Partially Stateful Server Selection for Minimal Age
of Information Scheduling Over a Finite Horizon

Leonardo Badia
Dept. of Information Engineering
University of Padova, Italy
email: leonardo.badia@unipd.it

Abstract—We consider a source reporting real-time informa-
tion content over a finite horizon so as to obtain minimal age
of information (Aol). We assume that the information content
requires a computationally heavy handling, as typical of tasks
involving Al-augmented interpretation. As such, scheduling an
information update requires a processing can be either performed
locally, or offloaded to a remote mobile edge computing (MEC)
server shared by other sources. The former option is subject to
a certain failure rate, whereas the latter is always successful,
but taking a longer time subject to how many other similar
sources use the remote server. Inspired by the literature for MEC
offloading, we consider a partially stateful approach, where the
scheduling decision is made according to the system state (com-
prising the current Aol, the number of updates available, and
the current congestion at the remote server), whereas the server
selection follows a randomized-alpha policy. Through a dynamic
programming approach, we find that the optimal choice of the
local processing rate, although dependent on the characteristics
of the remote server, is relatively robust to its variations. Not only
does this justify our approach, but it also highlight a practical
low-complexity approach to draw meaningful considerations on
server sharing in multi-source updating systems.

Index Terms—Age of Information; Internet of Things; Data
acquisition; Mobile-edge computing; Resource sharing.

I. INTRODUCTION

Thanks to its seamless integration of multiple smart devices,
the Internet of Things (IoT) is expected to revolutionize our
interaction with technology at many levels. One of IoT’s stand-
out promises is its ability to deliver real-time applications,
which reflects into efficient vehicular transportation, smart
healthcare, industrial automation, and more [1]-[3]. This relies
on rapid decision-making and system responsiveness, which
translates in a requirement for data content freshness, usually
represented through age of information (Aol) [4].

However, unlike simpler point-to-point remote sensing sce-
narios, whenever multiple interconnected devices share the
same network infrastructure, and data generation at the net-
work border becomes more and more intense, optimized
resource allocation becomes essential at the heart of the
requirement of low Aol, so as to allow split-second decision
making and proactive interventions by the network control
[5]-[7]. Especially, traditional computing architectures may be

This work was supported by the Italian PRIN2022PNRR project
“DIGIT4CIRCLE,” project code P2022788KK, and by the Federal Ministry of
Education and Research of Germany in the programme of “Souverén. Digital.
Vernetzt.” joint project 6G-RIC, project identification number: 16KISK022.

Andrea Munari
Institute of Communications and Navigation

German Aerospace Center (DLR), WeBlling, Germany

email: andrea.munari@dIr.de

insufficient to provide the required responsiveness when the
system status is extrapolated not from direct measurements
but from a complex fusion of diverse data streams, possibly
processed through Al algorithms [8]-[10].

In this case, an often invoked approach is to resort to
offloading data processing to remote servers possessing higher
computational capabilities [11]. However, neither a fully re-
mote processing nor a fully local one can achieve the optimal
performance (i.e., minimal Aol). Local processing, albeit often
insufficient and worse than remote offloading if taken alone,
has the advantage of physical proximity to where the data are
generated and avoids long transmission delays. At the same
time, offloading too many heavy tasks to a shared remote
server may result into congestion that causes the performance
to degrade, so that it becomes analogous to, if not worse than,
that of a local processing — thus resulting in what is known as
the Pigou-Knight-Downs paradox [12]. Therefore, it appears
that the solution is to be sought in a careful and intelligent
balance between the approaches.

Pushed by this motivation, in the present paper we delineate
an analysis of a partially stateful resource allocation for Aol
minimization over a finite time horizon in the context of
computationally intensive status updates. The management of
computation resources comprises two aspects, namely, the
scheduling within the time horizon of the status updates,
which can be further either processed locally or offloaded to a
remote MEC server. The last decision follows a randomized-
alpha stateless policy [13], which simplifies the analysis, yet
considers the role of multple sources possibly congesting
the server. Even though investigations of multi-source Aol
exist, they belong to the track of queueing theory applications
or infinite horizon stationary schedulers [14], [15], so they
allow an optimization of the average Aol at steady-state only.
Conversely, we remark that our analysis is the first to consider
the role of multiple sources under non-stationary conditions.

This paper is organized as follows. Section II discusses the
related literature. Section III introduces the system model, ana-
lyzed through dynamic programming in Section IV. Section V
discusses numerical results. We conclude in Section VI.

II. RELATED WORK

The idea of quantifying freshness of information through
Aol was popularized by seminal references [5], [16]. Over

the last decade or so, Aol has become the de facto reference
metric for real time applications, thereby leading to revisiting
traditional analytical frameworks such as queueing theory [17].

Beyond the mere performance evaluation, another common
approach is to set the minimization of Aol as the objective
of real-time scheduling or medium access protocols [6], [14],
[18]-[20]. This line of research is traditionally explored from
the standpoint of a single central decision point that performs a
centralized scheduling, often seen as an optimization problem
and solved accordingly. However, while this straightforward
methodology fits well point-to-point remote sensing scenarios,
we argue that it is insufficient to characterize more modern
applications in the IoT, such as autonomous driving, smart
healthcare, and industrial IoT [1], [21]. Compared to the
original scenario of Aol over a single communication link,
two new elements arise in real-time IoT applications.

First of all, the expected widespread adoption of next
generation technologies implies that the scenario requires an
extension to a multi-agent paradigm [15]. Moreover, the evalu-
ation of Aol is not expected to only relate to individual simple
measurements, but rather may stem from computationally-
intensive tasks, possibly Al-driven, for which more modern
computing architectures based on mobile edge computing
(MEC) are strongly pushed forward [11]. While MEC is a key
enabler of Al applications to provide low latency and real-
time data processing [8], for the overall framework of Aol
minimization it inserts a new decision point in the pipeline,
i.e., server selection. Similar to the aforementioned revival of
queueing theory, we argue that this can lead to revisit classic
studies about routing in Internet-like environment [22]. In
agreement to this point, some recent contributions, such as [7],
[23], explore MEC and server selection as related to Aol. In
particular, [24] adapts queueing formulas for Aol from [4] and
[15] to MEC processor sharing, and [10] performs a matching
game for the resulting knapsack allocation of computationally
intensive tasks to multi-server computing slices.

Our proposal, instead of being grounded in a queueing
theory approach, explores the joint scheduling/server selection
problem, as in [13], where, however, the performance metric
was task completion probability within a deadline, not Aol.
The authors of that paper argue that the network load must be
carefully distributed among the available options of local and
MEC servers, and this is simple to implement with a stateless
online server selection policy that can be configured with near-
optimal performance. Coordinating multiple sources in a fully
stateful approach does not only bring limited improvement, but
can be dangerously prone to errors. Overall, this idea is not
peregrine, since in the end local processing has the main role
of avoiding clogging the more powerful but congestion-prone
MEC server, and we believe that this approach is conceptually
very similar to random early dropping (RED) [25].

We remark that [9] also considers a dichotomy between
local and remote processing for minimal Aol. However, there
are numerous differences with the present paper, such as
the analysis adopting a different methodology, but especially
the focus is on a stationary policy over an infinite horizon,

and a single source (thereby making either of remote and
local processing always preferable depending on the context).
Instead, the decision point of the present paper is in the timing
of the updates within the horizon, which makes sense only
when the latter is finite, the choice between local or remote
processing being left to a stateless randomized-alpha policy
as per [13]. Up to our knowledge we are the first to include
the impact of multiple sources without resorting to queueing
theory, thereby including, albeit in a simplified and tractable
way, the role of server congestion in a non-stationary context.

III. SYSTEM MODEL

We consider a discrete (slotted) time, where a source of
interest is sending status updates within a finite time horizon of
N slots. The value of Aol is also measured in slots and follows
the standard definition [5], [6] that Aol in slot n, denoted as
On, 1s the difference between the current slot index and that
of the last successful update, denoted as o,,. Formally,

Op=n—0p, where o,, = max(0, {tx }r) (D
tr<n

with the tis being the slots where an update of the information

content is performed.'

In principle, it is immediate to relax the assumption of a
finite N and allow for a stationary analysis over an infinite
horizon [14], replacing the dynamic programming approach
that we adopt in the following, e.g., with value iteration (VI)
[20]. Still, we believe that for actual real-time applications it
makes more sense to consider a finite horizon that represents
their task-oriented nature, as well as better justifies the con-
straint on the activity rate in terms of duty cycle [26].

Indeed, we assume that within the /N slots, the source is
allowed to perform only M updates (or status reporting). This
can be related to several reasons, such as energy consumption,
or even regulation constraints depending on the technology
(e.g., LoRa systems are required to keep their duty cycle below
1%) [27]. We also remark that the finiteness of the horizon
enforces such a constraint in a stronger way, since there cannot
be more than M updates in any case, whereas a stationary
policy over an infinite time-horizon actually may violate this
constraint locally, as long as the long-term average of the duty
cycle is below a certain limit.

Moreover, we expand the approach usually taken in the
Aol literature, where status reporting is an atomic activity, by
considering it as the result of a complex, possibly Al-aided,
processing. As such, it can be (i) subject to failures and (ii)
offloaded to a more powerful remote server. The latter element
is typical of MEC offloading, possibly involving a slice of a
network computing facility [24]. However, this means that the
actual processing rate of the remote MEC server depends on
how many sources use it. In the following, we will thereby
consider that U competing sources are possibly using the same
remote server. Moreover, these competing sources have the
same activity rate as the source of interest, i.e., they perform
M updates within IV slots, albeit they are fully asynchronous

IConventionally, we initialize Aol as g = 0.

service rater

local processing GPSH—
(rate a) P
) > ———
_ < u out of U
failure rate f competing sources
L loffloading (rate 1-a)

Fig. 1. Model of task offloading (dual local/remote processing).

with each other. This implies that we treat the status updates
that other sources possibly offload on the remote server arrive
there following independent stateless arrival processes.

When the source of interest schedules a status update, it
follows server selection as per Fig. 1, i.e., the update can
be performed as either a local task, which implies that it is
completed immediately within the same slot, yet it is subject
to failures with probability f > 0, or a remotely offloaded
task, which may require a longer time but is guaranteed to
succeed, since we assume that the offloaded request keeps
being forwarded/processed until success. Thus, we take the
termination of an offloaded task in the current slot as Bernoulli
distributed with probability p, implying that a status update
can be performed immediately in the slot it is requested with
probability p, whereas with probability 1 — p it takes one
more slot, and the check is repeated again in the following
slot. This causes the time elapsed on the remote server until
success to be quasi-geometrically distributed, as the value of
p can change between slots. Indeed, we take p as dependent
on the load experienced by the MEC server, such that, if w
sources are currently offloading tasks to it, then p = r/w,
with a constant r, representing the aggregate completion rate
of the updates currently offloaded, which is a characteristic
parameter of the remote server. When multiple updates are
offloaded, they share the processing capability of the MEC
server fairly and independently [2].

We remark that this quasi-geometric distribution is just
chosen for the sake of elegance in the analysis, but nothing
prevents a replacement with a more complex distribution,
such as considering a fixed delay to reach the remote server.
Moreover, to isolate the scheduling policy related to the source
of interest from the other competing sources, whose number
is denoted as u, 0 < u < U, we consider two separate cases:
(1) the source of interest is one of those currently offloaded on
the remote server, in which case w = u + 1; or (ii) the source
of interest is not on the remote server, thus w = wu.

The choice between local or remote processing for every
status update is according to the randomized-alpha policy
defined in [13], which implies it to be local or remote with
independent identically distributed (iid) probability « and
1 — a, respectively, with 0 < o < 1. We refer the interested
reader to that reference as supporting our choice, as it is
shown to achieve near-optimal results, often analogous to more

complex policies, as long as « is properly set. We actually
consider all sources, not just the one of interest, as following
this approach. Since they are asynchronous, this results in a
fraction (1—«) of their updates being offloaded. Finally, we
also remark that the randomized-alpha policy is introduced in
[13] as a fully stateless policy, whereas in our case the status
updates are processed based on a stateful scheduling, this is
why we denote our approach as being partially stateful.

IV. ANALYSIS

We aim at deriving a scheduling strategy of M status
updates for the source of interest over a finite time horizon
of N slots so as to minimize the average Aol. The problem is
inherently non-stationary, first of all because of the finiteness
of N makes the choice on whether to perform a status
update dependent on the current Aol, the number of remaining
opportunities, as well as the current time index n [19]. In
addition, a further aspect concerns the service capability of
the remote server, which is assumed to depend on its current
congestion level as per a generalized processor sharing [28].

Thus, the first element to derive is the evolution of the
number u of competing sources currently on the remote MEC
server. This follows either of two Markov chains, depending on
whether the source of interest is offloaded or not. According to
the assumptions made, the remote MEC server sees an arrival
rate of updating tasks equal to (1—a)(M+1)/N for each of
the U competing sources, and provides a service rate equal
to r/w for each of the sources currently being served [2]. We
remark that, despite the Markovian characteristics of arrivals
and services, multiple arrivals and/or services are possible in
the same time slot as its duration is not infinitesimal.

The transition between u competing sources in the current
time slot and v sources in the next one has probability p,
as reported in (2) on top of the next page. The equation is
promptly explained by considering, at first, the case of v — u
arrivals when v > u, and u— v departures when v > v. But, in
addition to those, there may be k& extra simultaneous arrivals
and departures (e.g., v —u + k arrivals and k departures when
v > u), with k being obviously lower bounded by 0 but upper
bounded by the number of other available sources not already
offloaded, which justifies the upper limit of the summations.

We remark that (2) contains the variable w that, depending
on whether the source of interest is currently offloaded or
not, is equal to either u+1 or wu, respectively. Thus, we get a
slightly different expression for the transition probability p,.,,
depending on this. These values can be collected into matrices
Py or Py, both being equal to {pyy }uy but considering the
source of interest as not offloaded or offloaded to the remote
server, respectively. These transition matrices correspond with
two different discrete time Markov chains, which alternate in
describing the evolution of the number of competing sources
depending on the current state of the source of interest, i.e.,
according to Py or P;.

Now, the optimal allocation of updating tasks over a finite
horizon can be performed with our online “partially stateful”
scheduling, where we remark that the policy itself is actually

state-aware, despite the underlying server selection being
stateless (i.e., following an independently drawn probability).
This can be derived through a dynamic programming ap-
proach [29] where we consider a state of the system x,, =
(Ony M, by, wy,), with the following components: current value
0, of Aol in slot n; number of remaining updates in slot n;
offloading state of the source of interest, denoted as b,,, taking
values as 0 if the source of interest is not currently offloaded,
and b, = i > 0 if the source of interest has been offloaded
since ¢ slots; and finally, the number u,, of competing sources
that are also presently offloaded on the remote MEC server.
The initialization values are 69 = 0,2 mg = M, by = 0,
whereas ug follows the steady-state probabilities of matrix Py.

Moreover, one can formalize a dynamic program where x,,
evolves according to a binary control action u(x,), where
i =1 and g = 0 correspond to scheduling an update or
not, respectively, and also following noise effects consisting
of local failures, the random length of the service time on the
remote MEC servers, as well as the transitions of the number
of competing sources u.

We have the following immediate condition for the evolu-
tion of m,,, in line with existing theoretical models [19], [30]:

Mpg1 = max(0, my, — fin) 3)

thereby implying that whenever a status update is scheduled,
it consumes one of the remaining update opportunities. Ad-
ditionally, we impose that when b > 0 it is not possible to
initiate another status update beyond the one that is presently
offloaded on the remote server; the only available action is to
wait for its processing to finish.?

Conversely, when b, = 0 and u,, = 0, d,,41 increases by
1 with respect to 6,,, b,,4+1 also remains 0, and u,41 evolves
according to Py, as in u,4; = v with probability p,, .. If
b, = 0 but pu, = 1, then an update is attempted (1m,41
decreases by 1) and with probability « a local processing of
the update is performed, otherwise the task is offloaded to the
remote server. In the former case, the update is successful with
probability 1— f, in which case d,,1 is reset to 0, otherwise it
is increased by 1 from 6,,. Again, the values of b, 1 and ;1
are unchanged and evolving through P, respectively. Instead,
if the update is offloaded, it can be immediately successful
with probability r/(u + 1), in which case the value of b1
remains 0 and 6,11 resets to 0, or it needs to wait for at least

2Since we focus on a discrete time, it makes sense to adopt the convention
that Aol starts counting from 0. However, this is a purely conventional choice.
3Preemption by newer updates may be possible; we choose not to imple-
ment it, as its effect for the considered low duty cycles would be negligible.

2

TABLE I

NOTATION AND DEFAULT VALUES OF THE PARAMETERS
Parameter Symbol default value
Time horizon (in slot) N 300
Number of update opportunities M 3
Remote server completion rate T 0.25
Local failure probability f 0.3
Local processing rate oY {0.1,0.3,0.5,0.6}
Total number of competing sources U 40

one more slot, hence d,,41 is increased by 1 and b,y is set
to 1. In this case, u,+1 evolves according to P;.

The latter condition, i.e., u,+1 evolving according to P,
also happens when b, > 0, in which case no update is
possible, i.e., i, = 0. In this case, either the processing is still
unresolved in the next slot, which happens with probability
1—7/(uy+ 1), and in this case both §,,+1 and b, +; grow by
1 over their values in slot n, or it is finished, which causes
bn11 to reset to 0 and 4,41 to be assigned the value of b, as
per the following equations:

. 0 with prob. —— (success)
= Un+1
i0,>0 bnp { b,+1 otherwise “)
b with prob. - T_H (success)
On+1 = { on+1 otherwise)

The condition in (5) accounts for the status update sent to the
remote server growing staler if, due to congestion, the update
is not immediately processed, thus the value of Aol does not
reset to O but rather to b,,.

All the aforementioned evolution rules prove that the system
state x,, has the Markov property, i.e., x,, only depends on
X,—1 and the control action undertaken, hence it is possible to
formalize a Markov decision process to minimize the expected
value of cost ¢,,(x,,) = J,, taken equal to Aol, whose optimal
control is f,, (X,). We can exploit Bellman’s optimality condi-
tion [29] since, if po(xo), p1(x1),. .. un—1(xn—1) describes
the optimal control over the whole horizon, then for any
intermediate n, 0 < n < N—1 and states x,, occurring with
positive probability, the control minimizing the residual cost
from n onwards is i, ..., ux—1. This implies that one can
start from the control action px_1 taken at the end of the
horizon and assign it as un_1(d,m,0,u) = 1 if m > 0 and
for every 0 <0 < N—1and 0 < u < U, whereas uy_1 =0
in every other case (i.e., either no updating opportunities are
left or the last one is currently offloaded, which requires to wait
for its termination). Applying backward induction to minimize
the expected cost g, yields the optimal control policy.

N=300, M=3, local failure rate f=0.3, remote service rate r=0.25

N=300, M=3, U=40 sources, remote service rate r=0.25

80
—¢— local processing ratio o = 0.1
60 70 |-| =% local processing ratio o = 0.3
— . — =3~ local processing ratio a = 0.5
é 55 B <CO 60 —p—local processing ratio o = 0.6
o AN)
& 5 = a0
< EL"EI-. -@-- U = 25 sources ‘S 50
% 4. - '= k= = U = 30 sources ‘%
- V- -8V —&— U = 35 sources ;
4 "."."x-x —B3-- U = 40 sources 4
—— U = 45 sources
35 i i i i T T] I I I | |

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
local processing probability o

Fig. 2. Optimal average Aol vs. local processing rate « for different numbers
of competing sources U, for M = 3 updates over N = 300 slots, remote
server success rate r = 0.25, local failure probability f = 0.3.

N=300, M=3, local failure rate f=0.3, remote service rate r=0.25

—¢— local processing ratio a = 0.1
55 || =% local processing ratio o = 0.3
=3~ local processing ratio a = 0.5

—
S —p— local processing ratio a = 0.6

< 50 P g

2 N S "
§ 45¥-—-% Homm *

7

20 25 30 35 40 45
number of sources U

Fig. 3. Optimal average Aol vs. number of competing sources U, for different
values of the local processing rate o, M = 3 updates over N = 300 slots,
remote server success rate 7 = 0.25, local failure probability f = 0.3.

V. NUMERICAL RESULTS

We show numerical evaluations of the optimal scheduling
policy derived in the previous section. Table I reports a list of
the system parameters, together with their default values that
are taken unless specified otherwise. We highlight that the
values chosen for M and N imply a duty cycle of (M+1)/N
(i.e., an update every C = N/(M+1) = 75 slots). This is also
a useful reference to quantify the resulting average Aol: In
an ideal scenario where status updates are both instantaneous
and always successful, unlike ours where those offloaded on
the remote MEC server and the local ones only possess either
characteristic, the average Aol would be (C'—1)/2 = 37 slots.

Fig. 2 shows the average Aol as a function of the local
processing rate «, for different values of the total number of
competing sources U. The figure highlights how the Aol in
the left-side part, corresponding to most of the updates being
offloaded, changes with U. Conversely, in the right part the
system performance is basically the same, so that whenever
a > 0.6 (only a minority of the updates are offloaded) the
curves are indistinguishable. This implies that the optimal
choice of « is never to leave full local processing of updates,
and the remote MEC server ought to be exploited, yet without
causing congestions. The optimal choice of « (i.e., the bottom
point of the curves) strongly depends on U, but we remark
that the curves are relatively shallow around the minimum.
This is actually a more general and intrinsic characteristic of
Aol, with important consequences on distributed systems from
the perspective of, e.g., game theory [31].

30
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
local failure rate f

Fig. 4. Optimal average Aol vs. local failure probability f, for different
values of local processing rate o, with M = 3 updates over N = 300 slots,
remote server success rate r = 0.25, U=40 competing sources.

N=300, M=3, U=40 sources, local failure rate f=0.3

remote service rate r = 0.167
i remote service rate r = 0.2
—EF- remote service rate r = 0.25
-/ remote service rate r = 0.333

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
local processing probability a

Fig. 5. Optimal average Aol vs. local processing rate o for different values
of remote server success rate r for M = 3 updates over N = 300 slots,
U = 40 competing sources, local failure probability f = 0.3.

Our partially stateful approach actually implies that we
regard the U competing sources as non-strategic, or at least
without any coordination or synchronization with the source
of interest. Although a full game theoretic analysis is out
of scope for the present paper, this result seems to suggest
that the anarchy of the resulting allocation has a limited
impact. Namely, it is reasonable to expect selfish sources only
interested in their own Aol minimization to overuse offloading
to the remote MEC server beyond the optimal point, a property
known as the tragedy of the commons [32]. Here, its impact
is expected not to be dramatic thanks to the robustness of Aol
to small local perturbations.

Fig. 3 reverses the plot of Fig. 2 by considering U as
the independent variable, and different choices of «. This
shows that the average Aol is always non-decreasing in the
number of competing sources, but when o > 0.5 the impact
is very limited, which makes sense as most of the updates are
processed locally, and congestion matters little. This confirms
that the optimal choice of « (i.e., the lowest curve) depends on
the competition on the remote server. However, high values of
o are never optimal as they do not leverage the MEC server.

Fig. 4 shows the average Aol versus the local failure
probability f, for different values of .. This serves to highlight
that the Aol increases with f, but the slope of the increase
depends on how large is the fraction « of updates that are
processed locally. As a result, the best value of « is once
again shown to depend on the server’s characteristics, with a
decreasing trend as f grows.

To explore the impact of the remote server, we can look
at Fig. 5, where the average Aol is plotted versus «, but
considering different values of r. As a side remark, even
though the model does not require this to be an integer
number, the choices for r imply that the MEC server completes
processing in an average of {3,4,5,6} slots. In a sense, this
figure is analogous to Fig. 2, with the difference that here
we are changing the service rate, whereas in that figure we
explored the potentially offered traffic. The consequence is
that this figure shows a higher performance variability (see
that the Aol spans over a 90% range in the worst cases), and
we interpret this as a consequence of the optimality of our
scheduler. Indeed, the optimal dynamic control policy allows
the source of interest to avoid scheduling a status update when
the remote server is congested. Thus, it is essentially better to
have more competing sources, as congestion can be contrasted
by scheduling updates in the instants of lighter load, than a
slower MEC server, which is unavoidable.

VI. CONCLUSIONS

We presented an analysis of the Aol-minimizing partially
stateful scheduling in a scenario of MEC computing [21],
exploring the role of computational offloading in the presence
of other sources, which can cause congestion at the remote
server’s side [13], [15]. We showed how the optimal schedul-
ing policy can be obtained through a dynamic programming
approach [20], [30], and important results can be found, which
paves the road for further extensions of the analysis.

One follow-up may involve a joint optimization of the
update instants as well as the value of o, with a layered iter-
ative approach. Advanced investigations can include multiple
strategic sources, studied under the lens of game theory. As
is known, the resulting Nash equilibrium does not necessarily
reflect into an efficient allocation [4], [10], [32], and it may
be challenging to introduce a form of distributed cooperation.
This appears as an interesting direction for future research.

REFERENCES

[1] B. Picano, R. Fantacci, and Z. Han, “Nonlinear dynamic chaos theory
framework for passenger demand forecasting in smart city,” IEEE Trans.
Veh. Tech., vol. 68, no. 9, pp. 8533-8545, 2019.

[2] F. Chiariotti, “Age of information analysis for a shared edge computing
server,” IEEE Trans. Commun., vol. 72, no. 12, pp. 7826-7841, 2024.

[3] G. Cisotto and S. Pupolin, “Evolution of ICT for the improvement of
quality of life,” IEEE Aerosp. Elec. Syst. Mag., vol. 33, no. 5-6, pp.
6-12, 2018.

[4] R. D. Yates and S. K. Kaul, “The age of information: Real-time status
updating by multiple sources,” IEEE Trans. Inf. Th., vol. 65, no. 3, pp.
1807-1827, 2019.

[5] S. Kaul, M. Gruteser, V. Rai, and J. Kenney, “Minimizing age of
information in vehicular networks,” in Proc. IEEE SECON, 2011, pp.
350-358.

[6] M. Costa, M. Codreanu, and A. Ephremides, “On the age of information
in status update systems with packet management,” I[EEE Trans. Inf. Th.,
vol. 62, no. 4, pp. 1897-1910, 2016.

[71 H.Li,J. Zhang, H. Zhao, Y. Ni, J. Xiong, and J. Wei, “Joint optimization
on trajectory, computation and communication resources in information
freshness sensitive MEC system,” IEEE Trans. Veh. Tech., vol. 73, no. 3,
pp. 41624177, 2024.

[8] Y. Wang, C. Yang, S. Lan, L. Zhu, and Y. Zhang, “End-edge-cloud
collaborative computing for deep learning: A comprehensive survey,”
IEEE Commun. Surveys Tuts., vol. 26, no. 4, pp. 2647-2683, 2024.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

A. Munari, T. De Cola, and L. Badia, “Local or edge/cloud processing
for data freshness,” in Proc. IEEE Global Communications Conference
(GLOBECOM), 2023, pp. 1-6.

B. Picano and E. Mingozzi, “Age-oriented resource allocation for IoT
computational intensive tasks in edge computing systems,” IEEE Internet
Things J., 2025, to appear.

F. Bahramisirat, M. A. Gregory, and S. Li, “Multi-access edge computing
resource slice allocation: A review,” IEEE Access, vol. 12, pp. 188 572—
188589, 2024.

J. Morgan, H. Orzen, and M. Sefton, “Network architecture and traffic
flows: Experiments on the Pigou—Knight-Downs and Braess paradoxes,”
Games Econ. Behav., vol. 66, no. 1, pp. 348-372, 2009.

V. Mancuso, P. Castagno, M. Sereno, and M. A. Marsan, “Stateful versus
stateless selection of edge or cloud servers under latency constraints,”
in Proc. IEEE WoWMoM, 2022, pp. 110-119.

I. Kadota, A. Sinha, E. Uysal-Biyikoglu, R. Singh, and E. Modiano,
“Scheduling policies for minimizing age of information in broadcast
wireless networks,” IEEE/ACM Trans. Netw., vol. 26, no. 6, pp. 2637—
2650, 2018.

M. Moltafet, M. Leinonen, and M. Codreanu, “On the age of information
in multi-source queueing models,” IEEE Trans. Commun., vol. 68, no. 8,
pp. 5003-5017, 2020.

S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in Proc. IEEE INFOCOM, 2012, pp. 2731-2735.

A. Kosta, N. Pappas, A. Ephremides, and V. Angelakis, “The age of
information in a discrete time queue: Stationary distribution and non-
linear age mean analysis,” IEEE J. Sel. Areas Commun., vol. 39, no. 5,
pp. 1352-1364, 2021.

O. T. Yavascan and E. Uysal, “Analysis of slotted ALOHA with an age
threshold,” IEEE J. Sel. Areas Commun., vol. 39, no. 5, pp. 1456-1470,
2021.

A. Munari and L. Badia, “The role of feedback in Aol optimization un-
der limited transmission opportunities,” in Proc. IEEE Global Commun.
Conf. (GLOBECOM), 2022, pp. 1972-1977.

E. Fountoulakis, T. Charalambous, A. Ephremides, and N. Pappas,
“Scheduling policies for Aol minimization with timely throughput
constraints,” IEEE Trans. Commun., vol. 71, no. 7, pp. 3905-3917, 2023.
P. Han, B. Liu, Y. Liu, and L. Guo, “Cell-less offloading of distributed
learning tasks in multi-access edge computing,” [EEE Trans. Mob.
Comp., vol. 23, no. 12, pp. 14377-14 395, 2024.

L. Qiu, Y. R. Yang, Y. Zhang, and S. Shenker, “On selfish routing in
Internet-like environments,” in Proc. ACM SIGCOMM, 2003, pp. 151—
162.

Y. Dong, H. Xiao, H. Hu, J. Zhang, Q. Chen, and J. Zhang, “Mean age
of information in partial offloading mobile edge computing networks,”
arXiv preprint arXiv:2409.16115, 2024.

Z. Tang, Z. Sun, N. Yang, and X. Zhou, “Age of information of multi-
user mobile edge computing systems,” IEEE Open J. Commun. Soc.,
vol. 4, pp. 1600-1614, 2023.

S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4, pp. 397—
413, 1993.

L. Badia and A. Munari, “Exogenous update scheduling in the industrial
Internet of things for minimal age of information,” IEEE Trans. Ind.
Informat., vol. 21, no. 2, pp. 1210-1219, 2024.

D. Kim, G. Hwang, O. Jo, and K. Shin, “Q-learning based medium
access technology for minimizing Aol in LoRa wireless relay networks,”
IEEE Access, vol. 12, pp. 183024-183 037, 2024.

A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: The multiple
node case,” IEEE/ACM Trans. Netw., vol. 2, no. 2, pp. 137-150, 1994.
D. Bertsekas, Dynamic programming and optimal control: Volume I.
Athena scientific, 2012.

A. Javani, M. Zorgui, and Z. Wang, “On the age of information in erasure
channels with feedback,” in Proc. IEEE International Conference on
Communications (ICC), 2020, pp. 1-6.

V. Mancuso, P. Castagno, L. Badia, M. Sereno, and M. Ajmone Marsan,
“Optimal allocation of tasks to networked computing facilities,” in Proc.
Int. Conf. An. Stoch. Model. Techn. Appl. (ASMTA), 2024, pp. 33-50.
L. Badia and A. Munari, “A game theoretic approach to age of infor-
mation in modern random access systems,” in Proc. IEEE Globecom
Workshops (GC Wkshps), 2021, pp. 1-6.

