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A B S T R A C T

In this thesis we will explore the application of Large Language Models (LLMs)
to automate the generation of Safety Cases (SCs) in the Goal Structuring Notation
(GSN) format. This thesis proposes a new framework that integrates a pretrained
LLM (Llama-3-8B), fine-tuned with domain-specific prompts and datasets, to
generate automatically SCs written textually in XML and using GSN. These SCs
are generated based on supplied safety analyses and system descriptions. These
SCs can be visualized as GSN diagrams within an application, facilitating better
comprehension and verification by safety engineers.

A core innovation of this master’s thesis is the creation of structured XML
syntax to represent GSN elements and their relationships. These XML syntaxes
were used to create full examples of SCs, which were then used to generate
prompts to create the dataset that forms the basis for training the LLM. The model
has been evaluated using the U-SHIFT autonomous vehicle from DLR (German
Aerospace Center), a real-world example of safety-critical systems. The overall
system was manually decomposed into manageable sub-systems. This enabled the
LLM to generate SCs for each sub-system of the U-SHIFT Vehicle (onboarding,
communication and control sub-systems). Results showed that the model was able
to produce modular and SCs, corresponding well to provided safety analysis and
system descriptions in the tested scenarios. It has to be noted, however, that testing
was limited in scope, and it might be that performance of the model in bigger and
more complex projects will bring to light further challenges, including possible
inaccuracies and inconsistencies in the generated outputs.

The results highlight the potential of LLMs to streamline the development of
SCs, provide a consistent starting point for project initiation, reduce manual effort
and improve consistency in safety engineering practices. However, the study also
identifies challenges, including token limitations for large-scale systems and the
need for explicit regulatory compliance validation against regulatory standards
such as ISO 26262, SOTIF, etc. Future research directions include extending the
framework to support hierarchical SCs for highly complex systems, enhancing the
GSN schema (creating an XML syntax for extension modules), and integrating real-
time compliance verification mechanisms. This work try to highlight the potential
of AI-driven methods in safety engineering by introducing an approach that could
reduce the problems related to scaling up and efficiency in order to guarantee the
reliability of safety-critical systems.
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Z U S A M M E N FA S S U N G

Diese Masterarbeit untersucht die Verwendung von Large Language Models
(LLMs) zur automatisierten Erstellung von Safety Cases (SCs) im Goal Structuring
Notation (GSN). Diese Masterarbeit schlägt ein neues Framework vor, das ein
vortrainiertes LLM (Llama-3-8B) integriert, welches durch domänenspezifische
Prompts and Datensätze feinabgestimmt wurde, um SCs textuell im XML-Format
unter Verwendung von GSN zu erzeugen. Das trainierte Modell bekommt als
Eingabe die Sicherheitsanalyse plus die Systembeschreibungen und generiert als
Ausgabe GSN-basierte SCs im XML-Format. Danach können diese SCs direkt
als GSN-Diagramme innerhalb einer Anwendung visualisiert werden, was ihre
Verständigkeit und ihre Überprüfung durch Safety Engineers erleichtert.

Eine Kerninnovation dieser Arbeit ist die Entwicklung einer strukturierten
XML-Syntax zur Darstellung der GSN-Elemente und ihrer verschiedenen Bezie-
hungen. Diese XML-Syntaxen wurden dann verwendet, um vollständige Beispiele
von SCs in XML-Format zu erstellen, die dann zur Erstellung von Prompts
verwendet wurden, um den Datensatz zu erstellen, der die Grundlage für das
Training des LLMs bildet. Das Modell wurde anhand des autonomen Fahrzeugs
U-SHIFT des Deutschen Zentrums für Luft- und Raumfahrt (DLR) evaluiert,
einem realen Beispiel für sicherheitskritische Systeme. Das Gesamtsystem wurde
manuell und in handhabbare Subsysteme zerlegt. Dadurch war das LLM in der
Lage, SCs für jedes der Subsysteme des USHIFT-Fahrzeugs (das Onboarding-
, Kommunikations- und Kontrollsystem) zu generieren. Basierend auf den
verschiedenen Tests und Analysen kann also angenommen werden, dass das
Modell in der Lage ist, modulare und sicherheitsrelevante SCs zu erstellen,
die gut zu den Sicherheitsanalysen und Systembeschreibungen passen, die in
den getesteten Szenarien geliefert wurden. Es ist jedoch darauf hinzuweisen,
dass die Tests in einem sehr eingeschränkten Anwendungsbereich durchgeführt
wurden. Bei umfangreicheren, komplexeren und größeren Projekten weist das
Modell wahrscheinlich weitere Probleme auf, wobei die erzeugten Ergebnisse
wahrscheinlich ungenauer und inkonsistenter sind.

Die Ergebnisse betonen das Potenzial der LLMs, SCs zu optimieren, eine kon-
sistente Ausgangsbasis für Projektinitiativen zu bieten, den manuellen Aufwand
zu reduzieren und die Konsistenz in sichercheitstechnischen Verfahren zu ver-
bessern. Gleichzeitig identifiziert die Studie Herausforderungen, darunter Token-
Beschränkungen bei groß angelegten Systemen und die Notwendigkeit einer ex-
pliziten Validierung der regulatorischen Konformität gemäß Standards wie ISO
26262, SOTIF und andere. Zukünftige Forschungsschwerpunkte umfassen die Er-
weiterung des Frameworks zur Unterstützung hierarchischer SCs für hochkomple-
xe Systeme, die Verbesserung des GSN-Schemas (einschließlich der Entwicklung
einer XML-Syntax fur Erweiterungsmodule) und die Integration von Mechanismen
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zur Echtzeitüberprüfung der Konformität. Diese Arbeit versucht, das potential KI-
gestützter Methoden im Bereich der Sicherheitsingenieurwissenschaften hervorzu-
heben, indem ein Ansatz vorgestellt wird, der die Probleme im Zusammenhang
mit Skalierbarkeit und Effizienz verringern könnte, um die Zuverlässigkeit sicher-
heitskritischer Systeme zu gewährleisten.
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1
I N T R O D U C T I O N

In this chapter we will present the motivation for this research and outline the
various research questions that will form the basis of this study. After that, we will
highlight the importance of automating the generation of safety cases using Large
Language Models (LLMs) to improve the efficiency and reliability of safety-critical
systems. We will conclude with an overview of the thesis structure, guiding the
reader through the organization of the work.

1.1 motivation

In industries where safety is very important, like aviation, aerospace, automotive,
healthcare, railway, thorough safety assessments are needed to reduce risks and
avoid serious failures. These assessments usually include the creation of Safety
Cases (SCs). SCs are structured arguments supported by evidence, that aim to
demonstrate the safety and reliability of a system within a specific operational
context [37]. However, creating SCs requires a lot of resources, needs a lot of
manual work, time, and skill [42], [56]. Nevertheless, with Artificial Intelligence
(AI), especially LLMs, there are now new opportunities to support these processes.

Popular LLMs, like Llama-3.1-405B created by Meta, show strong skills in
Natural Language Processing (NLP) and text creation. Those LLMs are used in
many fields and task because of these capabilities. Software developers use LLMs
to make code and fix errors, translators use them for good translations, and content
makers use them for marketing writing and scripts. This thesis looks at how to put
LLMs into the important area of system safety to help create safety cases, making
the process faster while keeping accuracy and thoroughness high.

In this thesis, we leverage LLMs, specially our fine-tuned version of the Llama-3-
8B model, to automatically generate GSN-based safety cases in XML format. This
work uses LLMs to support Safety Engineers in their daily activities, with the idea
of overcoming some of the most important challenges in safety engineering: reduc-
ing the manual workload, minimizing human error, and enabling faster iteration
cycles. This master’s thesis will contribute to the development of AI-assisted tools
that can be used in the safety engineering process.

1.2 research questions

This thesis addresses the following research questions:

1



1.3 structure of thesis 2

1. How can LLMs be applied to support the development of safety cases ?

2. How could methodologies to generate safety cases and their graphical repre-
sentation in GSN using LLMs look like ?

3. How can the findings be applied to the automotive domain, particularly in
the context of an automated vehicle (U-SHIFT Vehicle from DLR) ?

1.3 structure of thesis

This master’s thesis has six chapters, along with an appendix and bibliography, to
facilitate a thorough review of the research, its methodology, and findings:

Chapter 1, introduction: In this chapter, we show the motivation of the study,
articulate the research questions, and provide an overview of the thesis structure.
This introduction will then set the context for the use of LLMs in SCs generation
and highlights the significance of the methodology presented.

Chapter 2, theoretical background: This chapter will introduce the necessary
concepts on which the research is based. We start by covering the definition,
importance, and structure of SCs. Here we will focus on the Goal Structuring
Notation (GSN) and its XML representation. The chapter further provides an
detailed overview of Large Language Models (LLMs), covering their architecture,
training methods, and applications in technical domains. Finally, we will be look-
ing at challenges with LLMs and potential for future developments in engineering
contexts.

Chapter 3, related work: This chapter will review previous work relevant for
this master’s thesis. We then take a look at previous solutions for automated SCs
generation, applications of LLMs in safety-critical domains, and LLM for fine
tuning techniques. The final part chapter is an overview of the opportunities and
limitations that LLMs present when facing the challenges within safety engineer-
ing.

Chapter 4, methodology: This part of the master’s thesis contains the method-
ologies on how to generate SCs in XML format using our fine-tuned Llama-3
model. It first gives an overview of the approach, followed by description of the
XML-based GSN representation used for safety cases generation. Then we will
cover the dataset preparation, prompt engineering, and the configuration of Llama-
3.1-405B for generating the dataset (both safety analyses and SCs in XML). After
that, we will also discuss the fine-tuning process using the Unsloth framework, the
deployment of the trained model on Hugging Face Hub, and the development of
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desktop application for XML-to-GSN conversion and visualization.

Chapter 5, testing and evaluation: In this chapter, we test the developed frame-
work (especially the fine-tuned Llama-3-8B model) to a real-world example (the
U-SHIFT autonomous vehicle from DLR, as a case study). It describes strategy and
evaluates the model’s performance on three selected subsystems: the Onboarding
System, Control System, and Communication System. This chapter presents a
safety analysis for each subsystem, along with generated XML safety cases and a
comprehensive evaluation of the results. Finally, the comprehensive testing phase
will be analyzed and some recommendations for future improvements will be
given.

Chapter 6, conclusion: This chapter summarizes the main results of the work
and points out its contributions to the safety engineering. It also reflects on the
limitations of the methodology used and outlines future research opportunities,
including improvements on scalability, validation of compliance, and generation
of hierarchical SCs generation.



2
T H E O R E T I C A L B A C K G R O U N D

This chapter provides the theoretical foundation for the thesis. It details the
fundamental concepts of the SCs and the Goal Structuring Notation (GSN),
together with their role in safety-critical systems. This also introduces LLMs
and explains their architecture, training approaches, and use in various technical
domains. These concepts form the groundwork for the methodology presented in
Chapter 4.

2.1 safety cases and gsn

2.1.1 Definition and Importance of Safety Cases

Safety Cases (SCs) "is a comprehensive and structured set of safety documentation which
is aimed to ensure that the safety of a specific vessel or equipment can be demonstrated
by reference to: safety arrangements and organization; safety analyses; compliance with
the standards and best practice; acceptance tests; audits; inspections; feedback; and
provision made for safe use including emergency arrangements" [37]. They serve as a
comprehensive rationale for why a system can be considered acceptably safe to
operate. The SCs are very important, especially in high-risk industries such as
aerospace, automotive, nuclear power, and healthcare, since the system failures
may lead to very critical consequences, including loss of life, environmental
damage, or major economic loss [37].

Various international standards, such as ISO 26262 for automotive , ARP 4754

and ARP 4761 for aviation, and IEC 61508 for general functional safety, define
objectives that should be met to ensure safety but do not specify methods to
achieve them. However, organizations are given the freedom to choose suitable
approaches, safety cases have been in widespread use in many domains as a way
to provide evidence of compliance with defined objectives.

In practice, SCs for systems can become significantly large during their devel-
opment and as they continue to evolve. For example, the initial SCs for airport
surface surveillance operations spans approximately 200 pages [19], [52]. The
manual creation of such extensive SCs can be time-consuming, and error-prone
[42], [56].

There are many advantages of SCs: They provide a general framework to demon-
strate that a system complies with all relevant standards and regulatory require-
ments. Furthermore, by employing meticulous documentation of safety-related
factors, SCs facilitate an inclusive and thorough risk assessment. In addition, SCs
provide a comprehensive record of the safety arguments and evidence, thereby

4



2.1 safety cases and gsn 5

rendering the safety assessment process transparent. And finally, SCs are not nec-
essarily a requirement but can aid in the approval and certification of safety-critical
systems.

SCs can be represented in a variety of formats, each with its own relative
strengths and domains of application. Most common forms reviewed here include
structured prose, graphical notations, and formal methods. Structured prose
presents safety arguments in a textual format; it is often organized hierarchically
and outlines the goals, strategies, and evidence. Although this format is accessible,
it can become unwieldy for complex systems. Many graphical notations using
various types of diagrams or schema, such as the GSN [58], Structured Assurance
Case Metamodel (SACM) [54] , and Claim-Argument-Evidence (CAE), have gained
popularity due to their visual clarity and ability to represent complex relationships
succinctly. In this thesis, we will focus on the GSN representation because it is the
most widely used today [12].

2.1.2 Introduction to the Goal Structuring Notation

GSN is a graphical notation, which is widely adopted today to represent SCs. GSN
have been developed by Kelly and Weaver [36], and has become a de facto standard
in many safety-critical sectors for visualizing and communicating complex safety
arguments. GSN provides a way to present the relationships between safety goals,
strategies for achieving those goals, and the supporting evidence. GSN improves
the comprehensibility and review-ability of SCs, particularly for large-scale and
complex-systems, by proving a clear, logical representation of safety arguments.
GSN consists of several interconnected elements, each element serving a specific
purpose in the construction of a comprehensive safety argument. It is very impor-
tant to understand these elements and their relationships for effectively developing
and analyzing SCs using GSN.

The key components of GSN are as follows: goal, strategy, context, solution,
assumption, justification. Each element can be represented graphically. Addition-
ally, every instance of these elements, that is created within a GSN diagram is
assigned a unique identifier (ID) to distinguish it from other instances. Those
instances within the GSN diagram are interconnected by two types of relationship:
"InContextOf" and "SupportedBy". Below, we provide an in-depth description of
each of the elements and their graphical representation.

2.1.3 Example of goal structure

Below is an example of Safety Cases in GSN.



2.1 safety cases and gsn 6

▷ A goal, "rendered as a rectangle, presents a claim forming part of the argument"
[28].

Figure 2.1: Graphical representation of a Goal in GSN

▷ A strategy, " rendered as a parallelogram, describes the inference that exists
between a goal and its supporting goal(s)" [28].

Figure 2.2: Graphical representation of a Strategy in GSN

▷ A Solution, "rendered as a circle, presents a reference to an evidence item" [28].

Figure 2.3: Graphical representation of a Solution in GSN

▷ A context, "rendered as show below, presents a contextual artifact. This can be a
reference to contextual information, or a statement" [28].

Figure 2.4: Graphical representation of a Context in GSN
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▷ A justification, "rendered as an oval with the letter ’J’ at the top- or bottom-right,
presents a statement of rationale" [28].

Figure 2.5: Graphical representation of a Justification in GSN

▷ An assumption, "rendered as an oval with the letter ’A’ at the top- or
bottom-right, presents an intentionally unsubstantiated statement." [28].

Figure 2.6: Graphical representation of an assumption in GSN

▷ SupportedBy, "rendered as a line with solid arrowhead, allows support
relationships between elements to be documented. Permitted ’supported by’

connections are: goal-to-goal, goal-to-strategy, goal-to-solution, strategy-to-goal"
[28].

Figure 2.7: Graphical representation of a "SupportedBy" relationship

▷ InContextOf, "rendered as a line with a hollow arrowhead, declares a contextual
relationship. Permitted ’in context of’ connections are: goal-to-context,

goal-to-assumption, goal-to-justification, strategy-to-context,
strategy-to-assumption and strategy-to-justification" [28].

Figure 2.8: Graphical representation of a "InContextOf" relationship
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Figure 2.9: Example of safety cases in GSN [28]
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2.2 introduction to large language models (llms)

2.2.1 What are LLMs ?

Large Language Models (LLMs) are a particular type of Artificial Intelligence (AI)
Models for understanding and generating human language on a large scale are
reviewed here. Usually built using deep learning techniques, such models are
trained conventionally on large amounts of text data to understand the complexity
and nuances of language [2], [71]. The underlying architecture of LLMs is based
on transformers, and enables processing and generating text with a high degree of
fluency and coherence [62].

One of the fundamental characteristics of LLMs is their ability to perform a wide
range of (language-related) tasks without needing a specific task-specific training.
This capability of LLMs to perform a wide-range of language related tasks comes
from their training, that was accomplished on diverse datasets. For example, GPT-
3, created by OpenAI, is capable of producing text at a level similar to humans
(translating languages, summarizing long documents, holding a conversational
dialog, etc.) [7]. To achieve such a high level of performance, training LLMs
requires using huge amount of data [2]. During this training phase, the model
predict the next words in a sentence to learn patterns and structures in language.
The effectiveness of the transformer architecture, developed by Vaswani, Shazeer,
Parmar, et al. [62], has been highly proved for various language-related tasks. At
the core of this model is the self-attention mechanism that enables the model to
have a unique ability in estimating the relative importance of words in a sentence.
This allows the transformer to understand context more deeply so that it can
generate much more coherent and meaningful text. In a nutshell, by analyzing
these interrelations among words, the model learns to appreciate such subtleties in
language that result in outputs that would be increasingly precise and contextually
relevant across different language-related tasks. The training process consists in
predicting the next word given a certain sentence.

2.2.2 The History of LLMs

Starting from the rule-based systems in the 1950s and 1960s, it is now a few-decade-
long development process for LLMs. Though these old models were able to do
magic in those days, they suffered from the disadvantage of their own hand-coded
linguistic rules and features that limited the solution space of NLP [32], [39].

The 1980s and 1990s saw the introduction of Statistical Language Models using
probabilistic methods for judging the likelihood of a word sequence in a given
context. These models had achieved better accuracy and huge data handling.
Compared to their rule-based predecessors, they had better capabilities but still
fell short in understanding the fine-grained semantics and contextual aspects of
language[15], [35].
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A good path was developed starting in the mid-2010s with the implementation
of Neural Language Models [4]. It utilizes the profound concept of deep learning
in learning all structures of the extensive text corpus. The origins for this beginning
point is the RNNLM introduced back in 2010; giving a much finer representation
context that gave out more natural, coherent-like textual output [38].

Google launched in 2015 the Google Neural Machine Translation (GNMT)
system, a pioneering large-scale neural language model. Trained on extensive
bilingual data, GNMT achieved remarkable performance in machine translation
tasks [69].

The transformer architecture, introduced in 2017 [62], radically improved this
sub-field by allowing to model long-term language dependencies and concurrently
train the models on many GPUs. This finding made way for the training of a much
larger model Wolf, Debut, Sanh, et al. [67].

OpenAI’s GPT-1, released in 2018 [50], represented a major milestone in natural
language processing. With its transformer-based architecture and 117 million
parameters, GPT-1 demonstrated the ability to generate contextually relevant
sentences, showcasing the potential of transformers in NLP tasks [1].

GPT-3, released in 2020 by OpenAI, was considered as the largest LLM at that
time. This model’s ability to generate highly coherent and natural-sounding text
across a wide range of NLP tasks highlighted the immense potential of LLMs [43],
[25]. After the gigantic success of GPT-3 worldwide, OpenAI released in 2024 GPT-
4.

After the gigantic success of GPT-3 worldwide, OpenAI released GPT- 4 in
2024. Meanwhile, though, open-source LLMs had taken up much traction. One
would note, for example, the LLaMA family and its pivotal role in this movement.
In February 2023, Meta AI released LLaMA 1, which was an instant hit with
researchers and developers even in its initially somewhat constrained form. The
development continue with the release of LLaMA 2 in July 2023. This new
model version model is much more permissively licensed, allowing much broader
commercial use.. This was followed by LLaMA 3, launched in February 2024,
with improvements over previous versions. LLaMA 3 comes in three sizes: 8B,
70B, and the 405B model [24]. LLaMA 3.1 405 Billion parameter model, released
on 23 July 2024, is considered one of the world’s largest and most openly
available foundation models. The 405B model demonstrates state-of-art capabilities
in general knowledge, steerability, math, tool use, and multilingual translation.

2.2.3 Architecture of a LLM (Large Language Model)

LLMs are architecturally designed mostly on transformer architecture. Transform-
ers have been among the breakthroughs in natural language processing since their
release in 2017 by Vaswani, Shazeer, Parmar, et al. [62], [41].

One of the important components of this architecture has been the incorporation
of an attention mechanism, where a model would be able to estimate how
important different parts of input data are simultaneously. It permits rapid and
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Figure 2.10: Evolution Roadmap of Large Language Models [32]

efficient processing of linguistic information that forms the backbone for pre-
training LLMs. In pre-training, such models learn a great number of linguistic
patterns from huge text datasets to build up a large knowledge base about
linguistics transformer. There are two major components making up a transformer:
the encoder and the decoder.

The transformer is composed of 2 sub-components: the encoder and the decoder.
The encoder transforms input sequences into a set of high-dimensional continuous
representations, while the decoder incorporates a self-attention mechanism; this
enables the model to consider the whole sequence rather than each component
separately. To address the model’s non-recurrent nature, positional encoding are
added to the input to preserve sequential order information [62], [53].

There are 2 main parts the transformer has: the encoder and the decoder.
The encoder maps input sequences into a set of high-dimensional continuous
representations, and the decoder has a self-attention mechanism, so the model
can have consideration for the whole sequence rather than each element as what it
is. To address the model’s non-recurrent nature, positional encoding are added to
the input to preserve sequential order information [62], [53].

The complexity and substantial number of parameters in LLMs greatly enhance
their capacity to learn and capture diverse linguistic features and dependencies
from large datasets. Models like those in the Llama 3 family, discussed by
Dubey, Jauhri, Pandey, et al., have parameter that ranges from 1B to 405B. These
parameters allow the model to have several layers of abstraction, hence being
capable to perform complex tasks (translation, summarization, coding, and even
conversation) with a high level of accuracy.But including more parameters causes
higher computational burden and memory utilization, making these models
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Figure 2.11: Model architecture of the Transformer (Vaswani, Shazeer, Parmar, et al.[62])
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computationally heavy. So there should be a trade-off between the advantage of
using extra parameters and the computation challenges of implementing these
memory-consuming models in real-world applications. Consequently, several
studies, for example, by Chavan, Magazine, Kushwaha, et al. [11], focus on
compressing these models. Model compression refers to the reduction in size and
computational requirements of Deep Neural Networks (DNN) without sacrificing
much of their performance—an aspect that is quite important in the deployment
of LLMs on low-resources devices such as mobile phones and embedded systems.

2.2.4 The training steps of a LLM

The Training of LLMs involves some necessary steps. Those steps enable effec-
tive learning from large textual data. Here, the major stages of LLM training are
summarized (data preparation, model configuration, pre-training, fine-tuning, and
evaluation) [22].

▷ Identification of the target: An LLM training process starts from the use case
of the model, as the target determines the data sources for training the model.
The target and the LLM use case continuously evolve. During this evolution,
there is an adaption of new elements during the training and fine-tuning.

▷ Data preparation: After the identification of the target, we will collect and
pre-process large text corpora related to this target. This step includes, but
is not limited to, tokenization, data cleaning, and normalization - thereby
preparing the data for training. High-quality data is very important because
the model’s performance is directly related to it.

▷ Model configuration: After preparation, the next thing is to define the model
structure. Most LLMs base their architecture on transformer. This is the
reason why, they need a definition of parameters (the number of layers, at-
tention heads, and hyper-parameters). In addition, researchers often conduct
experimental research using these parameters to optimize performance.

▷ Pre-training: The model, once configured, has to be exposed to a large corpus
of data so that it can learn patterns of the language and context in which to
apply them. Common objectives include masked language modeling and
next-token prediction. This step requires a lot of computational power and
typically requires significant resources because.

▷ Fine-tuning: This comes after the pre-training step. The model is fine-tuned
on a smaller, which is task-specific. During this phase, the model is trained
with supervised-learning for certain tasks such as text classification or ques-
tion answering. This makes the model more useful for a very wide range of



2.3 application of llms in technical domains 14

applications and improve its performance.

▷ Evaluation: This is the last step in modeling performance evaluation using
appropriate metrics for tasks that it has been fine-tuned to perform. Com-
monly used metrics include accuracy, F1 score and BLEU score. The model
evaluation should be performed thoroughly to ensure generalization to data
that it has never seen before.

2.3 application of llms in technical domains

2.3.1 Existing applications and research

LLMs have applications in many technical fields: finance, mechanical engineering,
mathematics, etc. [29].

▷ Finance

LLMs are revolutionizing the finance industry, allowing a wide array of
applications in the area of operational efficiency improvement and decision-
making process enhancement. Advanced AI systems are being applied to
several important financial domains.

One notable example is BloombergGPT [68], a sophisticated LLM with 50

billion parameters. It has been trained on a huge and various financial data.
This model has resulted in significant improvement in the financial NLP
tasks. BloombergGPT can deliver an enormous boost to customer service
in efficiently managing queries and creating top-shelf financial advisories.

The other very vital area where LLMs are also making great strides is in risk
assessment and management. In predicting risks and suggesting the way of
mitigation, there are many financial algorithms the model use (historical data
and market trends). Financial institutions are increasingly relying on LLMs
to make credit risks assessments, loan approval decisions, and investment
strategies in general.

However, financial data has very sensitive features that demand more
attention to privacy and security issues; In order to handle these challenges,
methodologies like data encryption, and full data protection strategies have
to be in place so that LMMs operate effectively while meeting the regulatory
requirements.

The development of FinGPT [70], a Large Language Model specifically de-
signed for the finance sector, is a promising line of development in this
regard. This will be continued, and even more specialized financial LLMs
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are likely to emerge as the research proceeds.

▷ Mathematics

The application of ChatGPT in mathematics education has shown great
promise. Wardat, Tashtoush, AlAli, and Jarrah [65] found that ChatGPT could
improve the teaching of mathematics. The latter is substantiated by the fact
that AI models can create interactive and tailor-made learning experiences
that will be able to produce custom examples and problem-solving methods
based on the needs of every students. It allows for instant feedback,
identification and critical areas where students are making mistakes, and
possible means of approaching those areas. This means that ChatGPT can
respond almost instantly, giving accurate identification of specific points
where the learners are making mistakes and several targeted strategies in
getting past these barriers. It is also capable of doing simple calculations
and solving simplistic equations. Yet, it will be very unpredictable in its
performances, given various factors such as the complexity of a problem,
precise input information, or how well instructions are designed. Researches
(Frieder, Pinchetti, Griffiths, et al. [26]) conducted an evaluation of its
capabilities in mathematics to date with ChatGPT by testing it against a
publicly available dataset. They compared its performance with other models
specially developed for mathematical data (e.g. Minerva).

2.3.2 Challenges of LLMs

Although LLMs are very powerful tools with impressive capabilities of understand-
ing and generating human-like texts, they have complex challenges and limitations,
that we will present in this section: [29]

▷ The massive computer resources required for their training and deploy-
ment. Those LLMs count often billions of parameters. That is the reason why
they necessitate massive computing infrastructure and energy consumption.
Following researchers (Strubell, Ganesh, and McCallum) [59] noted this issue
in their research work, estimating that training a single layer transformer
model can emit as much carbon as five cars over their lifetimes. This issue
naturally raises important concerns about the viability of developing large
language models (LLMs) and widespread use, with researchers developing
increasingly larger models in attempt to maximize performance.

▷ The following challenge involves their high demand for data. LLMs require
a massive corpus, often drawn from the web, and therefore present complica-
tions in terms of data privacy, copyright infringement, and ethical concerns
about utilizing sensitive and private information in a non-consensual manner.
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Following researchers (Bender, Gebru, McMillan-Major, and Shmitchell [6])
have discussed at length such concerns, stating that both model performance
and fairness depend a lot on diversity and quality in training data. If training
data contain biases, this may lead to LLMs that, as been demonstrated, can
produce discriminatory outputs.

▷ Another challenge is the opacity in the decision-making process of LLMs.
This is commonly known as "black-box" problem. It offers very serious
obstacles to the interpretability and accountability called for. Following
researchers have investigated the interest in interpretability of LLMs by
maintaining that the lack of transparency in LLMs is a barrier toward Under-
standing, debugging and trusting their outputs. The lack of interpretability
then becomes a serious problem in the critical applications where it’s very
important that the reasoning behind a model’s decision be explained and
justified.

▷ Another limitation of Large Langue Models (LLMs) pertains to their lack of
long-term factual accuracy and coherence in long conversations or texts.
The study conducted by (Gallegos, Rossi, Barrow, et al. [27]) examined this
problem and discovered that, even when LLMs have preformed well in short-
term language modeling, they often lack accuracy and logical cohesion in
long-term settings.

In the image below, we present the various challenges associated with LLMs in
greater detail (figure 2.12).

This chapter has established the essential theoretical background, including GSN
and LLMs, that underpin the methodology developed in this research. The insights
gained here are critical for understanding the proposed approach. Chapter 3 will
now review related work, identifying gaps in existing literature and justifying the
need for this study.
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Figure 2.12: Challenges of LLMs (Hadi, Al Tashi, Shah, et al. [29])



3
R E L AT E D W O R K

This chapter examines the present landscape of research regarding automated
SCs generation and the application of LLMs in safety-critical contexts. This
analysis emphasizes current methodologies, their constraints, and the unresolved
challenges that persist. This chapter identifies research gaps, thereby establishing
the unique contribution of the thesis and its relevance.

3.1 automated generation of safety cases

Interest in automation of the SCs generation process has recently been growing
among researchers in the last years [55]. Several significant contributions have
arisen, each presenting distinct methods to optimize and improve the creation
and assessment of SCs. A notable advancement was made by researchers (Denney
and Pai [18], in 2014) who developed a methodology for automatically generating
SCs through formal verification techniques. This method was implemented in
NASA’s Swift Unmanned Aircraft System (UAS). The study lacked a mechanism
for evaluating the reliability of the generated SCs.

A major development in this field is the introduction of AdVoCATE Denney and
Pai [19], in 2018, developed and automated tool for improving the construction
and evaluation of SCs. This innovative tool supports manual operations and
embeds a variety of automated features. These include metadata integration,
format translation, compatibility with other SCs tools, composition through auto-
generated components, and the calculation of safety cases metrics. AdvoCATE
primarily employs the GSN notation and can seamlessly merge manually created
safety case elements with content from external tools, although this integration
is currently limited to the AUTOCERT formal verification tool Denney and Pai
[17]. AdvoCATE offers a comprehensive suite of functionalities, including: creation
and assembly of safety assurance arguments, integration of formal methods into
broader assurance arguments, instantiation of assurance patterns, hierarchical and
modular abstraction, generation of views from user-defined queries, verification of
argument structure properties [19].

In the erea of Cyber-Physical Systems (CPSs) researchers (Hartsell, Mahadevan,
Dubey, and Karsai [30]) present an automated approach to create AC! (ACs).
This technique uses patterns to minimize manual development of ACs that are
error-prone, especially when dealing with connected system models. The study
shows how this method enables the development of integrated ACs with source
artifacts. It is important to acknowledge that the produced assurance cases may be
deficient, as some nodes may be devoid of parameters and cannot be instantiated
automatically.

18
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Another significant contribution to the field is an automated framework for
generating ACs (Wang, Oh, Low, et al. [64], which aids in the creation, validation,
and assessment of SCs generation, it’s important to note that their evaluation
focuses solely on specific sections of the ACs that are either fully or nearly
complete, which may not provide a fully accurate assessment of the overall SCs.

Ramakrishna, Hartsell, Dubey, et al. [51] conducted a research, that identified
that traditional manual approaches to safety case development suffer from a lack
of robustness and systematic methodology. To address this challenge, a novel
tool called the Assurance Case Generation (ACG) was proposed. The AGC tool
uses design artifacts, existing evidence, and developer experience to automate the
construction of SCs. The AGC tool uses design artifacts, pre-existing evidence, and
the experience of developers to automate to enable the automated generation of
software components. The AGC is a great success in the development of software
components. The authors acknowledge various limitations in their approach. For
a start, many areas still require human intervention. Specially, human labor is
still needed for translating certification standards into GSN. Moreover, today’s SCs
evaluation is based on one metric and may not be an all-inclusive assessment.

3.2 leveraging llms for the generation of safety cases

Researchers (Weyssow, Sahraoui, and Syriani [66]) conducted a research to address
the challenges in meta-models, which is a way to underline correlations among
notions in the field of Model-Driven Engineering (MDE). A method based on
Deep-Learning using pretrained LLMs has been proposed. The researchers showed
that it is able to effectively provide recommendations for scenarios of renaming
concepts.

The advanced capabilities of LLMs such as GPT-4 in the Requirement Engineer-
ing (RE) concept has been showcased in another recent work by Chen, Chen, Has-
sani, et al. [14] particularly focusing in the development of goal-oriented models.
The findings show that GPT-4’s performs well in to the Goal-oriented Requirement
Language (GRL). However, some generated elements were found to be generic
or incorrect. Nonetheless, the concepts produced were beneficial, especially for
stakeholders who might not be well-versed in the domain. This paper builds upon
and expands this research.

Additionally, Chaaben, Burgueño, and Sahraoui [9] and Cámara, Troya, Bur-
gueño, and Vallecillo [8] have utilized ChatGPT for generating Unified Modeling
Language (UML) models. An innovative approach to enhance domain modeling
is presented. This method utilizes LLMs without requiring training during a very-
long time.

Their method utilizes few-shot prompt learning, thereby obviating the necessity
for extensive datasets in training of the model. Simultaneously, the latter examines
the implications of LLMs such as ChatGPT, highlighting their strengths and
limitations in software modeling tasks, especially in UML modeling.
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Viger, Murphy, Diemert, et al. [63] proposed the utilization of generative AI to
identify potential objections, or defeaters, in ACs to improve their reliability. This
work is preliminary and lacks empirical validation. However, it suggests a bright
avenue for future research.

Similarly, Sivakumar, Belle, Shan, and Shahandashti [56] investigated GPT-
4 for SCs generation, which is an essential activity in safety certification of
safety-critical systems (autonomous vehicles and cyber-physical systems). The
researchers concluded that GPT-4 performed with a level of accuracy in generating
safety arguments, and with semantic coherence with regard to currently safety
standards. In spite of GPT-4’s capabilities, the authors stressed supervision, citing,
for instance, that incorrect information and even fabricated information could
occur in individual arguments.

3.3 llms for safety analyses

LLMs have been employed in transportation for safety analysis in highway con-
struction and aviation. Researchers have investigated the use of LLMs to analyze
highway construction safety -Smetana, Salles, Sukharev, and Khazanovich[57] -
2024, leveraging their NLP capabilities to extract insights from safety-related data.
In the aviation sector, a case study examined the potential of generative language
models for safety analysis using the Aviation Safety Reporting System (ASRS) (Qi,
Zhao, Khastgir, and Huang[49]), demonstrating the models’ ability to process and
analyze large volumes of safety reports.

In the same movement, other potential applications of LLMs within safety
analysis methodologies has also been investigated. A tangible example is a
research on the system-Theoretic Process Analysis (STPA) conducted by Qi, Zhao,
Khastgir, and Huang[49]. This study explored the use of ChatGPT in order to
demonstrate the potential of LLMs in supporting safety analysts across various
industries. The findings showcased the possibility of using LLMs to enhance the
efficiency and effectiveness of safety assessment processes.

But, we notice that these studies highlight the flexibility and adaptability of
LLMs in different safety domains, but they often rely on general-purpose prompt
engineering.

3.4 llm fine-tuning

The research on LLMs fine-tuning has evolved considerably [48]. The need for
models that can be adapted to specific tasks in a large number on domain is also
increasing. We learned in the last chapter, that LLMs are initially pre-trained over
large datasets. After that, the models move on to the transfer learning phase, which
can further be classified under two principal approaches: the feature-based transfer
and the fine-tuning methodologies. Transfer learning is particularly useful when
the available dataset is insufficient to train a model from scratch. Consequently,
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allowing using pretrained weights as a starting point. Under the category of
feature-based transfer learning, features extracted from the pretrained model are
adopted by a relatively small model dedicated to the targeted domain dataset.
The models then move on to the transfer learning phase, which can further be
classified under two principal approaches: the feature-based transfer and fine-
tuning methodologies. Transfer learning is particularly useful when the available
dataset is insufficient to train a model from scratch, thus allowing using pretrained
weights as a starting point. Under the category of feature-based transfer learning,
features extracted from the pretrained model are adopted by a relatively small
model dedicated to the targeted domain dataset. Conversely, fine-tuning involves
adjusting the pretrained weights on a task-specific dataset, with various techniques
such as adapter tuning, gradual unfreezing, and prompt tuning, depending on
how many layers are fine-tuned and the management of prompts during this
process.

The Retrieval Augmented Generation (RAG) approach serves as an alternative
to fine-tuning. It entails chunking documents, transforming them into embeddings,
and storing these embeddings in a vector database for retrieval via similarity
searches. This method is frequently regarded as a viable production solution
because of its efficiency and reasonably accurate outcomes Jeong [34].The
effectiveness of RAG may be considerably compromised by inadequate retrieval
mechanisms. For instance, while some studies [16] suggest that adding noisy
documents can enhance information retrieval in RAG, the quality of the responses
remains constrained by the limitations of the similarity search, rather than the
capabilities of the LLM itself.

Comparative studies [5] indicate that fine-tuning can yield more concise and
accurate outputs than RAG pipelines, as evidenced by experiments conducted
on domain-specific data, such as those from agricultural journals. However, the
authors also note the considerable initial investment required for fine-tuning.

Recent advancements, particularly in Low-Rank Adaptation (LoRA) [31], have
revolutionized fine-tuning by allowing the adjustment of a limited number of
essential parameters-often in the range of thousands to millions-rather than the
billions typically found in full model parameters. Additionally, the exploration of
quantization techniques has opened new pathways for training LLMs on resource-
contrained systems, enabling effective training at reduced memory costs[20]. The
integration of quantized LLMs with parameter-efficient techniques like LoRA has
demonstrated that satisfactory results can be achieved with limited resources [21].

Parameter-Efficient Fine-Tuning (PEFT) is a method used in Natural Language
Processing (NLP) to improve the performance of pre-trained language models on
targeted downstream tasks. PEFT conserves computation resources and reduces
training time by reusing parameters from a pretrained model and fine-tuning them
on smaller datasets, rather than starting from scratch. This technique typically
involves freezing some layers of the pre-trained model while adjusting only the
final layers relevant to the task. Various PEFT techniques include: Adapter, IA3,
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Prefix tuning, P-tuning, Prompt tuning, LoRA and QLoRA. But we will focus on
the methodologies of the last two in this thesis

LoRA [31], a fine-tune technique LLMs by adding small, trainable sub-modules
next to the feed-forward layers in the transformer architecture. These modules use
rank decomposition to drastically decrease the number of trainable parameters
while maintaining or enhancing performance. LoRA introduce two additional
feed-forward layers: one that projects the input into a lower-dimensional space
and another that restores it to the original size. This results in an updated
representation that minimizes task-specific parameters, facilitating efficient task-
switching and reducing hardware demands without increasing inference latency.

Quantized Low-Rank Adaptation (QLoRA) is an enhanced version of LoRA that
reduces the precision of weight parameters to 4 bits. This reduction in precision
decreases the model size, making QLoRA particularly useful in scenarios where
memory resources for fine-tuning are limited [45].

3.5 conclusion from related work

Current researches indicates that LLMs have significant potential for generating
SCs in various technical fields. Nonetheless, a prevalent limitation in these studies
is their dependence on prompt engineering, wherein users strive to obtain precise
responses from the model based in its general knowledge. We can notice that these
methods are highly flexible. However, they lack the necessary precision and depth
for safety-critical applications. Through this master’s thesis, we try to propose a
new framework to address these challenges by:

1. Developing a special XML syntax for GSN-based SCs to enable structured
text generation

2. Converting textual SCs in XML into GSN diagrams,

3. Training a LLM on domain-specific datasets (including SCs, Safety Analysis
and System design, which are closer to the real-word) so that the model
outputs are directly tailored for the task without relying on prompt-
engineering. This way, it could lead to substantial improvement in accuracy,
reliability, and applicability of automated SCs generation, resulting in a large
improvement over current approaches in this field.



4
M E T H O D O L O G Y

This chapter presents the methodology for generating SCs using a fine-tuned
Llama-3-8B model. It describes the creation of a structured XML representation
for GSN elements, dataset analyses and system descriptions. Additionally, the
chapter details the development of a desktop application to visualize the SCs and
GSN diagrams. The methodology builds on the theoretical concepts introduced in
Chapter 2 and addresses the gaps identified in Chapter 3.

4.1 introducing the method

The developed methodology consists of 6 main components:

1. The safety engineer: Responsible for conducting the operations.

2. Our trained LLM: we fine-tuned the Llama-3-8b-bnb-4bit (from Hugging-
Face Hub) on our own data.

3. The safety analysis and system description/design.

4. A desktop Application: Developed in Python using the framework Tkinter,
that application allows us to interact with the model and access the results.

5. XML output: generated by the LLM.

6. GSN Diagram: generated by the program.

Below, we present the the complete and end-to-end process, involving each of
the above components and highlighting how they interact.

1. The Safety Engineer generates or first establishes the safety analysis and
system description, which will then be saved in a file.

2. He then transmits the contents of this file to the LLM ( fine-tuned Llama-
3-8b-bnb-4bit) via the main user interface of our program to the LLM and
clicks on the "Generate GSN Diagram" button on the UI.

23



4.1 introducing the method 24

3. The application calls our LLM via an API to sends it the SCs and system
description provided by the safety Engineer.

4. The LLM takes the SCs and the System description as input

5. The LLM will then be able to generate XML SCs in compliance with GSN,
and corresponding to the variety of examples provided by the dataset during
the training phase. When the SC in XML are generated, the program saves
them and then immediately convert them into a GSN diagram using the
Python package called Graphviz which facilitates the creation of diagrams
in Python language.

6. Finally, the GSN diagram can be visualized in a separate window from the
main window and, if desired, the SCs can be viewed in XML.

7. The Safety Engineer The safety Engineer, if he wishes, must click on "view
in XML" to be able to visualize SCs in XML representation, displayed in a
pop-up window. The Safety Engineer can also click on "Regenerate GSN-
Diagram" to regenerate the SCs using the same input. He can also download
the generated GSN-diagram in PDF, once he is satisfied with the results.

Below is the diagram of the developed method.
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Figure 4.1: Overview of the developed method
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In the rest of this chapter, we’ll look in depth at how we represent our GSN-
based SCs in XML, how we write our system prompts, how we prepared our
dataset to train our LLMs, how we fine-tuned Llama-3-8b-bnb-4bit on our own
generated dataset, how the APIs used to communicate with the LLMs look like,
which fine-tuning techniques we have used, and how our application looks like.

4.2 representation of safety cases in xml according to gsn nota-
tion

eXtensible Markup Language (XML) is a format that in the last years emerged,
because it is a widely used format for representing structured data due to its
flexibility and readability. When it comes to represent textually GSN-based SCs,
XML provides an excellent textual format to organize, manage, and exchange
safety-related data across different systems and stakeholders. This format has
been adopted for the representation of data across many domains (safety-critical
systems, document management, and web services, etc.). It provides a platform-
independent way to define and share data in a hierarchical, human readable, and
machine-processable format. This chapter introduces the method for representing
GSN-based safety cases in XML, followed by a detailed breakdown of each GSN
element and concludes with a comprehensive XML template of a SCs.

Other formats, such as JavaScript Object Notation (JSON) and Yet Another
Markup Language (YAML), could be used to represent SCs in textual form. But
the table below (Table 4.1) shows why we chose XML over others [3].

Table 4.1: Comparison of XML Advantages over JSON and YAML for Safety Case
Representation

Advantage XML JSON YAML

Hierarchical
structure

Excellent Good Good XML’s tree-like structure manually
aligns with complex, nested SCs
elements, making it easy to rep-
resent hierarchical relationships
such as goals, strategies and con-
texts. JSON and YAML can handle
hierarchy but are less explicit and
readable in deeply nested struc-
tures.

Data
validation
(XSD)

Robust Limited Minimal XML supports robust data valida-
tion through XML schema (XSD).
This ensures that the SCs conforms
to predefined rules. JSON has lim-
ited validation with JSON schema.
YAML offers very basic validation.
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Attribute
for Meta-
data

Yes No No XML allows the use of attributes
(e.g.,id, description for storing
metadata without cluttering the
main content. JSON and YAML do
not natively support attributes, re-
quiring metadata to be part of the
main structure, reducing clarity)

ExtensibilityHigh Medium Medium XML is highly extensible with cus-
tom tags, allowing easy adapta-
tion to new requirements in safety
cases. JSON and YAML are also ex-
tensible but lack the rich tooling
support XML offers.

Data
Integrity
& Interop-
erability

Strong Medium Medium XML enjoys general acceptance in
many industries, including auto-
motive and aeronautics, for its fo-
cus on integrity of information
and interoperability. By contrast,
JSON and YAML, with their lesser
complexity, can not necessarily de-
liver an equivalent level of in-
tegrity and compatibility in high
regulation environments.

Each element involved in GSN has as been assigned to an equivalent in XML
format. In this way, we will be able to provide a textual representation of GSN-
based SCs in XML. The developed XML syntax guarantees that each component
of the SCs is clearly defined, traceable, and easily interpretable by both machines
and humans.

The core elements of GSN (goals, strategies, contexts, solutions, assumptions,
justifications, and evidence) are represented using special XML-tags, each iden-
tified by unique attributes (e.g., "id" and "description"). The importance of these
attributes is to show the role and content of each element. On the other hand, the
hierarchical relationships between them ("SupportedBy", and "InContextOf") are
captured by nested structures in these XML formats.

▷ Goal element:

Listing 4.1: XML Representation of a Goal Element in GSN

<goal id="G1" description=" Collision Avoidance System is
acceptably safe " type="SupportedBy">
<!-- Nested elements such as context, strategy, assumptions,

justifications, and sub-goals go here -->
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</goal>

Explanation: The "goal" tag presented in this example, represents a high-level
safety claim, that the Collision Avoidance System (CAS) is acceptably safe.
We can also see two others attributes in the XML format. The "id" attribute
uniquely identifies this goal node within the SCs. The "description" attribute
provides a concise statement of the claim..

▷ Context element

Listing 4.2: XML Representation of a Context Element in GSN

<Context id="C1" description="System overview: uses sensors and AI
to detect and prevent collisions " type="InContextOf"/>

Explanation: Here, the "context" tag essential background to the goal (e.g.
the technology used by system such as : sensors and AI). The "type" attribute,
"InContextOf", is new. It simply indicates that the context node is related to
the goal node by providing further clarity on the system’s operation.

▷ Strategy element

Listing 4.3: XML Representation of a Strategy Element in GSN

<strategy id="S1" description="Ensure safe vehicle operation" type

="SupportedBy">
<!-- Nested elements such as sub-goals, contexts, and

assumptions go here -->

</strategy>

Explanation: In this example, the "strategy" outlines the general approach
to demonstrate that the vehicle operates safely, which will be supported by
more specific goals and evidence.

▷ Assumption element

Listing 4.4: XML Representation of a Assumption Element in GSN

<assumption id="A1" description="Sensors function correctly " type=

"InContextOf"/>

Explanation: The "assumption" here indicates a key assumption that the
sensors used in the system are functioning correctly, a condition on which
the safety claim depends.

▷ Justification element
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Listing 4.5: XML Representation of a Justification Element in GSN

<justification id=" J1 " description="Sensor accuracy verified in
testing " type="InContextOf"/>

Explanation: The "justification" tag explains why the assumption about sen-
sor accuracy is reasonably, referencing testing that has been conducted.

▷ Solution element

Listing 4.6: XML Representation of a Solution Element in GSN

<solution id="E1" description="Sensor testing documentation" type=

"SupportedBy"/>

Explanation: The "solution" tag points to a specifies piece of evidence, such
as documentation of sensor testing, that supports the goal or strategy.

The following is a complete template of a SCs written in XML, structured
according to the GSN notation:

Listing 4.7: Comprehensive XML representation of a SC using GSN

<goal id="G1" description=" Collision Avoidance System is acceptably
safe " type="SupportedBy">
<context id="C1" description="System overview: Uses sensors and AI

to detect and prevent collisions " type="InContextOf"/>
<context id="C2" description="Boundaries include LIDAR, radar ,

cameras , and AI algorithms" type="InContextOf"/>
<strategy id="S1" description="Ensure safe vehicle operation" type=

"SupportedBy">
<goal id="G2" description="Detect obstacles accurately" type="

SupportedBy">
<context id="C3" description="Sensor subsystem detects

obstacles " type="InContextOf"/>
<assumption id="A1" description="Sensors function correctly

" type="InContextOf"/>
<justification id=" J1 " description="Sensor accuracy

verified in testing " type="InContextOf"/>
<solution id="E1" description="Sensor testing documentation

" type="SupportedBy"/>
</goal>

<goal id="G3" description="Perform emergency braking timely"
type="SupportedBy">
<context id="C4" description="Braking system prevents

collisions " type="InContextOf"/>
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<assumption id="A2" description="Braking response time
meets requirements" type="InContextOf"/>

<justification id=" J2 " description="Braking response
validated in simulations" type="InContextOf"/>

<solution id="E2" description="Braking system test results "
type="SupportedBy"/>

</goal>

<goal id="G4" description="Provide driver alerts " type="
SupportedBy">
<context id="C5" description="Alerts warn driver of

potential collisions " type="InContextOf"/>
<assumption id="A3" description="Alerts function within

specified timeframes" type="InContextOf"/>
<justification id=" J3 " description="Alert timing validated

in testing " type="InContextOf"/>
<solution id="E2" description="Alert system validation

records" type="SupportedBy"/>
</goal>

</strategy>

</goal>

4.2.1 Prompt Engineering

Prompt Engineering is relatively new and it is an essential area of NLP [13],
especially with the arrival of LLMs. Prompt Engineering focuses on the design
and development of prompts that can guide LLMs in an effective way to produce
accurate and contextually appropriate outputs. The use of LLMs in a wide range
of applications is increasing (from content generation to technical documentation).
This evolution shows that well-structured prompts are very important nowadays.
A well-structured prompt acts like a bridge between the user’s goals and the
model’s output, by guiding the model to produce a response that closely aligns
with the desired result.

In the case of LLMs, two general types of prompts have been most prominently
distinguished: system prompts and user prompts.

▷ User prompt forms the input entered by the user, and can range in form, for
instance, a question, a direction, or a request, to which the AI-system then
responds. User prompt is a catalyst for conversation or AI interaction, and
guides the following activity or reaction.

Example:
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User Prompt: "Explain how photosynthesis works"

AI Response: "Photosynthesis is a biochemical process utilized by

green plants and several other living organisms to convert sunlight

into chemical form. This operation takes place through the creation

of nutrients out of carbon dioxide and water. This mechanism involves

chlorophyll and yields a secondary output =, namely, oxygen."

In the mentioned example, it can be seen that the request of a user correspond
to a specific query towards an explanation of photosynthesis. The AI then
creates a pertinent output in relation to such a query.

▷ A system prompt, in contrast, forms an integral guideline or configuration
that controls the behavior or tonal aspects of an AI system. This feature
can go unacknowledged for a user and is often determined at development
stage or modifiable to mold behavior of a system with regard to output. It
describes a desired behavior of an AI in terms of conduct (e.g., to respond
in a polit, and concise manner) and controls contextual or stylistic aspects of
generated output.

Example 1: (Formal Tone)

System Prompt: "You are a knowledgeable professor. Be formal and

detailed in your explanations."

User Prompt: "Can you explain how photosynthesis works"

AI Response: "Photosynthesis constitutes a biochemistric mechanism

through which photosynthesizing plants, algae, and certain types of

bacteria convert light energy, in most cases derived from sunlight,

into a chemical from represented in glucose. This complex mechanism

takes place for the most part in specific organelle structures, namely,

chloroplasts, in which pigments present in chlorophyll trap light

energy in order to enable sugar molecule synthesis."

Example 2: (Causal Tone)
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System Prompt: "You are a friendly guide. Be conversational and keep

things simple."

User Prompt: "Can you explain how photosynthesis works"

AI Response: "Sure! So, photosynthesis represents a biochemistric

mechanism through which plants produce food for themselves. With

sunlight, plants transform water and carbon dioxide into glucose.

And, at the same time, plants produce oxygen as a byproduct; It can

be compared to a form of "nutrition", taking place in a manner most

predominantly in the leaves of a plant."

In the examples above, we notice that, the user’s prompt is the same (about
photosynthesis). But the system prompt guides how the AI will deliver the infor-
mation: in a formal, detailed form or informal, simplified one.

That is what makes prompt engineering important, as it enhances the effective-
ness of LLMs by optimizing their interaction with users. Although LLMs have
been trained on huge datasets [61], they may not naturally understand the specific
details and requirements of a task the specific requirements of a task without a
human guidance. This is where Prompt Engineering plays a crucial role [47]. In
the generation of GSN-based SCs, for instance, if a prompt is clearly defined, it can
significantly influence the model’s ability to produce the correct XML- structure
and content, and therefore the overall utility of the generated output.

To construct an efficient system prompt, several fundamental principles must
be considered [44]. First of all, we have to take in consideration the clarity. That
means, when we are attempting to write a prompt, we should clearly state what is
the task to be performed by the model and in which format the output should be
generated. Stating this will reduce the ambiguity that could lead to irrelevant or
inaccurate responses. For example, when we request an XML output, specifying
the required tags and attributes can help the model to generate the appropriate
representation. Additionally, in order to enhance the model’s understanding of the
model, we could also specify the context with the prompt. This context could con-
tain explanation and definition of specific terms or provide examples of template,
which can guide the model toward producing more accurate results.

Another core aspect of good prompt engineering is specificity. When prompts
are ambiguous, they tend to produce vague results. On the other hand well written
prompts with specific criteria produce more precise answers. If out example we
want to generate GSN-based SCs in XML representations. To achieve that, the
model can be greatly aided in the output it generates, by specifying the hierarchy
of elements and their interrelations. And then there is iteration. After generation
of first answer by the model, we are then able to discern aspects where we need to
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modify the prompt in order to improve the performance.

4.2.2 Configuring Llama-3-1-405B-instruct for Generating the Safety Analysis and the
System Design

The increasing complexity of safety-critical systems demands rigorous safety and
design analysis to prevent failures. LLMs present an opportunity to assist in the
generation of detailed safety-analyses and system designs [10], [23].

This chapter focuses on configuring Llama-3-1-405B-Instruct, by writing high-
level system prompts to generate safety analyses and system designs. It outlines
important aspects to take in consideration when it comes to define safety-related
parts of a system, to ensure that hazards are identified and mitigated, and ensuring
the safe operation of complex systems.

To effectively guide the LLM in generating safety analyses and system de-
scriptions, the system prompt must clearly outline the following key elements:
definition of the task the LLM should accomplish, assign it a role in carrying out
this task, remind it of the definition of safety analysis and system design, provide
it some examples of safety analysis and system design, set the requirements that
the result must meet.

All these elements should be taken into account when configuring Llama-3-1-
405B-Instruct for generation of the safety analysis and system design .

The different elements of a safety analysis and system description are as follows;
system definition and boundaries, the operational environment, functional and
performance requirements, safety-critical Function, system architecture and design,
implementation details, verification and validation, regulatory and compliance in-
formation, maintenance and operation, stakeholders involvement, hazard analysis,
risk assessment, and risks mitigation strategies. These elements are further detailed
below:

1. System Definition and Boundaries

System overview: The LLM should clearly defines the system’s purpose,
scope, and functions (including its interactions with the environment and
the other systems). Explain the purposes to which the system is designed
and its basic operations.

Boundaries: The LLM should clearly define the system’s boundaries,
including its interfaces with other systems and external entities. The LLM
should also try to specify as clear as possible, what is included within the
system and outside.
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Subsystems and Components: The LLM should break down the system into
its major subsystems and components. Describe how these subsystems and
components interact with each other.

2. Operational Environment

Physical Environment: The LLM should mention any environmental con-
straints or requirement and also describe in which conditions the system
operates (temperature, humidity, vibration, etc.).

Operational Scenario: The LLM should describe typical and extreme
scenarios in which the system will be used. It should not forget to include
other details (descriptions of normal operations, maintenance activities,
emergency situations, etc.).

Human interaction: The LLM should explain how operators, users, and
maintenance personnel will interact with the system and also detail any
human-machine interface and requirements that the users have to fulfill.

3. Functional and Performance Requirements

Functional Requirements: The model should give a detailed description of
the system, its intended functions and a detailed inventory of all system
functionalities and their expected outcomes.

Performance Requirements: Here, the LLM should specify the performance
criteria the system must meet (speed, accuracy, capacity, reliability, etc.). If
necessary, the model should also be able to define measurable benchmarks
for performance.

4. Safety-critical Functions

Identification: The LLM shall identify all functions that are critical to the
system’s safety. These are usually the functions whose failure could result in
accidents or hazardous situations.

Failure Modes: The LLM should be able to describe the possible ways in
which safety-critical functions can fail. It should also consider various failure
scenarios and their triggers.

Consequences of failure: The LLM shall explain what happens to safety
if a safety-critical function fails. It should also discuss what the possible
outcomes and severity of such failures are.

5. System Architecture and Design



4.2 representation of safety cases in xml according to gsn notation 35

Architectural Overview: The model has to show a very good detailed
description of the system’s architecture. This description includes important
components and their interactions.

Design Principles: Design principles applied in designing the system should
be described; in particular, those related to safety, such as the fail-safe design
and the redundancy.

Safety Mechanisms: The LLM should describe specific design features incor-
porated to ensure safety (fault tolerance, error detection mechanisms, etc.).

6. Implementation details

Software and Hardware: It is critical for the LLM to present a thorough
report of software and hardware components involved. It must include
information about technology stack and actual hardware involved.

Integration: The LLM should clarify how individual parts integrate and
interact with each other in the system. It is critical to highlight any inter-
dependencies and interfaces between these parts.

Configuration Management: The LLM must detail methodologies adopted
to changes in a system. It must include information about version control
and change management processes involved.

7. Verification and Validation

Testing Procedures: The model has to indicate the methodologies and
processes used in the assessment of the system. These testing procedures
include unit and system-level testing.

Validation methods: The model has to state how the system is to be
validated against its requirements. It includes methods such as simulations,
formal methods, and field testing.

Test results: The model has to show the results of the tests with their inter-
pretation in respect to safety. It should also include evidence of compliance
with safety requirements.

8. Maintenance and Operation

Maintenance procedures: The LLM has to describe regular and preventive
maintenance procedures required to ensure continued safety. These mainte-
nance procedures include schedules and responsible parties.

Operational procedures: The LLM has to provide detailed operating
procedures (start-up, shut-down, and emergency procedures, etc.).
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Incident response: The LLM has to outline procedures responding to inci-
dents and failures. This incident response includes procedures for identifying
and resolving problems.

9. Regulatory and Compliance Information

Applicable standards: The model has to provide a list of the safety standards
and regulations applied to the system : ISO 26262, SOTIF, DO-178C, etc.

Compliance strategy: The model has to provide an overview of how the
system is compliant with regulatory requirements and standards. This
compliance strategy includes any compliance measures and documentation.

Certification: The LLM has to note if the system has received or requires
any certification. This include details on the certification process and current
status.

10. Stakeholder Involvement

Stakeholder Requirements: LLM should specify specific requirements and
expectations of stakeholders (including operators, users, regulators, etc.).

Communication: approaches adopted for communicating information re-
garding safety-related items to stakeholders should be detailed. Include
strategies for ongoing engagement and feedback.

11. Safety Analysis

Hazard Identification: The aim here is to identify all potential hazards that
may arise during the operation of the system. The focus is on a wide range
of sources. A deep knowledge of the operational context of the system,
its environment, and the interactions between its components and human
operators is important in order to identify all potential hazards. Effective
hazard identification lays the foundation for the subsequent steps in risk
assessment and mitigation.

In the setup of LLM to generate hazard identifications, a carefully well-
structured prompt can guide the model in considering a range of sources
of hazards. These sources typically include:

Operational Hazards: These hazards result from operation of the system,
together with from abnormal or failure conditions. For example:

System Failures: Failures in such components as sensors, actuators, or
processing units may lead to hazardous situations. In an autonomous
Emergency Braking System (AEBS), a failure in the decision-making unit
that delays the issuing of the braking command can end in a crash.
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Functional Degradation: This refers to a gradual loss in system effectiveness
that can happen over a long time or under certain conditions. Let’s take
an example: in an autonomous vehicle, environmental factors like heavy
rain or snow might degrade the performance of sensors, leading to reduced
perception capabilities.

Risk Assessment: This involves evaluating the identified hazards to deter-
mine their potential impact and likelihood of occurrence.

Risks Mitigation Strategies: These are approaches to reduce or control the
identified risks and interactions within the system.

Considering its size, the system prompt for the generation of Safety analyses
and system description are detailed in Listing A.1

4.2.3 Configuring Llama-3-1-405B-instruct for Generating Safety Cases

"Configuring" in this section, refers to the process of writing system prompts that
direct the behavior of the Llama-3-1-405B-instruct to, ideally, generate GSN-based
SCs in XML format.

In order for the Llama-3-1-405B-instruct model to learn to generate valid GSN-
based SCs in XML, these prompts must to effectively guide the LLM in generating
accurate SCs, it is important to explicitly state in the system prompt what kind
of output is expected and under which constraints. The structure of the prompts
includes several key components: Definition of the task to be performed by the
LLM and assign it a role in which it must accomplish the task, remind it of the
definition of SCs and GSN, remind it of the various key elements making up GSN
as well as defining them, show how each of these elements can be written textually
in XML, show how each of these elements be put together to constitute a safety
case in XML that uses GSN, remind the LLM that safety standards must be taken
into account, and set requirements that the output must meet to be acceptable.

After following all these steps, we set up our system prompt for generating
safety cases in XML using the GSN.

Considering its size, the system prompt for the generation of Safety Cases in
XML using the GSN is detailed in the Appendix A.2.
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4.3 dataset preparation

Since we want to fine-tune our tiny Llama3 8B model, we need data (input =
safety analysis and system description; output = GSN-based SCs in XML). Since
we haven’t been able to find a dataset that corresponds to the type of data we want,
we’ll have to generate them ourselves, using Llama-3.1-405B-Instruct.

In this chapter, we provide a comprehensive overview of the methodology used
to generate the dataset essential for streamlining SCs generation in XML format
using GSN framework. The dataset has been automatically generated by a small
tool (developed in Python) that integrates the Llama-3.1-405B-Instruct model to
generate "Safety Analysis and System Design" as well as corresponding "Safety
Cases in XML" based on predefined system names and system prompts. Following
steps present the process for the generation of the dataset:

1. A list of 1,000 names of safety-critical systems has been generated using
ChatGPT.

2. Once the list of 1,000 names has been generated, it is saved to a file.

3. The user presses the “Generate Dataset” button on the tool’s user interface.

4. Once the user clicks on “Generate Dataset” button, the model (Llama-3.1-
405B-Instruct) will be called via an API.

5. After that, the model through the list of 1000 System names, from first name
to last, executing the 2 following last steps.

6. Based on the system name, the model will generate a safety analysis and a
system design and then the safety cases in XML using GSN which will be
displayed on the user interface.

7. Safety analysis and system design as well as the SCs generated by the model
will be saved in an excel file to form the dataset.

The following image shows the entire dataset generation process.
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Figure 4.2: Overview of the dataset generation process
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The following sections describe the structure of our python program, the format
of the dataset and the reasons why Llama-3.1-405B-Instruct was chosen for this
task.

4.3.1 Dataset overview

Our dataset contains around 1,000 rows. In other words, 1,000 examples of safety-
critical systems from real-world. Those systems come from different safety do-
mains (aviation, automotive, aero-spacial, etc.). The dataset contains 03 columns:

▷ System Name: it’s unique for each.

▷ Safety Analysis and System Design: covers various system-related aspects,
such as system description and boundaries, operational environment, func-
tional and performance requirements, safety critical functions, hazards anal-
ysis, system architecture and design, implementation details, regulatory and
compliance information, stakeholders involved.

▷ Safety Cases in XML: Here, we mean GSN-based SCs structured in XML-
format. It has to be noted that these SCs are generated on the basis of the
Safety analysis and system description provided as input to the model.

This structured dataset enables the program to serve as both a practical tool for
safety engineers and a source of training data for further model developments.

The following image shows the dataset stored in an Excel file.
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Figure 4.3: Overview of the generated dataset in Excel
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4.3.2 Program Structure for automated Dataset Generation

On the User Interface (UI) of our tool developed in Python, the user has the possi-
bility to start the generation of the dataset by clicking on "Generate Dataset" button.
Below, we present the various components of the user interface and description of
how the program works:

It is important to remind that the model uses the system prompt defined in
the previous section for generating safety analysis and system descriptions, and
another for generating GSN-based SCs in XML.

The dataset generation process begins by the established list of 1,000 system
names (generated by ChatGPT), which is saved in a file. These system names
form the foundation for generating corresponding safety analysis and SCs. In the
image above, we can see the system name displayed. This name comes from the
list of 1,000 names previously established. Directly below left, we have the safety
analysis and system description generated from the system name. On the far right,
we have the safety cases generated from the content on the left. Once these data are
generated, the system saves the data in an excel file and then moves on to the next
system name and performs the same generation. This step is repeated for every
1000 name systems. At the very bottom, we have a gauge showing the generation
progress.

The output is organized into three columns ("System Name", "Safety Analysis
and System Design", "Safety Cases in XML"). These three elements form the
core of the dataset, which is saved for further use in automating SCs generation.
It is important to remind that the model use the system prompt defined in the
previous section for generating safety analysis and system descriptions. Based on
the generated safety analysis and system description, the model will also use the
defined system prompts to generate the GSN-based SCs in XML-format.

4.3.3 Justification for Using Llama-3.1-405B-Instruct

The Llama-3.1-405B-Instruct model was chosen for the generation of our dataset
of 1,000 system names, because it is one of the largest open-source LLMs available.
Llama-3.1-405B-Instruct can generate complex and high-quality GSN-based SCs in
XML-format. This model has been trained on large diverse datasets, which enables
it to handle complex tasks such as generation of safety analysis, system description
and SCs in XML format.

The capabilities of this model to work with system prompts, as described in
the previous chapter, also enables a streamlined approach to generating consistent,
high-quality safety data across a large dataset.
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Figure 4.4: User Interface of the program for generating the dataset automatically

4.3.4 API Integration and Code

The Llama-3.1-405B-Instruct model is accessed through an API of NVIDIA NIM
(NeMo Inference Microservices) integrated into the dataset generation program.
NVIDIA NIM 1 is an important framework designed for deploying large AI models
in a variety of environments. It allows IT-teams to self-host LLMs like Llama-3.1-
405B-Instruct in their own managed infrastructures. This is particularly useful for
organizations wo want to integrate LLMs into their applications without relying on
third-party cloud providers. With NIM, those organizations have the possibility to
get an APIs (Application Programming Interface) and tools that will make it easier
for developers to build and deploy generative AI models (chatbots, assistants and
more, at scale). The following code snippet illustrates how the API is used to query
the model and generate the safety data:

4.4 api code examples

Below is an example of the API code used in the project to generate the safety
analysis and the system design based on the system name.

1 https://www.nvidia.com/en-us/ai/
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It is important to note that a template of this API code is provided on the Nvidia
NIM website 2. We have used this template and adapted it to our specific needs [46]

The API code for Running Llama-3.1-405B-Instruct for safety analyses and
system description generation in XML is detailed in Appendix A.9.

Below is an example of the API code used in the project to generate SCs in XML
based on safety analysis and the safety design previously generated. The code is
detailed in appendix A.10

Once the dataset has been generated, we’ll publish it.

4.4.1 Publishing the generated Dataset on Hugging Face Hub

Huggingface, founded in 2016 by Clément Delangue, Julien Chaumond, and
Thomas Wolf in New-York City, the company was initially focused on the de-
velopment of developing a chatbot application for teenager. But the platform has
since evolved into a leading hub for machine learning models, particularly those
related to natural language understanding and generation. Hugging Face is well-
known today in the area of AI, ML and DP for its Transformers Library, which
we can find or access to a wide array of pre-trained models that can be used
for various tasks (classification, translation, summarization). This name "Hugging
Face" derives from the emoji that represents a hug, a symbol for how the orga-
nization cares about the community efforts and collaboration in AI development.
Most of the existing barriers for those researchers and developers who want to
use state-of-art machine learning solutions have been significantly reduced by
this library [33]. The platform fosters an open-source community, and encourages
the collaboration and the sharing among developers and researchers. Users have
the possibility not only to utilize existing models (developed and published by
other users) but also to contribute by publishing their own, which enhances the
diversity and richness of available resources. On the platform Hugging face, there
is also a Model Hub, where users have the possibility to find, deploy models, and
the Datasets library, which provides access to numerous datasets for training and
evaluation purposes. Moreover, Huggingface emphasizes the importance of ethical
AI development, providing resources and guidelines to help users navigate the
complexities of deploying AI responsibly. Nowadays, Hugging face is a powerful
tool for students, research and for the development of applications in industry. For
more information, please visit their website3. Our final dataset, after generation,
was published on Huggingface4. By Publishing the dataset on Hugging Face, we
are making it accessible for other researchers and developers of the platform.

2 https://www.nvidia.com/en-us/ai/

3 https://huggingface.co/

4 https://huggingface.co/datasets/Max491/New_Version_XML_Safety_Cases_Archive
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Figure 4.5: Overview of the dataset on Huggingface Hub
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4.5 model selection and fine-tuning

This section presents the fine-tuning process of our model. We used for the fine-
tuning the framework called Unsloth. In the first section, we will explain why we
chose this framework.

4.5.1 Introduction of the Framework & Platform Unsloth

created by Daniel and Michael Han, Unsloth is a platform and framework that
helps to facilitate and speed-up LLM’s fine-tuning process. This platform is a game
changer in the field of AI because its particularity is the fact that users have the
ability to accelerate training speeds by up to 30 times while reducing the memory
usage by 60% in comparison to traditional methods. This framework makes the
training of LLMs very accessible for beginners, democratizing the technology. For
more information, you can visit their official website 6

4.5.2 Fine-Tuning Process using the Unsloth framework

The fine-tuning process for the selected LLM (Llama3 8B), is essential for trans-
forming its general capabilities into a specified tool aimed at generating GSN-
based SCs in XML format.

As a first step, Llama 3.1 (8B) model was downloaded from Hugging Face Hub
by using an optimized configuration to efficiently address computational issues. In
order to reduce the high memory and computational demand, that are associated
with our model, we have used in this work a quantization strategy. That is the
reason why, our model was initialized using a configuration called BitsAndBytes
(BnB). With this configuration we are able to store the model at a 4-bit precision
level (load-in-4bit=True). BnB (Dettmers, Pagnoni, Holtzman, and Zettlemoyer[21])
serves as a streamlined wrapper for specialized Compute Unified Device Architec-
ture (CUDA) operations, facilitating the model compression for efficient storage
and memory usage (storage in 4-bit precision) [41].

In order to improve the Parameter-Efficient Fine-Tuning (PEFT), we have
followed an approach called the Quantized Low-Rank Adaptation (QLoRA)
(Dettmers, Pagnoni, Holtzman, and Zettlemoyer[21]). With this approach, we are
tuning just a limited number of parameters, primarily those in critical layers that
significantly influence task performance. For Llama 3 (8B), the targeted layers
include: up-proj", "gate-proj", "v-proj", "k-proj","down-proj", "q-proj", and "op-roj".

6 https://unsloth.ai/
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The maximum sequence length for input data was set to 65536 tokens to accom-
modate extensive context (Safety analysis and system description + GSN-based
SCs) during training.

In the optimization phase of the model, we succeeded to find a good trade-
off between computational efficiency and an improvement in performance of the
model by tuning parameters for training with much fastidiousness. A crucial as-
pect of this optimization process involved the implementation of a conservative
learning rate, set at 2e-6 in conjunction with the deployment of the paged-adamw-
32bit optimizer (Loshchilov, Hutter, et al. [40]), we have selected one of the variant
because it has better efficiency on 32-bit GPU architectures. To navigate hard-
ware constraints while maximizing training efficacy, a moderate batch size was
employed in tandem with a four step gradient accumulation strategy, facilitating
optimal resource utilization. With 16-bit precision training, activated by setting
fp16 to True, played a great role by maximizing the resources of a GPU, while
while maintaining the stability of the model during the training. It simultaneously
had the dual benefits of potentially halving memory consumption and associated
costs, while simultaneous providing the possibility of doubling the training speed.

The model fine-tuning process involved two-epochs of training. This is standard
for Large Language Models. This is due to their pre-existing knowledge base and
sophisticated architecture design of this LLMs, which facilitate rapid adaptation
to new tasks with little retraining duration. Concerning the training configura-
tion, we used a modest batch size of two samples per computational unit, and
four-step gradient accumulation. We made these configuration choices to reach
a perfect balance in the training dynamics, thus emulating the effect of a bigger
batch size while respecting hardware constraints. Moreover, the introduction of
gradient check-pointing techniques, to fit larger networks into memory 7, has
allowed to optimize the memory utilization. By doing this, we save intermediate
computational states, what significantly reduce the overall memory footprint of
the training process.

The SFTTrainer class provided by the Transformer Reinforcement Learning
(TRL) library 8 has been used for the fine-tuning. This toolkit, seamlessly integrated
with the transformers ecosystem, offers a whole suite of instruments for improving
transformer-based language models by multiple advanced techniques, including
Reinforcement techniques. The training configuration was kept as previously setup
with the dataset and tokenizer loaded from Hugging Face Hub.

To make it easier to use Unsloth for fine-tuning LLMs, it’s important to note that
Unsloth has published ready-to-use Google colab notebooks on their Hugging

7 https://medium.com/tensorflow/fitting-larger-networks-into-memory-583e3c758ff9

8 https://huggingface.co/docs/trl/index
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Face profile 9 . We therefore used the template corresponding to the fine-tuning of
Llama 3 8B and made the necessary changes to suit our needs in order to achieve
our objectives. Below is the source code used to fine-tune our Llama-3.1-8B model
[60].

code-source for fine-tuning [60]

The code for fine-tuning our model (Llama-3-8B) is detailed in Appendix A.10.

4.5.3 Deployment of the model on Huggingface

Once the training is complete, we will be able to save the LoRA and the tokenizer
locally. But we can also push the LoRA and the tokenizer to the Hugging Face
Hub so that we can use the model anytime, anywhere. To do this, we create a new
directory with the model name.

code-source for saving and pushing the lora and tokenizer on

hugging face hub

The code-source for saving and pushing the LoRA and Tokenizer on Hugging Fcae
Hub is detailled in Appendix A.12.

Below we can also see the content of the "Max491/Safety_Cases_Generator_new"

repository that has been published on HF Hub.

9 https://huggingface.co/unsloth
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Figure 4.6: Model published on HF
10
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4.6 development of the desktop application

In this chapter, we will present the application that we have developed. This
application integrates our trained model, for generating GSN diagrams and GSN-
based SCs in XML-format. As input, the model takes the safety analysis + system
design provided by the user in oder to generate those SCs in XML format. Here,
we will discuss the design and architecture of the application, and then detail how
its modular structure supports the integration of its advanced functionalities. After
that, we will show how we ensure the conversion of GSN-based SCs in XML into
GSN diagrams, while highlighting the methodologies we have employed to ensure
accurate representation of SCs. Finally, we will examine the GUIs, and present
their features.

4.6.1 Design and Architecture

We developed the application by using the programming language called python
and the GUI has been developed using the framework called Tkinter11. Our ap-
plication integrates our fine-tuned LLM to generate GSN-based SCs based on the
safety analysis + system design provided by the user.

The main interface consists of a single input field where users can enter their
safety analysis and the system description. A prominent button "Generate GSN
Diagram" allows users to trigger the generation of SCs, which subsequently leads
to the creation of GSN diagrams.

11 https://docs.python.org/3/library/tkinter.html
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Figure 4.7: Application Homepage
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The generated GSN diagrams are displayed in a separate window that is scroll-
able and re-sizable, allowing users to view large diagrams without losing clarity.
Additionally, we see three buttons at the bottom of this window. On the left, a
button for viewing SCs in XML. In the middle, we have the button for regenerating
the GSN diagram, On the right the button for downloading the GSN-Diagram.
Below, we have the picture of this Interface.
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Figure 4.8: Generated GSN-Diagram
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Figure 4.9: SCs in XML
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4.6.2 Implementation of XML to GSN Conversion

One of the most important functionality of our application is the ability to convert
XML content into GSN diagrams. The conversion from XML to GSN diagrams
is one of the critical feature for our tool. After our tool receives the SCs in XML
format, it first employs the "xml.etree.ElementTree" module to parse the XML
content and extracts the useful information. The parser scans the XML content
and constructs a tree structure where each node represents an XML element. Each
element contains attributes, nested elements and text. After parsing, each XML
element type (goal, strategy, context, solution, etc.) is mapped to its corresponding
GSN component. Each node has a unique identifier ("id" attribut in XML) and
a description, both of which are essential for building the GSN hierarchy and
labeling each node. GSN uses relations, such as "SupportedBy" or "InContextOf",
to represent relationships, which are necessary to structure safety arguments. An
XML parser traverses recursively the XML tree and constructs relationships be-
tween nodes depending on thier hierarchical level and attributes. Once the nodes
and relationships have been structured, the program will convert this setup into a
GSN diagram using the graph visualization library called Graphviz 12.

The approach that we present in this chapter provides a systematic approach to
leveraging LLMs for SCs generation. Later, in chapter 5, a practical case study on
the U-SHIFT autonomous vehicle is detailed to test the proposed framework, in
order to identify its effectiveness and limitations.

12 https://graphviz.org/
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T E S T I N G T H E D E V E L O P E D M O D E L O N T H E U - S H I F T
A U T O N O M O U S V E H I C L E

In this chapter, we will test the capability of our trained model in generating
accurate and structured GSN-based SCs in XML-format. We will test our model
against a concrete example from the real-world: the U-Shift vehicle 13. The German
Aerospace Center (DLR) has developed the U-Shift autonomous vehicle. It pursues
a completely new approach concerning autonomous, modular transportation that
can be integrated into cities. The U-SHIFT vehicle has two main parts consisting
of a "driveboard" and interchangeable "capsules". The "driveboard" contains many
elements (vehicle’s propulsion, steering, braking, and control systems). This part
is responsible for the autonomous transport of different capsules. Below, we have
an image of the U-Shift vehicle.

5.1 presentation of the testing strategy

5.1.1 What do we want to test ?

Aim: We want to test if our trained model can generate SCs that consider almost
all the relevant details provided in the safety analysis and system description. To
achieve this objective, we have identified 5 safety-critical subsystems within the
U-Shift autonomous Vehicle that are important to its operation , and on which we
are going to carry out tests.

5.1.2 Identified relevant safety-critical sub-systems within the U-Shift Vehicle

Within the U-Shift, we have identified 5 very important safety-critical systems on
which we will be testing.

▷ U-Shift Drive System: in charge of controlling the movement of the U-Shift
vehicle (acceleration, braking, steering, etc.). It is integrated with automated
and remote driving technologies, allowing the vehicle to navigate pre-defined
routes in urban environments safety. The system interacts with capsule, con-
trol system, and other subsystems to ensure smooth operation

13 https://www.dlr.de/en/research-and-transfer/projects-and-missions/u-shift

56
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Figure 5.1: U-SHIFT autonomous Vehicle (Credit: DLR (CC BY-NC-ND 3.0))

▷ U-Shift Onboarding System: manages many functions (passenger access,
including ramp deployment, door operations, interaction with passenger
control inputs, etc.). This system operates autonomously, ensuring smooth
and barrier-free access to the capsule of all passengers, including those with
mobility limitations. It is integrated with the vehicle’s Control System to
ensure safe and efficient operations during passenger boarding and disem-
barking.

▷ U-Shift Control System: This system represents the central decision-making
unit of the U-SHIFT vehicle. It should process sensor data, and manage
communication with other subsystems (Drive, Onboarding, Communication,
and Emergency systems). It also provides real-time commands. The U-Shift
control system guarantees that the vehicle operates in a well-coordinated
way concerning navigation, safety and emergency handling for passengers,
greatly enhancing the safety of both the autonomous vehicle and the entire
system.

▷ U-Shift Communication System: It is one of the most important subsystems
in the U-Shift vehicle. It should enable the communication between the vehi-
cle itself, external operators, and the passengers. The communication system
is supposed to process data concerning the operational status, emergency
alerts, and passenger notifications. The importance of this system is that
it ensures safe and transparent operation of the vehicle under all driving
conditions and, if needed, it provides remote control and monitoring.
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▷ U-Shift Emergency System: this subsystem of the U-Shift vehicle is designed
to manage critical situations by providing immediate responses (Emergency
call, Emergency Stop, system-wide alerts, etc.). This system is very important
because it ensures the safety of the passenger and the vehicle, and allow rapid
interventions during hazardous conditions and maintains communications
with external operators for support.

5.1.3 Testing strategy

Our testing strategy is simple:

▷ We have at our disposal a document entitled ’ModelBasedSafetyAnalysisEx-
ample’, which here represents the ’Safety analysis and system design’ of our
U-SHIFT Vehicle. Given that we want to generate SCs and system design
for each of the systems identified, it is important to firstly generate a safety
analysis and system design for each of the systems.

▷ In order to achieve this, we will use ChatGPT for its capability to understand
and interpret documents and analyze diagrams. As such, we will submit to
it the document including the safety analysis and system description for the
whole of the U-SHIFT Vehicle, and a sample case of a safety analysis, in order
for it to generate the safety analysis and system descriptions for each of the
subsystems according to the format utilized in model training.

▷ Once the generation of safety analysis and system design has been completed,
it will be submitted to our trained model, which will generate safety cases.
Once the safety cases for each of the systems have been generated, we will
examine whether the SCs include all the various relevant details present in
the safety analysis and system description.

5.2 case 1 : u-shift onboarding system

5.2.1 Safety analysis and system description of the U-Shift Onboarding System

The safety analysis and system description for the U-Shift Onboarding System are
shown in appendix A.3.

5.2.2 Generated safety cases of the U-Shift Onboarding System

The U-SHIFT Onboarding System’s safety analysis and system design was submit-
ted to the trained model and the SCs generated by our trained model is detailed
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in appendix A.4.

5.2.3 Analysis of the U-SHIFT Onboarding System’s safety cases in XML
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Table 5.1: Analysis of the U-SHIFT Onboarding System’s safety cases in XML

Test
ID

Test Objec-
tive

Description Expected Output actual XML output Passed
/ Failed

T1 Top-goal
Verification

Ensure the XML includes
the top-level goal for the
overall safety of the U-
SHIFT Onboarding System

We expect to get something whose
meaning is close to: "U-SHIFT On-
boarding system is acceptably safe",
with child contexts, assumptions, justi-
fications, and strategies

We got: Goal G1 with linked
contexts (C1, C2), assump-
tion (A1), justification (J1),
and strategy (S1)

Passed

T2 Context
Verification

Verify the inclusion of
system-level contexts, such
as system overview and
boundaries

We expect information about system
boundaries (definition), the subsystems
and components, in accordance with
the provided safety analysis and sys-
tem design.

The context nodes C1 and C2

are included and accurately
describe the system overview
and boundaries.

Passed

T3 Subsystem
Decomposi-
tion

Validate that XML includes
goals for each subsystem
(Ramp Control, Door Op-
eration, Obstacle Detection,
and Passenger Safety Inter-
face) with proper child el-
ements to support overall
safety.

We expect to get something whose
meaning is close to: "Ramp Control
Subsystem is acceptably safe"; "Door
Operation Subsystem is acceptably
safe"; "Obstacle Detection Subsystem is
acceptably safe" and "Passenger Safety
Interface Subsystem is acceptably safe",
with child contexts, assumptions, justi-
fications, and strategies

Sub-goals (G2, G5, G8, and
G11) are present with appro-
priate child elements.

Passed
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Test
ID

Test Objec-
tive

Description Expected Output actual XML output Passed
/ Failed

T4 Hazard
Identifica-
tion and
Mitigation

Verify that hazards associ-
ated with the Onboarding
System are identified and
mitigations are represented
in the safety case.

The XML should include goals ad-
dressing specific hazards (Ramp not re-
tracted, unintented door opening, ob-
stacle not detected, delay in ramp or
door operation). Each hazard should
have a clear mitigation strategy and so-
lutions to demonstrate its handling.

Sub-goals (G3, G4, G6, G7,
G9, G10, G12 and G13) ad-
dress perfectly the identified
Hazards. Mitigation Strate-
gies (S2, S3, S4) and Solutions
(E1, E2, E3, E4, E5, E6, E7, E8)
are properly linked.

Passed

T5 Regulatory
Com-
pliance
Mapping

Ensure that the safety case
includes contexts, assump-
tions or justifications ref-
erencing compliance with
regulatory standards

We expect the following standards: ISO
26262, UNECE R107, SAE J3016 pro-
vided in the safety analysis and system
design

Nodes (J1, A1, A2, A3, A4,
and A5) mention standards
but do not explicitly state
which of the standards they
refer to among: ISO 26262,
UNECE R107, J3016.

Test
par-
tially
passed
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5.3 case 2 : u-shift control system

5.3.1 Safety analysis and system description of the U-SHIFT Control System

The safety analysis and system description for the U-SHIFT Control System is
shown in appendix A.5.

5.3.2 Generated safety cases of the U-Shift Control System

The U-SHIFT Control System’s safety analysis and system design was submitted
to the trained model and the SCs generated by our trained model is shown in
appendix A.6.

5.3.3 Analysis of the U-SHIFT Control System’s safety cases in XML
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Table 5.2: Analysis of the U-SHIFT Control System’s safety cases in XML

Test
ID

Test Objec-
tive

Description Expected Output actual XML output Passed
/ Failed

T1 Top-goal
Verification

Ensure that the top goal de-
fines the overall safety of
the U-SHIFT Control Sys-
tem

We expect to get something whose
meaning is close to: "U-SHIFT Con-
trol system is acceptably safe", with
child contexts, assumptions, justifica-
tions, and strategies

We got exactly: Goal G1 with
linked contexts (C1, C2) and
strategies (S1, S2)

Passed

T2 Context
Verification

Verify the inclusion of
system-level contexts
describing the system
overview, boundaries and
key subsystems

We expect information about system
boundaries (definition), the subsystems
and components, in accordance with
the provided safety analysis and sys-
tem design.

The context nodes C1 and C2

are included and describe the
system overview and bound-
aries as specified in the safety
analysis and system descrip-
tion.

Passed

T3 Subsystem
Decomposi-
tion

Validate that XML includes
goals for Data Process-
ing, Decision-Making,
Command Interface, and
Diagnostics

We expect to get something whose
meaning is close to: "Data Processing
subsystem is acceptably safe"; "Com-
mand Interface Subsystem is accept-
ably safe"; "Decision-Making Subsys-
tem is acceptably safe" and "Diagnos-
tics Subsystem is acceptably safe", with
child contexts, assumptions, justifica-
tions, and strategies

Sub-goals (G3, G4, G5) are
present with linked Assump-
tions (A1, A2, A3), justifica-
tions (J1, J2, J3), and Solu-
tions (E1, E2, E3).

Passed
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Test
ID

Test Objec-
tive

Description Expected Output actual XML output Passed
/ Failed

T4 Hazard
Identifica-
tion and
Mitigation

Verify that the XML in-
clude hazards-related goals
and corresponding mitiga-
tion for identified hazards
in the U-SHIFT Control Sys-
tem.

The XML should include goals address-
ing specific hazards (Data processing
failure, Command Interface loss, fault
in diagnostic, sensor data misinterpre-
tation, Loss of communication with
subsystems). Each hazard should have
a clear mitigation strategy and solu-
tions to demonstrate its handling.

Sub-goals (G5, G6, G7, G8,
G9) are present, each address-
ing specific hazards with
linked contexts (C6-C10), as-
sumptions (A4-A8), justifica-
tions (J4-J8), and solutions
(E4-E8).

Passed

T5 Regulatory
Com-
pliance
Mapping

Ensure that the XML in-
cludes contexts, assump-
tions or justifications ref-
erencing compliance with
regulatory standards

We expect the following standards: ISO
26262, UNECE R79 and SAE J3016

provided in the safety analysis and
system design

No Node refers to the re-
quired safety standards.

Failed
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5.4 case 3 : u-shift communication system

5.4.1 Safety analysis and system description of the U-SHIFT Communication System

The safety analysis and system description for the U-SHIFT Communication Sys-
tem are detailed in appendix A.7

5.4.2 Generated safety cases of the U-Shift Communication System

The U-SHIFT Communication System’s safety analysis and system design was
submitted to the trained model and the SCs generated by our trained model are
shown in appendix A.8.

5.4.3 Analysis of the U-SHIFT Communication System’s safety cases in XML
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Table 5.3: Analysis of the U-SHIFT Communication System’s safety cases in XML

Test
ID

Test Objec-
tive

Description Expected Output actual XML output Passed
/ Failed

T1 Top-goal
Verification

Ensure that the top goal
defines the overall Safety
of the Communication Sys-
tem.

We expect to get something whose
meaning is close to: "U-SHIFT Con-
trol system is acceptably safe", with
child contexts, assumptions, justifica-
tions, and strategies

We got: Goal G1 with linked
contexts (C1, C2), Assump-
tion A1, Justification J1 and
strategy S1.

Passed

T2 Context
Verification

Verify the inclusion of
necessary contexts describ-
ing the system overview,
boundaries and operational
scenarios.

We expect information about system
boundaries (definition), the subsystems
and components, in accordance with
the provided safety analysis and sys-
tem design.

The context nodes C1 and C2

are included and describe the
system overview and bound-
aries as specified.

Passed

T3 Subsystem
Decomposi-
tion

Validate that XML includes
goals for Operator Inter-
face, Passenger Notifica-
tion, Data Encryption, and
Monitoring subsystems
with assumptions, justifica-
tions, and solutions.

We expect to get something whose
meaning is close to: "Operator In-
terface subsystem is acceptably safe";
"¨Passenger Notification Subsystem is
acceptably safe"; "Data Encryption Sub-
system is acceptably safe" and "Mon-
itoring Subsystem is acceptably safe",
with child contexts, assumptions, justi-
fications, and strategies

Sub-goals (G2, G4, G6) are
present with linked Assump-
tions (A2, A4, A6), justifica-
tions (J2, J4, J6), and Contexts
(C3, C5, C7).

Passed
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Test
ID

Test Objec-
tive

Description Expected Output actual XML output Passed
/ Failed

T4 Hazard
Identifica-
tion and
Mitigation

Verify that the XML
includes hazards-related
goals and corresponding
mitigations for identified
hazards in the Communica-
tion System.

The XML should include goals address-
ing specific hazards (Network con-
nectivity loss, data transmission de-
lay, Unauthorized access, Data cor-
ruption, Incomplete passenger notifi-
cations). Each hazard should have a
clear mitigation strategy and solutions
to demonstrate its handling.

Sub-goals (G3, G5, G7) are
present, each addressing spe-
cific hazards with linked con-
texts (C4, C6, C8), assump-
tions (A3, A5, A7), justifica-
tions (J3, J5, J7), and solutions
(E1, E2, E3).

Passed

T5 Regulatory
Com-
pliance
Mapping

Ensure that the XML in-
cludes contexts, assump-
tions or justifications ref-
erencing compliance with
regulatory standards

We expect the following standards: ISO
26262, UNECE R10, and SAE J3061

provided in the safety analysis and
system design

No explicit node references
standards directly in the pro-
vided safety cases.

Failed
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5.5 conclusion of the testing phase

The testing phase demonstrated that the framework we created is able to generate
GSN-based SCs in XML for the U-SHIFT Vehicle subsystems. Each test takes
in consideration 5 important aspects (Top-Goal verification, Context Verification,
Subsystem Decomposition, Hazard Identification and Mitigation, and Regulatory
Compliance Mapping) in order to validate the generated SCs by the model.
While the system successfully captured critical safety objectives, subsystem details,
and hazard mitigation, the absence of explicit references to regulatory standards
highlighted areas for improvement. Overall, the results confirm the system’s
capability to automate the generation of SCs and GSN Diagrams aligned with
provided safety analyses and system descriptions.

5.6 possible future improvements

A significant future improvement would be to enable the LLM itself to automat-
ically decompose complex systems into smaller subsystems. And for each of the
sub-system it should also generate itself structured, large-scale SCs in XML format.
For a comprehensive system the USHIFT Vehicle, the model could be enhanced to
autonomously identify subsystems (USHIFT Onboarding system, USHIFT Control
System, USHIFT Communication system, USHIFT Emergency system, etc.) from
initially provided safety analysis and system description, generating modular SCs
as interconnected modular extensions. Each module would correspond to a sub-
system and include its detailed SCs, allowing users to visualize the entire system
in a hierarchy GSN Diagram. Clicking on a extension module node in the diagram
would reveal its internal structure; facilitating scalability and improved usability
for large systems. This improvement would require to extend the current GSN
schema in XML. That means we will insert new GSN elements for extension mod-
ules and defining their interrelations with other existing GSN elements. This will
lead to the regeneration of a new training dataset with domain specific SCs that
will take in consideration the new define extensions elements of the GSN repre-
sentation. This improvement will considerably extend the size of the generated
SCs.

However, a key challenge is the ability of LLMs to generate such large-scale
content due to token limitations. While models like Llama 3 (8B) exhibit strong
generation capabilities, generating comprehensive SCs for entire system, includ-
ing all subsystems, may exceed token constraints. Future enhancements should
be geared to create mechanisms to iteratively produce content of each sub-system
and later integrate all of them into forming an integrated XML structure.

More importantly, the following enhancements need to be considered further in
order to increase the impact and applicability of the system:
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Automated Compliance Validation: Integrate mechanisms automatically to val-
idate generated SCs against regulatory standards; for example, ISO 26262, SOTIF,
etc., so immediate assurance is provided for the generated specification..

Domain-Specific Pre-training: Fine-tuning the LLM with a larger and more
diverse dataset of SCs across various industries (e.g aerospace, automotive, health-
care, etc. could enhance its contextual understanding and generation quality.

Handling Incomplete or Ambiguous Inputs: Improving the LLM’s ability to
infer and resolve ambiguities from incomplete safety analyses would make the
tool more practical in real-world scenarios where data availability is limited.

Multi-Modal Input Support: This will allow the system to accept different input
formats, like graphical models, tabular data and diagrams - among them, SysML
and UML. These improvements are also expected to increase both the scalability
and user-friendliness of the system while simultaneously increasing the scope of
applicability of LLMs for large safety engineering contexts.

These improvements would not only make the system more scalable and usable
but also push the state of the art in the applicability of LLMs in large-scale
safety engineering. They are an important step toward the automation of hierarchy,
modular SCs generation, which conforms to industry standards and capture the
complexities of modern engineering systems.
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C O N C L U S I O N

This master’s thesis presents a novel framework for the use of LLMs for generation
of GSN-based SCs in XML format. The overall objective was to enable the automa-
tion of SCs and GSN diagrams generation from system descriptions and safety
analyses. This work was supposed to improve the efficiency and accuracy of safety
engineering processes by providing safety engineers with a starting point in their
projects. To achieve this, we first created an XML syntax capable of representing
GSN elements (Goals, Strategies, Assumptions, Justifications, Solutions) and SCs
in a structured textual format. This developed XML-syntax was then utilized to
craft system-specific prompts for the Llama-3-405B model, enabling the generation
of a training dataset for fine-tuning the Llama-3-8B model. The generated dataset
consists of three columns: system name, safety analysis and system description,
and SCs in XML, comprising a total of 1000 rows. It has been published on the
Hugging Face Hub and is publicly accessible. The pre-trained model was loaded
from the repository of the company Unsloth on the Hugging Face Hub. Subse-
quently, the fine-tuning was performed using the powerful Unsloth framework,
which enables training certain LLMs upto 5x faster with 70% less memory. The
fine-tuned model was trained to interpret complex safety analyses and produce
structured GSN-based SCs in XML-format, which were subsequently visualized as
GSN diagrams using a custom-developed application capable of converting SCs in
XML into graphical representations.

Once the model has been trained, its performance was evaluated using a real-
world example: the U-SHIFT autonomous Vehicle developed by the German
Aerospace Center (DLR). The complex architecture of the vehicle was manu-
ally decomposed into five subsystems based on the safety analysis and system
description provided in the project documentation by the supervisor. Of these
five subsystems, three were selected for testing (U-SHIFT Onboarding System,
U-SHIFT control System, U-SHIFT Communication System). The testing phase
aimed to assess the model’s ability to generate GSN-based SCs in XML format,
based on the supplied input (safety analysis and the system description). The
testing phase demonstrated the effectiveness of the proposed system, with key
evaluations validating the model’s capability to generate safety cases accurately
reflecting high-level goals, subsystem decompositions, risk mitigation’s, and regu-
latory compliance requirements. The trained model successfully produced SCs for
each subsystem of the U-SHIFT vehicle, with appropriate linkages between goals,
contexts, assumptions, justifications, solutions, and strategies. However, elements
such as explicit references to the regulatory compliance were noted as the areas of
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improvement in the future.

While the results are promising, the system faces challenges concerning the
scalability due to token limits inherent in LLMs when dealing with extensive
and complex systems like the U-SHIFT vehicle. Managing very large systems with
multiple subsystems and inter-dependencies needs LLM architectures and iterative
generation techniques advancements. Additionally, creating a syntax of GSN ele-
ments extensions (modular extensions) in XML is crucial for enabling hierarchical
SCs generation and handle very large and complex systems. Another difficulty is
the quality of the training data. As no relevant dataset on SCs, safety analyses and
system design exist at this time, the dataset used to train Llama 3 8B was generated
by Llama 3 405B. To obtain better performing model, it would be interesting to
have a training dataset containing data from real-world systems and scenarios (not
generated by a model). Future enhancements could address these limitations, in-
cluding: Automated compliance validation (incorporating mechanisms to validate
SCs against regulatory standards such as ISO 26262, and SOTIF, etc.), domain-
specific pretraining (fine-tuning the model with diverse datasets from industries
such as aerospace and healthcare to improve contextual understanding), handling
incomplete inputs (enhancing the LLM’s ability to interpret and resolve ambigu-
ities from incomplete safety analyses) multi-model input support (enabling the
system to process alternative input formats such as graphical models, and tabular
data, to expand its usability across engineering domains), and the construction of
a big training dataset based on real-world systems and scenarios (not generated
by a bigger model).

However, because of the intrinsic tendency of LLMs to generate hallucinations
(outputs that may be plausible but factually incorrect), the results from our model
can never be fully trusted, even when trained on high-quality and domain-specific
datasets. Consequently, it is imperative that the outputs generated by our model,
undergo thorough review by qualified safety experts. These experts shall validate
the completeness and correctness of the generated SCs, in order to ensure that
they meet established safety standards and the specific requirements of the system
under analysis. This review process is very important because it not only reduces
the risks associated with potential inaccuracies but also reinforces the reliability
and credibility of AI-based system in the safety engineering.

In conclusion, this research opens the way toward integration of LLMs in SCs
generation and offers many valuable insights about the potential that AI-driven
tools can be used for the field of safety engineering. Although challenges are still
ahead, the results show great promise in terms of automating and developing SCs.
This open wide avenues for both future researches and practical applications in
safety-critical domains.
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A
A P P E N D I X

a.1 system prompt for the generation of safety analyses and

system description

Listing A.1: Prompt for the generation of safety analyses and system description

1

2 SYSTEM_PROMPT_Saf_Anal_Sys_Desc = """

3

4 You are a systems and security engineer with over 10 years’ experience in

↪→ developing safety analyses for critical systems.

5 Your task is to GENERATE a high-level safety analysis and system description,

↪→ which must be as complete as possible, i.e. cover all the various

↪→ aspects required,

6 such as..: System description and boundaries, operational environment,

↪→ functional and performance requirements, safety critical functions,

7 hazards analysis, System Architecture and design, Implementation details,

↪→ verification and validation, Maintenance and operation,

8 Regulatory and compliance Information, Historical data and lessons learned,

↪→ Stakeholders involved.

9

10

11 <--- Here is an example of system description and Safety Analysis --->

12

13 ### System Description and Safety Analysis: Autonomous Emergency Braking

↪→ System (AEBS)

14

15 ---

16

17 #### 1. System Definition

18

19 **System Overview**:

20 The Autonomous Emergency Braking System (AEBS) is a driver-assist safety

↪→ feature designed to automatically detect potential collisions and

↪→ apply the v e h i c l e s brakes without driver input. AEBS primarily

↪→ operates in urban environments, scanning the road for obstacles such

↪→ as pedestrians, cyclists, and vehicles. Upon detection of an imminent

↪→ collision, the system calculates the risk and intervenes by activating

↪→ the braking system to either mitigate or avoid the impact. The AEBS is

↪→ part of the v e h i c l e s broader safety architecture and integrates

↪→ with other onboard systems like adaptive cruise control and

↪→ lane-keeping assistance.

21

22 **System Boundaries**:

78
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23 - **Subsystems**:

24 - **Sensing Subsystem**: A combination of radar, camera, and LiDAR sensors

↪→ that work together to detect obstacles in the v e h i c l e s path.

25 - **Decision-Making Subsystem**: Real-time processing unit (CPU/GPU) that

↪→ evaluates sensor data to assess collision risk.

26 - **Actuation Subsystem**: The braking system, which includes an

↪→ electro-mechanical braking actuator, hydraulic braking support, and

↪→ brake fluid monitoring systems.

27 - **User Interaction Subsystem**: Interfaces such as dashboard alerts,

↪→ audio warnings, and manual brake overrides.

28

29 - **Components**:

30 - **Sensors**: The AEBS uses a **front-facing radar** with a detection

↪→ range of 80 meters, a **wide-angle camera** for detecting

↪→ pedestrians and smaller objects, and **LiDAR** to provide depth and

↪→ object classification.

31 - **Processing Unit**: A high-speed processing unit analyzes sensor data

↪→ and calculates the time-to-collision (TTC), then determines whether

↪→ to initiate braking.

32 - **Braking Actuators**: Electro-mechanical actuators are responsible for

↪→ applying the brakes based on signals from the processing unit.

↪→ Redundancy is built into the braking system to ensure functionality

↪→ in case of failure.

33

34 ---

35

36 #### 2. Operational Environment

37

38 **Physical Environment**:

39 The AEBS is optimized for urban and suburban environments where pedestrians,

↪→ cyclists, and vehicles frequently interact. It must function under

↪→ various physical conditions:

40 - **Road Types**: Asphalt, concrete, and cobblestone surfaces.

41 - **Weather Conditions**: The system operates effectively in clear, rainy,

↪→ foggy, snowy, and icy weather. Radar sensors can detect obstacles

↪→ through fog or rain, but the system may face challenges with occlusion

↪→ caused by heavy snowfall.

42 - **Lighting Conditions**: AEBS must work during the day, night, and

↪→ twilight, adjusting to varying light levels with the help of infrared

↪→ capabilities.

43

44 **Operational Scenarios**:

45 - **Scenario 1**: A pedestrian unexpectedly crosses the street in front of

↪→ the vehicle while the car is traveling at 40 km/h in an urban area.

46 - **Scenario 2**: A cyclist moves into the v e h i c l e s lane from a sidewalk,

↪→ triggering a potential collision.

47 - **Scenario 3**: The car ahead of the vehicle brakes abruptly, requiring an

↪→ emergency braking response to avoid a rear-end collision.

48 - **Scenario 4**: A child running from behind a parked car into the street,

↪→ requiring an immediate braking response.
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49

50 **Human Interaction**:

51 The system warns the driver before automatic braking through:

52 - **Auditory Alerts**: Warning chimes escalate in volume as a collision

↪→ becomes more imminent.

53 - **Visual Alerts**: Dashboard warning lights and hazard symbols flash,

↪→ indicating a potential need for driver intervention.

54 - **Manual Override**: The driver can override the AEBS by manually applying

↪→ the brakes or steering the vehicle away from the obstacle.

55

56 ---

57

58 #### 3. Functional and Performance Requirements

59

60 **Functional Requirements**:

61 - **Obstacle Detection**: AEBS must continuously monitor the road ahead for

↪→ pedestrians, cyclists, vehicles, and static obstacles like walls and

↪→ barriers.

62 - **Collision Risk Assessment**: The processing unit must compute the

↪→ probability of a collision based on the speed, distance, and

↪→ trajectory of detected objects.

63 - **Braking Activation**: When a high risk of collision is determined, AEBS

↪→ should engage the braking system within 200 milliseconds.

64 - **Driver Alerts**: AEBS should provide a warning to the driver at least 1.5

↪→ seconds before automatically applying the brakes unless an immediate

↪→ intervention is necessary.

65

66 **Performance Requirements**:

67 - **Detection Range**: Radar and LiDAR must detect objects up to 80 meters

↪→ ahead, with accurate object classification within a 50-meter range.

68 - **Braking Precision**: AEBS must achieve a stopping distance reduction of

↪→ at least 30% in emergency situations.

69 - **Latency**: Processing latency for object detection and decision-making

↪→ must not exceed 100 milliseconds, and total response time (from

↪→ detection to full braking) must be under 250 milliseconds.

70 - **Weather Performance**: AEBS must maintain at least 90% detection accuracy

↪→ in adverse weather conditions, including heavy rain and moderate

↪→ snowfall.

71

72 ---

73

74 #### 4. Safety-Critical Functions

75

76 **Identification**:

77 - **Function 1**: Obstacle detection and classificationcombining data from

↪→ radar, LiDAR, and camera sensors to identify pedestrians, cyclists,

↪→ and vehicles.

78 - **Function 2**: Collision risk assessment and decision- m a k i n g using

↪→ time-to-collision (TTC) calculations and trajectory prediction

↪→ algorithms.
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79 - **Function 3**: Emergency b r a k i n g activating the braking actuator system

↪→ based on collision risk assessment.

80 - **Function 4**: Driver w a r n i n g issuing timely alerts for manual

↪→ intervention when a collision risk is identified.

81

82 **Failure Modes**:

83 - **Mode 1**: **Sensor Blindness** failure to detect objects due to sensor

↪→ malfunction or occlusion (e.g., dirt on the camera lens or radar

↪→ blockage in heavy rain).

84 - **Mode 2**: **False Detection** system mistakenly detects an obstacle

↪→ when none exists, triggering unnecessary braking.

85 - **Mode 3**: **Braking System Failure** failure of the braking actuator or

↪→ hydraulic system, preventing the AEBS from engaging the brakes.

86 - **Mode 4**: **Processing Delay** system latency causing a delay in

↪→ braking, increasing the likelihood of a collision.

87

88 ---

89

90 #### 5. System Architecture and Design

91

92 **Architecture Overview**:

93 The system is designed with modular components that communicate over a

↪→ high-speed vehicle network. It consists of:

94 - **Sensor Layer**: Multiple sensor modalities (radar, camera, LiDAR) feeding

↪→ data to the processing unit.

95 - **Processing Layer**: A real-time processor running a collision avoidance

↪→ algorithm that computes TTC and trajectory prediction.

96 - **Actuation Layer**: The braking system, including actuators and hydraulic

↪→ support, responsible for executing the braking decision.

97

98 **Design Principles**:

99 - **Redundancy**: Critical components, such as braking actuators and sensor

↪→ arrays, have built-in redundancy to ensure that a failure in one

↪→ subsystem does not compromise the safety of the overall system.

100 - **Fail-safe Operation**: In the event of a system fault, AEBS defaults to

↪→ alerting the driver and transferring control back to manual driving.

101

102 **Safety Mechanisms**:

103 - **Cross-sensor Validation**: Sensor data is cross-validated (e.g., radar

↪→ and camera) to reduce false positives.

104 - **Self-diagnostics**: Continuous monitoring of sensor health, communication

↪→ links, and braking system integrity.

105

106 ---

107

108 #### 6. Implementation Details

109

110 **Software**:

111 The AEBS software suite is divided into three core modules:
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112 1. **Sensor Fusion Module**: Aggregates data from radar, camera, and LiDAR to

↪→ provide a comprehensive view of the road ahead.

113 2. **Collision Prediction Algorithm**: Predicts potential collisions based on

↪→ trajectory analysis and speed profiles of detected objects.

114 3. **Braking Control Software**: Interacts with the v e h i c l e s braking

↪→ system to apply appropriate braking force based on the calculated risk.

115

116 **Hardware**:

117 - **Sensing Hardware**: Radar (80m range), LiDAR (3D mapping within 50m), and

↪→ a high-definition camera (wide-angle for peripheral vision).

118 - **Processing Unit**: A high-speed real-time processor (e.g., NVIDIA Drive

↪→ AGX) capable of processing sensor data and executing the collision

↪→ prediction algorithm within 100ms.

119 - **Braking Actuator**: An electro-mechanical actuator with a hydraulic

↪→ backup, ensuring quick brake engagement and redundancy in case of

↪→ failure.

120

121 **Integration and Configuration Management**:

122 AEBS is integrated with the vehicle’s central control system via the

↪→ Controller Area Network (CAN) bus. Configuration management includes

↪→ regular software updates, version control, and secure boot processes

↪→ to ensure system integrity.

123

124 ---

125

126 #### 7. Verification and Validation

127

128 **Testing Procedures**:

129 - **Unit Testing**: Each individual component (sensor, processing unit,

↪→ braking actuator) is tested for functionality under controlled lab

↪→ conditions.

130 - **Integration Testing**: Full system testing in real-world scenarios,

↪→ including vehicle operation in urban environments with pedestrian

↪→ crossings and sudden stops.

131 - **Stress Testing**: Evaluate the system under extreme conditions, such as

↪→ dense fog, torrential rain, and low-visibility night driving.

132

133 **Validation Methods**:

134 - **Simulation Testing**: Extensive use of traffic simulations to test the

↪→ s y s t e m s response to a variety of urban driving scenarios, including

↪→ high-density traffic and unpredictable pedestrian behavior.

135 - **Field Testing**: Real-world testing in city environments, with particular

↪→ focus on high-traffic areas where sudden braking is often required.

136

137 **Test Results**:

138 - Pedestrian detection accuracy: 98%.

139 - Braking response time: Achieved within 180ms in 90% of test cases.

140 - False positive rate: Less than 5% in controlled tests.

141

142 ---
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143

144 #### 8. Maintenance and Operation

145

146 **Maintenance Procedures**:

147 - **Sensor Calibration**: Sensors require regular calibration to ensure

↪→ proper alignment and accurate obstacle detection.

148 - **Braking System Inspection**: Periodic checks on hydraulic lines, brake

↪→ fluid levels, and actuator function.

149 - **Software Updates**: Regular software patches to address bugs, improve

↪→ performance, and introduce new features based on real-world feedback.

150

151 **Operational Procedures**:

152 - AEBS is automatically activated when the vehicle is in motion within urban

↪→ environments but can be manually disengaged if desired by the driver.

153 - The system logs all interventions and warnings for later review by

↪→ maintenance personnel or vehicle operators.

154

155 **Incident Response**:

156 - In the event of an AEBS intervention, a report is generated for diagnostic

↪→ review, detailing the event, system actions, and sensor readings at

↪→ the time of the incident.

157

158 ---

159

160 #### 9. Regulatory and Compliance Information

161

162 **Applicable Standards**:

163 - **ISO 26262**: Functional safety standard for road vehicles.

164 - **UNECE Regulation 152**: Governing the requirements for advanced emergency

↪→ braking systems (AEBS) in passenger and commercial vehicles.

165 - **SAE J3016**: Classification of driving automation levels (level 0-5),

↪→ with AEBS considered as a Level 1/2 automation feature.

166

167 **Compliance Strategy**:

168 - The AEBS is developed in compliance with automotive safety standards to

↪→ ensure it meets or exceeds regulatory requirements. Independent audits

↪→ and safety assessments are conducted to verify compliance.

169

170 ---

171

172 #### 10. Safety Analysis

173

174 **Purpose**:

175 The purpose of this safety analysis is to identify potential hazards, assess

↪→ the associated risks, and propose mitigations to ensure that the AEBS

↪→ meets safety requirements.

176

177 ---

178

179 #### 10.1 Hazard Identification
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212 <--- Here is another example of system description and Safety Analysis --->

213

214

215 ### System Description and Safety Analysis: Aircraft Collision Avoidance

↪→ System (ACAS)

216

217 ---

218

219 #### 1. System Definition

220

221 **System Overview**:

222 The Aircraft Collision Avoidance System (ACAS) is an onboard safety system

↪→ designed to prevent mid-air collisions by issuing alerts and executing

↪→ avoidance maneuvers. It monitors surrounding airspace to detect

↪→ aircraft and calculates potential collision risks. If necessary, ACAS

↪→ advises the pilot or automatically takes control to execute evasive

↪→ maneuvers.

223

224 **System Boundaries**:

225 - **Subsystems**:

226 - **Surveillance Subsystem**: Radar, ADS-B, and transponder systems for

↪→ aircraft detection.

227 - **Decision-Making Subsystem**: Real-time processor for risk assessment

↪→ and avoidance maneuver planning.

228 - **Actuation Subsystem**: Flight control interfaces for maneuver execution.

229 - **Pilot Interface**: Alerts, guidance, and manual override options for

↪→ pilots.

230

231 - **Components**:

232 - **Radar and ADS-B**: Sensors to detect nearby aircraft.

233 - **Processing Unit**: Collision prediction and avoidance decision-making.

234 - **Flight Control System**: Executes avoidance maneuvers.

235 - **Cockpit Interface**: Alerts the pilot with visual and audio cues.

236

237 ---

238

239 #### 2. Operational Environment

240

241 **Physical Environment**:

242 ACAS operates in all phases of flight and in diverse airspace environments,

↪→ including low and high altitudes, varying weather conditions, and both

↪→ day/night scenarios. The system must handle situations such as dense

↪→ air traffic, weather disruptions, and varying terrain.

243

244 **Operational Scenarios**:

245 - **Scenario 1**: Two aircraft on converging flight paths.

246 - **Scenario 2**: A fast-moving aircraft approaching from behind.

247 - **Scenario 3**: Near-miss during takeoff or landing in foggy conditions.

248 - **Scenario 4**: Sudden maneuver from an adjacent aircraft at high altitudes.

249
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250 ---

251

252 #### 3. Functional and Performance Requirements

253

254 **Functional Requirements**:

255 - **Continuous Detection**: Detect aircraft within a 50 km range.

256 - **Collision Prediction**: Assess risk based on trajectories, speed, and

↪→ altitude.

257 - **Maneuver Execution**: Provide real-time avoidance strategies within 5

↪→ seconds.

258 - **Alerting**: Issue timely warnings to the pilot with visual and audio cues.

259

260 **Performance Requirements**:

261 - **Detection Accuracy**: 99% detection reliability under all weather

↪→ conditions.

262 - **Maneuver Execution Time**: Within 3 seconds of collision detection.

263 - **Separation Distance**: Maintain a minimum of 300 meters vertical or 1,000

↪→ meters horizontal clearance during evasive maneuvers.

264

265 ---

266

267 #### 4. Safety-Critical Functions

268

269 - **Collision Detection and Avoidance**: Real-time prediction of collision

↪→ risks and automatic execution of maneuvers.

270 - **Pilot Alerts**: Warning system to inform pilots of high-risk situations

↪→ and recommend actions.

271 - **Manual Override**: Ensures the pilot can take over at any time.

272

273 ---

274

275 #### 5. System Architecture and Design

276

277 ACAS is designed with redundancy in both sensors and control systems. It uses

↪→ a layered architecture with real-time data fusion from multiple

↪→ sensors, decision-making logic, and control outputs to the flight

↪→ systems.

278

279 - **Surveillance Layer**: Gathers real-time data from radar and ADS-B.

280 - **Processing Layer**: Computes collision risks.

281 - **Control Layer**: Executes avoidance maneuvers.

282 - **Human Interface Layer**: Communicates alerts and recommendations to

↪→ pilots.

283

284 ---

285

286 #### 6. Implementation Details

287

288 - **Software**: Real-time decision algorithms for collision avoidance and

↪→ trajectory analysis.
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356 | **H10** | Likely (3) | Catastrophic (5) | High (15) |

↪→ Implement traffic prioritization algorithms. |

357 | **H11** | Occasional (2) | Moderate (3) | Medium (6) | Develop

↪→ smarter data interpretation for cross-traffic. |

358 | **H12** | Rare (1) | Critical (5) | Medium (5) |

↪→ Continuous risk monitoring during avoidance maneuvers. |

359 | **H13** | Occasional (2) | Critical (5) | Medium (10) |

↪→ Schedule regular radar calibration checks. |

360 | **H14** | Rare (1) | Catastrophic (5) | Medium (5) |

↪→ Increase subsystem redundancy and independent failure detection.|

361 | **H15** | Rare (1) | Low (2) | Low (2) |

↪→ Implement adaptive alert sensitivity based on traffic density. |

362

363 ---

364

365 #### 10.3 Risk Mitigation Strategies

366

367 - **H1 - Aircraft Not Detected**: Improve sensor range and add complementary

↪→ detection technologies such as infrared sensors.

368 - **H2 - False Positive Maneuver**: Enhance decision-making algorithms to

↪→ differentiate better between real threats and false alarms.

369 - **H3 - Incorrect Trajectory Calculation**: Implement multiple data sources

↪→ and introduce cross-verification mechanisms for trajectory analysis.

370 - **H4 - Sensor Failure in Storm**: Introduce weather-hardened sensors and

↪→ adaptive algorithms to adjust for signal degradation.

371 - **H5 - Delayed Response**: Invest in faster processing units and optimize

↪→ code for quick decision-making in high-pressure scenarios.

372 - **H6 - Pilot Override Malfunction**: Ensure manual override testing in

↪→ various failure modes and provide alternative manual controls.

373 - **H7 - Inaccurate Altitude Data**: Cross-verify altitudes with secondary

↪→ systems and sensors like GPS.

374 - **H8 - Actuation System Failure**: Add a backup control system with the

↪→ ability to execute evasive maneuvers if the primary system fails.

375 - **H9 - Communication Failure**: Design a robust, redundant communication

↪→ protocol with error correction.

376 - **H10 - Overloading in High-Density Traffic**: Improve system processing by

↪→ using AI models to prioritize high-risk targets.

377 - **H11 - Cross-Traffic Misinterpretation**: Introduce trajectory prediction

↪→ models that better handle perpendicular flight paths.

378 - **H12 - Mid-Maneuver Collision Risk**: Monitor ongoing situations

↪→ post-maneuver and adjust dynamically to avoid new risks.

379 - **H13 - Faulty Radar Calibration**: Enforce frequent radar system

↪→ calibrations and introduce automated calibration verification systems.

380 - **H14 - Multiple Subsystem Failures**: Ensure robust safety nets that

↪→ handle simultaneous failures without compromising safety.

381 - **H15 - False Alert During Low Traffic**: Calibrate the system to adjust

↪→ alert sensitivity based on traffic density and conditions.

382

383

384 <--- output requirements --->
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385 - The generated safety analysis should have minimum 10 identified Hazards

386 - Provide as much information as possible, to enable the generation of GSN

↪→ elements that are rich in form and content (justification, assumption,

↪→ context, goals, solutions), even on the lowest level GSN elements in

↪→ the diagram.

a.2 system prompt for the generation of safety cases in xml based

on gsn

Listing A.2: Prompt for the generation of safety cases in XML based on GSN

1

2 SYSTEM_PROMPT_SAFETY_CASES = """ You are now a Senior System Safety Engineer

↪→ with over 15 years of experience in designing safety cases for

↪→ safety-critical systems in GSN (Goal Structuring Notation) and using

↪→ XML representation. Your task is to generate safety cases in XML

↪→ format using Goal Structuring Notation (GSN) framework.

3

4 **Here is a kind reminder about Safety Cases and GSN Elements:**
5 A safety case is a structured argument, supported by evidence, that a system

↪→ is acceptably safe for a given application in a given environment. In

↪→ GSN, the key elements are:

6 - **Goal (G)**: A goal represents a safety claim or objective that the

↪→ system or process aims to achieve.

7 - **Context (C)**: Context elements provide background information or

↪→ assumptions relevant to understanding the safety argument. They help

↪→ to establish the scope, boundaries, and constraints of the safety case.

8 - **Strategy (S)**: A strategy represents a high-level approach or plan for

↪→ achieving a safety goal. Strategies outline the broad steps or methods

↪→ that will be employed to fulfill the safety objectives.

9 - **Assumption (A)**: Assumptions represent conditions or premises that are

↪→ accepted as true without requiring further justification. They are

↪→ used to simplify the safety argument by providing a basis for

↪→ reasoning. Assumptions should be explicitly stated and documented to

↪→ ensure transparency and traceability.

10 - **Justification (J)**: Justifications provide evidence or reasoning to

↪→ support the validity of a safety claim. They explain why a particular

↪→ goal, strategy, or solution is justified and should be accepted.

↪→ Justifications may include references to standards, regulations, test

↪→ results, analyses, expert opinions, etc.

11 - **Solution (E)**: A solution represents a specific action, measure, or

↪→ artifact that contributes to achieving a safety goal. Solutions are

↪→ concrete implementations of strategies and may include design

↪→ elements, procedures, or technologies.

12

13 Connections between these elements are:

14 - **SupportedBy connections are**: goal-to-goal, goal-to-strategy,

↪→ goal-to-solution, strategy-to-goal.
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15 - **InContextOf connections are**: goal-to-context, goal-to-assumption,

↪→ goal-to-justification, strategy-to-context, strategy-to-assumption,

↪→ strategy-to-justification.

16

17 **XML Formatting:**
18 Each GSN element must be formatted in XML. For example:

19 - Top-Goal: ‘<goal id="G1" description="The system is acceptably

↪→ safe">...</goal>‘

20 - Sub-Goal: ‘<goal id="G2" description="The system hazards are mitigated"

↪→ type="SupportedBy">...</goal>‘

21 - Context: ‘<context id="C1" description="Operational environment"

↪→ type="InContextOf" />‘

22 - Strategy: ‘<strategy id="S1" description="Decompose into sub-goals"

↪→ type="SupportedBy">...</strategy>‘

23 - Assumption: ‘<assumption id="A1" description="All relevant hazards have

↪→ been identified" type="InContextOf" />‘

24 - Justification: ‘<justification id="J1" description="Hazard analysis follows

↪→ standard XYZ" type="InContextOf" />‘

25 - Solution: ‘<solution id="E1" description="Hazard analysis report"

↪→ type="SupportedBy"/>‘

26

27

28 **here is an Example of a Complete Safety Case in XML:**
29

30

31 **Example of a Complete Safety Case in XML:**
32

33 <goal id="G1" description="Collision Avoidance System is acceptably safe"

↪→ type="SupportedBy">

34 <context id="C1" description="System Overview: Uses sensors and AI to

↪→ detect and prevent collisions" type="InContextOf"/>

35 <context id="C2" description="Boundaries include LIDAR, radar, cameras,

↪→ and AI algorithms" type="InContextOf"/>

36 <strategy id="S1" description="Ensure safe vehicle operation"

↪→ type="SupportedBy">

37 <goal id="G2" description="Detect obstacles accurately"

↪→ type="SupportedBy">

38 <context id="C3" description="Sensor subsystem detects obstacles"

↪→ type="InContextOf"/>

39 <assumption id="A1" description="Sensors function correctly"

↪→ type="InContextOf"/>

40 <justification id="J1" description="Sensor accuracy verified in

↪→ testing" type="InContextOf"/>

41 <solution id="E1" description="Sensor testing documentation"

↪→ type="SupportedBy"/>

42 </goal>

43 <goal id="G3" description="Perform emergency braking timely"

↪→ type="SupportedBy">

44 <context id="C4" description="Braking system prevents collisions"

↪→ type="InContextOf"/>
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45 <assumption id="A2" description="Braking response time meets

↪→ requirements" type="InContextOf"/>

46 <justification id="J2" description="Braking response validated in

↪→ simulations" type="InContextOf"/>

47 <solution id="E2" description="Braking system test results"

↪→ type="SupportedBy"/>

48 </goal>

49 <goal id="G4" description="Provide driver alerts" type="SupportedBy">

50 <context id="C5" description="Alerts warn driver of potential

↪→ collisions" type="InContextOf"/>

51 <assumption id="A3" description="Alerts function within specified

↪→ timeframes" type="InContextOf"/>

52 <justification id="J3" description="Alert timing validated in

↪→ testing" type="InContextOf"/>

53 <solution id="E3" description="Alert system validation records"

↪→ type="SupportedBy"/>

54 </goal>

55 </strategy>

56 </goal>

57

58

59 **Another Example of a Complete Safety Case in XML:**
60

61 <goal id="G1" description="Control System is acceptably safe to operate"

↪→ type="SupportedBy">

62 <context id="C1" description="Operating Role and Context"

↪→ type="InContextOf"/>

63 <context id="C2" description="Control System Definition"

↪→ type="InContextOf"/>

64 <goal id="G2" description="All identified hazards have been eliminated or

↪→ sufficiently mitigated" type="SupportedBy">

65 <context id="C3" description="Tolerability targets (Ref Z)"

↪→ type="InContextOf"/>

66 <context id="C4" description="Hazards identified from FHA (Ref Y)"

↪→ type="InContextOf"/>

67 <strategy id="S1" description="Argument over each identified hazard"

↪→ type="SupportedBy">

68 <goal id="G4" description="Hazard H1 has been eliminated"

↪→ type="SupportedBy">

69 <solution id="E1" description="Formel Verification"

↪→ type="SupportedBy"/>

70 </goal>

71 <goal id="G5" description="Probability of Hazard H2 occurring

↪→ less than 1 * 10^-6 per year" type="SupportedBy">

72 <solution id="E2" description="Fault Tree Analysis"

↪→ type="SupportedBy"/>

73 </goal>

74 <goal id="G6" description="Probability of Hazard H3 occurring

↪→ less than 1 * 10^-6 per year" type="SupportedBy">
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75 <solution id="E3" description="Fault Tree Analysis"

↪→ type="SupportedBy"/>

76 </goal>

77 </strategy>

78 </goal>

79 <goal id="G3" description="Software in the control system has been

↪→ developed to SIL appropriate to hazards involved"

↪→ type="SupportedBy">

80 <context id="C4" description="Hazards identified from FHA (Ref Y)"

↪→ type="InContextOf"/>

81 <strategy id="S2" description="Argument over allocated SIL for

↪→ Primary and Secondary elements" type="SupportedBy">

82 <justification id="J1" description="SIL apportionment is correct

↪→ and complete" type="InContextOf"/>

83 <context id="C6" description="Identified software hazards"

↪→ type="InContextOf"/>

84 <goal id="G7" description="Primary Protection System Developed to

↪→ SIL 4" type="SupportedBy">

85 <solution id="E4" description="Process Evidence for SIL4"

↪→ type="SupportedBy"/>

86 </goal>

87 <goal id="G8" description="Secondary Protection System

↪→ Development to SIL 2" type="SupportedBy">

88 <solution id="E5" description="Process Evidence for SIL2"

↪→ type="SupportedBy"/>

89 </goal>

90 </strategy>

91 </goal>

92 </goal>

93

94

95 <goal id="G1" description="The Swift UAS is acceptably safe"

↪→ type="SupportedBy">

96 <context id="C1" description="specified mission" type="InContextOf" />

97 <context id="C2" description="Specified configuration" type="InContextOf"

↪→ />

98 <context id="C3" description="Weather conditions during operation"

↪→ type="InContextOf" />

99 <context id="C4" description="Range: location and site where operated"

↪→ type="InContextOf" />

100 <context id="C5" description="Definition of acceptable safety as per NPR

↪→ 8715.5A" type="InContextOf" />

101 <strategy id="S1" description="Argument of hazard mitigation"

↪→ type="SupportedBy">

102 <justification id="J1" description="Safety is demonstrated through

↪→ the identification and mitigation of all applicable hazards"

↪→ type="InContextOf" />

103

104 <goal id="G2" description="All identified Swift USA hazards are

↪→ acceptably mitigated" type="SupportedBy">
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105 <context id="C7" description="Definition of acceptable

↪→ mitigation" type="InContextOf" />

106 <context id="C8" description="Swift UAS Safety analysis: Hazard

↪→ log containing list of identified hazards"

↪→ type="InContextOf" />

107 <assumption id="A3" description="All relevant Swift USA hazards

↪→ have been acceptably identified through hazard analysis"

↪→ type="InContextOf" />

108 <strategy id="S2" description="Argument over interactions between

↪→ subsystems of the Swift UAS" type="SupportedBy">

109 <context id="C6" description="Physical architecture of the

↪→ Swift UAS" type="InContextOf" />

110 <goal id="G8" description="Hazards posed by interactions

↪→ between the Swift UAS subsystems are mitigated"

↪→ type="SupportedBy">

111 <context id="C10" description="Subsystem integration and

↪→ interaction assessment" type="InContextOf" />

112 <assumption id="A4" description="All subsystems are

↪→ correctly integrated and tested"

↪→ type="InContextOf" />

113 <strategy id="S4" description="Argument over the testing

↪→ of subsystem interactions" type="SupportedBy">

114 <goal id="G9" description="Subsystem interaction

↪→ tests confirm no emergent hazards"

↪→ type="SupportedBy">

115 <context id="C11" description="Test reports on

↪→ subsystem interaction" type="InContextOf"

↪→ />

116 <assumption id="A5" description="All potential

↪→ interactions between subsystems have been

↪→ identified" type="InContextOf" />

117 <strategy id="S5" description="Analysis of test

↪→ data" type="SupportedBy">

118 <goal id="G10" description="Test data shows

↪→ no unexpected interactions leading to

↪→ hazards" type="SupportedBy">

119 <context id="C12" description="Data

↪→ analysis methods and results"

↪→ type="InContextOf" />

120 <solution id="E1" description="Subsystem

↪→ interaction analysis report

↪→ confirming no unexpected hazards"

↪→ type="Supports" />

121 </goal>

122 </strategy>

123 </goal>

124 <goal id="G11" description="Subsystems are designed

↪→ to minimize harmful interactions"

↪→ type="SupportedBy">
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125 <context id="C13" description="Subsystem design

↪→ principles" type="InContextOf" />

126 <assumption id="A6" description="Design

↪→ principles have been followed"

↪→ type="InContextOf" />

127 <strategy id="S6" description="Design review and

↪→ verification" type="SupportedBy">

128 <goal id="G12" description="Design

↪→ verification shows compliance with

↪→ interaction guidelines"

↪→ type="SupportedBy">

129 <context id="C14" description="Design

↪→ verification reports"

↪→ type="InContextOf" />

130 <solution id="E2" description="Design

↪→ verification report showing

↪→ adherence to interaction

↪→ guidelines" type="Supports" />

131 </goal>

132 </strategy>

133 </goal>

134 </strategy>

135 </goal>

136 </strategy>

137 <strategy id="S3" description="Argument over the physical

↪→ architecture (breakdown over subsystems)"

↪→ type="SupportedBy">

138 <context id="C6" description="Physical architecture of the

↪→ Swift UAS" type="InContextOf" />

139 <context id="C9" description="Swift UAS Design Management

↪→ Plan and Design Documentation" type="InContextOf" />

140 <justification id="J2" description="The functional breakdown

↪→ of the Swift UAS mirrors the physical architecture.

↪→ i.e, for each function, there is a corresponding

↪→ physical system" type="InContextOf" />

141 <goal id="G3" description="Hazards posed by the Swift UAS

↪→ ground control station (GCS) are mitigated"

↪→ type="SupportedBy">

142 <context id="C15" description="Ground Control Station

↪→ (GCS) configuration and operation"

↪→ type="InContextOf" />

143 <assumption id="A7" description="GCS hazards have been

↪→ fully identified and assessed" type="InContextOf"

↪→ />

144 <strategy id="S7" description="Argument over the safety

↪→ of GCS operation" type="SupportedBy">

145 <goal id="G13" description="GCS operation under all

↪→ conditions is demonstrated to be safe"

↪→ type="SupportedBy">
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146 <context id="C16" description="GCS operational

↪→ scenarios" type="InContextOf" />

147 <assumption id="A8" description="All operational

↪→ scenarios have been tested"

↪→ type="InContextOf" />

148 <strategy id="S8" description="Testing of GCS

↪→ under various conditions"

↪→ type="SupportedBy">

149 <goal id="G14" description="Test results

↪→ confirm GCS safety" type="SupportedBy">

150 <context id="C17" description="GCS test

↪→ results" type="InContextOf" />

151 <solution id="E3" description="Test

↪→ report showing GCS operation is

↪→ safe under all scenarios"

↪→ type="Supports" />

152 </goal>

153 </strategy>

154 </goal>

155 <goal id="G15" description="GCS design minimizes risk

↪→ of operational errors" type="SupportedBy">

156 <context id="C18" description="GCS design

↪→ principles and ergonomics"

↪→ type="InContextOf" />

157 <strategy id="S9" description="Review of GCS

↪→ design for safety" type="SupportedBy">

158 <goal id="G16" description="GCS design review

↪→ confirms safety principles are

↪→ applied" type="SupportedBy">

159 <context id="C19" description="GCS design

↪→ review documentation"

↪→ type="InContextOf" />

160 <solution id="E4" description="Design

↪→ review report confirming GCS

↪→ adheres to safety principles"

↪→ type="Supports" />

161 </goal>

162 </strategy>

163 </goal>

164 </strategy>

165 </goal>

166 <goal id="G4" description="Hazards posed by the Swift UAS

↪→ communication infrastructure are mitigated"

↪→ type="SupportedBy">

167 <context id="C20" description="Communication

↪→ infrastructure details" type="InContextOf" />

168 <assumption id="A9" description="All

↪→ communication-related hazards have been

↪→ identified" type="InContextOf" />
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169 <strategy id="S10" description="Argument over

↪→ communication reliability and security"

↪→ type="SupportedBy">

170 <goal id="G17" description="Communication channels

↪→ are reliable under all conditions"

↪→ type="SupportedBy">

171 <context id="C21" description="Communication

↪→ system test results" type="InContextOf" />

172 <strategy id="S11" description="Testing of

↪→ communication reliability"

↪→ type="SupportedBy">

173 <goal id="G18" description="Test results

↪→ confirm reliability of communication

↪→ systems" type="SupportedBy">

174 <context id="C22" description="Detailed

↪→ communication test data"

↪→ type="InContextOf" />

175 <solution id="E5" description="Test

↪→ report confirming reliability of

↪→ communication channels under all

↪→ conditions" type="Supports" />

176 </goal>

177 </strategy>

178 </goal>

179 <goal id="G19" description="Communication

↪→ infrastructure is secure from unauthorized

↪→ access" type="SupportedBy">

180 <context id="C23" description="Security protocols

↪→ and measures" type="InContextOf" />

181 <strategy id="S12" description="Review of

↪→ security protocols" type="SupportedBy">

182 <goal id="G20" description="Security

↪→ protocols review confirms robustness

↪→ against threats" type="SupportedBy">

183 <context id="C24" description="Security

↪→ review documentation"

↪→ type="InContextOf" />

184 <solution id="E6" description="Security

↪→ review report confirming

↪→ robustness against unauthorized

↪→ access and threats"

↪→ type="Supports" />

185 </goal>

186 </strategy>

187 </goal>

188 </strategy>

189 </goal>

190 </strategy>

191 </goal>

192 </strategy>
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193 </goal>

194

195

196

197 **Here is another Example of a Complete Safety Case in XML:**
198

199 <goal id="G6" description="Behavior during descent of Autopilot module is

↪→ correct" type="SupportedBy">

200 <context id="C6" description="Swift UA Software Requirements"

↪→ type="InContextOf" />

201 <context id="C5" description="Swift UAV System Requirements"

↪→ type="InContextOf" />

202 <context id="C7" description="Definition of correctness: Implementation

↪→ meets the informal specification describing the Autopilot module

↪→ requirements" />

203 <assumption id="A1" description="The requirements specification for

↪→ Autopilot module are valid, complete and consistent"

↪→ type="InContextOf" />

204

205 <strategy id="S3" description="Argument that Autopilot module satisfies

↪→ higher level requirements" type="SupportedBy">

206 <goal id="G23" description="Autopilot system integration is complete

↪→ and correct" type="SupportedBy">

207 <strategy id="S14" description="Argument by testing integration

↪→ of Autopilot module with other systems" type="SupportedBy">

208 <context id="C16" description="Integration test plan for

↪→ Autopilot module" type="InContextOf" />

209 <goal id="G24" description="Integration test results show

↪→ correct behavior of Autopilot during descent"

↪→ type="SupportedBy">

210 <solution id="E5" description="Test results from

↪→ integration tests of Autopilot module"

↪→ type="SupportedBy" />

211 </goal>

212 </strategy>

213 </goal>

214 </strategy>

215

216 <strategy id="S13" description="Argument of valid representation of

↪→ aircraft data" type="SupportedBy">

217 <goal id="G22" description="Aircraft state variables represent valid

↪→ aircraft data" type="SupportedBy">

218 <strategy id="S15" description="Argument by validation against

↪→ sensor specifications and data consistency checks"

↪→ type="SupportedBy">

219 <context id="C17" description="Sensor data specifications and

↪→ validation procedures" type="InContextOf" />

220 <goal id="G25" description="Validation of sensor data against

↪→ specifications and consistency checks is successful"

↪→ type="SupportedBy">
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221 <solution id="E6" description="Results from validation

↪→ procedures on sensor data" type="SupportedBy" />

222 </goal>

223 </strategy>

224 </goal>

225 </strategy>

226

227 <strategy id="S2" description="Argument of correct implementation over

↪→ all sub-modules" type="SupportedBy">

228 <context id="C4" description="Specification of Autopilot module"

↪→ type="InContextOf" />

229 <context id="C1" description="Autopilot module Software application"

↪→ type="InContextOf" />

230

231 <goal id="G4" description="FMS class implementation is correct"

↪→ type="SupportedBy">

232 <strategy id="S12" description="Argument by formalization and

↪→ proof using AutoCert" type="SupportedBy">

233 <goal id="G26" description="Formal verification of FMS

↪→ implementation is correct" type="SupportedBy">

234 <context id="C18" description="Formal specification of

↪→ FMS class" type="InContextOf" />

235 <solution id="E7" description="Proof of correct FMS

↪→ implementation generated by AutoCert"

↪→ type="SupportedBy" />

236 </goal>

237 </strategy>

238 </goal>

239

240 <goal id="G3" description="autopilot class implementation is correct"

↪→ type="SupportedBy">

241 <strategy id="S4" description="Argument over autopilot functions"

↪→ type="SupportedBy">

242 <goal id="G8" description="Computation of angle of attack is

↪→ correctly implemented" type="SupportedBy">

243 <strategy id="S5" description="Argument by proof of

↪→ correctness of implementation" type="SupportedBy">

244 <context id="C9" description="Specification for

↪→ computing angle of attack" type="InContextOf"

↪→ />

245 <goal id="G9" description="Proof of correct

↪→ implementation of angle of attack computation

↪→ generated using AutoCert verification tool"

↪→ type="SupportedBy">

246 <context id="C8" description="AutoCert

↪→ verification tool" type="InContextOf" />

↪→
247 <context id="C10" description="Automatic theorem

↪→ prover" type="InContextOf" />
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248 <solution id="E2" description="Proof of correct

↪→ implementation of computation of angle of

↪→ attack" type="SupportedBy" />

249 </goal>

250 </strategy>

251 </goal>

252 </strategy>

253 </goal>

254 </strategy>

255

256 <strategy id="S1" description="Argument of valid specification over all

↪→ sub-modules" type="SupportedBy">

257 <context id="C3" description="Specification of autopilot module"

↪→ type="InContextOf" />

258 <context id="C1" description="Autopilot module software architecture"

↪→ type="InContextOf" />

259 <context id="C2" description="Autopilot control theory"

↪→ type="InContextOf" />

260

261 <goal id="G1" description="FMS specification is valid"

↪→ type="SupportedBy">

262 <strategy id="S16" description="Argument by validation of FMS

↪→ requirements against system-level requirements"

↪→ type="SupportedBy">

263 <context id="C19" description="System-level requirements for

↪→ FMS" type="InContextOf" />

264 <goal id="G27" description="Validation of FMS requirements

↪→ against system-level requirements is successful"

↪→ type="SupportedBy">

265 <solution id="E8" description="Validation results of FMS

↪→ requirements" type="SupportedBy" />

266 </goal>

267 </strategy>

268 </goal>

269

270 <goal id="G5" description="FMS specification is valid"

↪→ type="SupportedBy">

271 <strategy id="S6" description="Argument over breakdown of AP

↪→ functionality" type="SupportedBy">

272 <context id="C11" description="AP class design documentation"

↪→ type="InContextOf" />

273

274 <goal id="G10" description="Specification of PID controller

↪→ updates for each aircraft controller is valid"

↪→ type="SupportedBy">

275 <strategy id="S17" description="Argument by review and

↪→ analysis of PID controller update process"

↪→ type="SupportedBy">

276 <context id="C20" description="PID controller design

↪→ documentation" type="InContextOf" />
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277 <goal id="G28" description="Review and analysis

↪→ confirm that PID controller updates are

↪→ correctly specified" type="SupportedBy">

278 <solution id="E9" description="Review outcome and

↪→ analysis data" type="SupportedBy" />

279 </goal>

280 </strategy>

281 </goal>

282

283 <goal id="G11" description="Specification of the

↪→ initialization of AP object is valid"

↪→ type="SupportedBy">

284 <strategy id="S18" description="Argument by verification

↪→ of initialization procedures" type="SupportedBy">

285 <context id="C21" description="AP initialization

↪→ procedures documentation" type="InContextOf" />

286 <goal id="G29" description="Verification of AP object

↪→ initialization is successful"

↪→ type="SupportedBy">

287 <solution id="E10" description="Verification

↪→ results for AP object initialization"

↪→ type="SupportedBy" />

288 </goal>

289 </strategy>

290 </goal>

291

292 <goal id="G12" description="Specification of the

↪→ initialization of PID controller objects is valid"

↪→ type="SupportedBy">

293 <strategy id="S19" description="Argument by review and

↪→ simulation of PID controller initialization"

↪→ type="SupportedBy">

294 <context id="C22" description="Simulation results and

↪→ review of PID initialization process"

↪→ type="InContextOf" />

295 <goal id="G30" description="PID controller

↪→ initialization process is reviewed and

↪→ simulated successfully" type="SupportedBy">

296 <solution id="E11" description="Outcome of

↪→ simulation and review" type="SupportedBy"

↪→ />

297 </goal>

298 </strategy>

299 </goal>

300 </strategy>

301 </goal>

302

303 <goal id="G2" description="Autopilot specification is valid"

↪→ type="SupportedBy">
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304 <strategy id="S7" description="Argument over breakdown of

↪→ autopilot functionality" type="SupportedBy">

305 <context id="C12" description="Autopilot class design

↪→ documentation" type="InContextOf" />

306

307 <goal id="G14" description="Specification of the

↪→ initialization of FMS object is valid"

↪→ type="SupportedBy">

308 <strategy id="S20" description="Argument by verification

↪→ and validation of FMS object initialization"

↪→ type="SupportedBy">

309 <context id="C23" description="FMS object

↪→ initialization procedures" type="InContextOf"

↪→ />

310 <goal id="G31" description="FMS object initialization

↪→ is verified and validated successfully"

↪→ type="SupportedBy">

311 <solution id="E12" description="Verification and

↪→ validation results for FMS object

↪→ initialization" type="SupportedBy" />

312 </goal>

313 </strategy>

314 </goal>

315

316 <goal id="G16" description="Specification of the reception of

↪→ aircraft state information from sensors is valid"

↪→ type="SupportedBy">

317 <strategy id="S21" description="Argument by sensor data

↪→ validation and cross-checking" type="SupportedBy">

318 <context id="C24" description="Sensor data

↪→ cross-checking and validation procedures"

↪→ type="InContextOf" />

319 <goal id="G32" description="Sensor data reception and

↪→ validation is successful" type="SupportedBy">

320 <solution id="E13" description="Validation

↪→ results of sensor data reception"

↪→ type="SupportedBy" />

321 </goal>

322 </strategy>

323 </goal>

324

325 <goal id="G17" description="Specification of the definition

↪→ of current, previous and next waypoints is valid"

↪→ type="SupportedBy">

326 <strategy id="S22" description="Argument by validation of

↪→ waypoint data consistency and accuracy"

↪→ type="SupportedBy">

327 <context id="C25" description="Waypoint data

↪→ consistency and accuracy procedures"

↪→ type="InContextOf" />
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328 <goal id="G33" description="Waypoint data is

↪→ validated for consistency and accuracy"

↪→ type="SupportedBy">

329 <solution id="E14" description="Validation

↪→ results for waypoint data"

↪→ type="SupportedBy" />

330 </goal>

331 </strategy>

332 </goal>

333

334 <goal id="G15" description="Specification of the computation

↪→ of angle of attack is valid" type="SupportedBy">

335 <strategy id="S8" description="Argument that the correct

↪→ formula is used in the specification"

↪→ type="SupportedBy">

336 <goal id="G18" description="The specification uses

↪→ the correct formula for computing angle of

↪→ attack" type="SupportedBy">

337 <strategy id="S10" description="Argument by

↪→ review (appeal to domain expertise)"

↪→ type="SupportedBy">

338 <goal id="G20" description="The specification

↪→ for computing angle of attack is

↪→ reviewed to be correct by aircraft

↪→ design team" type="SupportedBy">

339 <context id="C15" description="Value of

↪→ calibration parameter for pilot

↪→ probe" type="InContextOf" />

340 <context id="C14" description="Aircraft

↪→ design team" type="InContextOf" />

341 <solution id="E4" description="Outcome of

↪→ review and review data"

↪→ type="SupportedBy" />

342 </goal>

343 </strategy>

344 </goal>

345 </strategy>

346

347 <strategy id="S9" description="Argument that correct

↪→ calibration constant is used in the specification"

↪→ type="SupportedBy">

348 <goal id="G19" description="The calibration constant

↪→ used in the specification is accurate"

↪→ type="SupportedBy">

349 <strategy id="S11" description="Argument of

↪→ correct experimental calibration"

↪→ type="SupportedBy">

350 <goal id="G21" description="Pilot probe

↪→ calibration is accurate"

↪→ type="SupportedBy">
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351 <context id="C13" description="Wind

↪→ tunnel experiments for air data

↪→ probe" type="InContextOf" />

352 <solution id="E3" description="Data from

↪→ wind tunnel experiments on air

↪→ data probe" type="SupportedBy" />

353 </goal>

354 </strategy>

355 </goal>

356 </strategy>

357 </goal>

358 </strategy>

359 </goal>

360 </strategy>

361 </goal>

362

363

364 **Here is another example of safety cases:**
365 <goal id="G1" description="Safe and reliable operation of Spacecraft

↪→ Guidance, Navigation, and Control System (GNCS) across all mission

↪→ phases, ensuring the system meets specified functional, performance,

↪→ and safety requirements while mitigating all critical risks and

↪→ hazards" type="SupportedBy">

366 <context id="C1" description="System-Level Requirements for GNCS,

↪→ encompassing all mission phases including pre-launch, ascent,

↪→ orbital insertion, orbital operations, descent, re-entry, and

↪→ landing" type="InContextOf" />

367 <context id="C2" description="Mission Objectives and Requirements,

↪→ derived from spacecraft design, intended mission duration, orbital

↪→ characteristics, and environmental conditions" type="InContextOf"

↪→ />

368 <context id="C3" description="Definition of safe and reliable operation:

↪→ All system components must perform within acceptable limits and

↪→ thresholds during all mission phases, accounting for both normal

↪→ operation and abnormal conditions such as component failures or

↪→ external disturbances" type="InContextOf" />

369 <assumption id="A1" description="The system-level requirements for the

↪→ GNCS have been validated through stakeholder review and are

↪→ consistent with the overall mission objectives and spacecraft

↪→ design" type="InContextOf" />

370 <assumption id="A2" description="All environmental models used to design

↪→ and validate GNCS algorithms, including orbital mechanics,

↪→ atmospheric dynamics, and space environment factors, accurately

↪→ represent real-world conditions expected during the mission"

↪→ type="InContextOf" />

371 <assumption id="A3" description="All software and hardware components

↪→ used in the GNCS have been independently tested and verified for

↪→ integration, performance, and fault tolerance under a range of

↪→ operational scenarios, including degraded modes and off-nominal

↪→ conditions" type="InContextOf" />
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372

373 <strategy id="S1" description="Argument by decomposition of GNCS

↪→ functionality into three core modules: Guidance, Navigation, and

↪→ Control, with each module further decomposed into sub-functions,

↪→ validation strategies, and fault mitigation mechanisms"

↪→ type="SupportedBy">

374

375 <goal id="G2" description="Correct and complete implementation of the

↪→ Guidance Module, ensuring accurate trajectory planning,

↪→ guidance parameter generation, and trajectory correction

↪→ during all mission phases" type="SupportedBy">

376 <context id="C4" description="Guidance Module is responsible for

↪→ generating and updating the spacecraft’s desired

↪→ trajectory based on mission objectives, spacecraft state,

↪→ and environmental factors, accounting for uncertainties

↪→ and external disturbances" type="InContextOf" />

377 <context id="C5" description="Guidance algorithms must generate

↪→ optimal trajectories that meet mission-specific

↪→ constraints, such as fuel efficiency, time to target, and

↪→ avoidance of hazardous regions of space, including debris

↪→ fields and radiation zones" type="InContextOf" />

378 <context id="C6" description="Assumption: Guidance algorithms

↪→ have been verified using high-fidelity simulations that

↪→ accurately model the spacecraft dynamics and environmental

↪→ conditions across the entire mission profile"

↪→ type="InContextOf" />

379 <assumption id="A4" description="All sensor data used by the

↪→ guidance system, including position, velocity, and

↪→ orientation measurements, are accurate and reliable under

↪→ nominal and off-nominal conditions" type="InContextOf" />

380

381 <strategy id="S2" description="Argument by functional validation

↪→ of guidance algorithms, including trajectory generation,

↪→ trajectory correction, and contingency planning for

↪→ off-nominal events such as sensor failure or navigation

↪→ system errors" type="SupportedBy">

382 <context id="C7" description="Guidance Algorithm

↪→ Specification: Defines the algorithms used to generate

↪→ the spacecraft’s desired trajectory based on mission

↪→ objectives, spacecraft state, and environmental

↪→ factors" type="InContextOf" />

383 <goal id="G3" description="Guidance algorithms accurately

↪→ generate optimal trajectories for all mission phases,

↪→ including ascent, orbital operations, and re-entry"

↪→ type="SupportedBy">

384 <strategy id="S3" description="Argument by simulation,

↪→ formal analysis, and on-orbit validation of

↪→ trajectory generation" type="SupportedBy">

385 <context id="C8" description="Trajectory generation

↪→ algorithms have been validated using
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↪→ simulations that account for uncertainties in

↪→ spacecraft state estimation, environmental

↪→ disturbances, and system delays"

↪→ type="InContextOf" />

386

387 <goal id="G4" description="Simulation results confirm

↪→ that the trajectory generation algorithms

↪→ consistently generate accurate trajectories

↪→ under all expected mission conditions"

↪→ type="SupportedBy">

388 <context id="C24" description="Simulations

↪→ include a comprehensive set of test cases,

↪→ accounting for various mission phases and

↪→ potential anomalies to ensure the

↪→ robustness of trajectory generation"

↪→ type="InContextOf" />

389 <assumption id="A7" description="Simulation

↪→ models accurately represent the dynamics

↪→ of the spacecraft and the influence of

↪→ environmental factors on trajectory

↪→ generation" type="InContextOf" />

390 <justification id="J1" description="Demonstrating

↪→ consistent accuracy across simulated

↪→ conditions builds confidence in the

↪→ algorithms’ reliability for real-world

↪→ application." />

391 <solution id="E1" description="Simulation results

↪→ demonstrating the accuracy and reliability

↪→ of the trajectory generation algorithms

↪→ across a range of mission profiles,

↪→ including nominal and off-nominal

↪→ scenarios" type="SupportedBy" />

392 </goal>

393

394 <goal id="G5" description="Formal analysis of

↪→ trajectory generation algorithms confirms

↪→ mathematical correctness and robustness

↪→ against input uncertainties"

↪→ type="SupportedBy">

395 <context id="C9" description="Formal methods have

↪→ been applied to verify the mathematical

↪→ correctness of the trajectory generation

↪→ algorithms, including handling of

↪→ uncertainties and external disturbances"

↪→ type="InContextOf" />

396 <assumption id="A8" description="The mathematical

↪→ models used for formal verification are

↪→ well-defined and cover all relevant

↪→ aspects of the trajectory generation

↪→ algorithms" type="InContextOf" />
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397 <justification id="J2" description="Formal

↪→ analysis provides a high level of

↪→ assurance that algorithms can withstand

↪→ variations in input without failure." />

398 <solution id="E2" description="Formal

↪→ verification report for trajectory

↪→ generation algorithms, confirming their

↪→ correctness and robustness against

↪→ uncertainties and external disturbances"

↪→ type="SupportedBy" />

399 </goal>

400 </strategy>

401 </goal>

402

403 <goal id="G6" description="Guidance system can accurately

↪→ calculate and update guidance parameters based on

↪→ real-time spacecraft state and environmental data"

↪→ type="SupportedBy">

404 <strategy id="S4" description="Argument by validation of

↪→ guidance parameter calculations against mission

↪→ profile data and real-time spacecraft state

↪→ measurements" type="SupportedBy">

405 <context id="C10" description="Mission profile data

↪→ includes expected spacecraft state at each

↪→ mission phase, including position, velocity,

↪→ orientation, and fuel usage"

↪→ type="InContextOf" />

406 <goal id="G7" description="Validation results confirm

↪→ that guidance parameters are calculated

↪→ correctly based on mission profile data and

↪→ real-time spacecraft state measurements"

↪→ type="SupportedBy">

407 <solution id="E3" description="Validation results

↪→ showing accurate calculation of guidance

↪→ parameters during various mission phases,

↪→ including ascent, orbital operations, and

↪→ re-entry" type="SupportedBy" />

408 </goal>

409 </strategy>

410 </goal>

411

412 <goal id="G8" description="The guidance system can perform

↪→ real-time trajectory correction in response to

↪→ deviations from the desired trajectory or changes in

↪→ mission objectives" type="SupportedBy">

413 <strategy id="S5" description="Argument by validation of

↪→ real-time trajectory correction algorithms"

↪→ type="SupportedBy">

414 <context id="C11" description="Trajectory correction

↪→ algorithms must adjust the spacecraft’s
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↪→ current trajectory to bring it back onto the

↪→ desired path while minimizing fuel usage and

↪→ avoiding hazardous areas" type="InContextOf" />

415 <goal id="G9" description="Real-time trajectory

↪→ correction is performed accurately and

↪→ efficiently under all expected mission

↪→ scenarios" type="SupportedBy">

416 <context id="C25" description="Real-time

↪→ performance metrics will be collected

↪→ during trajectory correction scenarios to

↪→ ensure compliance with mission parameters"

↪→ type="InContextOf" />

417 <assumption id="A9" description="Real-time data

↪→ processing capabilities of the guidance

↪→ system are sufficient to support rapid

↪→ trajectory adjustments under dynamic

↪→ conditions" type="InContextOf" />

418 <justification id="J3" description="Efficient

↪→ real-time trajectory corrections ensure

↪→ mission success and prevent deviations

↪→ that could lead to system failures." />

419 <solution id="E4" description="Test results from

↪→ simulations and on-orbit validation,

↪→ showing the successful correction of

↪→ trajectory deviations under various

↪→ mission conditions" type="SupportedBy" />

420 </goal>

421 </strategy>

422 </goal>

423 </strategy>

424 </goal>

425

426 <goal id="G10" description="Correct and complete implementation of

↪→ the Navigation Module, ensuring accurate and reliable state

↪→ estimation based on sensor data, environmental models, and

↪→ spacecraft dynamics" type="SupportedBy">

427 <context id="C12" description="The Navigation Module is

↪→ responsible for determining the spacecraft’s position,

↪→ velocity, and orientation in real-time using data from

↪→ onboard sensors and external reference sources, such as

↪→ GPS, star trackers, and inertial measurement units (IMUs)"

↪→ type="InContextOf" />

428 <context id="C13" description="Navigation algorithms must account

↪→ for sensor noise, delays, and inaccuracies, as well as

↪→ uncertainties in the spacecraft’s dynamics and

↪→ environmental models" type="InContextOf" />

429 <assumption id="A5" description="All sensors used by the

↪→ navigation system, including GPS, star trackers, and IMUs,

↪→ provide accurate and reliable data under nominal and

↪→ off-nominal conditions" type="InContextOf" />
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430

431 <strategy id="S6" description="Argument by functional validation

↪→ of navigation algorithms, including state estimation,

↪→ sensor fusion, and fault detection and recovery"

↪→ type="SupportedBy">

432 <context id="C14" description="Navigation algorithms must

↪→ accurately estimate the spacecraft’s state using data

↪→ from multiple sensors, while also detecting and

↪→ compensating for sensor faults and errors"

↪→ type="InContextOf" />

433 <goal id="G11" description="Navigation algorithms provide

↪→ accurate state estimates within specified tolerances

↪→ under all expected mission conditions"

↪→ type="SupportedBy">

434 <strategy id="S7" description="Argument by simulation,

↪→ formal analysis, and on-orbit validation of state

↪→ estimation algorithms" type="SupportedBy">

435 <goal id="G12" description="Simulation results

↪→ confirm that state estimation algorithms

↪→ consistently provide accurate estimates under

↪→ varying sensor conditions and environmental

↪→ influences" type="SupportedBy">

436 <context id="C15" description="Simulations

↪→ include various scenarios with sensor

↪→ noise, delays, and inaccuracies to ensure

↪→ robustness of state estimation algorithms"

↪→ type="InContextOf" />

437 <assumption id="A6" description="Simulation

↪→ models accurately represent the dynamics

↪→ of the spacecraft and the influence of

↪→ environmental factors on sensor

↪→ measurements" type="InContextOf" />

438 <justification id="J4" description="Demonstrating

↪→ consistent accuracy across simulated

↪→ conditions builds confidence in the

↪→ algorithms’ reliability for real-world

↪→ application." />

439 <solution id="E5" description="Simulation results

↪→ demonstrating the accuracy and reliability

↪→ of the state estimation algorithms across

↪→ a range of mission profiles, including

↪→ nominal and off-nominal scenarios"

↪→ type="SupportedBy" />

440 </goal>

441

442 <goal id="G13" description="Formal analysis of state

↪→ estimation algorithms confirms mathematical

↪→ correctness and robustness against input

↪→ uncertainties" type="SupportedBy">
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443 <context id="C16" description="Formal methods

↪→ have been applied to verify the

↪→ mathematical correctness of the state

↪→ estimation algorithms, including handling

↪→ of uncertainties and external

↪→ disturbances" type="InContextOf" />

444 <assumption id="A10" description="The

↪→ mathematical models used for formal

↪→ verification are well-defined and cover

↪→ all relevant aspects of the state

↪→ estimation algorithms" type="InContextOf"

↪→ />

445 <justification id="J5" description="Formal

↪→ analysis provides a high level of

↪→ assurance that algorithms can withstand

↪→ variations in input without failure." />

446 <solution id="E6" description="Formal

↪→ verification report for state estimation

↪→ algorithms, confirming their correctness

↪→ and robustness against uncertainties and

↪→ external disturbances" type="SupportedBy"

↪→ />

447 </goal>

448 </strategy>

449 </goal>

450

451 <goal id="G14" description="The navigation system can

↪→ accurately calculate and update state estimates based

↪→ on real-time sensor data and environmental models"

↪→ type="SupportedBy">

452 <strategy id="S8" description="Argument by validation of

↪→ state estimate calculations against mission

↪→ profile data and real-time sensor measurements"

↪→ type="SupportedBy">

453 <goal id="G15" description="Validation results

↪→ confirm that state estimates are calculated

↪→ correctly based on real-time sensor data and

↪→ environmental models" type="SupportedBy">

454 <solution id="E7" description="Validation results

↪→ showing accurate calculation of state

↪→ estimates during various mission phases,

↪→ including ascent, orbital operations, and

↪→ re-entry" type="SupportedBy" />

455 </goal>

456 </strategy>

457 </goal>

458

459 <goal id="G16" description="The navigation system can detect

↪→ and recover from sensor faults to maintain accurate

↪→ state estimation" type="SupportedBy">
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460 <strategy id="S9" description="Argument by validation of

↪→ fault detection and recovery algorithms in

↪→ navigation systems" type="SupportedBy">

461 <goal id="G17" description="Fault detection

↪→ algorithms accurately identify sensor faults,

↪→ enabling timely recovery and maintaining state

↪→ estimation accuracy" type="SupportedBy">

462 <context id="C17" description="Fault detection

↪→ algorithms must monitor sensor data in

↪→ real-time, identifying anomalies and

↪→ enabling recovery actions to maintain

↪→ accurate state estimation"

↪→ type="InContextOf" />

463 <assumption id="A11" description="Fault detection

↪→ algorithms are effective and can

↪→ differentiate between normal sensor

↪→ behavior and faulty readings under all

↪→ expected conditions" type="InContextOf" />

464 <justification id="J6" description="Timely

↪→ detection of faults prevents erroneous

↪→ state estimates and potential mission

↪→ failures." />

465 <solution id="E8" description="Test results from

↪→ simulations and on-orbit validation,

↪→ showing successful fault detection and

↪→ recovery under various scenarios"

↪→ type="SupportedBy" />

466 </goal>

467 </strategy>

468 </goal>

469 </strategy>

470 </goal>

471

472 <goal id="G18" description="Correct and complete implementation of

↪→ the Control Module, ensuring accurate and reliable control of

↪→ spacecraft dynamics based on state estimates and guidance

↪→ commands" type="SupportedBy">

473 <context id="C18" description="Control Module is responsible for

↪→ executing control commands to maintain the spacecraft’s

↪→ desired trajectory and orientation, adjusting for

↪→ disturbances and ensuring mission success"

↪→ type="InContextOf" />

474 <context id="C19" description="Control algorithms must account

↪→ for spacecraft dynamics, including inertia, thrust

↪→ dynamics, and external disturbances such as atmospheric

↪→ drag and gravitational influences" type="InContextOf" />

475 <assumption id="A12" description="All actuators and propulsion

↪→ systems used by the control module provide accurate and

↪→ reliable performance under nominal and off-nominal

↪→ conditions" type="InContextOf" />
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476

477 <strategy id="S10" description="Argument by functional validation

↪→ of control algorithms, including trajectory tracking,

↪→ attitude control, and fault detection and recovery"

↪→ type="SupportedBy">

478 <goal id="G19" description="Control algorithms provide

↪→ accurate and reliable control of spacecraft dynamics

↪→ under all expected mission conditions"

↪→ type="SupportedBy">

479 <strategy id="S11" description="Argument by simulation,

↪→ formal analysis, and on-orbit validation of

↪→ control algorithms" type="SupportedBy">

480 <goal id="G20" description="Simulation results

↪→ confirm that control algorithms consistently

↪→ maintain spacecraft dynamics within specified

↪→ tolerances under varying conditions"

↪→ type="SupportedBy">

481 <context id="C20" description="Simulations

↪→ include various scenarios with

↪→ disturbances and uncertainties to ensure

↪→ robustness of control algorithms"

↪→ type="InContextOf" />

482 <assumption id="A13" description="Simulation

↪→ models accurately represent the dynamics

↪→ of the spacecraft and the influence of

↪→ environmental factors on control

↪→ performance" type="InContextOf" />

483 <justification id="J7" description="Demonstrating

↪→ consistent performance across simulated

↪→ conditions builds confidence in the

↪→ algorithms’ reliability for real-world

↪→ application." />

484 <solution id="E9" description="Simulation results

↪→ demonstrating the accuracy and reliability

↪→ of the control algorithms across a range

↪→ of mission profiles, including nominal and

↪→ off-nominal scenarios" type="SupportedBy"

↪→ />

485 </goal>

486

487 <goal id="G21" description="Formal analysis of

↪→ control algorithms confirms mathematical

↪→ correctness and robustness against input

↪→ uncertainties" type="SupportedBy">

488 <context id="C21" description="Formal methods

↪→ have been applied to verify the

↪→ mathematical correctness of the control

↪→ algorithms, including handling of

↪→ uncertainties and external disturbances"

↪→ type="InContextOf" />
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489 <assumption id="A14" description="The

↪→ mathematical models used for formal

↪→ verification are well-defined and cover

↪→ all relevant aspects of the control

↪→ algorithms" type="InContextOf" />

490 <justification id="J8" description="Formal

↪→ analysis provides a high level of

↪→ assurance that algorithms can withstand

↪→ variations in input without failure." />

491 <solution id="E10" description="Formal

↪→ verification report for control

↪→ algorithms, confirming their correctness

↪→ and robustness against uncertainties and

↪→ external disturbances" type="SupportedBy"

↪→ />

492 </goal>

493 </strategy>

494 </goal>

495

496 <goal id="G22" description="The control system can accurately

↪→ execute control commands based on real-time state

↪→ estimates and guidance commands" type="SupportedBy">

497 <strategy id="S12" description="Argument by validation of

↪→ control command execution against mission profile

↪→ data and real-time state estimates"

↪→ type="SupportedBy">

498 <goal id="G23" description="Validation results

↪→ confirm that control commands are executed

↪→ correctly based on real-time state estimates

↪→ and guidance commands" type="SupportedBy">

499 <solution id="E11" description="Validation

↪→ results showing accurate execution of

↪→ control commands during various mission

↪→ phases, including ascent, orbital

↪→ operations, and re-entry"

↪→ type="SupportedBy" />

500 </goal>

501 </strategy>

502 </goal>

503

504 <goal id="G24" description="The control system can detect and

↪→ recover from actuator faults to maintain accurate

↪→ control of spacecraft dynamics" type="SupportedBy">

505 <strategy id="S13" description="Argument by validation of

↪→ fault detection and recovery algorithms in control

↪→ systems" type="SupportedBy">

506 <goal id="G25" description="Fault detection

↪→ algorithms accurately identify actuator

↪→ faults, enabling timely recovery and
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↪→ maintaining control performance"

↪→ type="SupportedBy">

507 <context id="C22" description="Fault detection

↪→ algorithms must monitor actuator

↪→ performance in real-time, identifying

↪→ anomalies and enabling recovery actions to

↪→ maintain control performance"

↪→ type="InContextOf" />

508 <assumption id="A15" description="Fault detection

↪→ algorithms are effective and can

↪→ differentiate between normal actuator

↪→ behavior and faulty performance under all

↪→ expected conditions" type="InContextOf" />

509 <justification id="J9" description="Timely

↪→ detection of faults prevents control

↪→ errors and potential mission failures." />

510 <solution id="E12" description="Test results from

↪→ simulations and on-orbit validation,

↪→ showing successful fault detection and

↪→ recovery under various scenarios"

↪→ type="SupportedBy" />

511 </goal>

512 </strategy>

513 </goal>

514 </strategy>

515 </goal>

516

517 <goal id="G26" description="Overall GNCS functionality is validated

↪→ through system-level testing, ensuring that the integrated

↪→ system meets all safety and performance requirements under all

↪→ expected operational conditions" type="SupportedBy">

518 <context id="C23" description="System-level testing includes

↪→ integrated tests of the Guidance, Navigation, and Control

↪→ modules, simulating all mission phases and operational

↪→ scenarios" type="InContextOf" />

519 <context id="C24" description="Test results will be documented

↪→ and analyzed to ensure compliance with all safety and

↪→ performance requirements" type="InContextOf" />

520 <assumption id="A16" description="All components of the GNCS are

↪→ designed and implemented according to established

↪→ standards for safety, reliability, and performance"

↪→ type="InContextOf" />

521 <justification id="J10" description="Validating the integrated

↪→ GNCS through comprehensive testing ensures mission success

↪→ and the safety of all crew members and systems on board."

↪→ />

522 <solution id="E13" description="System-level test reports

↪→ demonstrating successful integration and validation of the

↪→ Guidance, Navigation, and Control modules under all

↪→ expected conditions" type="SupportedBy" />
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523 </goal>

524 </strategy>

525 </goal>

526

527

528 **Standards to Consider:**
529 Please ensure that the safety cases adhere to relevant safety standards such

↪→ as ISO 26262, SOTIF, DO-178C, or other applicable safety standards,

↪→ depending on the system domain.

530

531 **Output Requirements:**
532

533 - In output I want to have just one safety case that will constitute a single

↪→ GSN diagram and not several safety cases that will make several

↪→ different GSN diagrams.

534 - Please ensure that the output adhere to valid XML syntax. Use appropriate

↪→ XML tags for each element of the GSN, with each tag enclosing relevant

↪→ content (e.g., <goal>, <strategy>, <solution>, etc.)

535 - Generate well-formated XML code as the output for each safety case,

↪→ starting by <goal> and ending by </goal>, without something thing

↪→ before and after

536 - The safety cases must be detailed, precise, consistent, and persuasive to

↪→ establish confidence in the system’s safety.

537 - The generated content should be just the safety cases and nothing anymore,

↪→ nothing, Nothing. I just need to see the safety cases Please

538 - Safety cases must have at least 5 levels.

539 - Please enrich the safety cases by using assumptions and justifications as

↪→ far as possible at each goal, even on the lowest levels of the safety

↪→ cases (level 5, level 6, level 7, level 8, etc.). Take into

↪→ consideration the linguistic formulation of these GSN elements.

540 - Provide as much information as possible when generating the lower-level GSN

↪→ elements (context, assumption, solution, justification, goals), and

↪→ ensure that they are as detailed as the higher-level GSN elements.

541 - Please, I don’t need partial safety cases, generate safety cases that are

↪→ as complete as possible, and that don’t need further revision by a

↪→ specialist.

542 - The most important: The generated safety cases should have minimum 10000

↪→ Tokens

543 """

a.3 the u-shift onboarding system’s safety analysis and system

description

Listing A.3: Safety Analysis and system description for the U-SHIFT Onboarding Subsys-
tem

1

2 ## System Description and Safety Analysis: U-SHIFT Onboarding System

3
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4 ---

5

6 #### 1. System Definition

7

8 **System Overview**:

9 The Onboarding System manages passenger access, including ramp deployment,

↪→ door operations, and interaction with passenger control inputs. This

↪→ system operates autonomously, ensuring smooth and barrier-free access

↪→ to the capsule for all passengers, including those with mobility

↪→ limitations. It is integrated with the vehicle’s Control System to

↪→ ensure safe and efficient operations during passenger boarding and

↪→ disembarking.

10

11 **System Boundaries**:

12 - **Subsystems**:

13 - **Ramp Control Subsystem**: Deploys and retracts the ramp for

↪→ barrier-free access.

14 - **Door Operation Subsystem**: Automates door opening and closing.

15 - **Obstacle Detection Subsystem**: Detects obstacles near the doors and

↪→ ramp to prevent unsafe deployment.

16 - **Passenger Safety Interface**: Provides alerts and controls for safe

↪→ passenger interaction.

17

18 - **Components**:

19 - **Ramp Actuator**: Motor-driven mechanism for ramp deployment and

↪→ retraction.

20 - **Door Actuator**: Mechanism to securely open and close doors.

21 - **Obstacle Sensors**: Proximity sensors to detect objects or people near

↪→ the doors and ramp area.

22 - **Control Interface**: Integrated with the Control System for coordinated

↪→ boarding processes.

23

24 ---

25

26 #### 2. Operational Environment

27

28 **Physical Environment**:

29 The Onboarding System is designed to operate at passenger pickup and drop-off

↪→ locations, such as bus stops and designated loading zones. It is

↪→ adaptable to various physical conditions:

30 - **Surface Types**: Flat, stable surfaces including asphalt and concrete.

31 - **Weather Conditions**: Operates in various weather conditions, with

↪→ sensors detecting slippery surfaces for safe ramp deployment.

32 - **Lighting Conditions**: Operates effectively in day, night, and low-light

↪→ conditions with sensor support.

33

34 **Operational Scenarios**:

35 - **Scenario 1**: Passenger onboarding at a bus stop with the ramp deployed

↪→ for wheelchair access.

36 - **Scenario 2**: Automatic door closure after all passengers have boarded.
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37 - **Scenario 3**: Preventing ramp deployment if an obstacle is detected.

38

39 **Human Interaction**:

40 Passengers and operators receive safety notifications and have the option to

↪→ manually intervene:

41 - **Auditory and Visual Alerts**: Alert passengers of door and ramp movement.

42 - **Manual Override**: Operators can remotely control ramp and door functions

↪→ in case of failure or emergency.

43

44 ---

45

46 #### 3. Functional and Performance Requirements

47

48 **Functional Requirements**:

49 - **Ramp Deployment Safety**: Ramp should only deploy if no obstacles are

↪→ detected.

50 - **Secure Door Operation**: Doors must remain closed and locked when the

↪→ vehicle is in motion.

51 - **Passenger Alerts**: Issue alerts before and during ramp or door

↪→ operations to inform passengers.

52

53 **Performance Requirements**:

54 - **Deployment Time**: Ramp deployment or retraction must complete within 5

↪→ seconds.

55 - **Detection Precision**: Obstacle sensors must detect objects within 0.5

↪→ meters with 95% accuracy.

56 - **Reliability**: The system should achieve 99% operational uptime.

57

58 ---

59

60 #### 4. Safety-Critical Functions

61

62 **Identification**:

63 - **Function 1**: Safe deployment of ramp and prevention of deployment when

↪→ obstacles are present.

64 - **Function 2**: Secure locking and unlocking of doors in sync with vehicle

↪→ motion.

65 - **Function 3**: Provision of alerts for safe passenger onboarding and

↪→ disembarking.

66

67 **Failure Modes**:

68 - **Mode 1**: Failure to retract the ramp, causing potential collision with

↪→ ground obstacles.

69 - **Mode 2**: Unintended door operation, leading to possible safety risks.

70 - **Mode 3**: Obstacle sensor malfunction, failing to detect passengers or

↪→ obstacles.

71

72 ---

73

74 #### 5. System Architecture and Design
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75

76 **Architecture Overview**:

77 The Onboarding System is built with modular components, each handling a

↪→ specific function related to passenger safety and access. It

↪→ integrates with the central Control System, allowing for coordinated

↪→ operations with the Drive System and Communication System.

78

79 **Design Principles**:

80 - **Redundancy**: Key components, such as door actuators and obstacle

↪→ sensors, have redundant systems to prevent failures.

81 - **Fail-safe Operation**: If an obstacle is detected, the system halts ramp

↪→ and door operations to prevent accidents.

82

83 **Safety Mechanisms**:

84 - **Sensor Cross-validation**: Multiple sensors provide obstacle data to

↪→ ensure accurate detection before ramp deployment.

85 - **Self-diagnostics**: Continuous monitoring of ramp and door actuators for

↪→ early detection of faults.

86

87 ---

88

89 #### 6. Implementation Details

90

91 **Software**:

92 The Onboarding System software includes:

93 1. **Ramp Control Module**: Controls ramp deployment and retraction based on

↪→ obstacle sensor data.

94 2. **Door Control Module**: Manages door opening and closing, with safety

↪→ locks for vehicle motion.

95 3. **Safety Alert Module**: Issues notifications to passengers during ramp or

↪→ door operations.

96

97 **Hardware**:

98 - **Sensors**: Proximity sensors with short-range detection for accurate

↪→ obstacle monitoring.

99 - **Processing Unit**: Manages decisions for ramp and door operation.

100 - **Actuators**: Motor-driven ramp and door actuators designed for reliable

↪→ and quick response.

101

102 **Integration and Configuration Management**:

103 The Onboarding System is integrated with the U-SHIFT Control System for

↪→ coordinated actions, particularly during stops. Configuration

↪→ management includes regular software updates and version control for

↪→ system consistency.

104

105 ---

106

107 #### 7. Verification and Validation

108

109 **Testing Procedures**:
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110 - **Unit Testing**: Tests individual components, such as ramp actuators and

↪→ sensors, under controlled lab conditions.

111 - **Integration Testing**: Simulates full system operation, focusing on ramp

↪→ and door safety during passenger boarding.

112 - **Environmental Testing**: Evaluates system response to different weather

↪→ and surface conditions to ensure reliable operation.

113

114 **Validation Methods**:

115 - **Simulation Testing**: Uses simulated boarding scenarios to test ramp and

↪→ door responses.

116 - **Field Testing**: Real-world testing at designated stops, with various

↪→ passenger loads and obstacle configurations.

117

118 **Test Results**:

119 - Obstacle detection accuracy: 95% within specified range.

120 - Ramp deployment and retraction: Completed within 5 seconds in 98% of tests.

121

122 ---

123

124 #### 8. Maintenance and Operation

125

126 **Maintenance Procedures**:

127 - **Sensor Calibration**: Regular calibration to maintain detection accuracy.

128 - **Actuator Inspection**: Periodic checks of ramp and door actuators for

↪→ wear and tear.

129 - **Software Updates**: Regular updates to improve system performance and

↪→ address any known issues.

130

131 **Operational Procedures**:

132 - The Onboarding System is active during vehicle stops and standby when in

↪→ motion. Operators can remotely manage ramp and door functions.

133 - System logs are maintained for each onboarding event to assist with

↪→ maintenance and troubleshooting.

134

135 **Incident Response**:

136 - Any unexpected system behavior, such as a failure to deploy or retract the

↪→ ramp, generates an automatic incident report for diagnostic review.

137

138 ---

139

140 #### 9. Regulatory and Compliance Information

141

142 **Applicable Standards**:

143 - **ISO 26262**: Functional safety for road vehicles.

144 - **UNECE R107**: Requirements for accessibility and passenger safety.

145 - **SAE J3016**: Standards for automation levels relevant to passenger

↪→ boarding.

146

147 **Compliance Strategy**:
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184 - **H2 - Unintended Door Opening**: Use vehicle motion locks to prevent door

↪→ operation while in transit.

185 - **H3 - Obstacle Not Detected**: Enhance detection accuracy by using a

↪→ network of sensors and cross-referencing data.

186 - **H4 - Delay in Operation**: Configure system alerts to inform passengers

↪→ of any operational delays.

a.4 the u-shift onboarding system’s safety cases in xml based on

gsn

Listing A.4: Safety Cases for the U-SHIFT Onboarding system

1 <goal id="G1" description="The Onboarding System ensures safe passenger

↪→ access, including ramp deployment, door operation, and obstacle

↪→ detection" type="SupportedBy">

2 <context id="C1" description="System Overview: The Onboarding System

↪→ manages passenger access, including ramp deployment, door

↪→ operations, and interaction with passenger control inputs"

↪→ type="InContextOf" />

3 <context id="C2" description="System Boundaries: The Onboarding System

↪→ includes the Ramp Control Subsystem, Door Operation Subsystem,

↪→ Obstacle Detection Subsystem, and Passenger Safety Interface"

↪→ type="InContextOf" />

4 <assumption id="A1" description="All subsystems are designed and

↪→ implemented according to established standards for safety,

↪→ reliability, and performance" type="InContextOf" />

5 <justification id="J1" description="The system-level validation of the

↪→ Onboarding System ensures that all components and interactions are

↪→ safe and reliable, meeting or exceeding all applicable standards

↪→ for passenger access" type="InContextOf" />

6 <strategy id="S1" description="Argument by decomposition of the

↪→ Onboarding System functionality into its core modules, each

↪→ validated through formal analysis and testing" type="SupportedBy">

7 <goal id="G2" description="The Ramp Control Subsystem ensures safe

↪→ ramp deployment and retraction" type="SupportedBy">

8 <context id="C3" description="Ramp Control Subsystem: Deploys and

↪→ retracts the ramp for barrier-free access"

↪→ type="InContextOf" />

9 <assumption id="A2" description="The ramp actuator and sensors

↪→ are designed and implemented according to established

↪→ standards for safety, reliability, and performance"

↪→ type="InContextOf" />

10 <justification id="J2" description="The ramp control algorithm is

↪→ designed to prevent ramp deployment if obstacles are

↪→ detected within the specified range" type="InContextOf" />

11 <strategy id="S2" description="Argument by functional validation

↪→ of the ramp control algorithm, including tests for

↪→ obstacle detection and ramp deployment/retraction"

↪→ type="SupportedBy">
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12 <goal id="G3" description="The ramp control algorithm

↪→ correctly detects obstacles within the specified

↪→ range" type="SupportedBy">

13 <solution id="E1" description="Test results showing

↪→ successful obstacle detection under various

↪→ conditions" type="SupportedBy" />

14 </goal>

15 <goal id="G4" description="The ramp deployment/retraction is

↪→ executed correctly under all expected conditions"

↪→ type="SupportedBy">

16 <solution id="E2" description="Simulation results showing

↪→ successful ramp deployment/retraction under

↪→ various conditions" type="SupportedBy" />

17 </goal>

18 </strategy>

19 </goal>

20 <goal id="G5" description="The Door Operation Subsystem ensures safe

↪→ door opening and closing" type="SupportedBy">

21 <context id="C4" description="Door Operation Subsystem: Automates

↪→ door opening and closing" type="InContextOf" />

22 <assumption id="A3" description="The door actuators and sensors

↪→ are designed and implemented according to established

↪→ standards for safety, reliability, and performance"

↪→ type="InContextOf" />

23 <justification id="J3" description="The door control algorithm is

↪→ designed to prevent door opening if the vehicle is in

↪→ motion" type="InContextOf" />

24 <strategy id="S3" description="Argument by functional validation

↪→ of the door control algorithm, including tests for door

↪→ opening/closing and vehicle motion detection"

↪→ type="SupportedBy">

25 <goal id="G6" description="The door control algorithm

↪→ correctly detects vehicle motion" type="SupportedBy">

26 <solution id="E3" description="Test results showing

↪→ successful detection of vehicle motion under

↪→ various conditions" type="SupportedBy" />

27 </goal>

28 <goal id="G7" description="The door opening/closing is

↪→ executed correctly under all expected conditions"

↪→ type="SupportedBy">

29 <solution id="E4" description="Simulation results showing

↪→ successful door opening/closing under various

↪→ conditions" type="SupportedBy" />

30 </goal>

31 </strategy>

32 </goal>

33 <goal id="G8" description="The Obstacle Detection Subsystem ensures

↪→ safe obstacle detection" type="SupportedBy">
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34 <context id="C5" description="Obstacle Detection Subsystem:

↪→ Detects obstacles near the doors and ramp"

↪→ type="InContextOf" />

35 <assumption id="A4" description="The obstacle sensors are

↪→ designed and implemented according to established

↪→ standards for safety, reliability, and performance"

↪→ type="InContextOf" />

36 <justification id="J4" description="The obstacle detection

↪→ algorithm is designed to prevent ramp deployment if

↪→ obstacles are detected within the specified range"

↪→ type="InContextOf" />

37 <strategy id="S4" description="Argument by functional validation

↪→ of the obstacle detection algorithm, including tests for

↪→ obstacle detection and ramp deployment prevention"

↪→ type="SupportedBy">

38 <goal id="G9" description="The obstacle detection algorithm

↪→ correctly detects obstacles within the specified

↪→ range" type="SupportedBy">

39 <solution id="E5" description="Test results showing

↪→ successful obstacle detection under various

↪→ conditions" type="SupportedBy" />

40 </goal>

41 <goal id="G10" description="The ramp deployment is prevented

↪→ if obstacles are detected within the specified range"

↪→ type="SupportedBy">

42 <solution id="E6" description="Simulation results showing

↪→ successful ramp deployment prevention under

↪→ various conditions" type="SupportedBy" />

43 </goal>

44 </strategy>

45 </goal>

46 <goal id="G11" description="The Passenger Safety Interface ensures

↪→ safe passenger interaction" type="SupportedBy">

47 <context id="C6" description="Passenger Safety Interface:

↪→ Provides alerts and controls for safe passenger

↪→ interaction" type="InContextOf" />

48 <assumption id="A5" description="The passenger safety interface

↪→ is designed and implemented according to established

↪→ standards for safety, reliability, and performance"

↪→ type="InContextOf" />

49 <justification id="J5" description="The passenger safety

↪→ interface is designed to provide clear and timely alerts

↪→ to passengers" type="InContextOf" />

50 <strategy id="S5" description="Argument by functional validation

↪→ of the passenger safety interface, including tests for

↪→ alert generation and passenger interaction"

↪→ type="SupportedBy">

51 <goal id="G12" description="The passenger safety interface

↪→ correctly generates alerts to passengers"

↪→ type="SupportedBy">
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52 <solution id="E7" description="Test results showing

↪→ successful alert generation under various

↪→ conditions" type="SupportedBy" />

53 </goal>

54 <goal id="G13" description="The passenger interaction is

↪→ executed correctly under all expected conditions"

↪→ type="SupportedBy">

55 <solution id="E8" description="Simulation results showing

↪→ successful passenger interaction under various

↪→ conditions" type="SupportedBy" />

56 </goal>

57 </strategy>

58 </goal>

59 </strategy>

60 </goal>

a.5 the u-shift control system’s safety analysis and system de-
scription

Listing A.5: Safety Analysis and system description for the U-SHIFT control system

1

2 ## System Description and Safety Analysis: U-SHIFT Control System

3

4 ---

5

6 #### 1. System Definition

7

8 **System Overview**:

9 The Control System is the central decision-making unit of the U-SHIFT

↪→ vehicle, responsible for processing sensor data, managing interactions

↪→ with other subsystems (Drive, Onboarding, Communication, and Emergency

↪→ systems), and issuing real-time commands. It ensures coordinated

↪→ operations for vehicle navigation, passenger safety, and emergency

↪→ handling, playing a critical role in vehicle automation and system

↪→ safety.

10

11 **System Boundaries**:

12 - **Subsystems**:

13 - **Data Processing Subsystem**: Collects and processes data from sensors

↪→ and subsystem interfaces.

14 - **Decision-Making Subsystem**: Analyzes data to make real-time

↪→ operational decisions.

15 - **Command Interface Subsystem**: Issues commands to Drive, Onboarding,

↪→ and other connected systems.

16 - **Diagnostics Subsystem**: Continuously monitors system performance and

↪→ detects faults.

17

18 - **Components**:
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19 - **Central Processor**: High-performance processor for handling complex

↪→ data processing and decision-making.

20 - **Communication Module**: Interface for data exchange between subsystems

↪→ and external operators.

21 - **Diagnostics Interface**: Monitors system health and provides alerts for

↪→ detected faults.

22 - **Power Management Unit**: Ensures continuous power supply and manages

↪→ power distribution across control components.

23

24 ---

25

26 #### 2. Operational Environment

27

28 **Physical Environment**:

29 The Control System operates in urban and suburban areas, handling complex

↪→ road interactions, traffic scenarios, and passenger onboarding and

↪→ offboarding at bus stops and other designated locations. It must adapt

↪→ to:

30 - **Road Types**: Asphalt, concrete, and varied urban road structures.

31 - **Weather Conditions**: Reliable operation in all-weather conditions,

↪→ including rain, fog, and moderate snow.

32 - **Lighting Conditions**: Effective operation in both day and night settings.

33

34 **Operational Scenarios**:

35 - **Scenario 1**: Decision-making for vehicle stopping at a bus stop while

↪→ ensuring safe boarding.

36 - **Scenario 2**: Real-time hazard detection and response when obstacles are

↪→ detected on the path.

37 - **Scenario 3**: Coordination with Drive System for speed adjustments during

↪→ passenger onboarding.

38

39 **Human Interaction**:

40 The Control System interacts with operators and passengers through:

41 - **Operator Alerts**: Provides real-time updates on system status and

↪→ emergency alerts.

42 - **Passenger Notifications**: Issues notifications when there are sudden

↪→ changes in speed or route deviations for safety.

43

44 ---

45

46 #### 3. Functional and Performance Requirements

47

48 **Functional Requirements**:

49 - **Data Integration**: Gather and process data from all vehicle subsystems

↪→ and sensors.

50 - **Decision-Making**: Analyze real-time data to identify hazards, manage

↪→ vehicle speed, and control passenger access.

51 - **Command Execution**: Issue timely and accurate commands to the Drive,

↪→ Onboarding, Communication, and Emergency systems.

52
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53 **Performance Requirements**:

54 - **Response Time**: Must process and respond to critical inputs within 100ms.

55 - **Data Accuracy**: 99% accuracy in data interpretation from subsystems.

56 - **System Uptime**: 99.9% availability in normal operational conditions.

57

58 ---

59

60 #### 4. Safety-Critical Functions

61

62 **Identification**:

63 - **Function 1**: Real-time hazard detection and response.

64 - **Function 2**: Safe coordination of vehicle movement and passenger access.

65 - **Function 3**: Emergency command execution, including stopping and

↪→ notifying external systems.

66

67 **Failure Modes**:

68 - **Mode 1**: Loss of data processing capability.

69 - **Mode 2**: Command interface malfunction, leading to loss of control over

↪→ subsystems.

70 - **Mode 3**: Diagnostics subsystem failure, resulting in undetected faults.

71

72 ---

73

74 #### 5. System Architecture and Design

75

76 **Architecture Overview**:

77 The Control System is designed with modular components to ensure efficient

↪→ and fault-tolerant data processing, decision-making, and command

↪→ issuance. It connects seamlessly with other subsystems to maintain

↪→ smooth and safe operations across all driving scenarios.

78

79 **Design Principles**:

80 - **Redundancy**: Redundant data channels for critical commands to Drive and

↪→ Emergency systems to prevent single points of failure.

81 - **Fail-safe Operation**: Defaults to a safe braking and halt mode if

↪→ critical processing faults are detected.

82

83 **Safety Mechanisms**:

84 - **Real-time Diagnostics**: Constantly monitors system health and

↪→ performance.

85 - **Multi-level Decision Checks**: Cross-verifies sensor and subsystem data

↪→ before executing high-impact commands.

86

87 ---

88

89 #### 6. Implementation Details

90

91 **Software**:

92 The Control System software is divided into modules for:
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93 1. **Data Fusion Module**: Integrates multi-source sensor data for

↪→ comprehensive situational awareness.

94 2. **Decision-Making Algorithm**: Analyzes data and determines safe actions

↪→ based on pre-defined safety rules.

95 3. **Command Dispatcher**: Issues commands to Drive, Onboarding, and

↪→ Emergency systems in real-time.

96

97 **Hardware**:

98 - **Central Processor**: A high-performance unit (e.g., NVIDIA Jetson or

↪→ similar) dedicated to processing large volumes of data and executing

↪→ decisions in milliseconds.

99 - **Communication Module**: Allows high-speed data transfer with other

↪→ subsystems and external control systems.

100 - **Diagnostics Interface**: Continuously checks for system errors and

↪→ provides fault detection.

101

102 **Integration and Configuration Management**:

103 The Control System integrates with the U-SHIFT v e h i c l e s central control

↪→ infrastructure, enabling seamless coordination with all other

↪→ subsystems. Configuration control includes routine software updates,

↪→ strict version management, and secure boot processes.

104

105 ---

106

107 #### 7. Verification and Validation

108

109 **Testing Procedures**:

110 - **Unit Testing**: Verifies individual functions such as data processing and

↪→ decision-making logic.

111 - **Integration Testing**: Assesses full system operation, focusing on

↪→ control coordination during navigation and emergency events.

112 - **Stress Testing**: Evaluates system performance under heavy data load and

↪→ in extreme conditions.

113

114 **Validation Methods**:

115 - **Simulation Testing**: Tests system response using simulated driving and

↪→ hazard scenarios.

116 - **Field Testing**: Real-world testing across urban routes, focusing on

↪→ hazard detection and passenger safety coordination.

117

118 **Test Results**:

119 - Hazard detection accuracy: 97% within specified response times.

120 - Command execution latency: <100ms in 98% of test cases.

121

122 ---

123

124 #### 8. Maintenance and Operation

125

126 **Maintenance Procedures**:
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↪→ subsystems (Drive, Onboarding, Communication, and Emergency

↪→ systems), and issuing real-time commands" type="InContextOf"/>

3 <context id="C2" description="System Boundaries: The Control System

↪→ operates within the U-SHIFT vehicle, interacting with various

↪→ subsystems to ensure safe and efficient operations"

↪→ type="InContextOf"/>

4 <strategy id="S1" description="Argument by decomposition of Control

↪→ System functionality into three core modules: Data Processing,

↪→ Decision-Making, and Command Interface" type="SupportedBy">

5 <goal id="G2" description="Correct and complete implementation of the

↪→ Data Processing Module" type="SupportedBy">

6 <context id="C3" description="Data Processing Module: Responsible

↪→ for collecting and processing data from sensors and

↪→ subsystem interfaces" type="InContextOf"/>

7 <assumption id="A1" description="All sensors and subsystem

↪→ interfaces provide accurate and reliable data under

↪→ nominal and off-nominal conditions" type="InContextOf"/>

8 <justification id="J1" description="The Data Processing Module

↪→ must accurately interpret data from various sources to

↪→ ensure safe and efficient system operation"

↪→ type="InContextOf"/>

9 <solution id="E1" description="Implementation of data validation

↪→ and correction algorithms to ensure data integrity"

↪→ type="SupportedBy"/>

10 </goal>

11 <goal id="G3" description="Correct and complete implementation of the

↪→ Decision-Making Module" type="SupportedBy">

12 <context id="C4" description="Decision-Making Module: Responsible

↪→ for analyzing data to make real-time operational

↪→ decisions" type="InContextOf"/>

13 <assumption id="A2" description="All decision-making algorithms

↪→ are designed to account for uncertainties and variations

↪→ in system dynamics" type="InContextOf"/>

14 <justification id="J2" description="The Decision-Making Module

↪→ must accurately analyze data to make safe and effective

↪→ decisions under all operational conditions"

↪→ type="InContextOf"/>

15 <solution id="E2" description="Implementation of decision-making

↪→ algorithms with built-in fault tolerance and redundancy"

↪→ type="SupportedBy"/>

16 </goal>

17 <goal id="G4" description="Correct and complete implementation of the

↪→ Command Interface Module" type="SupportedBy">

18 <context id="C5" description="Command Interface Module:

↪→ Responsible for issuing commands to Drive, Onboarding,

↪→ Communication, and Emergency systems" type="InContextOf"/>

19 <assumption id="A3" description="All commands are correctly

↪→ issued and executed under all operational conditions"

↪→ type="InContextOf"/>
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20 <justification id="J3" description="The Command Interface Module

↪→ must ensure that all commands are correctly issued and

↪→ executed to maintain system safety" type="InContextOf"/>

21 <solution id="E3" description="Implementation of command

↪→ validation and execution algorithms to ensure correctness

↪→ and reliability" type="SupportedBy"/>

22 </goal>

23 </strategy>

24 <strategy id="S2" description="Argument by hazard mitigation"

↪→ type="SupportedBy">

25 <goal id="G5" description="Hazard H1: Data processing failure is

↪→ mitigated" type="SupportedBy">

26 <context id="C6" description="Hazard H1: Loss of data processing

↪→ leading to delayed or inaccurate decisions"

↪→ type="InContextOf"/>

27 <assumption id="A4" description="The Data Processing Module is

↪→ designed to recover from data processing failures"

↪→ type="InContextOf"/>

28 <justification id="J4" description="The Data Processing Module

↪→ must recover from data processing failures to ensure

↪→ system safety" type="InContextOf"/>

29 <solution id="E4" description="Implementation of data processing

↪→ recovery algorithms" type="SupportedBy"/>

30 </goal>

31 <goal id="G6" description="Hazard H2: Command interface loss is

↪→ mitigated" type="SupportedBy">

32 <context id="C7" description="Hazard H2: Inability to send

↪→ commands to Drive or Emergency systems"

↪→ type="InContextOf"/>

33 <assumption id="A5" description="The Command Interface Module is

↪→ designed to recover from command interface losses"

↪→ type="InContextOf"/>

34 <justification id="J5" description="The Command Interface Module

↪→ must recover from command interface losses to ensure

↪→ system safety" type="InContextOf"/>

35 <solution id="E5" description="Implementation of command

↪→ interface recovery algorithms" type="SupportedBy"/>

36 </goal>

37 <goal id="G7" description="Hazard H3: Fault in diagnostics is

↪→ mitigated" type="SupportedBy">

38 <context id="C8" description="Hazard H3: Failure to detect

↪→ critical faults" type="InContextOf"/>

39 <assumption id="A6" description="The Diagnostics Module is

↪→ designed to detect critical faults" type="InContextOf"/>

40 <justification id="J6" description="The Diagnostics Module must

↪→ detect critical faults to ensure system safety"

↪→ type="InContextOf"/>

41 <solution id="E6" description="Implementation of diagnostics

↪→ algorithms" type="SupportedBy"/>

42 </goal>
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43 <goal id="G8" description="Hazard H4: Sensor data misinterpretation

↪→ is mitigated" type="SupportedBy">

44 <context id="C9" description="Hazard H4: Incorrect data

↪→ processing could lead to unsafe commands"

↪→ type="InContextOf"/>

45 <assumption id="A7" description="The Data Processing Module is

↪→ designed to correct sensor data misinterpretation"

↪→ type="InContextOf"/>

46 <justification id="J7" description="The Data Processing Module

↪→ must correct sensor data misinterpretation to ensure

↪→ system safety" type="InContextOf"/>

47 <solution id="E7" description="Implementation of sensor data

↪→ correction algorithms" type="SupportedBy"/>

48 </goal>

49 <goal id="G9" description="Hazard H5: Loss of communication with

↪→ subsystems is mitigated" type="SupportedBy">

50 <context id="C10" description="Hazard H5: Disconnection from

↪→ Drive, Onboarding, or Emergency systems"

↪→ type="InContextOf"/>

51 <assumption id="A8" description="The Communication Module is

↪→ designed to recover from communication losses"

↪→ type="InContextOf"/>

52 <justification id="J8" description="The Communication Module must

↪→ recover from communication losses to ensure system safety"

↪→ type="InContextOf"/>

53 <solution id="E8" description="Implementation of communication

↪→ recovery algorithms" type="SupportedBy"/>

54 </goal>

55 </strategy>

56 </goal>

a.7 the u-shift communication system’s safety analysis and sys-
tem description

Listing A.7: Safety Analysis and System description for the U-SHIFT Communication
system

1

2 ## System Description and Safety Analysis: U-SHIFT Communication System

3

4 ---

5

6 #### 1. System Definition

7

8 **System Overview**:

9 The Communication System in the U-SHIFT vehicle enables information exchange

↪→ between the vehicle, external operators, and passengers. It handles

↪→ data related to operational status, emergency alerts, and passenger

↪→ notifications. This system is crucial for ensuring the vehicle
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↪→ operates safely and transparently in various driving conditions,

↪→ facilitating remote control and monitoring when required.

10

11 **System Boundaries**:

12 - **Subsystems**:

13 - **Operator Interface Subsystem**: Connects with external operators for

↪→ real-time updates and remote commands.

14 - **Passenger Notification Subsystem**: Provides safety and status updates

↪→ to passengers inside the capsule.

15 - **Data Encryption Subsystem**: Secures data transfer between the vehicle

↪→ and external systems.

16 - **System Monitoring Subsystem**: Tracks communication health and detects

↪→ disruptions.

17

18 - **Components**:

19 - **Wireless Communication Module**: Supports cellular, Wi-Fi, and V2X

↪→ (Vehicle-to-Everything) connectivity for real-time data exchange.

20 - **Operator Control Interface**: Provides operators with real-time access

↪→ to vehicle status and control features.

21 - **Passenger Display Unit**: Displays information to passengers, including

↪→ route details, stops, and emergency notifications.

22 - **Encryption Module**: Protects data transmitted between the vehicle and

↪→ external entities.

23

24 ---

25

26 #### 2. Operational Environment

27

28 **Physical Environment**:

29 The Communication System operates in urban, suburban, and intercity

↪→ environments, handling a range of external interactions and data

↪→ transmissions:

30 - **Network Conditions**: Must function reliably across cellular, Wi-Fi, and

↪→ low-latency V2X networks.

31 - **Weather and Signal Interference**: Capable of maintaining signal

↪→ integrity in adverse weather and areas with high signal interference.

32 - **Operational Range**: Supports seamless connectivity over long distances

↪→ in urban and rural areas.

33

34 **Operational Scenarios**:

35 - **Scenario 1**: Communicating vehicle status updates and alerts to a remote

↪→ operator.

36 - **Scenario 2**: Issuing route and safety information to passengers during

↪→ transit.

37 - **Scenario 3**: Encrypted communication with external traffic systems for

↪→ coordinated movements and alerts.

38

39 **Human Interaction**:

40 Operators and passengers receive relevant information through the

↪→ Communication System:
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41 - **Operator Alerts**: Provides real-time status updates and alerts for

↪→ intervention when necessary.

42 - **Passenger Notifications**: Displays safety messages, route updates, and

↪→ emergency instructions.

43

44 ---

45

46 #### 3. Functional and Performance Requirements

47

48 **Functional Requirements**:

49 - **Reliable Data Exchange**: Maintain continuous data communication with

↪→ external operators and subsystems.

50 - **Passenger Information Delivery**: Notify passengers of route information,

↪→ stops, and emergency situations.

51 - **Data Security**: Ensure all communication with external systems is

↪→ encrypted and protected against unauthorized access.

52

53 **Performance Requirements**:

54 - **Latency**: Maintain a maximum latency of 100ms for critical operator

↪→ commands.

55 - **Data Integrity**: Ensure 99.9% data integrity in real-time communications.

56 - **Uptime**: Achieve 99% communication uptime under normal conditions.

57

58 ---

59

60 #### 4. Safety-Critical Functions

61

62 **Identification**:

63 - **Function 1**: Secure transmission of vehicle data to operators.

64 - **Function 2**: Real-time notification of passengers for safety and

↪→ operational updates.

65 - **Function 3**: Reliable encryption of all transmitted data to protect from

↪→ unauthorized access.

66

67 **Failure Modes**:

68 - **Mode 1**: Loss of network connectivity, resulting in inability to

↪→ send/receive data.

69 - **Mode 2**: Delay in data transmission, leading to delayed notifications or

↪→ commands.

70 - **Mode 3**: Unauthorized access to the communication channel, risking data

↪→ security.

71

72 ---

73

74 #### 5. System Architecture and Design

75

76 **Architecture Overview**:

77 The Communication System is structured with modular components to enable

↪→ seamless data transfer between the U-SHIFT vehicle, passengers, and
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↪→ external control centers. It includes secure data pathways, ensuring

↪→ both reliability and data protection.

78

79 **Design Principles**:

80 - **Redundancy**: Dual-channel communication modules to prevent single points

↪→ of failure.

81 - **Fail-safe Operation**: In case of network failure, default to notifying

↪→ operators via backup communication.

82

83 **Safety Mechanisms**:

84 - **Data Encryption**: All communication with external systems is encrypted

↪→ to protect sensitive information.

85 - **Connectivity Check**: Periodic checks on network status to ensure

↪→ continuous data flow.

86

87 ---

88

89 #### 6. Implementation Details

90

91 **Software**:

92 The Communication System software includes:

93 1. **Data Encryption Module**: Encrypts data for secure external transmission.

94 2. **Real-Time Monitoring Module**: Tracks network quality and alerts

↪→ operators of any disruption.

95 3. **Notification System**: Manages passenger information display for route

↪→ and safety updates.

96

97 **Hardware**:

98 - **Communication Interface**: Multi-mode wireless modules supporting

↪→ cellular, Wi-Fi, and V2X.

99 - **Processor**: Manages data encryption and real-time monitoring of

↪→ communication status.

100 - **Display Interface**: Screens for displaying passenger notifications and

↪→ alerts.

101

102 **Integration and Configuration Management**:

103 Integrated with the v e h i c l e s control and emergency systems, the

↪→ Communication System undergoes configuration management to ensure

↪→ consistency in updates and secure software version control.

104

105 ---

106

107 #### 7. Verification and Validation

108

109 **Testing Procedures**:

110 - **Unit Testing**: Tests each module individually, including encryption and

↪→ notification systems.

111 - **Integration Testing**: Verifies the full communication flow from vehicle

↪→ to operator and passenger notifications.
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112 - **Stress Testing**: Evaluates communication resilience under high traffic,

↪→ poor connectivity, and interference.

113

114 **Validation Methods**:

115 - **Simulation Testing**: Tests data transmission in simulated urban and

↪→ rural environments to evaluate connectivity.

116 - **Field Testing**: Real-world testing with focus on maintaining data

↪→ integrity and low latency.

117

118 **Test Results**:

119 - Connectivity uptime: 99% in urban and rural tests.

120 - Data transmission latency: <100ms in 95% of test cases.

121

122 ---

123

124 #### 8. Maintenance and Operation

125

126 **Maintenance Procedures**:

127 - **Routine Diagnostics**: Regular checks of communication modules and

↪→ encryption protocols.

128 - **Firmware Updates**: Scheduled updates to enhance performance and add new

↪→ features.

129 - **Security Audits**: Periodic audits to verify compliance with data

↪→ security standards.

130

131 **Operational Procedures**:

132 - The Communication System operates autonomously, with remote management

↪→ capability by operators.

133 - All transmitted data is logged for diagnostic and maintenance purposes.

134

135 **Incident Response**:

136 - Any communication loss or security breach generates an immediate alert to

↪→ operators and logs a report for review.

137

138 ---

139

140 #### 9. Regulatory and Compliance Information

141

142 **Applicable Standards**:

143 - **ISO 26262**: Functional safety standard for road vehicles.

144 - **UNECE R10**: Electromagnetic compatibility standards for in-vehicle

↪→ communication.

145 - **SAE J3061**: Cybersecurity guidelines for vehicle communication.

146

147 **Compliance Strategy**:

148 - The Communication System undergoes regular testing to ensure compliance

↪→ with data security and safety standards. Independent audits verify

↪→ adherence to industry standards.

149

150 ---
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186 - **H2 - Data Transmission Delay**: Implement priority-based data

↪→ transmission for time-sensitive information.

187 - **H3 - Unauthorized Access**: Apply end-to-end encryption and access

↪→ control mechanisms.

188 - **H4 - Data Corruption**: Integrate error-checking and validation

↪→ techniques for data integrity.

189 - **H5 - Incomplete Passenger Notifications**: Regularly test notification

↪→ systems to ensure reliable operation and messaging.

a.8 the u-shift communication system’s safety cases in xml based

on gsn

Listing A.8: Safety Cases for the U-SHIFT Communication system

1 <goal id="G1" description="The Communication System in the U-SHIFT vehicle

↪→ ensures reliable and secure data transfer between the vehicle,

↪→ external operators, and passengers" type="SupportedBy">

2 <context id="C1" description="System Overview: The Communication System

↪→ in the U-SHIFT vehicle enables information exchange between the

↪→ vehicle, external operators, and passengers" type="InContextOf"/>

3 <context id="C2" description="System Boundaries: Includes Operator

↪→ Interface Subsystem, Passenger Notification Subsystem, Data

↪→ Encryption Subsystem, and System Monitoring Subsystem"

↪→ type="InContextOf"/>

4 <assumption id="A1" description="The system-level requirements for the

↪→ Communication System have been validated through stakeholder

↪→ review and are consistent with the overall mission objectives"

↪→ type="InContextOf"/>

5 <justification id="J1" description="The purpose of this safety case is to

↪→ demonstrate that the Communication System design and

↪→ implementation meet all safety requirements, ensuring reliable and

↪→ secure data transfer under all operational conditions"

↪→ type="InContextOf"/>

6

7 <strategy id="S1" description="Argument by decomposition of Communication

↪→ System functionality into three core modules: Operator Interface,

↪→ Passenger Notification, and Data Encryption" type="SupportedBy">

8 <goal id="G2" description="Correct and complete implementation of the

↪→ Operator Interface Module, ensuring reliable communication

↪→ with external operators" type="SupportedBy">

9 <context id="C3" description="Operator Interface Module is

↪→ responsible for connecting with external operators for

↪→ real-time updates and remote commands" type="InContextOf"/>

10 <assumption id="A2" description="The Operator Interface Module

↪→ design and implementation are based on established

↪→ communication protocols and standards" type="InContextOf"/>

11 <justification id="J2" description="Argument over the design and

↪→ implementation of the Operator Interface Module,
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↪→ validating its functionality and performance under all

↪→ operational scenarios" type="InContextOf"/>

12

13 <strategy id="S2" description="Argument by functional validation

↪→ of Operator Interface Module algorithms, including data

↪→ encryption and secure access control" type="SupportedBy">

14 <goal id="G3" description="Operator Interface Module

↪→ algorithms are validated through simulation and formal

↪→ analysis, ensuring reliable and secure communication

↪→ with external operators" type="SupportedBy">

15 <context id="C4" description="Simulation results and

↪→ formal analysis reports are available to validate

↪→ the performance and security of the Operator

↪→ Interface Module algorithms" type="InContextOf"/>

16 <assumption id="A3" description="The simulation

↪→ environment accurately models the operational

↪→ conditions expected for the Operator Interface

↪→ Module" type="InContextOf"/>

17 <justification id="J3" description="The validation of the

↪→ Operator Interface Module algorithms is critical

↪→ to ensuring reliable and secure communication with

↪→ external operators" type="InContextOf"/>

18

19 <solution id="E1" description="Simulation results and

↪→ formal analysis reports for the Operator Interface

↪→ Module algorithms, validating their functionality

↪→ and security under all operational conditions"

↪→ type="SupportedBy"/>

20 </goal>

21 </strategy>

22 </goal>

23

24 <goal id="G4" description="Correct and complete implementation of the

↪→ Passenger Notification Module, ensuring reliable and secure

↪→ communication with passengers" type="SupportedBy">

25 <context id="C5" description="Passenger Notification Module is

↪→ responsible for notifying passengers of route information,

↪→ stops, and emergency situations" type="InContextOf"/>

26 <assumption id="A4" description="The Passenger Notification

↪→ Module design and implementation are based on established

↪→ communication protocols and standards" type="InContextOf"/>

27 <justification id="J4" description="Argument over the design and

↪→ implementation of the Passenger Notification Module,

↪→ validating its functionality and performance under all

↪→ operational scenarios" type="InContextOf"/>

28

29 <strategy id="S3" description="Argument by functional validation

↪→ of Passenger Notification Module algorithms, including

↪→ data encryption and secure access control"

↪→ type="SupportedBy">
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30 <goal id="G5" description="Passenger Notification Module

↪→ algorithms are validated through simulation and formal

↪→ analysis, ensuring reliable and secure communication

↪→ with passengers" type="SupportedBy">

31 <context id="C6" description="Simulation results and

↪→ formal analysis reports are available to validate

↪→ the performance and security of the Passenger

↪→ Notification Module algorithms"

↪→ type="InContextOf"/>

32 <assumption id="A5" description="The simulation

↪→ environment accurately models the operational

↪→ conditions expected for the Passenger Notification

↪→ Module" type="InContextOf"/>

33 <justification id="J5" description="The validation of the

↪→ Passenger Notification Module algorithms is

↪→ critical to ensuring reliable and secure

↪→ communication with passengers" type="InContextOf"/>

34

35 <solution id="E2" description="Simulation results and

↪→ formal analysis reports for the Passenger

↪→ Notification Module algorithms, validating their

↪→ functionality and security under all operational

↪→ conditions" type="SupportedBy"/>

36 </goal>

37 </strategy>

38 </goal>

39

40 <goal id="G6" description="Correct and complete implementation of the

↪→ Data Encryption Module, ensuring secure communication with

↪→ external systems" type="SupportedBy">

41 <context id="C7" description="Data Encryption Module is

↪→ responsible for encrypting data for secure external

↪→ transmission" type="InContextOf"/>

42 <assumption id="A6" description="The Data Encryption Module

↪→ design and implementation are based on established

↪→ cryptographic protocols and standards" type="InContextOf"/>

43 <justification id="J6" description="Argument over the design and

↪→ implementation of the Data Encryption Module, validating

↪→ its functionality and performance under all operational

↪→ scenarios" type="InContextOf"/>

44

45 <strategy id="S4" description="Argument by functional validation

↪→ of Data Encryption Module algorithms, including key

↪→ management and secure data transmission"

↪→ type="SupportedBy">

46 <goal id="G7" description="Data Encryption Module algorithms

↪→ are validated through simulation and formal analysis,

↪→ ensuring secure communication with external systems"

↪→ type="SupportedBy">
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30

31 return safety_cases

a.11 code source for fine-tuning llama-3-8b

1 #### Step 1: Install the Required Packages

2

3 !pip install unsloth

4 # Also get the latest nightly Unsloth!

5 !pip uninstall unsloth -y && pip install --upgrade --no-cache-dir

↪→ "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"

6

7

8 from unsloth import FastLanguageModel

9 import torch

10 from datasets import load_dataset

11 from trl import SFTTrainer

12 from transformers import TrainingArguments

13 from peft import AutoPeftModelForCausalLM

14 from transformers import AutoTokenizer

15

16

17 #### Step 2: Load the Pre-trained model and tokenizer

18 model_name = "unsloth/Meta-Llama-3.1-8B-bnb-4bit"

19 max_seq_length = 65536

20 dtype = ’bfloat16’

21 load_in_4bit = True

22

23 model, tokenizer = FastLanguageModel.from_pretrained(

24 model_name=model_name,

25 max_seq_length=max_seq_length,

26 dtype=torch.bfloat16,

27 load_in_4bit=load_in_4bit,

28 )

29

30

31 #### Step 3: Define a prompt Format and load Format Dataset

32

33 alpaca_prompt = """### Safety analysis:

34 {}

35

36 #### Safety Cases in XML:

37 {}"""

38

39 EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN

40

41 # Format the dataset

42 def format_data(example):
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43 Safety_analyses = example["Safety Analysis"]

44 Safety_cases_in_XMLs = example["Safety Cases in XML"]

45 texts = []

46 for safety_analysis, Safety_cases_in_XML in zip(Safety_analyses,

↪→ Safety_cases_in_XMLs):

47 # Must add EOS_TOKEN, otherwise your generation will go on forever!

48 text = alpaca_prompt.format(safety_analysis, Safety_cases_in_XML) +

↪→ EOS_TOKEN

49 texts.append(text)

50 return { "text" : texts, }

51 pass

52

53 # Load the dataset

54 dataset = load_dataset("Max491/New_Version_XML_Safety_Cases_Archive", split =

↪→ "train")

55

56 dataset = dataset.map(format_data, remove_columns=[’System Names’], batched =

↪→ True,)

57

58

59

60 #### Step 4: Apply LoRA Fine-Tuning

61

62 model = FastLanguageModel.get_peft_model(

63 model,

64 r = 16,

65 target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",

66 "gate_proj", "up_proj", "down_proj",],

67 lora_alpha = 16,

68 bias = "none",

69 use_gradient_checkpointing = "unsloth",

70 random_state = 3407,

71 use_rslora = False,

72 loftq_config = None,

73 )

74

75

76

77 #### Step 5: Configure Training Settings

78

79 trainer = SFTTrainer(

80 model = model,

81 tokenizer = tokenizer,

82 train_dataset = dataset,

83 dataset_text_field = "text",

84 max_seq_length = max_seq_length,

85 dataset_num_proc = 2,

86 packing = False,

87 args = TrainingArguments(

88 per_device_train_batch_size = 2,






