The application of microscopic activity based travel demand modelling in large scale simulations

Georg Hertkorn, Peter Wagner
georg.hertkorn@dlr.de, peter.wagner@dlr.de

German Aerospace Centre
Institute of Transport Research
Rutherfordstrasse 2
12489 Berlin-Adlershof
Germany

Deutsches Zentrum für Luft- und Raumfahrt
Institut für Verkehrsforschung
Rutherfordstraße 2
12489 Berlin-Adlershof
Deutschland
Outline

Approach for traffic flow simulation
Approach for travel demand estimation
Results of a case study: Cologne
Results of a bridge blockade scenario
Conclusions
Model traffic systems

Evaluate . . .

. . . traffic system performance,

. . . infrastructure projects,

. . . travel management measures
(tolls, congestion pricing,
parking restrictions),

. . . changes in society
(life styles, demographic structure).

age pyramid (german population)
Background

Dynamic features of traffic need to be considered

- traffic flow itself
- Flow depends on the temporal variation of traffic load (e.g. spill back, upstream propagation of jams).
- Demand varies with time (time of day, day, season, ...).

![Graph showing traffic flow over time and space](image-url)
Background

Traffic demand depends on the travel times experienced by the travellers. (Close this feedback loop.)

Traffic is caused by the desire of people to perform out-of-home activities (activity-based approach).

Activities are not planned independently from each other.

- Microscopic scale
- Activity-based travel demand
- Efficient procedures
Traffic flow simulation

Use a (fast) queueing model for traffic flow simulation

- Each lane of the network is a FIFO queue, with limited storage capacity.
- A vehicle has to stay at least $T = \frac{L}{v}$ in the queue.
- The time to enter the next queue is given by a minimal (service) time or depends on the traffic states in the queues.
Travel demand

Derive travel demand from observed activity patterns.

- No "behavioural theory of time allocation" included.
- Schedules are consistent.
- Model has to handle temporal shifts due to local conditions compared to original data

Establish classification of activity patterns

- Full-time 1
- Full-time 2
- Active Leisure 2
- Active Leisure 4
Handle time shifts

Derive measure for the temporal flexibility of episodes: determine variation in starting time and duration of similar episodes in the same class of diaries.

Alternative:
Determine flexibility according to activity characteristics, e.g. starting time and duration of a film.
Arrive at feasible diaries

- Equilibrate stress for the schedule as a whole.
- Compare total stress to a given threshold value.
- Choose new locations and modes if stress is too high.

stress per episode:

\[s_i = \alpha_i (\Delta t_i)^2 + \beta_i (\Delta d_i)^2 \]

\(\Delta t_i \): difference of starting times (new - original)

\(\Delta d_i \): difference of duration

\(\alpha, \beta \): episode specific parameters

minimize total stress:

\[S = \sum_i s_i \]
Locations and modes

- Establish a hierarchical ordering among the episodes of a tour,
- determine location and mode for the episode on the highest level,
- determine locations and modes for the episodes on the following levels according to locations and modes already set.

Locations:
- Model of intervening opportunities.
- Respect capacities for certain activities (paid work, school)

Modes:
- Decision tree based on empirical data (CHAID-algorithm),
- Check how many cars are still available in the household.
The City of Cologne

Population density [1/ha]
- 1 - 7.5
- 7.5 - 15
- 15 - 30
- 30 - 75
- 75 - 150

Car density [1/ha]
- 0 - 2.5
- 2.5 - 5
- 5 - 10
- 10 - 20
- 20 - 40

Cars per capita
- 0.2 - 0.3
- 0.3 - 0.35
- 0.36 - 0.4
- 0.4 - 0.45
- 0.45 - 0.51

Kilometers
5 0 5 10 15

Institut für Verkehrsforschung / Institute of Transport Research
Trip length distribution

work

shopping

ZBE: Time budget survey
MiD: Mobility in Germany 2002
TAPAS: Simulation
Destinations by quarters

Destination of trips for different home locations: share by quarters
Average distance per trip

work

shopping

avg. dist. work [km]

- 1 - 3
- 3 - 6
- 6 - 10
- 10 - 15
- 15 - 21

avg. dist. shopping [km]

- 1 - 3
- 3 - 6
- 6 - 10
- 10 - 15
- 15 - 21
Average travel time per trip

work

shopping

avg. tt work [min]
- 11 - 14
- 14 - 17
- 17 - 20
- 20 - 23
- 23 - 26
- 26 - 36

avg. tt shopping [min]
- 11 - 14
- 14 - 17
- 17 - 20
- 20 - 23
- 23 - 26
- 26 - 36
Compare the situation on the different sides of River Rhine

<table>
<thead>
<tr>
<th></th>
<th>home left</th>
<th>home right</th>
</tr>
</thead>
<tbody>
<tr>
<td>trips per person</td>
<td>3.84</td>
<td>3.73</td>
</tr>
<tr>
<td>share of car trips (driver)</td>
<td>35%</td>
<td>40%</td>
</tr>
<tr>
<td>distance per person and day</td>
<td>15.5 km</td>
<td>20.5 km</td>
</tr>
<tr>
<td>travel time per person and day</td>
<td>65 min</td>
<td>70 min</td>
</tr>
<tr>
<td>avg. trip length (car)</td>
<td>5.3 km</td>
<td>6.9 km</td>
</tr>
<tr>
<td></td>
<td>3.80</td>
<td>3.72</td>
</tr>
<tr>
<td>share of car trips (driver)</td>
<td>38%</td>
<td>40%</td>
</tr>
<tr>
<td>distance per person and day</td>
<td>16.9 km</td>
<td>21.0 km</td>
</tr>
<tr>
<td>travel time per person and day</td>
<td>66 min</td>
<td>70 min</td>
</tr>
<tr>
<td>avg. trip length (car)</td>
<td>5.8 km</td>
<td>7.0 km</td>
</tr>
</tbody>
</table>

Note: Without city centre
Scenario: “Deutzer Brücke” open/blocked

open [veh/day]
- 0 - 3000
- 3000 - 6000
- 6000 - 12000
- 12000 - 24000
- 24000 - 60000
Differences in simulated traffic flow

less flow

more flow

dNeg [veh/day]
0
1 - 1000
1000 - 2000
2000 - 4000
4000 - 8000
8000 - 16000

dPos [veh/day]
0
1 - 1000
1000 - 2000
2000 - 4000
4000 - 8000
8000 - 16000
Number of trips crossing the Rhine

Home left

<table>
<thead>
<tr>
<th>Direction</th>
<th>Trips [10^3]</th>
<th>Share [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left side</td>
<td>1987</td>
<td>94.6</td>
</tr>
<tr>
<td>Left to right</td>
<td>54</td>
<td>2.6</td>
</tr>
<tr>
<td>Right to left</td>
<td>53</td>
<td>2.5</td>
</tr>
<tr>
<td>Right side</td>
<td>6</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Bridge open

<table>
<thead>
<tr>
<th>Direction</th>
<th>Trips [10^3]</th>
<th>Share [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left side</td>
<td>1941</td>
<td>94.9</td>
</tr>
<tr>
<td>Left to right</td>
<td>50</td>
<td>2.4</td>
</tr>
<tr>
<td>Right to left</td>
<td>48</td>
<td>2.3</td>
</tr>
<tr>
<td>Right side</td>
<td>6</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Bridge blocked

<table>
<thead>
<tr>
<th>Direction</th>
<th>Trips [10^3]</th>
<th>Share [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left side</td>
<td>1941</td>
<td>94.9</td>
</tr>
<tr>
<td>Left to right</td>
<td>50</td>
<td>2.4</td>
</tr>
<tr>
<td>Right to left</td>
<td>48</td>
<td>2.3</td>
</tr>
<tr>
<td>Right side</td>
<td>6</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Home right

<table>
<thead>
<tr>
<th>Direction</th>
<th>Trips [10^3]</th>
<th>Share [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left side</td>
<td>37</td>
<td>3.2</td>
</tr>
<tr>
<td>Left to right</td>
<td>151</td>
<td>13.0</td>
</tr>
<tr>
<td>Right to left</td>
<td>153</td>
<td>13.2</td>
</tr>
<tr>
<td>Right side</td>
<td>818</td>
<td>70.6</td>
</tr>
</tbody>
</table>

Bridge open

<table>
<thead>
<tr>
<th>Direction</th>
<th>Trips [10^3]</th>
<th>Share [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left side</td>
<td>29</td>
<td>2.5</td>
</tr>
<tr>
<td>Left to right</td>
<td>126</td>
<td>11.2</td>
</tr>
<tr>
<td>Right to left</td>
<td>127</td>
<td>11.3</td>
</tr>
<tr>
<td>Right side</td>
<td>853</td>
<td>75.1</td>
</tr>
</tbody>
</table>
Conclusions

Travel demand can be estimated from consistent activity patterns in an efficient way.

→ dynamic travel demand for a working day

Simulation results are sensitive to local traffic conditions.

Travel demand characteristics vary on a small spatial scale.

Outlook

Better empirical data of tour formation and changes in activity patterns under various (spatial) conditions needed.

Include surrounding districts for incoming/outgoing traffic.
Thank you!
Diary data

Sample: 7,200 households with a German head of the household. Each member was asked to fill in two diaries for consecutive days.

Time interval: 5 minutes.

Activity catalogue: free description, coded with a set of 231 activity types.

Data element (diary): sequence of 288 activity codes

Additional variables: location, parallel activities, presence of other persons, socio-demographic variables of the individuals, regional data.

Repetition: 2001/2002

Restriction to (Tuesday, Wednesday, Thursday), elimination of inconsistent patterns: 14 000 patterns
Activity sequencing in the diary classes

Full-time 1

Full-time 2

other work travel at home

A

D

time of day

0 3 6 9 12 15 18 21 24
Determine the rigidity of starting times

- Classify diaries according to their structure (hierarchical clustering algorithm).
- Compare episodes to corresponding episodes of diaries in the same class.

The parameters:

- time of day
- television
- hobby
- leisure at home
- care
- leisure not at home
- school
- work
- shopping
- trips
- housework
- eating at home
- sleeping
Comparison of episodes

Weighting functions dependent on differences in the starting time and duration.

- television
- hobby
- leisure at home
- care
- leisure not at home
- school
- work
- shopping
- trips
- housework
- eating at home
- sleeping

time of day
Evaluation of the schedules

Set the duration of trips according to time dependent travel times.

Adjust starting times: minimize costs for the whole schedule:

\[u(x_1, x_2) = \alpha_1 (x_1 - s_1)^2 + \beta_1 (x_2 - x_1 - d_1)^2 \]

Time shifts propagate in both directions.

Compare the total costs with some threshold value and eventually reject the schedule.
Location choice (intervening opportunities)

The set of alternatives is ordered by travel times (requires preliminary mode choice).

A location is selected according to

\[f(k, q) = q^{k-1}(1 - q), \quad F(i, q) = P(k \leq i, q) = \sum_{k=1}^{i} f(k, q) = 1 - q^i \]

\[q = q(A, a, s) \]

(activity) (activity catalogue) age gender
Conclusions

Diary data offer the opportunity to estimate travel demand for status quo scenarios in a reliable and efficient way.

Restrictions: People react by using known time use patterns.

The model can be coupled with synthetic pattern modelling and help to discern the effect of each modelling step.

Moderate computing time facilitates the integration in feedback loops (e.g. traffic flow modelling).

Consistent patterns are required: Some effort is needed for consistency checks or modifications.

The adaptation to the local situation is a crucial step:
A quadratic cost function was proposed.
Further validation and investigation of the interplay of parameters is planned.