks, have demonstrated out-
standing predictive performance across a variety of tasks and �elds [81{ 83]. However,
they are often regarded as "black boxes" due to their inherent lack of transparency in
decision-making processes [42,84]. This opacity is a signi�cant concern, particularly in
�elds where understanding the reasoning behind a model's prediction is critical, including
climate modeling.
While ML models can achieve high accuracy, this success is often paired with a substantial
trade-o�: the di�culty of interpreting how models make predictions (Figure 7).

Figure 7: Trade-o� between interpretability and performance in AI systems. As machine
learning models improve in performance, they often become more complex and harder to
interpret. Source: [85].

2.8.1 Explainable AI Categorization

Explainability refers to methods that make the behavior of ML systems or, more generally,
arti�cial intelligence (AI) systems comprehensible for humans. The �eld of Explainable
AI (XAI) encompasses various approaches to providing transparency in machine learning
models. Realizing XAI is a highly non-trivial task with a potentially great impact on
many applications and can therefore be considered as an important research �eld. These
approaches can be categorized based on the nature of the explanation, the level of analysis,
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and the compatibility with speci�c models. Following [42], we explore the primary
categories of explainability methods:

ˆ Global vs. Local Explainability :

{ Global XAI aims to explain the overall behavior of the model, typically by
providing insights into the importance of features across the entire dataset.

{ Local XAI , on the other hand, focuses on explaining individual predictions.
The goal here is to understand why the model made a speci�c decision for a
given input.

ˆ Model-Speci�c vs. Model-Agnostic Explainability :

{ Model-speci�c explainability refers to methods that are designed for partic-
ular types of models.

{ In contrast, model-agnostic explainability refers to techniques that can be
applied to any machine learning model, regardless of its architecture. A prime
example are Shapley values, which o�er a fair and systematic approach for
attributing the contribution of each feature to a given prediction [86].

The choice between di�erent XAI approaches depends on the model being used and the
speci�c requirements of the application.
This method is applicable to both classical and quantum machine learning models, and
can o�er both global and local explanations.

2.8.2 Shapley Values

Shapley values, a widely used method for feature attribution, were originally developed in
cooperative game theory by Lloyd Shapley [87]. This approach provides a theoretically
robust framework to fairly distribute the contribution of input features in a predictive
model, ensuring an equitable quanti�cation of feature importance.
The key idea is to treat the prediction process as a cooperative game where features act
as players contributing to the �nal prediction. The Shapley value of a feature represents
its average marginal contribution across all possible subsets of features. This approach
accounts for feature interactions, providing a more nuanced understanding of how each
feature a�ects the model's output.

2.8.3 Mathematical Framework

Consider a set ofN = f 1; :::; ng players forming coalitions (following [42] and [87]).
The game's value functionv(S) assigns a numerical value to each subsetS of players,
representing the worth of that coalition. The Shapley value' i (v) for a player i is de�ned
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as their average marginal contribution across all possible subsets of players:

' i (v) =
X

S� N nf i g

jSj! (n � j Sj � 1)!
n!

(v(S [ f ig) � v(S))

=
1
n

X

S� N nf i g

1
� n� 1

jSj

� (v(S [ f ig) � v(S))
(11)

where:

ˆ n is the total number of players.

ˆ S is any subset of players fromN n f ig, i.e., any subset that does not include player
i .

ˆ ' i (v) represents the value of the coalitionS.

ˆ v(S [ f ig) represents the value when playeri joins S.

Properties of Shapley Values Shapley values satisfy several desirable properties that
make them a particularly suitable measure for feature attribution [88]:

ˆ E�ciency: The total of individual contributions is equal to the team's realized
value (grand coalition). X

i 2 N

' i (v) = v(N ) (12)

ˆ Symmetry: If two players i and j are interchangeable in the sense that

v(S [ f ig) = v(S [ f j g) (13)

for every subsetS of N that does not contain i or j , then they must receive the
same Shapley value' i (v) = ' j (v).

ˆ Linearity: If two coalition games described by gain functionsv and w are combined,
then the distributed gains should correspond to the gains derived fromv and the
gains derived fromw:

' i (v + w) = ' i (v) + ' i (w) (14)

for every i in N . Also, for any real numbera,

' i (av) = a' i (v) (15)

for every i in N .

ˆ Null player: The Shapley value' i (v) of a null player i in a gamev is zero. A
player i is null if

v(S [ f ig) = v(S) (16)

for all coalitions S that do not contain i .
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By treating features as players in a cooperative game, the Shapley value method provides
a robust and theoretically grounded approach for interpreting model predictions. Here,
the players correspond to input features, and the game represents the prediction process.
The value function v(S) corresponds to the model's prediction when only the features in
S are considered. The Shapley value then quanti�es how much each feature contributes to
the �nal prediction, averaged across all possible feature subsets. This makes it a valuable
tool in explainable AI and feature importance analysis.

2.8.4 Practical Computation of Shapley Values

The exact calculation of Shapley values, as shown in Equation (11), requires evaluating the
model on all possible subsets of features, leading to exponential complexity. This makes
exact computation infeasible for high-dimensional datasets. To mitigate the computational
burden, SHAP (Shapley Additive Explanations) [86] introduces approximation methods,
including KernelSHAP:

KernelSHAP : A Model-Agnostic Approximation Kernel SHAP is a model-
agnostic method that estimates Shapley values using a weighted linear regression approach
[86]. This method allows for the interpretation of any machine learning model without
requiring modi�cations to its structure. It approximates the explanation as a linear
function:

g(z0) = � 0 +
MX

i =1

� i z0
i ; (17)

where:

ˆ g(z0) is the approximated model output,

ˆ � 0 is the expected model output when no feature is included (base value),

ˆ � i are the Shapley values to be estimated,

ˆ z0
i 2 f 0; 1g indicates whether featurei is present in a given subset.

To ensure a fair approximation, Kernel SHAP assigns a weight to each subsetS based on
the SHAP kernel:

� (S) =
(N � 1)

� N
jSj

�
jSj(N � j Sj)

; (18)

where:

ˆ N is the total number of features

ˆ jSj is the number of features included in the subsetS

ˆ N � j Sj is the number of features excluded fromjSj
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This weighting scheme ensures that subsets of intermediate size contribute more to the
estimation process, aligning with the theoretical foundation of cooperative game theory.
Kernel SHAP estimates Shapley values by solving a weighted least squares regression
problem:

�̂ = arg min
�

X

S

� (S) (f (S) � g(z0))2 : (19)

This optimization ensures thatg(z0) closely approximates the original modelf , enabling
the extraction of meaningful Shapley values. While KernelSHAP signi�cantly reduces the
computational cost compared to exact methods, it remains expensive for models with a
large number of features, as it relies on Monte Carlo sampling.

Generating Shapley Values Using Kernel SHAP The SHAP library implements
Kernel SHAP as a model-agnostic method for estimating Shapley values. To compute
these values, an explainer object must �rst be created. This explainer corresponds tog(z0)
from Equation (17) and serves as an approximation of the model's behavior. It estimates
the contribution of each feature to the predictions by leveraging a set of reference samples.
The process involves the following steps:

1. Selecting a background dataset : a subset of instances from the training set is
chosen as a reference dataset to de�ne a baseline for feature contributions.

2. De�ning a custom prediction function : this function represents the model to
be explained, which could be a classical neural network (NN) or a quantum neural
network (QNN).

3. Initializing the explainer : the KernelSHAP explainer is created using the
custom prediction function and background samples. This step provides the base
value � 0 (the expected model output for the reference dataset) and constructs the
approximation function g(z0).

4. Computing Shapley values : the explainer samples di�erent feature subsets,
evaluates their impact on the model's predictions, and assigns Shapley values to
each feature.

5. Generating a SHAP Explanation object : the �nal output includes the Shapley
values, the expected model output, the test data, and feature names.

2.8.5 Interpretation of Shapley Value Results

Once Shapley values have been computed, their interpretation is crucial for extracting
meaningful insights from machine learning models. Several visualization techniques are
commonly used to analyze the impact of features on model predictions.
Various plots aid in understanding the distribution and e�ect of feature contributions,
among them the plots that are going to be used in this study will be:

ˆ Beeswarm Plots: Beeswarm plots provide an overview of how di�erent features
in
uence model predictions across all samples [86]. Each point represents a Shapley
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value for a given instance and feature, with color encoding the feature value. The
spread of points along the x-axis indicates the variability of feature importance.

ˆ Summary Plots (Bar Plots): A summary plot aggregates Shapley values across
the dataset to show the average absolute contribution of each feature to model
predictions. Features are ranked by importance, helping to identify key drivers of
the model's decisions [42].

ˆ Dependence Plots: Dependence plots illustrate the relationship between a feature's
value and its corresponding Shapley value. They provide insight into how a feature's
magnitude in
uences predictions and can reveal potential interactions with other
features.
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3 Methods and Data

In this section, we provide a detailed description of the neural networks used in this study,
including their architectures and training procedures. We then introduce the dataset
employed for training and evaluation. Furthermore, we outline the evaluation metrics used
to assess model performance. Finally, we explain how Shapley values are computed to
interpret the models' predictions.

3.1 Classical Neural Network

The classical model used in this study is a feedforward neural network designed for
regression tasks. It is designed to learn the relationship between input variables and cloud
cover. This model has been developed by Lorenzo Pastori in [35].
The network follows a standard multi-layer architecture, consisting of (Fig. 8):

ˆ An input layer with N = 6 neurons, corresponding to the selected atmospheric
features.

ˆ Multiple hidden layers, each containing a varying number of neurons activated by a
non-linear function (in this casetanh) to capture the complexity of the problem.

ˆ An output layer with a single neuron, activated by a linear function to predict cloud
cover.

Table 1 summarizes the key characteristics of the classical neural network.

NN Hidden layers D Input features
NN6 8 ! 3 ! 7 119 f hus; clw; cli; ta; pa; hwindg

Table 1: Speci�cations of the classical neural network. The notation NN6 denotes a
network with an input layer of 6 neurons, followed by three hidden layers containing 8,
3, and 7 neurons, respectively.D represents the total number of trainable parameters in
the network. The input features consist of six atmospheric variables: speci�c humidity
(hus), cloud liquid water content (clw), cloud ice water content (cli), air temperature (ta),
pressure (pa), and horizontal wind speed (hwind).
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Figure 8: Schematic of NN architecture. The input layer hasN = 6 neurons corresponding
to the 6 atmospheric input features. After the hidden layers there is the output layer with
a single node representing the cloud cover prediction.

The network is trained using the mean squared error (MSE) loss function.
For parameter optimization, the Adam optimizer is used. The learning rate is set to 0.001,
and the model is trained for 100 epochs with a batch size of 100. Finally, all computations
and model implementations are performed using TensorFlow [89].

3.2 Quantum Neural Network

The Quantum Neural Network (QNN) used in this study, also taken from [35], is based on
a parameterized quantum circuit (PQC) and designed to predict cloud cover based on six
atmospheric features.
The QNN can be broken down into the following stages:

ˆ Data Encoding : The QNN uses a qubit register initialized in thej0i state. The
input features are encoded using the data re-uploading technique [90], where each
input feature is encoded multiple times (nenc = 4) using single-qubit rotation gates.
This approach increases the number of Fourier frequencies the model can capture,
enhancing its ability to represent the input data. The number of qubits used in this
stageN = 6 corresponds to the number of input features. The encoding layer is
de�ned as:

Ŝ(x) =
NY

n=1

e� i x n
2 �̂ � n ; (20)

wherexn is the n-th component of the vector of input featuresx, and � = x; y; z
denotes the rotation axis, depending on the chosen ansatz.
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The encoding process is interleaved with variational blockŝV(#(k)) (k = 1; : : : ; nenc),
which depend on trainable parameters#(k) and contain entangling operations. The
speci�c form of these blocks is detailed below.

ˆ Variational Quantum circuit (PQC) : After the data encoding steps, the model
appliesnvar = 2 variational layers Ŵ(' (` )) (` = 1; : : : ; nvar ). These blocks increase
the number of trainable parameters and include entangling operations.
The full parameterized quantum circuit (PQC) is described by a unitary operator
that is a product of two components: the variational blocks and the encoding layers.
Each component depends on its respective set of trainable parameters that are
optimized during training:

Û#;' (x) =
nvarY

`=1

Ŵ(' (` ))
nencY

k=1

�
V̂ (#(k))Ŝ(x)

�
: (21)

ˆ Measurement and Output Layer After the PQC computation, the expectation
values of the Pauli-Z operators are measured on all qubits. The �nal output of
the QNN is obtained as a weighted sum of these expectation values, with trainable
weights and a bias term :

f � (x) = b+
NX

n=1

wn ĥ� n
z i #;' (x) (22)

where# represents the set of trainable parameters in the encoding layers,' represents
the set of trainable parameters in the variational blocks,wn are the weights applied
to the measured expectation values, andb is a bias term. The parameter set�
encompasses all these trainable components (#; '; w; and b).
After optimization, the �nal output approximates the classical target function, which
corresponds to the cloud cover.

The key characteristics of the QNN are summarized in Table 2:

QNN N nenc nvar D Input features
QNN6 6 4 2 109 f hus; clw; cli; ta; pa; hwindg

Table 2: Speci�cations of the quantum neural network. The notation QNN6 denotes
a QNN with N = 6 qubits, each corresponding to an input atmospheric feature.nenc

represents the number of encoding blocks, whilenvar indicates the number of variational
blocks. D denotes the total number of trainable parameters. The input features include
six atmospheric variables: speci�c humidity (hus), cloud liquid water content (clw), cloud
ice water content (cli), air temperature (ta), pressure (pa), and horizontal wind speed
(hwind).

In order to make a fair comparison, the number of parameters of the two networks is kept
comparable.
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Figure 9: Schematics of QNN architecture. The datax is uploadednenc times as angles of
single-qubit rotations (blue boxes). In our implementation, each input feature is uploaded
to the same qubit each time. These re-uploading gates are interleaved with variational
blocks V̂ (#(k)) containing entangling gates and trainable parameters#(k)(k = 1; :::; nenc).
Afterwards, a sequence ofnvar variational blocks Ŵ(' (l ))( l = 1; :::; nvar ) are applied. In
the end, the expectation values of̂� z on all qubits are measured, and a weighted average
of those is performed, with trainable weightsw and a bias term b. The resultf � (x) should
approximate the cloud coverclc(x) after training the parameters� = ff #(k)gk ; f ' (l )gl ; w; bg.
Taken from: [35].

XYZ ansatz For the XYZ circuit ansatz used in this thesis, the encoding blocks take
the following form:

V̂XY Z (#) = R̂yy(#(2N � 1)! (3N � 3))R̂xx (#N ! (2N � 2))R̂zz(#1! (N � 1)); (23)

where

R̂�� (#) =
N � 1Y

n=1

e� i # n
2 �̂ � n �̂ � n +1 ; with � = x; y; z; (24)

and #i ! j denotes the slice of# from the i -th to j -th component.
The variational blocks for the XYZ ansatz read as:

ŴXY Z (' ) = R̂x (' (3N � 2)! (4N � 3))R̂yy(' (2N � 1)! (3N � 3))R̂xx (' N ! (2N � 2))R̂zz(' 1! (N � 1)): (25)

Optimization and Training : The training of the parameters� is done via a quantum-
classical feedback loop. In each iteration, the QNN is run on the quantum device with the
current parameters, and the cost function is computed. The value of this function is then
used to propose new parameters that will be used in the next iteration. In this thesis, the
computations of the QNN, which would typically take place on a quantum device, are
simulated numerically using Pennylane library [91].
For training, the cost function that is minimized is the mean squared error (MSE) calculated
over the training dataset.
The parameters� are updated using gradient descent methods, speci�cally the Adam
optimizer.
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3.3 Training Data

Despite their structural di�erences, both networks have been trained using the same
approach and the same data.
The training data used in this work is obtained from global storm-resolving ICON simula-
tions performed as part of the DYnamics of the Atmospheric general circulation Modeled
On Non-hydrostatic Domains (DYAMOND) project [92]. These simulations o�er an
improved representation of clouds and convection compared to simulations at coarser reso-
lutions. The project's �rst phase (\DYAMOND Summer") included a simulation starting
from 1 August 2016 [92], while the second phase (\DYAMOND Winter") was initialized
on 20 January 2020 [93]. In both phases, the ICON model simulated 40 days, providing
three-hourly output on a grid with a horizontal resolution of 2.47 km. In both cases, the
�rst 10 days have been discarded as spin-up time of the simulation, to have training and
testing datasets more closely representing physically realistic conditions. Following [29] we
de�ne a high-resolution grid cell to be cloudy (cloud cover = 1) whenever a meaningful
cloud condensate (cloud water or cloud ice) amount is detected (i.e., when speci�c cloud
condensate content exceeds 10� 6 kg/kg) and to otherwise be cloud-free (cloud cover =
0). Such a binary setting of cloud cover is much more sensible at the high horizontal and
vertical resolution of the storm-resolving model simulations than at coarser resolutions.
Following the methodology of [30], DYAMOND data have been coarse-grained to an ICON
grid with a typical climate model horizontal grid resolution of� 80 km (corresponding
to an R2B5 ICON grid typically used in climate projections). Vertically, data have been
coarse-grained from 58 to 27 layers below an altitude of 21 km, which is the maximum
altitude with clouds in the data set. After coarse-graining, cloud cover in a given cell can
take any value between 0 and 1, representing the fraction of the cell that is occupied by
clouds. Given that cloud cover cannot exist in the absence of cloud condensate, all the
cells where the total amount of cloud condensate is zero are removed from the dataset.
This results in a dataset which is more balanced, i.e., where the cloud-free samples are
less over-represented. We then split the data into a training and a validation set.
To ensure a diverse representation of atmospheric conditions, the training and test sets
are constructed by randomly sampling data points. The training set consists of 100,000
samples, and model evaluation is conducted on an independent test set of equal size,
ensuring no data leakage between the two subsets.

3.3.1 Input Features

Both classical and quantum models receive as input six key atmospheric variables for each
data sample, selected for their relevance in cloud cover formation [35].
These variables are:

ˆ Speci�c humidity (hus) [kg/kg]

ˆ Cloud liquid water content (clw) [kg/kg]

ˆ Cloud ice conten t ( cli ) [kg/kg]

ˆ Air temperature (ta) [K]
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ˆ Pressure (pa) [Pa]

ˆ Horizontal wind component (hwind) =
p

u2 + v2 [m/s] : magnitude of hori-
zontal wind component (with u and v being the zonal and meridional components,
respectively).

ˆ Altitude (zg) [m]

ˆ Coriolis Force [N]

3.3.2 Preprocessing

Due to the varying magnitudes and distributions of these features, an appropriate trans-
formation and rescaling are required before feeding them into the models. In the case of
the quantum neural network, the input data are encoded as angles, making it convenient
to transform the features into the [0; � ] range. For temperature (ta) and pressure (pa),
a simple min-max scaling to the interval [0; � ] is applied. However, speci�c humidity,
cloud liquid water content, cloud ice content, and horizontal wind exhibit highly skewed
distributions, with values concentrated near zero and long decaying tails. To address this,
a non-linear logarithmic-like transformation that spreads the values more uniformly while
preserving the behavior of the tails is applied.
To enable a direct comparison between quantum and classical neural networks, the same
preprocessing steps are applied to both models. Additionally, the cloud cover output
undergoes a transformation via a monotonic functiong, such that the training targets are
given by yi = g(clc(x i )). This transformation ensures that the output values are approxi-
mately uniformly distributed in the interval [0 ; 1], improving model training stability. All
the transformations are explained in Appendix (A).

3.4 Evaluation metrics

To evaluate the performance of the models, the mean squared error (MSE) and the
coe�cient of determination ( R2) are used. These metrics are computed using themean
squared error and r2 score functions from the sklearn.metrics module. The MSE

measures the average squared di�erence between the true valuesyi and the predicted
valuesŷi , and is given by:

MSE =
1
n

nX

i =1

(yi � ŷi )2 (26)

wheren is the number of samples. Lower MSE values indicate better predictive accuracy.
The R2 score, also known as the coe�cient of determination, assesses how well the
predictions approximate the true values. It is de�ned as:

R2 = 1 �
P n

i =1 (yi � ŷi )2

P n
i =1 (yi � �y)2

(27)

where �y is the mean of the true values. AnR2 score close to 1 indicates that the model
explains most of the variance in the data, while a value close to 0 or negative suggests
poor predictive performance.
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3.5 Shapley Values

To analyze feature importance, Shapley values are computed using the SHAP library [86].
Speci�cally KernelSHAP has been employed, a model-agnostic method that approximates
Shapley values by treating the model as a black box and estimating contributions through
perturbations of the input features. This method was aplicable to both NN and QNN.
Since KernelSHAP requires a background dataset to approximate feature attributions, 100
representative samples have been selected from the training dataset usingshap.sample() ,
which performs a random strati�ed sampling. The background dataset serves as a reference
distribution for estimating feature contributions.
Once the explainer was initialized, Shapley values have been computed for the entire test
dataset (100,000 samples). The Shapley values were obtained using a custom prediction
function, which feeds input samples to the trained classical or quantum neural network
and returns the predicted outputs.
The computation resulted in a set of Shapley values representing the contribution of each
feature to the model's predictions.
For clarity, pseudocode outlining the exact implementation is provided in the appendix.
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4 Results

This section presents the results of the study, focusing on the comparison between classical
and quantum models for cloud cover parameterization. As discussed in previous sections,
the use of machine learning for parameterizations represents a promising alternative to
improve climate models. Neural networks are employed to directly predict cloud cover,
fully replacing traditional parameterization schemes. The analysis aims to interpret the
decision-making process of the networks from a physical perspective. The results of the
study will be presented as follows:

ˆ Models Performance : The predictive capabilities of neural networks are assessed
using standard evaluation metrics, such as the mean squared error (MSE) and the
coe�cient of determination ( R2).

ˆ Feature importance Analysis : Model interpretability will be analyzed through
Shapley values, focusing on feature importance rankings and examining whether
QML models capture physical relationships similar to those learned by classical coun-
terparts. Additionally, the relationship between Shapley values and corresponding
feature values will be explored to gain deeper insights into models behavior.

ˆ Comparison with Empirical Parametrization: The feature importance will
be compared with the parameterization approach of Xu & Randall [55], which will
serve as a benchmark for cloud cover parameterization.

ˆ Cloud Regimes Analysis : The generalization capabilities of the models will be
investigated by evaluating their performance and feature importance across di�erent
atmospheric regimes, assessing their consistency under varying physical conditions.

ˆ Stability Analysis: The robustness of classical and quantum models will be
examined by analyzing the variability of learned relationships across multiple training
runs.

ˆ Eight Features Networks: The impact of increasing the number of input features
to eight is explored, assessing potential improvements in predictive performance and
interpretability.
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4.1 Models Performance

As �rst step of the analysis, the performance of the two networks has been evaluated on a
test dataset. Model predictions are compared against ground truth values using standard
regression metrics. The histograms in Figure 10 illustrate the distribution of predicted
cloud cover values compared to the ground truth:

Figure 10: Comparison of histograms: Classical NN (left) and Quantum NN (right). The
x-axis represents cloud cover (ranging from 0 to 1), divided into 50 bins, while the y-axis
shows frequency counts for each bin, based on a sample of 100,000 test points.

Table 3 summarizes the MSE andR2 values for both models:

Model MSE R²
Classical 0.006 0.94
Quantum 0.011 0.89

Table 3: Performance metrics for Classical and Quantum Neural Networks.

Both models perform well, with the classical neural network achieving slightly better
accuracy, as indicated by lower MSE and higherR2. Despite this, both networks successfully
predict cloud cover, although each exhibits some biases:

ˆ The classical model slightly overestimates cloud cover in the 0.8 { 0.9 range.

ˆ The quantum model, on the other hand, tends to underestimate cloud cover in the
same range but exhibits slight overestimation in the 0.2 { 0.6 interval.

ˆ Both models underestimate the occurrence of fully cloud-covered cells (1.0).

These di�erences likely stem from the distinct architectures of the two models and their
respective mechanisms for processing information. To gain deeper insights into these
variations, we next analyze how each model prioritizes and utilizes input features through
an examination of Shapley values.
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4.2 Feature importance analysis

Beyond evaluating the overall predictive performance of the models, it is important to
assess whether the networks are e�ectively learning the underlying physical processes
governing cloud cover formation. Neural networks, with their capacity to model highly non-
linear relationships, are well-suited for tasks such as cloud cover parametrization. However,
their black-box nature presents a signi�cant challenge when attempting to interpret their
decision-making process, particularly in scienti�c applications where physical consistency
is crucial.
To address this issue, we employ methods from Explainable AI (XAI), which provide tools
for interpreting the internal workings of machine learning models. Among these, Shapley
values o�er a principled approach to quantifying feature importance by attributing a
contribution to each input variable based on its marginal impact on the model's predictions.
In the context of cloud cover prediction, Shapley values allow us to examine which features
are most in
uential in determining the cloud cover. This allows us to examine whether
the features identi�ed as most in
uential align with established physical mechanisms
of cloud formation and to see how the value of the feature impact the prediction. By
analyzing feature importance, we aim to gain a clearer understanding of how the models
re
ect known atmospheric processes and whether their learned patterns align with physical
intuition.
To visualize and analyze these feature contributions, we use at �rst a beeswarm plot,
which provides a clear graphical representation of Shapley values. Examining these plots
for both the classical and quantum neural networks allows us to compare their feature
importance attribution.

Figure 11: Beeswarm plots of SHAP values for the classical neural network (left) and the
quantum neural network (right). Each plot is generated using 100,000 data points. The
features are ranked by their average absolute Shapley values, with the most in
uential
features appearing at the top. Each point represents a single data instance, with thicker
clusters indicating a higher density of points. The color represents the feature value,
ranging from low (purple) to high (yellow).

Figure 11 presents the beeswarm plots for the classical and quantum neural networks, re-
spectively. In both plots, features are ordered according to their importance, as determined
by SHAP values. The ranking is calculated by averaging the absolute SHAP values for
each feature across all instances in the dataset, re
ecting the overall contribution of each
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feature to the model's predictions. Features with higher average absolute SHAP values
are positioned at the top, indicating their greater in
uence on the model. Upon analyzing
the plots, we observe that the most important feature for both the classical and quantum
models is temperature, followed by speci�c humidity. However, some di�erences emerge in
the ranking of secondary features. A detailed analysis of each feature is presented below:

ˆ Temperature: The Shapley values indicate a clear trend: lower temperatures corre-
spond to positive values, suggesting increased cloud cover, while higher temperatures
result in negative values, implying reduced cloud formation. This aligns with the
physical understanding that higher temperatures enhance moisture-holding capacity,
inhibiting condensation.

ˆ Speci�c Humidity: As discussed in Section 2, cloud cover strongly depends on
humidity. The Shapley values con�rm this: high speci�c humidity leads to positive
values, indicating increased cloud cover, while drier conditions correspond to negative
values, re
ecting reduced cloud formation.

ˆ Pressure: Lower pressure, typically found at higher altitudes, is associated with a
decreased probability of cloud formation, as indicated by the negative Shapley values.
This aligns with the fact that lower air density at high altitudes makes condensation
less favorable.

ˆ Cloud Ice: The quantum model assigns greater importance to cloud ice, ranking it
as the third most in
uential feature. The Shapley values highlight its role in cloud
formation: higher cloud ice levels contribute positively, while lower levels or absence
of condensate lead to negative contributions.

ˆ Cloud water: Like cloud ice, cloud water positively in
uences cloud cover
predictions, as re
ected in the Shapley values. However, in both models, it is less
in
uential than cloud ice.

ˆ Horizontal wind: The distribution of Shapley values around zero con�rms that
horizontal wind has minimal impact on cloud cover predictions.

At a �rst impact, overall, the feature importance align with our physical expactations.
While some di�erences are observed (such as the higher ranking of cloud ice in the quantum
model) these variations may arise from di�erences in how the two architectures encode
and process information.
Now we want to zoom into each feature and see how the Shapley values are distributed
with the feature values.
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Figure 12: Shapley value distribution for every atmospheric feature. Each plot contains
100,000 data points. The x-axis represents the feature values, while the y-axis shows
the associated Shapley values, indicating the contribution of each feature to the model's
predictions. We overlap classical (orange) and quantum (blue).

Figure 12 presents the Shapley value distribution for each feature with respect to its
corresponding values. The plots for the classical and quantum models are overlapped to
facilitate visual comparison and highlight potential di�erences in how each model interprets
the feature importance. Below, we analyze the key trends observed for each feature.

ˆ Speci�c Humidity: Both models exhibit an increasing trend, with higher humidity
corresponding to higher Shapley values. This con�rms that both networks recognize
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the positive correlation between speci�c humidity and cloud formation, in line with
our physical expectation.

ˆ Cloud Ice and Cloud Water: The SHAP values for both features exhibit a
threshold e�ect. Below a certain condensate level, the values remain close to or
below zero, while higher condensate amounts lead to strong positive contributions to
cloud cover predictions. This is expected, as cloud water and ice are fundamental
components of cloud formation.
The di�erences observed in the beeswarm plot rankings now become clearer: in the
quantum model, cloud ice appears more important than in the classical case. This
is also re
ected in the Shapley value distribution: at low condensate values, the
Shapley values for cloud ice are signi�cantly more negative in the quantum model,
while in the classical model, they remain closer to zero. This suggests that the
quantum network assigns a much lower cloud cover when cloud ice levels are low. A
similar but less pronounced pattern is observed for cloud water.

ˆ Temperature: As the most in
uential feature, temperature exhibits a clear de-
creasing trend in its Shapley value distribution: higher temperatures correspond to
increasingly negative Shapley values (indicating reduced cloud cover), while lower
temperatures are associated with positive Shapley values (indicating increased cloud
cover). This aligns with the physical understanding that lower temperatures promote
condensation, facilitating cloud formation.
The importance of temperature as the dominant feature is further supported by the
range of Shpley values along the y-axis, which is broader compared to other features,
indicating a stronger in
uence on model predictions.

ˆ Pressure: The Shapley values for pressure con�rm its role as a secondary but still
relevant factor. The feature distribution exhibits distinct peaks, which correspond
to the discrete vertical layers in the atmospheric model. The Shapley values suggest
that lower altitudes (higher pressure) are associated with increased cloud cover,
while higher altitudes (lower pressure) suppress it. This behavior is consistent with
physical expectations, as higher altitudes are characterized by thinner, drier air,
which inhibits condensation.

ˆ Horizontal Wind: As expected, horizontal wind exerts minimal in
uence on cloud
cover predictions, as indicated by its near-zero Shapley values across most of its
range. However, while the classical model assigns consistently low importance to this
feature, the quantum model exhibits a more dispersed Shapley value distribution.

A key observation from these plots is that the Shapley value distributions are comparable for
both networks across all features. This suggests that, despite their di�erent architectures,
both models learn similar patterns in the data and identify the same key drivers of cloud
formation.
While minor di�erences exist (such as the di�erent ranking of cloud ice (cli) in feature
importance) the overall behavior of the networks remains qualitatively similar. This
is con�rmed by the distributions in Figure 12, where the shape of the trends remains
unchanged, indicating that cli in
uences the predictions in a comparable manner despite
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its di�erent importance ranking.
Finally, the Shapley values not only reveal a similar behavior between the two networks
in terms of distribution shape but also in magnitude, further supporting the idea that
both architectures have learned comparable relationships between input features and cloud
cover.

4.3 Comparison with empirical parametrization

To better understand the physical consistency of the neural networks learning results, it is
useful to compare them with an empirical parameterization that captures physical relation-
ships from data through explicit equations. In this analysis, we will use the Xu-Randall
parameterization [55], which has been described in Section 2. This parameterization
estimates cloud fraction (CLCXR ) as a function of �ve atmospheric variables: temperature,
speci�c humidity, pressure, cloud ice, and cloud water (which are the same used by the
networks excluding horizontal wind). The parameterzation has been implemented as
follows:

CLCXR =
�
1 � e� a(clw+ c� cli )

�
RH b (28)

where:

ˆ clw is the speci�c cloud liquid water content,

ˆ cli is the speci�c cloud ice water content,

ˆ RH is the relative humidity,

ˆ a; b; care empirical parameters that need to be calibrated.

The parametersa; b; c were optimized by minimizing the Mean Squared Error (MSE)
between predicted and observed cloud cover values:

MSE =
1
N

NX

i =1

�
CLC (i )

XR � CLC (i )
obs

� 2
(29)

whereN is the number of data points (100,000). The optimization was performed using
the Nelder-Mead method, with initial values randomly sampled within prede�ned bounds:

1:0 � 104 � a � 1:0 � 105 (30)

0:9 � b � 1:1 (31)

0:5 � c � 4:0 (32)

Multiple iterations were run with di�erent initial conditions, selecting the parameter set
that yielded the lowest MSE:

ˆ a = 1:014� 105

ˆ b= 6:066
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ˆ c = 2:608

Although this parameterization is relatively simple, it has been shown to provide accurate
cloud cover predictions, as shown in Table 4.

MSE R²
0.011 0.88

Table 4: MSE andR2 values for Xu-Randall parameterization.

This makes it a valuable benchmark for evaluating the performance of both the classical
and quantum neural networks. Moreover, its simplicity makes it easy to interpret, which
facilitates a direct comparison with the neural networks, since it uses the same atmospheric
variables.
While the neural networks are optimized for minimizing MSE, the Xu-Randall scheme is
based on heuristic approximations of atmospheric processes. This fundamental di�erence
in approach raises the question of whether the neural networks have learned a physically
meaningful representation of cloud cover or merely an empirical mapping based on the
training data.
To investigate this, we analyze the feature importance rankings assigned by the Xu-Randall
parameterization. Speci�cally, we compare the mean Shapley values of each feature across
the three models using a bar plot, that shows the mean Shapley value for each feature. This
visualization allows us to assess the relative impact of each variable on model predictions.
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Figure 13: Comparison of mean absolute Shapley Values (classical vs quantum NN vs
Xu-Randall scheme). The x-axis represents the input features and the y-axis shows the
mean Shapley values. The mean SHAP value has been calculated using 100,000 data
points.

From this plot, we can observe an overall agreement between the three models, particularly
for the most important variables. This suggests that both the classical and quantum
neural networks have successfully identi�ed the key meteorological variables that drive
cloud formation, similar to the empirical relationships captured by the Xu-Randall param-
eterization. The most signi�cant discrepancy is observed with cloud ice, which is given
signi�cantly more weight in the quantum model compared to both Xu-Randall and the
classical network.
Next, we use a beeswarm plot of Shapley values to visualize the contribution of each input
variable to the Xu-Randall predictions.
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