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Probing molecular photophysics in a matter-wave interferometer
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We show that matter-wave diffraction off a single standing laser wave can be used as an accurate measurement
scheme for photophysical molecular parameters. These include state-dependent optical polarizabilities and
photon-absorption cross sections, the relaxation rates for fluorescence, internal conversion, and intersystem
crossing, as well as ionization or cleavage probabilities. We discuss how the different photophysical processes
manifest as features of the interference pattern, and we determine the accuracy of molecular parameters estimated
from a realistic measurement with finite particle numbers. The analysis is based on an analytic calculation in
Wigner representation, which accounts for the laser-induced coherent and incoherent dynamics, for the finite
longitudinal and transverse coherence in the matter-wave beam, the gravitational and Coriolis acceleration, and
an imperfect standing laser wave.
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I. INTRODUCTION

Light can induce various electromagnetic processes in
complex molecules. Apart from getting polarized, a molecule
can absorb photons that change its electronic state. The ab-
sorbed energy may be distributed to vibrational states by a
radiationless transition that conserves (internal conversion) or
changes (intersystem crossing) the total spin. Alternatively,
the molecule may relax to its electronic ground state by emit-
ting fluorescence light. If the photon energy is high enough,
the molecule might even ionize or cleave. Which of these pro-
cesses may occur is quantified by photophysical parameters
such as the polarizability, the absorption cross section, and
different quantum yields.

Photophysical parameters of isolated molecules are often
inferred from bulk measurements of the permittivity of solids
and liquids, provided the effect of the molecular environment
can be corrected for [1]. However, to validate theoretical
calculations and to determine gas phase properties, a direct
measurement of single molecules flying in vacuum seems
more advantageous.

In vacuum, not only are the internal molecular dynamics
accessible, but also the effect of the light on the center of
mass of the isolated particle can be studied. Notably, every
photon absorption is accompanied by a kick of the molecule
momentum, and a quantum-mechanical phase gets imprinted
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onto the center-of-mass wave function in proportion to the
polarizability. In modern matter-wave interferometers [2–4],
such effects are exploited to implement diffraction gratings
by means of standing laser waves: the phase imprinted by the
periodic optical dipole potential of the standing wave gives
rise to a superposition of grating momentum kicks that diffract
the molecular matter wave, while every photon absorption
further splits the wave packet by half of a grating momen-
tum. In addition, ionization or cleavage at the antinodes of
the standing wave can cause the depletion of the molecular
beam, thereby implementing an effective absorption grating.
The fringe pattern at the detection screen crucially depends
on the rates and quantum yields of the various photophysical
processes, rendering it a sensitive probe for the latter.

Interferometric measurement schemes expand established
techniques for isolated molecules, ranging from beam de-
flection experiments [5], to time-of-flight measurements with
particle fountains in static electric fields [6], to the observa-
tion of spatial patterns due to the classical interaction with a
standing laser wave [7]. Following early applications of atom
interferometry [8], near-field interference setups with three
gratings were used more recently to measure molecular prop-
erties such as static [9,10] or optical polarizabilities [11,12]
and absorption cross sections [13].

In the present article, we assess how accurately molecular
parameters can be measured in a far-field interferometer with
a single light grating. Our analysis is motivated in part by
recent experiments at the University of Vienna that observed
various photophysical signatures of different molecules in
such a setup [14]. The description unifies models for single-
photon ionization [15], multiphoton absorption [16–18], with
descriptions of internal conversion and intersystem crossing,
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FIG. 1. (a) In the interferometric setup considered in this article, the molecules are emitted from the source on the left, traverse several
collimating elements, interact with a standing laser wave, and are finally detected at a screen on the right. (b) Molecular photophysical
parameters such as the absorption cross section determine the shape of the interference pattern (bottom). They can thus be estimated from
experimental data by using a formula for the expected 2D pattern. The accuracy of the parameter estimation depends on the number of
molecules on the screen (top). This is confirmed by simulating the detection outcomes for different particle numbers and fitting them to
the expected fringe pattern (crosses), which verifies our analytical result for the accuracy (dashed lines). Our calculations and simulations
demonstrate that well-characterized state-of-the-art matter-wave interferometers can serve to measure molecular properties in vacuum with
high accuracy. Specifically, the above curve indicates that 106 particles would suffice to determine the absorption cross section with an accuracy
of about 0.3%. The calculation and the iterative fitting procedure are described in Sec. VI B. The simulation parameters are motivated by a
real-world experiment, as given in Appendix D.

and fluorescence [19]. We use quantum master equations to
describe how the interaction with the laser field entangles
the internal molecular state with the center-of-mass mo-
tion. The matter-wave interference is formulated by means
of the Wigner function, which allows us to account for
particle sources with finite extension and velocity spread,
all collimation slits, the acceleration due to gravity and the
Coriolis force, and a screen not necessarily located in the far
field.

II. INTERFEROMETRIC MEASUREMENT
OF PHOTOPHYSICAL PARAMETERS

The basic configuration of the molecule diffraction ex-
periment considered in this work is depicted in Fig. 1(a). It
consists of a continuous particle source on the left, several
collimation and coherence slits, a diffraction grating formed
by a standing laser wave, and a spatially resolving two-
dimensional detector on the right. The slits in the horizontal
direction (y-slits) serve as a velocity selector; they restrict the
free-flight parabolas such that slower particles hit the screen
closer to the bottom than faster particles. The slits in the
vertical direction (x-slits), which are much narrower than the
y-slits, serve to prepare the coherence in the molecular beam;
they restrict the x-position of the particles such that several
antinodes of the standing wave are illuminated coherently. An
interference pattern is then formed at the position of the detec-
tion screen whose fringe spacing is greater at the bottom than
at the top due to the larger de Broglie wavelength of the slower
particles; see Fig. 1(b). The geometry of the interferometer is
explained in detail in Sec. III.

The interaction of the molecules with the laser grating
involves a number of photophysical processes, as depicted in
Fig. 2 and discussed in Sec. IV. In particular, the absorption
of a photon is always accompanied by an excitation (and
subsequent deexcitation) of the electronic state. We note that
interference is still possible after such a change of internal
state, even though only those paths interfere that end up in
the same internal state. If the photon absorption leads to ion-
ization or the cleavage of a group of atoms, the molecule is
effectively removed from the beam. Since photon absorption
is more likely in an antinode than in a node, this modulates the
density in the molecular beam, much like a material grating,
and thus contributes to interference at the screen. It follows
that all mentioned photophysical processes are encoded in the
precise shape of the expected diffraction pattern. In Sec. V we
provide a formula for the two-dimensional (2D) pattern in the
considered setup, see Eq. (14), as derived in the Appendixes,
and we discuss how the molecular parameters, the laser power,
and the slit widths affect the fringe pattern.

The formula for the diffraction pattern now enables es-
timating molecular parameters from experimental data. The
accuracy of such a parameter estimation depends on the num-
ber of fit parameters and the number Z of particles detected
on the screen. This is demonstrated in Fig. 1(b) for a single fit
parameter, the absorption cross section. We simulate measure-
ment outcomes for different particle numbers and compare
the estimated cross sections with both the actual value and
with our analytical expression for the expected variance of
the estimator. Our calculations and Fig. 1(b) demonstrate
that well-characterized state-of-the-art matter-wave interfer-
ometers can serve to measure molecular properties with high
accuracy. In Sec. VI we discuss the accuracy of fitting several
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FIG. 2. Simplified level scheme used to calculate the Talbot coef-
ficients. It involves a singlet ground state |G〉, an excited singlet state
|S∗〉, and a triplet state |T 〉. If a photon is absorbed in the ground
state, the molecule is excited to the singlet state. Due to the short
lifetime of the singlet, the molecule relaxes immediately through
either internal conversion (black), fluorescence (blue), or intersystem
crossing (green) with the indicated rates. In addition, the molecule
may be ionized or cleaved (red) and thus be removed from the beam,
occupying the depletion states |DG〉 and |DT 〉. Note that the lines
only indicate the electronic states. After absorbing a photon and
relaxing into its electronic ground state, the molecule ends up in a
different vibrational state. However, accounting for this change of
the vibrational state would yield the same Talbot coefficients as the
simplified scheme. Note that the polarizabilities and absorption cross
sections are assumed here to be independent of the vibrational states.

molecular parameters simultaneously by two different algo-
rithms. It shows that internal processes of complex molecules
can be studied in vacuum.

III. INTERFEROMETER GEOMETRY

Let us now specify the interferometric setup in more detail;
see Fig. 1(a). The particle source emits a continuous stream of
molecules of mass m. They enter the vacuum chamber through
a pinhole of width ds centered at (x0s, y0s). We assume position
and momentum to be uncorrelated at the pinhole, so that the
phase-space distribution reads

ws(x, y, p) =μ(p)

d2
s

�

(
ds

2
− |x − x0s|

)
�

(
ds

2
− |y − y0s|

)
.

(1)

Here, �(·) denotes the Heaviside step function. The actual
form of the pinhole is irrelevant because it is masked by
the thin x-slits in the beam path; only the extension of the
source in the y-direction has an effect on the diffraction pat-
tern. The function μ(p) = μx(px )μy(py)μz(pz ) denotes the
momentum distribution of the molecules leaving the source.
In the simulations below, it will be assumed to be charac-
terized by a source temperature T and a momentum offset
p0 = p0,zez to account for a supersonic expansion [20,21],
μ(p) ∝ exp[−(p − p0)2/2mkBT ].

Gravity and the Coriolis force cause an acceleration
ac,xex + (g + ac,y)ey with ac,x � −2ω · ey pz/m and ac,y �
2ω · ex pz/m. The angular frequency vector ω describes the
rotation of Earth. Here we take the dominant momentum
component of the particle beam to be pz and to be unaffected
by gravity, the Coriolis force, the slits, and the grating.

The x-slits, with centers x0i and widths xci, are placed at
distances L1 and L1 + L2 downstream. They serve to collimate
the particle beam in the x-direction to prepare its transverse
coherence. Specifically, they ensure that the px-momentum
spread of all molecules passing through both slits is restricted
geometrically to a value below the grating momentum. The
diffraction at the second x-slit is accounted for in our
calculation.

Similarly, two y-slits serve to collimate the beam in the
vertical direction; see Fig. 1(a). For infinitely thin slit widths
(and in the absence of the Coriolis force), they would act as
a perfect velocity selector due to gravity, where every height
at the screen would correspond to a distinct pz-momentum.
In practice, due to the small effect of the Coriolis force and
the finite size of the source, a single y-slit is already sufficient
to correlate the particle velocity and the height at the screen
such that the longitudinal coherence suffices to produce well-
separated diffraction peaks. Our calculation accounts for two
finite-sized slits to keep the setup general.

The diffraction occurs at a standing laser wave, oriented
in the x-direction, with wavelength λL and grating constant
d = λL/2. It is placed at a distance L3 behind the second
x-slit. The laser wave can interact with the molecules through
various coherent and incoherent processes, which are fully
characterized by the so-called Talbot coefficients Bn(ξ, y) of
the grating, as specified in the next section.

IV. MOLECULE-GRATING INTERACTION

The optical grating is generated by pointing a laser
beam with electric field Re[Ẽ(r)e−iωLt ] towards a retrore-
flecting mirror; see Fig. 1. The incident running wave has
the complex amplitude Ẽ(r) = E0e0 f (y, z)e−ikLx, with posi-
tion vector r = xex + yey + zez, Gaussian envelope f (y, z) =
exp[−(y − y0g)2/w2

y − z2/w2
z ], wave vector kL = π/d , polar-

ization direction e0 ⊥ ex, and power PL = E2
0 πε0cwywz/4.

The incident and retroreflected waves interfere, Ẽ(r) =
2E0e0 f (y, z)g(x), with

g(x) = 1
2 (η eikLx + e−ikLx ). (2)

Perfect reflection at the mirror corresponds to η = 1. Realistic
ultraviolet mirrors have a finite reflectivity η < 1.

A. Photophysical processes

Next, we discuss the various effects occurring when a
complex molecule interacts with the laser grating.

1. Phase grating

A molecule characterized by a polarizability α at the laser
frequency is subject to the (time-averaged) optical dipole
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potential

V (x, y, z) = −1

4
αr|Ẽ(r)|2

= − 4PLαr

πε0cwywz
f 2(y, z)|g(x)|2, (3)

where αr = Re(α). In the eikonal approximation, the particle
trajectories in the laser field are approximately free. After
passage through the grating, the molecule has acquired the
eikonal phase

φ(x, y, pz ) = −1

h̄

∫ ∞

−∞
dt V

(
x, y,

pzt

m

)
= φ0(y, pz )|g(x)|2

(4)

with

φ0(y, pz ) =
√

8

π

PLαrm

h̄ε0cwy pz
exp

[
−2

(y − y0g)2

w2
y

]
. (5)

The x-dependent phase leaves the spatial distribution of the
particles invariant but it modifies their momentum px. The
evolution from the grating to the screen transforms the im-
printed momentum state into a spatial diffraction pattern.

The polarizability may depend on the electronic state of the
molecule. We denote the polarizability in the singlet ground
state by αr and in the triplet state by αr,T; see the level scheme
in Fig. 2. The potential VT and the phase φ0,T in the triplet state
are defined in analogy to Eqs. (3) and (5), respectively.

2. Photon absorption

The mean rate γ at which photons are absorbed by a
molecule is quantified by the absorption cross section σ ,

γ (x, y, z) = σ

h̄ωL

ε0c

2
|Ẽ(r)|2

= 8PLσ

π h̄ωLwywz
f 2(y, z)|g(x)|2. (6)

In the eikonal approximation, the mean number of photons
that have been absorbed after the molecule traversed the grat-
ing reads

n(x, y, pz ) =
∫ ∞

−∞
dt γ

(
x, y,

pzt

m

)
= n0(y, pz )|g(x)|2, (7)

with

n0(y, pz ) = 8√
2π

PLσm

h̄ωLwy pz
exp

[
−2

(y − y0g)2

w2
y

]
. (8)

In the quantum-mechanical calculation, the function g(x),
which describes the position dependence of the absorption
rate, is promoted to an operator g(x); see Appendix B 1. Ap-
plied to the particle state, it effects a superposition of two
opposite momentum kicks ±h̄kL = ±h̄π/d , as a result of
photon absorption.

3. Depletion by photocleavage or ionization

Given that a photon has been absorbed, the molecule will
leave the beam with probability PD ∈ [0, 1] due to cleavage

or ionization. We assume that PD is independent of the elec-
tronic level. However, the rates γ PD and γTPD of depletion
events can differ for the different levels. In Fig. 2, depletion is
indicated by the red arrows.

The molecule will stay in the beam with probability 1 −
PD. If the molecule is in its ground state, the photon energy
can be redistributed by internal conversion (IC), intersystem
crossing (ISC), or fluorescence (F) with the respective yields
φi ∈ [0, 1],

φIC + φISC + φF = 1. (9)

4. Internal conversion

The absorbed photon excites the molecule from the ground
state to an excited singlet state. We assume the singlet lifetime
to be much shorter than the grating interaction time, as is the
case for most molecules [19]. The radiationless transition back
to the electronic ground state by exciting vibrational states can
thus be taken to be immediate. This process is indicated by the
black arrows.

5. Intersystem crossing

The molecule may also perform a rapid radiationless tran-
sition from the ground state via the excited singlet state to the
triplet state by flipping a spin. This process is displayed by the
green arrow. We neglect the relaxation from the triplet to the
ground state through phosphorescence or intersystem crossing
because it typically occurs on a much longer timescale than
the competing processes. If the molecule absorbs a photon in
the triplet state, it relaxes through internal conversion.

6. Fluorescence

Another way of relaxing from the excited singlet state
to the ground state is by emitting a fluorescence photon,
indicated by the blue arrow in Fig. 2. We assume that the
distribution of fluorescence photons with momenta h̄k is
isotropic. It is characterized by the spectrum ν(k), where
k = |k| and

∫
d3k ν(k)/4πk2 = 1. Its characteristic function

ϕ(x) =
∫

d3k

4πk2
e−ik·exxν(k) (10)

is used below.

B. Talbot coefficients

A master equation that accounts for all the mentioned
processes, as well as the finite reflectivity of the grating mir-
ror, is provided in Appendix B. We solve the dynamics for
a molecule initially in the ground state and traversing the
Gaussian envelope of the laser grating. The final state after
the passage determines the Talbot coefficients

Bn(ξ, y) = 1

d

∫ d/2

−d/2
dx e−2π inx/d F

(
x − ξ

d

2
, x + ξ

d

2

)
(11)

through the transmission function

F (x, x′) = φISCN (eDT+NT − eD+[φIC+φFϕ(x−x′ )]N )

DT + NT − D − [φIC + φFϕ(x − x′)]N

+ eD+[φIC+φFϕ(x−x′ )]N . (12)
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Here, we defined

D = i(|g(x)|2 − |g(x′)|2)φ0(y, pz ) − 1
2 (|g(x)|2 + |g(x′)|2)n0(y, pz ), (13a)

DT = i(|g(x)|2 − |g(x′)|2)φ0T(y, pz ) − 1
2 (|g(x)|2 + |g(x′)|2)n0T (y, pz ), (13b)

N = (1 − PD)g∗(x′)g(x)n0(y, pz ), (13c)

NT = (1 − PD)g∗(x′)g(x)n0T(y, pz ). (13d)

Note that the Fourier transform in Eq. (11) can be evaluated analytically if αr,T = αr, σT = σ , and φF = 0; see Appendix B 3.

V. THE INTERFERENCE PATTERN

The current density at the screen follows from propagating the initial Wigner function (1) through the entire interferometer,
see Appendix C,

j(x, y) ∝
∫ ∞

−∞
dk eikx

∞∑
n=−∞

∫ ∞

0
d pz p2

zμz(pz )χ0

[
(L3 + L4)

h̄k

pz
− L3

pz

2π h̄

d
n ,−h̄k + 2π h̄

d
n

]

× exp

{
i

h̄

[
−1

2
ac,xm2 (L3 + L4)2

p2
z

h̄k + 1

2
ac,xm2 L2

3

p2
z

2π h̄

d
n

]}

×
∫ ∞

−∞
dỹ h

[
y ,

pz

L4

(
y − ỹ + 1

2
(ac,y + g)

L2
4m2

p2
z

)
, pz

]
Bn

(
L4h̄k

d pz
, ỹ

)
. (14)

Here, collimation and diffraction of the particle beam at the x-slits is accounted for by the function

χ0(s, q) = xc1 pz

L2
exp

[
i

h̄

spz

L2

(
x01 − x02 − 1

2
ac,xm2 L2

2

p2
z

)]
exp

(
i

h̄
x02q

)

× sinc

[(
q − s

L2
pz

)
xc2 − |s|

2h̄

]
sinc

(
sxc1 pz

2h̄L2

)
(xc2 − |s|) �(xc2 − |s|), (15)

where sinc(x) = sin(x)/x. The finite size of the source and the velocity selection due to the two y-slits enter Eq. (14) through

h(y, py, pz ) = μy

(
py − m2(g + ac,y)L

pz

)
�

(
ds

2
−
∣∣∣∣y − y0s − L

py

pz
+ (g + ac,y)L2m2

2p2
z

∣∣∣∣
)

× �

(
yc2

2
−
∣∣∣∣y − y02 − L′

4
py

pz
+ (g + ac,y)L′2

4 m2

2p2
z

∣∣∣∣
)

× �

(
yc1

2
−
∣∣∣∣y − y01 − (L′

2 + L3 + L4)
py

pz
+ (ac,y + g)(L′

2 + L3 + L4)2m2

2pz

∣∣∣∣
)

. (16)

Note that Eq. (14) is independent of the distribution μx be-
cause the narrow x-collimation restricts px to a small interval
of equiprobable momenta.

In Fig. 3, we display the (time-integrated) current density
(14) as a function of x at a fixed height on the screen. The
figure illustrates the dependence of the interference pattern on
different geometrical, molecular, and grating parameters, as
discussed in the subsequent sections. The red, blue, and yel-
low curves serve as references that connect the panels (a)–(h).
We provide plots of the entire 2D screen for these references
in Fig. 4. The particle density on the screen is normalized to a
fixed total number of particles.

A. Dependence on the polarizability

In Fig. 3(a), we vary the polarizability from αr = 0.1α0

to 10α0. For small polarizabilities (gray line) the interaction
with the grating is effectively switched off. In this case, the

slit array determines the particle distribution on the screen.
Here, we set σ = 10−3σ0 to suppress absorption.

If the polarizability is large enough, the particle is
diffracted by the periodic grating potential, giving rise to
diffraction peaks (red line). We calculate the peak positions by
exploiting that the first y-slit is wide enough to be negligible. If
the size of yc2 and the source are sufficiently small, the height
y of a molecule at the screen is related to its momentum pz

through

pz(y) = mLeff

(
ω · ex −

√
g

Leff
+ (ω · ex )2

)
, (17)

where the y-dependence enters through the effective length

Leff = 1

2

LL′
4(L − L′

4)

L(y − y02) + L′
4(y0s − y)

. (18)

The ratio of the forward and the grating momentum
determines the distances between the diffraction peaks
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 3. Diffraction patterns illustrating the effect of (a) the polarizability, (b) the polarizability for tripled x-slit widths, (c) the polarizability
for doubled slit and source widths in the y-direction, (d) the absorption cross section, (e) the mirror reflectivity, (f) the probability for depletion,
(g) the laser power, and (h) fluorescence. We evaluate the interference pattern (14) as a function of the horizontal position x at a fixed height
y = −270.30 µm on the screen. The 2D patterns corresponding to the red, blue, and yellow curves are presented in Fig. 4. The parameters used
in the plots are given in Appendix D, unless stated otherwise; they are motivated by a real-world experiment [14].

(a) (b) (c)

FIG. 4. Molecular interference pattern (14) for (a) a phase grating, (b) a depletion grating, and (c) an absorption grating. The red, yellow,
and blue curves in Fig. 3 are obtained by evaluating the densities at the height indicated by the solid gray lines. The dotted lines indicate
the expected positions of the diffraction orders for perfect velocity selection; see Sec. V A. Here, the phase grating and the depletion grating
give rise to similar density distributions (red and yellow). The distribution of the phase grating (red) stands out through a suppressed zeroth
diffraction order, at y ≈ −150 µm. The pattern of the absorption grating (blue) clearly exhibits absorption peaks between the diffraction orders,
in contrast to the other two cases. The screen consists of 550 × 1003 pixels of edge length dpx = 0.33 µm. The color indicates the number of
molecules per pixel; the total number is 3 × 105.
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�x(y) = 2π h̄L4/d pz(y). The x-position of the spot where
the classical trajectory impinges the screen follows from the
arrangement of the two x-slits,

xclass(y) = x01 + L2 + L3 + L4

L2
(x02 − x01)

− mω · ey

pz(y)
(L3 + L4)(L2 + L3 + L4). (19)

The functions xclass(y) and �x(y) together define the positions
of the dotted lines, which match with the peak positions.

One signature of the phase grating is that low diffraction
orders can get suppressed for sufficiently large imprinted
phases. This is demonstrated by the black line in Fig. 3(a),
where we increased the polarizability by another factor of 10.

B. Effect of greater x-slit widths

In Fig. 3(b), we use the parameters of Fig. 3(a), except
for tripled values of the coherence slit widths xc1 and xc2.
In the absence of the phase grating effect (light gray line),
the diffraction pattern is clearly broadened due to the wider
slits. For larger polarizabilities (dark gray and black line),
the diffraction pattern is smeared out, rendering diffraction
signatures barely observable.

C. Effect of a greater y-slit and source

In Fig. 3(c), we use the parameters of Fig. 3(a), except for
doubled values of yc2 and ds. The increased size of the source
and the velocity selection slit imply that the height y on the
screen does not unambiguously determine the z-momentum
through Eq. (17). As a consequence, higher diffraction orders
smear out and the peak positions do not perfectly coincide
with the dotted lines.

D. Dependence on the absorption cross section

In Fig. 3(d), we vary the absorption cross section from
σ = 10−3σ0 to σ = σ0. For small cross sections, the pattern of
a pure phase grating is reproduced (red line). The diffraction
peaks are located at the expected positions (dotted lines);
compare Fig. 3(a). If the cross section is increased, additional
peaks appear right between the existing diffraction peaks; see
the gray and blue line. This position results from the fact
that only half of the grating momentum is transferred to the
molecule during the absorption of a photon.

E. Effect of a finite mirror reflectivity

In Fig. 3(e), the reflectivity of the mirror is varied. For
η = 1, the incident and reflected beam form a standing laser
wave. The associated periodic potential landscape gives rise to
the blue symmetric diffraction pattern. For η = 0, the grating
is given by a running wave, g(x) = e−ikLx/2. In this case,
there is no periodic potential that diffracts the particle beam.
Instead, photon absorption from the running wave produces
an asymmetric distribution (gray line), which may serve to
measure the photon absorption cross section independently
from the polarizability.

A simple expression for the Talbot coefficients is ob-
tained for η = 0 by neglecting fluorescence (φF = 0) and

depletion (PD = 0), and assuming equal polarizabilities and
absorption cross sections in the ground and triplet state; see
Appendix B 4. This yields

Bm(ξ, y) = δm,0 exp
[

1
4 n0(y, pz )(eiπξ − 1)

]
. (20)

The pattern (14) contains a k-integral that can be decomposed
into a convolution of two Fourier transforms. One of them
determines the form of the individual peaks of the pattern
through the function χ0 and the position shift due to the
Coriolis force through the exponential function. The other
Fourier transform defines the relative positions and weights
of the peaks,∫ ∞

−∞
dk eikxB0

(
L4h̄k

d pz
, ỹ

)
= e−n

∫ ∞

−∞
dk eikx exp(neikx0 )

= 2π

∞∑
�=0

n�

�!
e−nδ(x + �x0). (21)

Here, we inserted Eq. (20) and we identified the expected
number n = n0(ỹ, pz )/4 of photons that are absorbed during
the passage through the grating; see Eq. (7) with |g(x)|2 =
1/4. The infinite sum follows from expanding exp(neikx0 )
into a Taylor series. The distance x0 = πL4h̄/d pz between
the peaks results from propagating the momentum kick π h̄/d
due to the absorption of a photon over the time L4m/pz that
a molecule needs to travel from the grating to the screen.
Since the absorption of several photons occurs independently
and at the rate (6), they obey a Poisson distribution character-
ized by the mean number n of absorbed photons.

The Poisson distribution (21) is displayed by the red stars
in Fig. 3(e). We used that for a thin y-slit and a small source,
the y-position at the screen provides information about both
pz and the height ỹ, at which the particle traverses the grating.
The deviations between the red stars and the maxima of the
exact pattern (gray line) are caused by the large size of the
source and slit. For smaller sizes, the stars and the lines match.

F. Impact of depletion

In Fig. 3(f), the probability for depletion is varied. If PD =
0, the absorbed photons cannot cleave or ionize the molecule.
In this case, the blue line of Figs. 3(d) and 3(e) is reproduced.
For P > 0, a fraction of the molecules that absorbed a photon
are cleaved or ionized. Since the affected molecules cannot
reach the screen, the absorption peaks are pronounced less
(gray line). For PD = 1, every molecule that absorbs a photon
is removed from the beam, and the absorption peaks vanish
completely (yellow line). This illustrates that the lack of ab-
sorption peaks is no proof for weak absorption.

G. Effect of the laser power on depletion

In Fig. 3(g), we vary the laser power for the case of efficient
depletion, PD = 1. For low laser power, the expected number
of absorbed photons approaches zero. The grating becomes
transparent and no diffraction occurs (gray line). For higher
laser power, the grating acts like a material grating: Only
molecules traversing the grating near the nodes can reach the
screen. Consequently, there are only peaks at positions that
correspond to the full grating momentum (yellow line). For
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increasing laser power, the absorption rate increases and the
effective slit width decreases, implying that higher diffraction
orders get populated (black line).

H. Effect of fluorescence

In Fig. 3(h), we account for fluorescence (φF = 1) and
vary the distribution of the fluorescence photons assuming a
spectrum of the form

ν(k) ∝ exp

[
− (k − kF0)2

2σ 2
F

]
(22)

with σF = 0.05kF0. For kF0 � kL (black line), the emission of
the fluorescence photon leads to a negligible momentum kick.
The molecular dynamics is then similar to internal conversion,
and the pattern coincides with the blue line in the other panels.
For photon momenta h̄kF0 comparable to the half grating mo-
mentum, the absorption peaks smear out (light and dark gray
lines) because of the additional, isotropic momentum kick.

VI. ESTIMATING MOLECULAR PARAMETERS

We are now in a position to analyze how well molecular
parameters can be extracted from a realistic measurement,
where only a finite number of particles is detected and the
associated shot noise limits the accuracy of the parameter
estimation.

We take the detector to consist of K pixels, each with
area d2

px. They record a signal Sk proportional to the number
nk of particles detected in the kth pixel, located at position
(x, y), during the measurement. The pixels are much smaller
than the features of the diffraction pattern (14), so that pk =
d2

pxρ(x, y), with the probability density ρ(x, y) ∝ j(x, y) nor-
malized to the screen area Asc,∫

Asc

dxdy ρ(x, y) = 1. (23)

In total, N independent detections are recorded at the screen,
so that the random variables Ŝk = S0n̂k are binomially dis-
tributed,

n̂k ∼
(

N

nk

)
pnk

k (1 − pk )N−nk . (24)

The mean signals are thus given by

S̄k = 〈Ŝk〉 = S0N pk (25a)

and the covariances by

〈(Ŝk − S̄k )(Ŝ� − S̄�)〉 = σ 2
k δk�, (25b)

where σ 2
k = S2

0N pk (1 − pk ).
In the following, we use (25) to calculate the estimation

accuracy of molecular parameters for two different fitting
procedures.

A. Least-squares fit

A standard least-squares fit returns the set of fit parameters
α = (α1, . . . , αM ) that minimizes the squared deviation of the

measured values Sk from the model function S̄k (α),

α = argmin
α′

K∑
k=1

[Sk − S̄k (α′)]2. (26)

To determine the statistics of the fit parameter, as described
by the random variable α̂, we note that the gradient ∂/∂α =
(∂/∂α1, . . . , ∂/∂αM ) vanishes for a given realization α,

K∑
k=1

[Sk − S̄k (α)]
∂

∂α
S̄k (α) = 0. (27)

Assuming the measured intensities Sk are sufficiently close to
the mean intensity S̄k (α0), one can solve (27) approximately
for α. We expand the model function around the actual values
α0,

S̄k (α) � S̄k (α0) + (α − α0) · ∂

∂α0
S̄k (α0), (28)

and we insert the linearization into (27) to find that the statis-
tics of the fitting parameters are described by

α̂ = α0 + J−1
1 �̂1. (29)

It depends on Ŝk through the tuple

�̂1 = 1

N2S2
0

K∑
k=1

[Ŝk − S̄k (α0)]
∂

∂α0
S̄k (α0), (30a)

while the symmetric matrix

J1 = 1

N2S2
0

K∑
k=1

[
∂

∂α0
S̄k (α0)

]
⊗
[

∂

∂α0
S̄k (α0)

]
(30b)

is independent of the measurement.
The expectation values and covariances of the fit parame-

ters follow from (29) and (25),

〈α̂〉 = α0, (31a)

〈(α̂ − α0) ⊗ (α̂ − α0)〉 = 1

N
J−1

1 MJ−1
1 . (31b)

Here we defined the matrix

M =
K∑

k=1

σ 2
k (α0)

N3S4
0d4

px

[
∂

∂α0
S̄k (α0)

]
⊗
[

∂

∂α0
S̄k (α0)

]
. (32)

Expressing σk and S̄k through the probability density ρ(x, y)
and performing the limit

∑K
k=1 d2

px → ∫
Asc

dxdy yields

J1 = d2
px

∫
Asc

dxdy

[
∂

∂α0
ρ(x, y)

]
⊗
[

∂

∂α0
ρ(x, y)

]
(33a)

and

M = d4
px

∫
Asc

dxdy ρ(x, y)
[
1 − d2

pxρ(x, y)
]

×
[

∂

∂α0
ρ(x, y)

]
⊗
[

∂

∂α0
ρ(x, y)

]
. (33b)

Note that ρ(x, y) still depends on the actual values α0.
However, if the fit parameters are approximately known, the
covariance (31b) serves to quantify the accuracy that can be
achieved in an interferometric measurement. In particular, the
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standard deviation of all the estimated parameters scales as
1/

√
N . The matrix J−1

1 MJ−1
1 depends on the specific form

of the diffraction pattern and, thus, on all other experimental
parameters. The analytical expressions for J1 and M can be
used to optimize the interferometer for measuring a specific
molecular parameter.

B. Iterative fit

Better accuracy can be achieved if knowledge of the signal
shot noise (25b) is incorporated in the estimation procedure.
One way to do this is to carry out the fitting procedure in two
steps.

The first step consists of a standard least-squares fit that
minimizes (26), as explained in the previous section. The
resulting fit parameters αfit provide an estimate for the shot
noise σ 2

k (αfit ) of every pixel. This knowledge is used in the
second fit by weighting the intensity of the individual pixels
with the estimated variance: a pixel with large uncertainty
contributes less than a pixel with small uncertainty. Specifi-
cally, the second fit minimizes

α = argmin
α′

K∑
k=1

[Sk − S̄k (α′)]2

σ 2
k (αfit )

. (34)

Finding the fit parameter requires solving

K∑
k=1

[Sk − S̄k (α)]

σ 2
k (αfit )

∂

∂α
S̄k (α) = 0 (35)

for α. If the signal noise is small enough, the estimate from the
first fit can be used to approximate σk (αfit ) � σk (α0). Inserting
this into (35), and solving the equation by the linearization
(28), yields

α̂ = α0 + J−1
2 �̂2 (36)

with

�̂2 =
K∑

k=1

[Ŝk − S̄k (α0)]

Nσ 2
k (α0)

∂

∂α0
S̄k (α0) (37a)

and the symmetric matrix

J2 =
K∑

k=1

[
∂

∂α0
S̄k (α0)

]⊗ [
∂

∂α0
S̄k (α0)

]
Nσ 2

k (α0)
. (37b)

In the continuum limit, it reads

J2 =
∫
Asc

dxdy

[
∂

∂α0
ρ(x, y)

]⊗ [
∂

∂α0
ρ(x, y)

]
ρ(x, y)

[
1 − d2

pxρ(x, y)
] . (38)

The expectation values of the fit parameters are again given
by 〈α̂〉 = α0, while the covariance matrix takes the simple
form

〈(α̂ − α0) ⊗ (α̂ − α0)〉 = 1

N
J−1

2 . (39)

The dependence on the specific form of the diffraction pattern
thus differs from the standard fitting procedure. In fact, NJ2

turns into the Fisher information matrix [22] in the case of
small pixels pk � 1 and large particle numbers N pk � 1.

FIG. 5. Accuracy of estimating the intersystem-crossing quan-
tum yield by the iterative fitting procedure described in Sec. VI B.
The standard deviation (dashed line) indicates that a diffraction pat-
tern with 106 particles would suffice to measure the quantum yield
φISC with an error of less than 3% for the considered experimental
parameters.

This shows that the iterative fit can reach the highest possi-
ble accuracy, as given by the multivariate Cramer-Rao bound
[22].

C. Special case: Single fit parameter

In the case of only a single fit parameter, such as the
absorption cross section σ , the variance (31b) of the standard
fit is given by

〈(σ̂ − σ0)2〉

= 1

N

{∫
Asc

dx′dy′
[

∂

∂σ0
ρ(x′, y′)

]2
}−2

×
∫
Asc

dxdy ρ(x, y)
[
1 − d2

pxρ(x, y)
][ ∂

∂σ0
ρ(x, y)

]2

,

(40)

while the variance (39) of the iterative fit assumes the form

〈(σ̂ − σ0)2〉 = 1

N

⎧⎨
⎩
∫
Asc

dxdy

[
∂

∂σ0
ρ(x, y)

]2

ρ(x, y)
[
1 − d2

pxρ(x, y)
]
⎫⎬
⎭

−1

.

(41)

Figure 1(b) shows hundreds of estimates of the absorp-
tion cross section (red crosses) as a function of the number
N of detected particles. They are based on simulating 2D
diffraction patterns (insets) by drawing the number of detected
particles in each pixel from the binomial distribution (24) and
performing the iterative fit of Sec. VI B by employing two
subsequent fit routines. The dashed lines indicate the expected
standard deviation of the estimates, as follows from the ana-
lytical formula (41). The latter characterizes the distribution
of fitted values for N � 4 × 104. Our calculations imply that
106 particles would suffice to measure the absorption cross
section with an accuracy of ≈0.3% in a realistic experiment,
assuming σ = σT, and all other parameters to be known. See
Appendix D for the simulation parameters.

To demonstrate that matter-wave interferometers can be
used to accurately measure quantum yields in vacuum,
we analyze in Fig. 5 the intersystem-crossing quantum
yield φISC. The measurements are again simulated with
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the parameters given in Appendix D, except for αr =
αr0, αrT = 2αr0, φISC = 0.5, and φIC = 0.5. Note that the
model function S̄k (φISC) accounts for the fact that a varying
intersystem-crossing quantum yield φISC also changes the
internal-conversion quantum yield φIC = 1 − φISC. We find
that an accuracy of better than 3% can be achieved by de-
tecting 106 particles.

D. Special case: Two fit parameters

We next illustrate the case of measuring two molecular
parameters simultaneously, specifically the absorption cross
section σ and the polarizability αr. For the standard least-
squares fit, the variances in (31b) assume the form

〈(σ̂ − σ0)2〉 = 1

N

1[
bσσ bαα − b2

σα

]2

×
∫
Asc

dxdy ρ(x, y)
[
1 − d2

pxρ(x, y)
]

×
[

bαα

∂

∂σ0
ρ(x, y) − bσα

∂

∂αr0
ρ(x, y)

]2

(42a)

and

〈(α̂r − αr0 )2〉 = 1

N

1[
bσσ bαα − b2

σα

]2

×
∫
Asc

dxdy ρ(x, y)
[
1 − d2

pxρ(x, y)
]

×
[

bσσ

∂

∂αr0
ρ(x, y) − bσα

∂

∂σ0
ρ(x, y)

]2

,

(42b)

where

bσσ =
∫
Asc

dxdy

[
∂

∂σ0
ρ(x, y)

]2

, (43a)

bαα =
∫
Asc

dxdy

[
∂

∂αr0
ρ(x, y)

]2

, (43b)

bσα =
∫
Asc

dxdy

[
∂

∂σ0
ρ(x, y)

][
∂

∂αr0
ρ(x, y)

]
. (43c)

For the iterative fit with two fit parameters, the standard
deviation follows from (39),

〈(σ̂ − σ0)2〉 = 1

N

cαα

cσσ cαα − c2
σα

(44a)

and

〈(α̂r − αr0)2〉 = 1

N

cσσ

cσσ cαα − c2
σα

(44b)

with

cσσ =
∫
Asc

dxdy

[
∂

∂σ0
ρ(x, y)

]2

ρ(x, y)
[
1 − d2

pxρ(x, y)
] , (45a)

cαα =
∫
Asc

dxdy

[
∂

∂αr0
ρ(x, y)

]2

ρ(x, y)
[
1 − d2

pxρ(x, y)
] , (45b)

FIG. 6. Accuracy of the normal (blue) and the iterative (red) fit
as described in Secs. VI A and VI B. The solid lines represent the
analytically expected standard deviation; see Eq. (42) and Eq. (44).
The dashed lines give the expected standard deviation if only a
single parameter was fitted; see Eqs. (40) and (41). By detecting
106 particles on the screen, both the absorption cross section and the
polarizability could be obtained from an iterative fit with an accuracy
of better than 2%. (Here we assume σ = σT and αr = αrT.)

cσα =
∫
Asc

dxdy

[
∂

∂σ0
ρ(x, y)

][
∂

∂αr0
ρ(x, y)

]
ρ(x, y)

[
1 − d2

pxρ(x, y)
] . (45c)

Figure 6 shows the expected results of a simultaneous mea-
surement of the absorption cross section and the polarizability
for standard (blue, left) and iterative (red, right) fitting proce-
dures. The solid lines give the expected standard deviations of
the absorption cross section and the polarizability according
to the analytic expressions (42) and (44). As in Fig. 1(b), we
confirm that the presented formulas provide realistic estimates
for the measurement accuracy by simulating detections on the
screen and estimating the two parameters through unbiased
fit routines that minimize (26) (blue crosses) and (34) (red
crosses), respectively.

The numerous fits and the predicted accuracies demon-
strate the advantages of the iterative procedure, which
decreases the error by roughly a factor of 2. A similar gain
in accuracy is achieved if the number of fit parameters is
reduced to one, as indicated by the dashed lines in Fig. 6.
They give the standard deviation if only σ or only αr were
unknown; see Sec. VI C. To account for possible uncertainties
of parameters that are not included in the fitting procedure,
one can use Eqs. (29) and (36) for error propagation. To
calculate the accuracy in simultaneous fits with three or more
fit parameters, we refer the reader to the general formulas
(31b) and (39).

VII. CONCLUSIONS AND OUTLOOK

The results presented in this article show that photophys-
ical molecular properties can be measured in vacuum using
matter-wave diffraction off a single light grating. The explicit
formula for the 2D interference pattern (14) accounts for
all relevant effects and elements in a realistic setup: from
finite-sized source and slits determining the longitudinal and
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transverse coherence, to gravitational velocity selection, and
deflection due to the Coriolis force. Besides accounting for
the Gaussian envelope of the laser grating and the finite
reflectivity of the grating mirror, our formula incorporates
the full range of photophysical processes that determine the
interaction of a molecule with a laser wave. In addition to in-
ducing a dipole, this includes internal conversion, intersystem
crossing, fluorescence, ionization, and cleavage following the
absorption of a real photon.

Using this theory, the accuracy of interferometric mea-
surements of molecular parameters could be estimated from
realistic, shot-noise-limited diffraction patterns. We find that
quantities such as polarizabilities, absorption cross sections,
and quantum yields can be determined with uncertainties on
the single percent level in a generic state-of-the-art setup.
To improve on that, the formulas in Sec. VI can be used
to optimize the interferometric setup for measuring specific
photophysical parameters with the highest possible accuracy.
In practice, the accuracy will be determined by the shot noise
due to the limited particle beam brilliance and detection ef-
ficiency, while the precision is determined by the uncertainty
of the experimental parameters. Both can be assessed by using
Eqs. (29) and (36) for the statistics of the extracted parameters
using a standard or an iterative fitting procedure.
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APPENDIX A: WIGNER FUNCTION
AND CHARACTERISTIC FUNCTION

When describing the quantum dynamics of a molecule
traveling through the interferometer, it is safe to assume that
the pz-momentum of the molecule is not affected by the
diffractive elements. The z-coordinate then parametrizes time,
t = mz/pz. Furthermore, we assume that diffraction in the y-
direction is negligible, and quantum signatures appear only in
the x-direction. To describe the latter, we employ the Wigner
function

w(x, px ) = 1

2π h̄

∫
ds eispx/h̄

〈
x − s

2

∣∣∣∣ρ
∣∣∣∣x + s

2

〉
, (A1)

which can be calculated from the statistical operator ρ. It is the
natural quantum generalization of the classical phase-space
distribution.

The time-evolution in the interferometer can be divided
into periods of uniformly accelerated motion and instan-
taneous transformations at the diffractive elements. The
evolution of an initial Wigner function w(x, px ) over the time
t in the presence of an acceleration a reads [17]

w′(x, px ) = w

(
x − pxt

m
+ at2

2
, px − mat

)
. (A2)

It is indistinguishable from the classical evolution in phase
space. Note the positive sign of the term at2/2. When passing
an x-slit or a grating, the Wigner function transforms as

w′(x, px ) =
∫ ∞

−∞
d p T (x, px − p)w(x, p), (A3)

disregarding normalization. The convolution kernel of a colli-
mation slit of width xc at the position x0 is given by

T (x, px ) = �
(xc

2
− |x − x0|

)xc − 2|x − x0|
π h̄

× sinc

(
xc − 2|x − x0|

h̄
px

)
. (A4)

For h̄ → 0, it yields the classical convolution kernel

T (x, px ) = �
(xc

2
− |x − x0|

)
δ(px ). (A5)

The kernel of a grating is determined by the Talbot coefficients
[17,23],

T (x, px ) = 1

2π h̄

∞∑
n=−∞

e2π inx/d
∫

ds eipxs/h̄Bn

( s

d

)
. (A6)

It is convenient to use the characteristic function [16]

χ (s, q) =
∫

dxd px ei(qx−spx )/h̄w(x, px ) (A7)

as an alternative to the Wigner function. Its propagation in the
presence of a constant acceleration obeys

χ ′(s, q) = exp

[
i

h̄

(
at2q

2
− mats

)]
χ

(
s − qt

m
, q

)
, (A8)

in accordance with Eq. (A2). The major benefit of the charac-
teristic function is that its transformation at a grating takes a
simple form,

χ ′(s, q) =
∞∑

n=−∞
Bn

( s

d

)
χ

(
s, q + 2π h̄

d
n

)
. (A9)

APPENDIX B: DERIVATION OF THE TALBOT
COEFFICIENTS

1. Master equation

To derive the Talbot coefficients, the dynamics of the
molecule traversing the laser grating have to be solved. The
molecule-grating interaction involves the processes described
in Sec. IV and displayed in Fig. 2. We account for all of them
by considering the master equation

∂tρ = 1

ih̄
[H, ρ] +

∑
j∈M

(
L jρL†

j − 1

2
{L†

j L j, ρ}
)

+
∫

d3k

4πk2
fk (k)

(
LFρL†

F − 1

2
{L†

FLF, ρ}
)

, (B1)

in analogy to the treatment in [19]. The coherent interaction
due to the polarizability of the molecule is described in the
eikonal approximation by the generator

H = V (x, y, pzt/m)|G〉〈G| + VT(x, y, pzt/m)|T 〉〈T |, (B2)
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where the position operator x appears in the potential (3). The
internal molecular transitions and the associated momentum
kicks are described by a set of Lindblad operators,

LIC =
√

(1 − PD)γmax(t )φIC g(x)|G〉〈G|, (B3a)

LF =
√

(1 − PD)γmax(t )φF g(x)e−ik·exx|G〉〈G|, (B3b)

LISC =
√

(1 − PD)γmax(t )φISC g(x)|T 〉〈G|, (B3c)

LICT = √
(1 − PD)γmax,T(t ) g(x)|T 〉〈T |, (B3d)

LDG =
√

PDγmax(t ) g(x)|DG〉〈G|, (B3e)

LDT = √
PDγmax,T(t ) g(x)|DT 〉〈T |. (B3f)

The different processes are indicated by the arrows in Fig. 2
and labeled by M = {IC, ISC, ICT, DG, DT}. The Lindblad
operators depend on the peak value,

γmax(t ) = 8PLσ

π h̄ωLwywz
f 2(y, pzt/m), (B4)

γmax,T(t ) = 8PLσT

π h̄ωLwywz
f 2(y, pzt/m), (B5)

of the absorption rate (6).
Differential equations for the matrix elements

ρG(x, x′, t ) = 〈x, G|ρ|x′, G〉 and ρT(x, x′, t ) = 〈x, T |ρ|x′, T 〉
follow from the master equation (B1). Here, |x, G〉 ≡ |x〉|G〉
and |x, T 〉 ≡ |x〉|T 〉 depend on the eigenstates |x〉 of the
position operator x. If the particle detector at the screen is
insensitive to the internal molecular state, the measurement
will only yield information on the unconditional state

ρun(x, x′, t ) = ρG(x, x′, t ) + ρT(x, x′, t ). Since molecules
in a depletion state do not reach the screen, these states
are disregarded. We find a coupled system of differential
equations,

∂tρun(x, x′, t ) = [D̃T(t ) + ÑT(t )]ρun(x, x′, t )

+{D̃(t ) − D̃T(t ) + Ñ (t )[φIC + φF ϕ(x − x′)

+φISC] − ÑT(t )}ρG(x, x′, t ), (B6a)

∂tρG(x, x′, t ) = {D̃(t ) + Ñ (t )[φIC + φFϕ(x − x′)]}
× ρG(x, x′, t ). (B6b)

The time-dependent functions in Eqs. (B6) are related to the
definitions (13) from the main text,

D̃(t ) = D

√
2

π

pz

mwz
exp

(
−2

p2
zt

2

m2w2
z

)
, (B7)

and similar for D̃T, Ñ , and ÑT. Note that one could also start
out with a level scheme that accounts for the fact that the
vibrational state of the molecule changes after every internal
conversion or fluorescence. However, the resulting system of
differential equations for the unconditional state with respect
to the electronic and vibrational degrees of freedom would be
equal to (B6).

2. Solving the master equation

Before interacting with the laser grating, the molecule is
taken to be in its electronic ground state ρG(x, x′,−∞) =
ρ̃(x, x′). In this case, Eq. (B6b) has the formal solution

ρG(x, x′, t ) = ρ̃(x, x′) exp

(∫ t

−∞
dτ
{
D̃(τ ) + Ñ (τ )[φIC + φFϕ(x − x′)]

})
. (B8)

We insert (B8) into (B6a) and use that initially ρun(x, x′,−∞) = ρ̃(x, x′) to find

ρun(x, x′, t ) = ρ̃(x, x′) exp

{∫ t

−∞
dτ ′′[D̃T(τ ′′) + ÑT(τ ′′)]

}(
1 +

∫ t

−∞
dτ ′{D̃(τ ′) − D̃T(τ ′) + Ñ (τ ′)[φISC + φIC

+φFϕ(x − x′)] − ÑT(τ ′)} exp

[∫ τ ′

−∞
dτ {D̃(τ ) − D̃T(τ ) + Ñ (τ )[φIC + φFϕ(x − x′)] − ÑT(τ )}

])
. (B9)

In a distance several laser widths behind the grating, the state can be approximated by

ρun(x, x′,∞) = ρ̃(x, x′)

{
1 + ν1

∫ ∞

−∞
dτ ′ exp

(
−2

p2
zτ

′2

m2w2
z

)
exp

[
ν2

∫ τ ′

−∞
dτ exp

(
−2

p2
zτ

2

m2w2
z

)]}

× exp

[
ν3

∫ ∞

−∞
dτ ′′ exp

(
−2

p2
zτ

′′2

m2w2
z

)]
. (B10)

Here, we defined the frequencies

ν1 =
√

2

π

pz

mwz
{D − DT + N[φIC + φFϕ(x − x′) + φISC] − NT}, (B11a)

ν2 =
√

2

π

pz

mwz
{D − DT + N[φIC + φFϕ(x − x′)] − NT}, (B11b)

ν3 =
√

2

π

pz

mwz
(DT + NT). (B11c)
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We use that∫ ∞

−∞
dz′ e−2z′2

exp

[
ϑ

∫ z′

−∞
dz e−2z2

]
= 1

ϑ
(eϑ

√
π/2 − 1)

(B12)

to evaluate the Gaussian time integrals in Eq. (B10),

ρun(x, x′,∞) =
{

1 + ν1

ν2

[
exp

(√
π

2

wzm

pz
ν2

)
− 1

]}

× exp

(√
π

2

wzm

pz
ν3

)
ρ̃(x, x′). (B13)

3. Talbot coefficients

At the grating, the Wigner function transforms as in (A3),
and the state after the grating is of the form ρun(x, x′,∞) =
F (x, x′)ρ̃(x, x′). This corresponds to a transmission kernel

T (x, p) = 1

2π h̄

∫
ds eisp/h̄F

(
x − s

2
, x + s

2

)
, (B14)

as follows from the definition (A1) of the Wigner function.
Since the F in Eq. (B14) is d-periodic in x, it can be expanded
as a Fourier series; see Eq. (A6). The Talbot coefficients

Bn(ξ, y) = 1

d

∫ d/2

−d/2
dx e−2π inx/d F

(
x − ξ

d

2
, x + ξ

d

2

)

(B15)

act as the Fourier coefficients. The state right behind the
grating (B13) implies that

F (x, x′) =
{

1 + ν1

ν2

[
exp

(√
π

2

wzm

pz
ν2

)
− 1

]}

× exp

(√
π

2

wzm

pz
ν3

)
, (B16)

which immediately yields Eq. (12).
The function (12) thus describes the interaction of a

molecule with a laser grating. It accounts for the imprinted
phase, photon absorption, state-dependent polarizabilities and
absorption cross sections, internal conversion, intersystem
crossing, fluorescence, photocleavage, and ionization as well
as nonideal reflection at the grating mirror. Remarkably, for
η = 1 and PD = 0 we reproduce the Talbot coefficients ob-
tained in [19], although the calculation in [19] assumes an
effective rectangular laser profile.

4. Special case

The Fourier transform in Eq. (B15) can be evaluated ana-
lytically for the special case in which there is no fluorescence
and the triplet state has the same optical response as the
ground state, αr,T = αr, σT = σ , and φF = 0. In this case,
the imprinted phase and the photon number coincide for the
singlet and triplet state, φ0,T = φ0 and n0,T = n0, so that DT =
D and NT = N . Equation (12) then takes the simple form

F (x, x′) = exp(D + N ), explicitly

F (x, x′) = exp
[
i(|g(x)|2 − |g(x′)|2)φ0(y, pz )

− 1
2 (|g(x)|2 + |g(x′)|2)n0(y, pz )

+ (1 − PD)g∗(x′)g(x)n0(y, pz )
]
. (B17)

Inserting (2) and (B17) into (B15) yields

Bn(ξ, y) = 1

2π

∫ π

−π

dx′ exp[−inx′ + iζcoh(ξ ) sin(x′)

+ ζabs(ξ ) cos(x′) − κ (ξ )]. (B18)

Here, we defined

ζcoh(ξ ) = η sin(πξ )φ0(y, pz ), (B19)

ζabs(ξ ) = η

[
sin2

(
πξ

2

)
− PD

2

]
n0(y, pz ), (B20)

κ (ξ ) = η2 + 1

4
n0(y, pz ) − (1 − PD)

×
[
η2 + 1

4
cos(πξ ) − i

η2 − 1

4
sin(πξ )

]
n0(y, pz ).

(B21)

The integral in Eq. (B18) can be evaluated [16,17,19,23],
resulting in the Talbot coefficients

Bn(ξ, y) = e−κJn
[
sgn(ζcoh − ζabs)

√
ζ 2

coh − ζ 2
abs

]
×
(

ζcoh + ζabs

ζcoh − ζabs

)n/2

. (B22)

In an extension to previous results [16–19,24], the Talbot
coefficients (B22) account for depletion with finite proba-
bility PD < 1, for nonideal reflection at the grating mirror,
and for the Gaussian shape of the laser wave. For η = 1
and PD = 1, Eq. (B22) reproduces the Talbot coefficients
of a single-photon ionization grating [15]. For η = 1 and
PD = 0, it reproduces the Talbot coefficients for multiphoton
absorption [16–18].

APPENDIX C: DERIVATION
OF THE INTERFERENCE PATTERN

In this Appendix, we calculate the current density (14) of
a particle beam passing through the interferometer shown in
Fig. 1. At the source, the Wigner function is indistinguishable
from the classical distribution function,

ws(x, y, p) = 1

d2
s

�

(
ds

2
− |x − x0s|

)
�

(
ds

2
− |y − y0s|

)

× μx(px )μy(py)μz(pz ). (C1)

In the following, the Wigner function for the particle state
is propagated through the interferometer by using the trans-
formations introduced in Appendix A. We assume that
diffraction in the direction parallel to the grating slits plays
no role, as is the case in many interferometers, so that the
y-dynamics can be treated classically.
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In a first step, the initial state (C1) is propagated over a distance L1 from the source to the first x-slit, yielding

wL1 (x, y, p) = 1

d2
s

�

(
ds

2
−
∣∣∣∣x − x0s − L1

px

pz
+ ac,xL2

1m2

2p2
z

∣∣∣∣
)

�

(
ds

2
−
∣∣∣∣y − y0s − L1

py

pz
+ (g + ac,y)L2

1m2

2p2
z

∣∣∣∣
)

× μx

(
px − m2ac,xL1

pz

)
μy

(
py − m2(g + ac,y)L1

pz

)
μz(pz ). (C2)

Here, we employed Eq. (A2) for the x- and y-motion and inserted the time t = mL1/pz as well as the acceleration due to gravity
and the Coriolis force.

At the first x-slit, the state transformation obeys Eq. (A5),

w′
L1

(x, y, p) = 1

d2
s

�

(
ds

2
−
∣∣∣∣x − x0s − L1

px

pz
+ ac,xL2

1m2

2p2
z

∣∣∣∣
)

�

(
ds

2
−
∣∣∣∣y − y0s − L1

py

pz
+ (g + ac,y)L2

1m2

2p2
z

∣∣∣∣
)

× μx

(
px − m2ac,xL1

pz

)
μy

(
py − m2(g + ac,y)L1

pz

)
μz(pz )�

(xc1

2
− |x − x01|

)
. (C3)

Diffraction does not play a role here since the momentum uncertainty due to the slit is typically much smaller than the width of
the classical momentum distribution determined by the geometry of the source and the first slit.

Since the momentum shift due to the Coriolis force �px = m2ac,xL1/pz is much less than the momentum spread in the source,
we can approximate μx(px − m2ac,xL1/pz ) � μx(px ). Furthermore, the rightmost Heaviside function in (C3) restricts x, so that
the first step function restricts px. In particular, for xc1, x01, ds, x0s, ac,xL2

1m2/2p2
z � L1 the momenta are restricted to px � pz.

All in all, we can approximate μx(px − m2ac,xL1/pz ) � μx(px ) � μx(0) in Eq. (C3).
After the first x-slit, the Wigner function propagates over a distance L2 − L′

2 to the first y-slit. There, it transforms similar to
Eq. (A5) before it propagates over a distance L′

2 to the second x-slit,

wL2 (x, y, p) = 1

d2
s

�

(
ds

2
−
∣∣∣∣x − x0s − (L1 + L2)

px

pz
+ ac,x(L1 + L2)2m2

2p2
z

∣∣∣∣
)

× �

(
ds

2
−
∣∣∣∣y − y0s − (L1 + L2)

py

pz
+ (g + ac,y)(L1 + L2)2m2

2p2
z

∣∣∣∣
)

μx(0)μy

(
py − m2(g + ac,y)(L1 + L2)

pz

)
μz(pz )

× �

(
xc1

2
−
∣∣∣∣x − x01 − L2

px

pz
+ ac,xL2

2m2

2pz

∣∣∣∣
)

�

(
yc1

2
−
∣∣∣∣y − y01 − L′

2
py

pz
+ (ac,y + g)L′2

2 m2

2pz

∣∣∣∣
)

. (C4)

Here, we used that the shift of px due to the Coriolis force is still negligible.
Diffraction at the second x-slit has to be taken into account if the first and second x-slit restrict the momentum spread in the

beam to a value that is comparable to the momentum uncertainty due to the second slit. The state after the slit follows from
Eq. (A4),

w′
L2

(x, y, p) = 1

d2
s

�

(
ds

2
−
∣∣∣∣y − y0s − (L1 + L2)

py

pz
+ (g + ac,y)(L1 + L2)2m2

2p2
z

∣∣∣∣
)

μx(0)μy

(
py − m2(g + ac,y)(L1 + L2)

pz

)

× μz(pz )�

(
yc1

2
−
∣∣∣∣y − y01 − L′

2
py

pz
+ (ac,y + g)L′2

2 m2

2pz

∣∣∣∣
)

�

(
xc2

2
− |x − x02|

)
xc2 − 2|x − x02|

π h̄

×
∫ ∞

−∞
d p′ sinc

[
xc2 − 2|x − x02|

h̄
(px − p′)

]
�

(
xc1

2
−
∣∣∣∣x − x01 − L2

p′

pz
+ ac,xL2

2m2

2pz

∣∣∣∣
)

× �

(
ds

2
−
∣∣∣∣x − x0s − (L1 + L2)

p′

pz
+ ac,x(L1 + L2)2m2

2p2
z

∣∣∣∣
)

. (C5)

The pinhole of the source is typically much greater than the collimating first x-slit, so that the source width cannot be seen
from the perspective of the second x-slit, and the illumination of the first x-slit can be considered as perfectly incoherent. This
corresponds to neglecting the Heaviside function in the last line of Eq. (C5). The associated quantitative condition reads

ds >
L1

L2
xc2 + L1 + L2

L2
xc1 +

∣∣∣∣2 L1

L2
x02 + 2x0s − 2

L1 + L2

L2
x01 − L1(L1 + L2)

ac,xm2

p2
z

∣∣∣∣ , (C6)

which we assume to be fulfilled in the following, so that the state no longer depends on the x-extension of the pinhole.
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We next calculate the characteristic function (A7) with respect to (x, px ),

χ ′
L2

(s, y, q, py, pz ) = 1

d2
s

�

(
ds

2
−
∣∣∣∣y − y0s − (L1 + L2)

py

pz
+ (g + ac,y)(L1 + L2)2m2

2p2
z

∣∣∣∣
)

μy

(
py − m2(g + ac,y)(L1 + L2)

pz

)

× μx(0)μz(pz )�

(
yc1

2
−
∣∣∣∣y − y01 − L′

2
py

pz
+ (ac,y + g)L′2

2 m2

2pz

∣∣∣∣
)

χ0(s, q), (C7)

with χ0(s, q) given by Eq. (15). It is propagated over a distance L3 from the second x-slit to the grating,

χL3 (s, y, q, py, pz ) = 1

d2
s

�

(
ds

2
−
∣∣∣∣y − y0s − (L1 + L2 + L3)

py

pz
+ (g + ac,y)(L1 + L2 + L3)2m2

2p2
z

∣∣∣∣
)

μx(0)μz(pz )

× μy

(
py − m2(g + ac,y)(L1 + L2 + L3)

pz

)
�

(
yc1

2
−
∣∣∣∣y − y01 − (L′

2 + L3)
py

pz
+ (ac,y + g)(L′

2 + L3)2m2

2pz

∣∣∣∣
)

× exp

[
i

h̄

(
ac,xL2

3m2q

2p2
z

− ac,xL3m2s

pz

)]
χ0

(
s − L3q

pz
, q

)
. (C8)

Here we employed Eq. (A8) for propagating in s and q and Eq. (A2) for propagating in y. The state transformation at the grating
can now be carried out according to Eq. (A9),

χ ′
L3

(s, y, q, py, pz ) = 1

d2
s

�

(
ds

2
−
∣∣∣∣y − y0s − (L1 + L2 + L3)

py

pz
+ (g + ac,y)(L1 + L2 + L3)2m2

2p2
z

∣∣∣∣
)

μx(0)μz(pz )

× μy

(
py − m2(g + ac,y)(L1 + L2 + L3)

pz

)
�

(
yc1

2
−
∣∣∣∣y − y01 − (L′

2 + L3)
py

pz
+ (ac,y + g)(L′

2 + L3)2m2

2pz

∣∣∣∣
)

×
∞∑

n=−∞
Bn

( s

d
, y
)

exp

{
i

h̄

[
ac,xL2

3m2

2p2
z

(
q + 2π h̄

d
n

)
− ac,xL3m2s

pz

]}

× χ0

[
s − L3

pz

(
q + 2π h̄

d
n

)
, q + 2π h̄

d
n

]
. (C9)

The explicit form of the Talbot coefficients Bn for a realistic molecule-laser interaction is derived in Appendix B. Note that the
y-dependence of the Gaussian envelope now enters in the coefficients Bn (which, however, do not describe diffraction in the
y-direction).

Next, we propagate the particle state over the distance L4 − L′
4 from the grating to the second y-slit, where a classical slit

transformation for the y-motion is performed. After a final propagation to the screen, we find

χL4 (s, y, q, py, pz ) = 1

d2
s

�

(
ds

2
−
∣∣∣∣y − y0s − L

py

pz
+ (g + ac,y)L2m2

2p2
z

∣∣∣∣
)

μx(0)μy

(
py − m2(g + ac,y)L

pz

)
μz(pz )

× �

(
yc1

2
−
∣∣∣∣y − y01 − (L′

2 + L3 + L4)
py

pz
+ (ac,y + g)(L′

2 + L3 + L4)2m2

2pz

∣∣∣∣
)

× �

(
yc2

2
−
∣∣∣∣y − y02 − L′

4
py

pz
+ (g + ac,y)L′2

4 m2

2p2
z

∣∣∣∣
) ∞∑

n=−∞
Bn

[
1

d

(
s − L4q

pz

)
, y − L4

py

pz
+ (g + ac,y)L2

4m2

2p2
z

]

× exp

{
i

h̄

[
ac,x(L3 + L4)2m2q

2p2
z

− ac,x(L3 + L4)m2s

pz
+ ac,xL2

3m2

2p2
z

2π h̄

d
n

]}

× χ0

[
s − L3 + L4

pz
q − L3

pz

2π h̄

d
n, q + 2π h̄

d
n

]
. (C10)

We transform back to the Wigner function, and we integrate over px by using that

∫
d px wL4 (x, y, p) = 1

2π h̄

∫ ∞

−∞
dqe−iqx/h̄χL4 (0, y, q, py, pz ). (C11)
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Multiplication by pz and integration over py and pz yields the particle current density at the screen,

j(x, y) ∝
∫ ∞

−∞
dq e−iqx/h̄

∞∑
n=−∞

∫ ∞

0
d pz pzμz(pz )χ0

[
−L3 + L4

pz
q − L3

pz

2π h̄

d
n, q + 2π h̄

d
n

]

× exp

{
i

h̄

[
ac,x(L3 + L4)2m2q

2p2
z

+ ac,xL2
3m2

2p2
z

2π h̄

d
n

]}∫ ∞

−∞
d py h(y, py, pz )Bn

[
− 1

d

L4q

pz
, y − L4

py

pz
+ (g + ac,y)L2

4m2

2p2
z

]
.

(C12)

The function h(y, py, pz ) is given by Eq. (16). The current
density (14) from the main text is obtained by substituting
k = −q/h̄ and ỹ = y − L4 py/pz + (g + ac,y)L2

4m2/2p2
z .

APPENDIX D: SIMULATION PARAMETERS

The parameters used to simulate the diffraction patterns in
Figs. 1(b) and 6 are motivated by a real-world experiment with
phthalocyanine molecules PcH2 [14]. The interferometer ge-
ometry is defined by the slit positions x01 = −10.5 µm, x02 =
−10.5 µm, y01 = 0, and y02 = −15.1 µm; slit widths xc1 =
2.7 µm, xc2 = 0.6 µm, yc1 = 1 m, and yc2 = 20 µm; the
source position y0s = 0 and source size ds = 200 µm; the
grating height y0g = −3.8 µm; and the longitudinal dis-
tances between the diffractive elements L1 = 0.52 m, L2 =
0.3 m, L′

2 = 0.02 m, L3 = 0.08 m, L4 = 0.69 m, and L′
4 =

0.605 m. The laser grating is defined by the laser power
PL = 1 W, envelope width wy = 16 µm, grating constant
d = 133 nm, laser wavelength λL = 266 nm, and reflection

coefficient η = 0.98. The molecule is characterized by
its mass m = 514.5 u, polarizability αr = αrT = αr0 = 9 ×
4πε0 Å3, absorption cross section σ = σT = σ0 = 1.06 Å2,
quantum yields φF = 0, φISC = 1, and φIC = 0, and de-
pletion probability PD = 0. The source is described by the
temperature T = 746 K and the velocity shift p0,z/m =
60 m/s. Gravity and the Coriolis force are determined
by g = −9.81 m/s2,ω · ex = 5.4 × 10−5/s, and ω · ey =
−4.9 × 10−5/s. The screen is discretized into squares of
edge length dpx = 0.33 µm. It consists of 1004 pixels in the
x-direction and 1003 in the y-direction.

In Fig. 3, the interferometer geometry is defined by
x01 = 0, x02 = 0, xc1 = 3 µm, xc2 = 2 µm, y0s = 0, ds =
100 µm, y01 = 0, y02 = −15.7 µm, yc1 = 1 m, yc2 =
10 µm, y0g = −4.3 µm, L1 = 0.5 m, L2 = 0.3 m, L′

2 =
0.02 m, L3 = 0.2 m, L4 = 0.7 m, and L′

4 = 0.6 m. The laser
grating parameters are as above (P0 = 1 W) except for η = 1.
Also the source and molecular parameters are as above, except
for αr,T = αr = α0 = 25 × 4πε0 Å3, σT = σ = σ0 = 0.7 Å2.
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