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ABSTRACT 

 
The characteristics of traffic flows on signalized arterials are examined within a cellular 
automata micro-simulation model.  The model is used to analyze arterial throughput and 
travel times for given densities, coordination schemes and signal spacings.   A fundamental 
3-D relationship between flow, density and offsets for signalized arterials is established. It is 
shown, in particular, that arterial throughput is dependent on offsets and that the constituent 
single intersection limiting capacity, as determined by the saturation flow and the green 
splits, can only be realized under optimal coordination conditions within a limited range of 
densities on the arterial.  This is a manifestation of the important role that signal coordination 
and, in fact, Intelligent Transportation Systems (ITS) actions in general play in the operation 
of urban street networks. 
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1. INTRODUCTION 
 
The use of Cellular Automata in the analysis of traffic systems is becoming increasingly 
popular in recent years.  Cellular Automata (or CA) are mathematical models for complex 
systems in which many components act together to reproduce complicated patterns of 
behavior.  CA date back to cyberneticist John von Neumann, who in the 1940’s wanted to 
construct a universal Turing machine with the property of self-reproduction (1).  CA help to 
understand the laws that govern complex phenomena by studying the temporal evolution of 
typical initial conditions under the action of relatively simple local rules.  This characteristic 
is related to synergetics where the cooperation of microscopic simple components produces 
macroscopic spatial, temporal or functional structures.   
 
Cellular Automata models of traffic, which are based on discretization of time and space, can 
be considered an alternative and complementary approach to the more traditional models for 
the representation of traffic flow, such as fluid-dynamic or car-following models (1).  In the 
simplest case, a cellular automaton consists of a line of sites (or, cells) with each site having 
a value of 0 or 1.  The sequence of site values is the configuration evolving in discrete time 
steps.  At each time step the value of each cell is updated according to a given rule.  
Following are the five fundamental defining characteristics for cellular automata: 
 

1. CA consist of a discrete lattice of sites. 
2. CA evolve in discrete time steps. 
3. Each site takes on a finite set of possible values. 
4. The value of each site evolves according to the same updating rules. 
5. Rules for the evolution of a site depend on a local neighborhood of sites around it. 

 
Notwithstanding these simplifications, CA models have found wide applications in the 
simulation of granular media, fluids, chemical reactions, avalanches and traffic flows.  The 
first traffic implementation of this concept dates back to 1956 when Gerlough developed a 
simulation model for freeway traffic (3).  In the past 20 years there were many applications 
of CA models to study various traffic flow phenomena (4 - 9).  Recently, these models have 
also been used to study traffic signal operations (10, 11). 
 
In this paper we use a cellular automata micro-simulation model to study traffic flow 
behavior on a signal-controlled arterial street.  A fundamental 3-D relationship between flow, 
density and offsets, which is commonly used to describe traffic on uninterrupted facilities, is 
being established here for signalized arterial streets as well.  The model is used to analyze 
arterial throughput and travel times for various densities, coordination schemes and signal 
spacings.  It is shown that arterial throughput is dependent on the offsetting scheme while 
arterial capacity, as defined by the Highway Capacity Manual (12), is not.  The arterial 
capacity is limited by the constituent single intersection capacity as determined by the 
saturation flow and the green split and is only realized under optimal coordination conditions 
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for a limited range of densities on the arterial.  Section 2 of the paper describes the simulation 
methodology used to achieve the results which are described in Section 3. The last section 
summarizes the study findings and draws conclusions. 
 
 
 
2. THE SIMULATION MODEL 
  
The simulations use the Nagel-Schreckenberg cellular automaton model of traffic flow (5).  
In this model, a fixed number of cars , with positions 

, travel along a loop of length 
NNn ,1,.....,2,1 −=

N N 1 2 1x x ... x x mod L−< < < < L = 3750m.  The rules of this 
model (its car-following dynamics) are defined on a lattice where each cell has a length of 

m5.7=λ , for a total of 500 cells.  Time progresses in steps of one second.  Since space and 
time are discrete, so are the speeds of the vehicles.  Their speed and position are updated 
according to the following set of simple rules: 
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Where  is the distance to the car in front (front-bumper-to-back-bumper) 
and  is the maximum speed of the vehicle.  In this study all vehicles have the same 

, corresponding to 22.5 m/s (50 mph), while 

11 −−= − nnn xxg

maxv
3max =v ξ  is a random number which is 0 with 

probability  and 1 with probability B1 p− Bp = 0.1. 
 
The behavior of the model can be described as follows: at each time step, the coordinates of 
each vehicle are updated according to the four rules below.  (i) If the speed of a vehicle is 
lower than , the speed is increased by 1; (ii) If a vehicle has e empty spaces in front of it 
and a speed larger than e, the speed is reduced to e; (iii) The speed of a moving vehicle 
( ) can be decreased by 1 with braking probability of = 0.1. This introduces noise 
to simulate stochastic behavior; (iv) The position of a vehicle is shifted by its speed v. 

maxv

1max ≥v Bp

 
In contrast to an open system, where what happens on a link is determined by the interplay 
between demand and capacity, the system herein is controlled by the global density ρ . In 
other words, the fundamental diagram of the system can be described as a function of density 
only, where the density of the system is set a priori and is kept constant for the duration of 
the simulation run.  
 
The loop L  is divided into segments of equal length Lδ , each one controlled by a single 
traffic light at the front end.  A preset number of links is designated as traffic lights.  Ten 
traffic lights are used for the analysis, except when studying the effects of signal density, 
where the number of traffic lights employed is varying between 4 to 20 (corresponding 
approx. to between 1 and 5 signals/km).  The traffic light switches between green and red 



Gartner/Wagner 4

periodically.  In the green phase vehicles can pass the link, if warranted.  In the red phase, 
vehicles are not allowed to pass and have to wait until the next green.  The operation of the 
traffic light is characterized by the cycle time C and the green time split α = g/C.  In this 
study, all traffic lights are operated with the same period C= 90s and the same α = (g/C) = 
0.50.  Furthermore, as the traffic lights are located at equal distances from each other, the 
same offset φ  is applied to each.  In order to keep things simple, no effects of traffic in the 
opposite direction, or crossing traffic is considered.  
 
Admittedly, this is a simple model; but, the advantage is that one can focus on important 
phenomena and analyze them in great clarity without being overwhelmed or distracted by 
secondary or tertiary effects.  Furthermore, even small effects can be properly observed and 
analyzed.  Since all the traffic lights are identical in the present study, results are magnified 
(by the number of lights) so that we can zoom-in on important phenomena. Although the 
results are not unique to cellular automata models, they serve as a convenient medium for 
achieving them.  Conventional microscopic simulation models are not geared for this kind of 
analysis since they are expressly designed for replicating field performance with adequate 
accuracy.  Of course, one can tweak them to perform any programmed task but this is not 
easy.  More realistic simulations can and will be done to assess the myriad of impacts that are 
being deliberately ignored herein.  
 
As a matter of practicality, the simulation runs in this study were done with 0 to 500 cars on a 
loop of length L=3750m, which corresponds to a density range from 0 to 1.  The first 2000 
time-steps were discarded in order for transients to die down, the next 2000 time-steps were 
used to acquire results.   

 

3. SIMULATION RESULTS  
 

3.1 The Fundamental Diagram 
 
Within this set-up, the fundamental diagram for a signalized arterial has been generated and 
is shown in Figure 1.  The 3D diagram shows the relationship between flow, density and 
offsets.  This can be compared with conventional diagrams for “continuous” or uninterrupted 
facilities in which flows are typically represented as a function of density and speed.  Using 
the nomenclature of the Highway Capacity Manual (12), two principal components make up 
the total time that a vehicle spends on an arterial: arterial running time and control delay for 
the through movement.  To calculate the speed we write: 
 

[ ]).int()(*)/()(*600,3 aycontroldellengthkmerunningtimlengthARTSPD ∑+=  
 
where ARTSPD is the arterial average travel speed (in km/h).  It is a function of the running 
time on the arterial section and the summation of the control delays for the through 
movements at all signalized intersections on the arterial (they are identical in this case).  To 
calculate the flow on the arterial we can write: 



Gartner/Wagner 5

 
DENSITYARTSPDARTFLOW *=  

 
This shows that for a given density the arterial flow rate (or throughput) is inversely 
dependent on the intersection control delay.  Since the latter is a function of the coordination 
scheme (or, offsetting) we obtain the fundamental diagram for a signalized arterial where the 
commonly used speed axis is supplanted by the offset axis.  We have deliberately chosen to 
employ here the term throughput rather than volume, although the two terms are being used 
interchangeably in some cases.  There is a subtle but important distinction that is pertinent in 
this context:  Throughput is an active term describing the output from a facility which is 
dependent on the way it is being operated or controlled.  On the other hand, volume is a more 
passive term commonly used to describe the demand for travel on the facility irrespective of 
the way it is operated.  Thus capacity flow on the facility is attained only when the maximum 
value of throughput can be realized.  The distinction is further elaborated in Section 3.2. 
 
The different regions in the diagram can be analyzed in a similar way to those on 
uninterrupted facilities as described below. 
 
Uncongested Regime 
 
When density is low and there is no congestion, the stochasticity of the model does not 
matter much and one gets, as expected, the maximum in traffic flow when the offset time is 
set to the expected travel time on each signalized link: 
 

( )BpvLvL −== max// δδφ . 
 
At this setting delay is minimized, speed is maximized and, for a given density, flow is also 
maximized.  Since the maximal flow rate is periodic with the offsets, we can write: 
 

vLkC /δφ =+   where k is an integer. 
 
Figure 2 portrays a 2D projection of the 3D data in Figure 1, depicting the familiar flow vs. 
density coordinates.  Shown (in red dots) are the variations in flow caused by different offsets 
at specific density values.  The curve for random offsets (blue line) is shown to be at an 
intermediate level between “good” and “poor” progressions.  Since the flow is the product of 
speed and density ρ.vq = , then for any specific density it is proportional to the speed which, 
in turn, depends on the offsets.  An improved progression increases speed and, with it, the 
throughput.  This is the essential role of coordination on arterial streets.  
 
Saturation: At the Brink 
 
When density increases to an intermediate value, traffic flow is observed to saturate to a 
constant maximum value, which (in this case) is equal to a fixed fraction α = 0.50 of the 
maximum flow if there were no traffic lights.  This can be seen in Fig. 2 where the 
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highlighted (blue) curve with random offsets has about ½ the height of the curve (in purple) 
with no signals.  Thus, in the intermediate density region, while traffic flow is at a maximum, 
vehicles are caught in stop-and-go cycles due to un-dissolved queues from downstream 
signals.  Offset variations have little effect on throughput in these circumstances and we see 
that the (red) dot spread is reduced to a sliver. 
 
Congested Flow 
 
In the high-density region, when traffic jams become dominant, the downstream green has to 
start ahead of the upstream green in order to clear the accumulated traffic on each link.  The 
optimal offsets are then negative and we get the well-known phenomenon of “reverse 
progressions” (13).  
 
The variation of flow with offsets can be seen more dramatically in Figure 3, which presents 
two cuts through the 3D surface of Figure 1: one at a low density ρ = 0.10 and the second at 
a high density of ρ =0.86.  For the low-density curve (red line), the parameters that are used 
are:  Lδ =375m, =3 (22.5 m/s) and = 0.1; therefore, optimal progression should be at maxv Bp

( BpvLvL −== max// δδφ )= 17.24s.  Indeed, as shown in the graph, the maximum flow is 
located at φ =18s in this case.  The cycle time is fixed at C = 90s.  As expected, at low 
density there is almost a 1:4 ratio between the low point of flows (poor offsets) and the high 
point (optimal offsets).  The respective flows are q = 0.07vps (250 vph) vs. q = 0.275vps 
(990 vph).  One has to remember that the results are magnified by the fact that there are 10 
traffic lights on the ring.  The effect attributable to any one light is only 1/10th of the total. 
 
If one would plot average delay per vehicle as a function of offset, one would obtain a 
function that is the mirror image (i.e., an inverted image) of the red curve.  This is the more 
familiar offset-delay function, such as the one that was experimentally validated in a study 
that was conducted at the Toronto Traffic Control Centre by Gartner (14). Such functions 
have also been used in various signal optimization procedures, e.g., SIGOP and MITROP 
(15).  Using such functions one can verify that when offsets are close to optimality we have 
lower delay, higher travel speed and, consequently, a higher flow rate.  
 
For the high density curve (green line), the “backward progression” can be seen to occur at 
about φ = -50s.  The respective values for the flows in this case are q = 0.075vps (270 vph) 
vs q = 0.115 vps (414 vph) for a ratio of 1:1.5 which is much lower than in the low density 
case.  Again, the contribution of any single signal is only 1/10th of the total. i.e., a 5% 
increase per signal.  Such a small effect might not be observable in conventional microscopic 
simulation models where the multitude of stochastic phenomena would muffle it.  Clearly, 
coordination effects are more pronounced in low-density (free-flow) conditions than in high-
density (congested) conditions. 
 
Fig. 4 illustrates the relationship between flow and travel time.  The upper (red) graph is for 
an uninterrupted arterial (no traffic signals), the bottom (green) is for the signalized arterial 
with random offsets.  The same phenomena are demonstrated.  In the uncongested region, 
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travel time (tt) is almost independent of flow, which is due to the fact that vehicles can move 
with maximum speed.  In the congested region, which corresponds to large densities, travel 
time increases rapidly and there exists almost a proportional relationship between flow and 
the inverse of the travel time, i.e., ttq 1∝ . 
 
 
3.2 Throughput and Capacity 
 
Considering the data in Figures 1-4, the question arises, naturally, do offsets affect capacity? 
Strictly speaking, and using the definition of the HCM (12) which says that “the capacity of a 
facility is defined as the maximum hourly rate at which persons or vehicles can reasonably be 
expected to traverse a point or uniform section of a lane or roadway during a given time 
period under prevailing roadway, traffic, and control conditions,” then offsets have virtually  
no effect on capacity.  Figure 2 shows that the capacity of the facility that is analyzed herein 
is c = 0.29vps (1045 vph).  This is one-half the value of the capacity that would be obtained 
on this facility if it had no signals and the flow would be uninterrupted = 0.58vps (2090 
vph).  This follows from the relationship 

sq

sqc .α= , where is the saturation flow, i.e., the 
flow that can be realized when the signal indications are continuously green (s is used for this 
variable in the HCM).  

sq

 
It is seen that capacity flows can be attained within a range of densities; however, there is 
only one density, call it mρ , at which capacity is independent of offsets.  In the case studied 
herein this density is mρ = 0.39.  At this point, varying the offsets has no effect on flow.  In 
contrast, at both the lower density region and the upper density region offsets have 
considerable effect on flows and, thus, on throughput.  Therefore, we can say that offsets 
have a significant impact on the throughput of a signalized arterial but not on its (inherent) 
capacity.  This is illustrated by the red dots in Fig. 2.  Capacity flow (i.e., the maximum 
possible flow rate) is attained at mρ  and when optimal offsets are in effect within a range of 
other densities.  At some densities in the very low and very high ranges capacity flow can not 
be attained.  In the first case, because there is not enough demand; in the second, because the 
demand cannot move with sufficient speed. 
 
Some authors have argued that capacity is different under “favorable” and “unfavorable” 
progression (16).  Those results were calculated by using a microscopic simulation model.  
While the numerical results are correct, their interpretation is not.  What has been shown in 
these studies is that a higher throughput can be obtained under favorable progression.  The 
“capacity” of the facility stays the same irrespective of the progression.  Each of the 
simulation results considers only one coordination scheme, i.e., one operating point (or dot in 
our scheme).  By using cellular automata simulation one can obtain a comprehensive view, 
which encompasses the entire range of parameters, as illustrated by the 3D diagram in Fig. 1.  
Furthermore, by using a ring road with 10 traffic lights in one direction, effects of (good or 
bad) coordination are amplified so that their effect is more pronounced. 
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A simple and obvious conclusion from the discussion above is that one should always strive 
to obtain an optimal coordination.  This does not only reduce delay and increase speed (i.e., 
reduce travel time) but, more importantly, helps to increase throughput.  Unfortunately, in 
practice, this is not always possible.  Here are some of the reasons: 
 

1. Arterial progressions must be compromised on two-way streets since the offsets are 
common to both directions; schemes in which one direction is favored during certain 
times are often used. 

2. Offset determination is constrained in grid networks due to the notorious “loop 
constraints” (17).  Priority routes may be created on which preferential offsets are 
established. 

3. Traffic-adaptive schemes may sacrifice arterial coordination benefits in favor of local 
responsiveness.  The trade-offs must be carefully evaluated in this case: local 
advantages may compromise global throughput. 

 
 
 
3.2 Effects of Signal Density 
 
Travel characteristics on signalized arterials are significantly affected by the frequency at 
which traffic lights are encountered, i.e., the signal spacing.  This can easily be investigated 
in the CA model by varying the section length Lδ .  For a given (fixed) density, the 3D 
diagram illustrating flow as a function of offsets and signal spacing is shown in Fig. 5.  The 
number of traffic signals on the loop is varied between 4 to 20 (corresponding, approx., to 
between 1 and 5 signals/km).  A wave-like surface is obtained with respect to the offset.  The 
period is, again, 90s due to the fixed cycle length of the same magnitude.  Since all cars in 
the simulation have the same maximum speed, almost no platoon dispersion is observed. 
Therefore, the maximum flow that can be achieved (i.e., the capacity) does not decline as a 
function of the distance between the traffic signals.  What declines, however, is the 
discrepancy between the worst possible and the best possible choice of offset φ .  
 
Figure 6 is a 2D condensation of the data in Fig. 5 for a fixed (low) density.  The upper (blue) 
line indicates the best possible offset and the lower (red) line the worst.  The discrepancy 
increases with signal density since signal delay becomes a larger proportion of the total travel 
time when there are more signals on the same road length. 
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4. CONCLUSIONS 

Cellular automata models have gained popularity in recent years, though their application in 
traffic simulations dates back half a century.  This study shows that these models can be used 
to demonstrate important traffic flow characteristics in a clear and convincing way. 
 
A simple cellular automata (CA) model is being used to investigate characteristics of traffic 
flow on signalized arterials and to contrast them with those for uninterrupted highway 
facilities.  A fundamental diagram for signal-controlled arterials (in 3D) relating flow to 
density and offsets is generated.  It is shown that, for a given density, throughput is strongly 
correlated with offsets (for any given cycle time and green splits), since offsets determine the 
progression speed.  On the other hand, arterial capacity, using the definition of the Highway 
Capacity Manual in the strictest sense, is not affected by coordination. 
 
Arterial progression is commonly related to travel times, travel speeds, delays and level-of-
service.  In this study it is clearly shown that it ought also to be related to throughput.  This is 
not well recognized in the literature or in practice.  In a broader sense, this is the goal of most 
ITS actions: the reduction of travel time and increase of average speed which, in turn, 
increase throughput or overall productivity of the transportation system. 
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Figure 1.  The fundamental diagram as function of offset φ  and density ρ .  
 
Figure 2.  The fundamental diagram as function of density only. A comparison between a 
random offset strategy (blue) and the fundamental diagram of the system without traffic 
lights (purple). The red dots are simulation results for various offsets. 

Figure 3.  Plotted is the flow Lvvq
N

i
i /

1
∑

=

== ρ of the road (averaged over the whole 

system) as function of offset φ , for a low density ( 1.0=ρ ) and a high density case 
( 86.0=ρ ).  The parameters used are mL 375=δ ,  and pB=0.1, therefore 
optimal progression should be at 

)/5.22(3max smv =
spvLvL B 24.17)/(/ max =−== δδφ . Indeed, the 

maximum of the flow is located at 18=φ . The cycle time is fixed at C=90s.  For the large 
density, the backward progression can be seen to occur around 52−=φ .  
 
Figure 4.  Flow as function of travel time. The upper (red) graph is for an uninterrupted 
arterial (no traffic lights), the bottom (green) for the signalized arterial with random offsets.   
 
Figure 5.  Flow as function of traffic signal density and offset φ .  Due to the fact that all cars 
in the simulation have the same maximum speed, almost no platoon dispersion is observed. 
Therefore, the maximum flow achievable does not decline as a function of distance between 
the traffic lights. What declines, however, is the difference between the worst possible and 
the best possible choice of offset φ . 
 
Figure 6:  Two-dimensional condensation of the data in Fig. 5 for a fixed (low) density.  The 
upper (blue) line indicates the best possible offset and the lower (red) line the poorest.  The 
difference increases with signal density as signal delay becomes a larger proportion of total 
travel time.  
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