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Abstract

Quantum Key Distribution (QKD) allows two legitimate parties, Alice and Bob, to share a
secret key with information-theoretic security, ensuring that an eavesdropper, Eve, cannot
obtain any information about the key. A QKD protocol is provably secure only when the
Quantum Bit Error Rate (QBER) is below a certain threshold and, therefore, the presence
of noise inherently limits the maximum transmission distance. Advantage Distillation (AD)
IS a classical post-processing technique that enhances QKD protocols by increasing the
maximum acceptable QBER and, thus, allows extending the communication range. AD
operates by post-selecting blocks of bits and extracting fewer but highly correlated bits
between Alice and Bob, which exhibit a reduced QBER, thus lowering the amount of infor-
mation that has to be disclosed during the information reconciliation step. In this study, we
present a new analytical expression for the secure key rate. This will enable a finite-size
secure key length analysis of the decoy state version of the BB84 protocol including AD
post-processing.

Prepare and Measure Quantum Key Distribution

With one-way classical communication between Alice and Bob the secure key rate for any
prepare and measure QKD protocol is given by [1]:
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The key rate is lower bounded by the expression
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where the minimisation is performed over the possible QBERSs ¢y, ¢y, ¢z in the X, Y, Z bases
that are compatible with parameter estimation.

In BB84 the value of ¢y is never directly observed, hence it can only be bounded by
lox — 07| < oy < Ox + ¢z. The minimisation can be carried out analytically, yielding

Rppgs > min |1 — h(dx) — h(¢z)] with

min Oy = Ox + Oz —20x ¢z

For ¢ox = ¢z = ¢ the maximum tolerable QBER is ¢ ~ 11.0% with one-way communication
and ¢ ~ 18.7% with two-way communication [2].
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Classical Advantage Distillation

AD(b): advantage distillation protocol with block length b [3]

1. Alice and Bob partition their bit strings into blocks of b bits:
e (a1,az,...,ap) € 75 for Alice,
* (a},d,...,a}) € Z5 for Bob.
2. Alice computes the parities (a1 @ ay,...,a, 1 ©ap) € Z5~ ' and sends them to Bob.
3. Bob computes the parities (a} ®db, ...,a, ®a}) € Z5~ ' and compares them with Alice’s.

4.1f any of the b — 1 parities does not match:
- The post-selection fails and all the b bits are discarded.

5. Else:
- Alice keeps a; and Bob keeps ) (discarding the other b — 1 bits).

Properties of Advantage Distillation

Quantum Advantage Distillation

In QKD, AD is applied only in the Z basis, while X and Y bases may be used for Parameter
Estimation (PE). This can be interpreted as working with qubits having different QBERs:
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In the real protocol, parameter estimation has to be applied before AD. In BB84 only the X
basis is employed for parameter estimation, while the Z basis is used for key generation.

AD corresponds to a BB84 protocol with the following measurements on virtual qubits:
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Here Z = Z® I®"~! is the key-basis measurement and X = X*" is used for eavesdropper
monitoring, analogously to Z and X measurements in standard BB84.

- Z and X are mutually unbiased
- Z and X commute with the parity measurements employed in AD post-selection

- Z4®Zp and X4 ® X are associated to the QBER measurements, conditioned on the AD
post-selection succeeding

Asymptotic Key Rate with AD

The secure key rate for BB84 + AD(b) can be expressed as:
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The minimisation is performed on the QBERSs prior to AD and can be carried out explic-
itly. In contrast to the standard BB84 case, the minimum is attained for the extreme value

¢y = ¢x + ¢z, resulting in
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This yields a very good approximation of the achievable key rate:
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This enables the analytical extension of the results to decoy state estimation and finite size
key analysis — work in progress!
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- After post-selection either all of Bob’s bits are correct (ai,...,a)) = (ai,...,ap) or all of
Bob’s bits are incorrect (a},...,a,) = (@1 @1,...,a,®1).

* The success probability and the QBER on the post-selected bits are
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- Intuitively, in AD Alice and Bob exploit the authentic channel to post-select bits where the
iInformation they share is more than Eve’s.

- Remarkably, Alice and Bob can establish a secure key even if Eve has more information
about Alice’s original key than Bob.
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